
Subtyping Union Types

Jérôme Vouillon

CNRS and Université Paris 7
Case 7014, 2 Place Jussieu, 75251 Paris Cedex 05, France

Jerome.Vouillon@pps.jussieu.fr

Abstract. Subtyping of union types can be fairly complex due to inter-
actions with function and pair types. Furthermore, this interaction turns
out to depend on the calculus considered: for instance, a call-by-value
calculus and a call-by-name calculus will have different possible subtyp-
ing rules. In order to abstract ourselves away from this dependence, we
consider a fairly large family of calculi. We define types in a semantic
fashion, as sets of terms. Then, a type can be a subtype of another type
if its denotation is included in the denotation of the other type. Using
inference rules, we specify a subtyping relation which is both sound and
complete with respect to the family of calculi. We expect this framework
to allow the study of subtyping relations that only hold for some classes
of calculi by restricting the family considered, and to allow the study of
subtyping relations for richer type systems by enriching the family.
Key words: union types, subtyping, semantics, lambda-calculus.

1 Introduction

The design of a subtyping relation for a language with a rich type system is hard.
The subtyping relation should satisfy conflicting requirements. On the one hand,
one would like the relation to have strong theorical fundations, rather than being
defined in an ad hoc, purely algorithmic, fashion. It is therefore tempting to base
it on the semantics of the language. But, on the other hand, one should be careful
not to tie it too tightly to a particular language. Especially, one should avoid
accidental special cases which happen to hold only in the language considered.
Indeed, the relation should be robust in order to accomodate future language
extensions. It should also be simple enough so that the users can understand it,
and should possess good algorithmic properties: checking whether two types are
in a subtyping relation should be reasonably simple and efficient.

We should emphasize the fact that the possible subtyping relations depend
on the language considered by providing some examples. Let us first provide
some rough intuition about types. We take the view that well-typed terms may
diverge but will evaluate without error. A term of type ⊥ is a term that always
diverges. A term of type > evaluates without error. A term of type τ ′ → τ

behaves like a term of type τ once applied to a term of type τ ′. A term of type
τ ∪τ ′ behaves as a term of type either τ or τ ′. We write τ <: τ ′ to mean that τ is
a subtype of τ ′ and τ = τ ′ to mean that τ and τ ′ are equivalent, that is, subtype

of one another. We can now present some typing relations that only hold under
some conditions on the calculus.

– In a call-by-value language, we can have > <: ⊥ → ⊥. Indeed, suppose we
take a term e of type >. When we apply it to a term e′ of type ⊥ (that
is a term whose evaluation does not terminate), we get a term e e′ whose
evaluation does not terminate. So, the term e has type ⊥ → ⊥.

– In a call-by-name language, we can have > <: > → > (as in Pierce’s thesis [1,
p. 20]). Indeed, as argued by Dami [2], in a call-by-name language, it makes
sense to consider > as the set of all terms. Then, types need to be interpreted
in a slightly unusual way. A well-typed terms does not necessarily evaluate
without error. Rather, only terms whose type τ is not equivalent to > have
these properties. Then, if we apply a term of type > to another term of type
>, we get a term of type >, which corresponds to the subtyping assertion
> <: > → >.

– In a call-by-value language, we can have the distributivity law (τ1∪τ2)×τ =
(τ1×τ)∪(τ2×τ). This law does not hold in a call-by-name language with non-
determinism. Indeed, a term of type (τ1 ∪ τ2) × τ may well be a pair whose
first component evaluates sometimes to a value of type τ1 and sometimes
to a value of type τ2. Still, it holds in a call-by-need language with non-
determinism, as an expression is then evaluated at most once.

– In a deterministic calculus, union of function types τ → τ ′ obey very special
subtyping rules when τ is finite (as observed by Damm [3]). The reason is
that these types are isomorphic to tuple types.

On the other hand, some rules seem very robust:

– The arrow is covariant on the left and contravariant on the right: if τ1 <: τ ′
1

and τ ′
2 <: τ2, then τ2 → τ1 <: τ ′

2 → τ ′
1;

– Union types are least upper bounds: if τ <: τ1 or τ <: τ2, then τ <: τ1 ∪ τ2;
if τ1 <: τ and τ2 <: τ , then τ1 ∪ τ2 <: τ .

The aim of this paper is to develop a framework in which we can substantiate
the above claims, and thus understand which subtyping assertions τ <: τ ′ hold
“by accident” (depending on some specific properties of a language), and which
are more universal (valid for a large family of calculi).

Rather than choosing a particular calculus, we specify a broad family of
calculi in a fairly abstract way. For each calculus, we interpret a type τ as a set
of terms JτK. Given a subtyping relation <:, defined for instance by inference
rules, we can state that a subtyping assertion τ <: τ ′ is valid when JτK ⊆ Jτ ′K.
Then, a subtyping relation is sound when any derivable subtyping assertion is
valid in all calculi. It is complete when every universally valid assertion can be
derived. We present a relation which is both sound and complete for the family
of calculi considered. Though this is not addressed in this paper, it would then
be possible to study relations which are only sound under some assumptions by
restricting the family of calculi.

The paper is organized as follows. The family of calculi is defined in Sect. 2.
A particular instance is given in Sect. 3. We present a simple type system, define

a subtyping relation and prove the soundness and completeness of the relation
(Sect. 4). We conclude by presenting related work (Sect. 5) and directions for
future work (Sect. 6). Most proofs are omitted for lack of space. They are
available online1 in an extended version of the paper [4].

2 A Family of Abstract Calculi

2.1 Informal Presentation and Definitions

We would like to study subtyping for a family of calculi with functions, pairs
and constants. The first step is to associate to each type τ its semantics JτK,
that is, the set of terms of type τ . We type terms rather than values, because
the notion of terms is more fundamental: the notion of value depends on the
language considered. Besides, it is not always possible to reduce the behavior of
a term to the behavior of a set of values, especially in call-by-name calculi. This
is actually possible in the calculus of Sect. 3, but only because we made some
specific choices about types.

As it turns out, it is convenient to only consider sets of terms that satisfies a
given closure property: the closure E of a set of terms E is the set of terms that
cannot be distinguished from the terms in E. Notice that the choice of a closure
operator is not neutral. It dictates what can be observed about terms.

Types categorize terms according to their behavior. We should be able to use
them to avoid some unsafe behavior, typically runtime errors. So, we distinguish
a set S of safe terms. Dually, we define a set N of neutral terms (typically, terms
that loop) as the intersection of all non-empty closed terms. We call semantic
type a closed set of terms included in S and including N. We require the semantics
JτK of a syntactic type τ to be a semantic type. For the sake of flexibility, we
don’t assume S 6= T nor N 6= ∅. In particular, we can take S = T if we want to
interpret the type > as the set of all terms.

Let us now sketch how we define the semantics of types. The idea is that we
want to be able to build more complex typed terms by assembling smaller typed
terms according to simple (typing) rules. For instance:

App

e : τ ′ → τ e′ : τ ′

e e′ : τ

Fst

e : τ × τ ′

fst e : τ

Snd

e : τ × τ ′

snd e : τ ′

The rules above suggest the following inclusions.

Jτ ′ → τK ⊆ {e ∈ S | ∀e′ ∈ Jτ ′K.e e′ ∈ JτK}
Jτ × τ ′K ⊆ {e ∈ S | fst e ∈ JτK ∧ snd e ∈ Jτ ′K}

These inclusions ensure the soundness of the typing rules. In order to reason
about types, it is important to have a more precise characterization of their

1 http://www.pps.jussieu.fr/~vouillon/publi/#union

semantics. It seems therefore natural to replace these inclusions by an equality.

Jτ ′ → τK = {e ∈ S | ∀e′ ∈ Jτ ′K.e e′ ∈ JτK}
Jτ × τ ′K = {e ∈ S | fst e ∈ JτK ∧ snd e ∈ Jτ ′K}

But the sets Jτ ′ → τK and Jτ ×τ ′K must be semantic types. The definitions above
clearly ensure that these sets are included in S. They must also be closed and
must contain N. We cannot force this by making the sets larger, as this would
violate the soundness conditions. Instead, we make more assumptions on the
calculi. We say that a function is continuous when the inverse image of a closed
set is closed, that a function is strict when the inverse image of N is included
in N. We can prove inductively that the sets Jτ ′ → τK and Jτ × τ ′K are closed if
S is closed and the functions fst, snd, and e 7→ e e′ (for all terms e′ in S) are
continuous. Similarly, we can prove that these sets contain N if N ⊆ S and the
same functions are strict. This appears more clearly if the equations above are
rewritten in a more algebraic form.

Jτ ′ → τK = S ∩
⋂

e
′∈Jτ ′K

{e | e e′ ∈ JτK}

Jτ × τ ′K = S ∩ fst−1(JτK) ∩ snd−1(Jτ ′K)

It is really natural for all these functions to be strict. The continuity proper-
ties may seem harder to achieve. We will see in Sect. 3.2, that it is actually
straightforward to define a closure operator ensuring these properties.

The calculi also have constants, denoted κ. These constants are assumed to
be safe. We define a singleton type κ for each constant κ. Its semantics is the
least closed set of term containing the constant κ:

JκK = {κ} .

2.2 Formal Specification

The family of calculi we consider are the calculi to which we can associate:

– a set of terms T;
– a closure operator E 7→ E on terms;
– a closed subset S ⊆ T of safe terms;
– three operators:

app : T → T → T

e 7→ e′ 7→ e e′

fst : T → T

e 7→ fst e

snd : T → T

e 7→ snd e

such that e 7→ e e′ (where e′ ∈ S), fst and snd are continuous and strict;
– a set of constants κ ∈ S.

2.3 Semantic Operations

We define one operation on set of terms for each type construction we have in
mind: bottom type, union of two types, function types, pair types and constant
types. Note that the semantic union ∪ of two sets of terms is not simply their
union. Indeed, there may be some terms that are in neither of the sets but cannot
be distinguished from the terms in the union of both sets. These operations are
used to define the semantics of types in a straigtforward fashion in Sect. 4.1.

⊥ = N

E ∪ E′ = E ∪ E′

E
′ → E = {e ∈ S | ∀e′ ∈ E

′.e e′ ∈ E}
E × E

′ = {e ∈ S | fst e ∈ E ∧ snd e ∈ E
′}

κ = {κ}

It is clear that all these operations map semantic types to semantic types.

3 A Concrete Calculus

We present a particular instance of the family of calculi considered. This calculus
is used in Sect. 4 to prove the completeness of a subtyping relation. It actually
turns out to be universal, in the sense that a subtyping relation is complete if
and only if it is complete for this particular calculus.

3.1 The Calculus

The calculus we consider is a call-by-name calculus with pairs and constants. Its
main remarkable characteristics are a notion of errors, a strict let binder and
two non-deterministic choice operators. The syntax of the calculus is given by
the following grammar:

e ::= x variable
λx.e abstraction
e e application
(e, e) pair
fst e first projection
snd e second projection
κ constant
if e = κ then e else e conditional
e t e erratic choice
e ∨ e error-avoiding choice
let x = e in e strict let
error error

The set of constants κ is supposed to be infinite. A bigstep semantics is given
in Fig. 1. The values are a subgrammar of terms:

v ::= λx.e | (e, e) | κ | error

In the reduction rules, we write v 6= v′ where v′ describes a specific shape of
values (for instance, v′ is (e1, e2)) to mean that v is not of the same shape as v′.

Var-Error

x ⇓ error

Abs

λx.e ⇓ λx.e

App
e ⇓ λx.e1 e1[e

′/x] ⇓ v

e e′

⇓ v

App-Error
e ⇓ v v 6= λx.e1

e e′

⇓ error

Pair

(e1, e2) ⇓ (e1, e2)

Fst
e ⇓ (e1, e2) e1 ⇓ v

fst e ⇓ v

Fst-Error
e ⇓ v v 6= (e1, e2)

fst e ⇓ error

Snd
e ⇓ (e1, e2) e2 ⇓ v

snd e ⇓ v

Snd-Error
e ⇓ v v 6= (e1, e2)

snd e ⇓ error

Constant

κ ⇓ κ

If-Equal

e ⇓ κ e′

⇓ v

if e = κ then e′

else e′′

⇓ v

If-Not-Equal

e ⇓ κ′ κ 6= κ′ e′′

⇓ v

if e = κ then e′

else e′′

⇓ v

If-Error
e ⇓ v v 6= κ′

if e = κ then e′

else e′′

⇓ error

Para-Left
e ⇓ v

e t e′

⇓ v

Para-Right
e′

⇓ v

e t e′

⇓ v

Catch-Left
e ⇓ v v 6= error

e ∨ e′

⇓ v

Catch-Right
e′

⇓ v v 6= error

e ∨ e′

⇓ v

Catch-Error
e ⇓ error e′

⇓ error

e ∨ e′

⇓ error

Let
e ⇓ v v 6= error e′[v/x] ⇓ v′

let x = e in e′

⇓ v′

Let-Error
e ⇓ error

let x = e in e′

⇓ error

Error

error ⇓ error

Fig. 1. Semantics

The semantics is rather standard and unsurprising. We simply say a few
words about the two non-deterministic choice operators. The first one e t e′ is
the standard erratic operator: e t e′ ⇓ v if and only if either e ⇓ v or e ⇓ v.
The second one e ∨ e′ is a bit like an angelic choice operator, but instead of
attempting to avoid non-termination, it attempts to avoid errors. Another way
of understanding this operator is to consider it as a symmetric variant of a
catch operator: it evaluates one of the terms e or e′ and, if this fails, falls back

to evaluating the other term. The unusual notations emphasize the fact that
both operations correspond to a least upper bound, as we will see in Sect. 3.4.

We define the following diverging term:

diverge = (λx.x x) (λx.x x) .

3.2 Orthogonality

Remember that we need to specify not only a calculus but also a closure operator
on sets of terms. We first present a generic way of building a closure operator.
The choice of a particular closure operator is made in the next section 3.3.

A convenient way to define a closure operator on sets of terms is by orthog-
onality between terms and contexts. At this point, it does not matter what the
set of contexts is. We just assume given an orthogonality relation e ⊥ c between
contexts c and terms e. Its intended meaning is that the term e behaves prop-
erly in the context c. We define the orthogonal of a set of terms E as the set of
contexts in which all terms in E behave properly:

E
⊥ = {c | ∀e ∈ E.e ⊥ c} .

Conversely, we define the orthogonal of a set of contexts C as the set of terms
that behave properly in all the contexts in C:

C
⊥ = {e | ∀c ∈ C.e ⊥ c} .

These two functions defines a Galois connection between sets of terms and sets
of contexts. The important point here is that the composition of these two func-
tions, which associates to a set of terms E its biorthogonal E = E

⊥⊥, is a closure
operator. (Dually, we can define a closure operator which associates to a set of
contexts its biorthogonal C = C

⊥⊥.)
Furthermore, we can rely on the following lemma to guide us in the choice of

a set of contexts. Let f be a function from terms to terms, and g be a function
from contexts to contexts. We say that g is an adjoint of f iff

f(e) ⊥ c ⇔ e ⊥ g(c) .

Lemma 1. If a function f has an adjoint g, then it is continuous.

3.3 The Closure Operator

Using the tools just developped, we can now specify the closure operator. Con-
texts are given by the following grammar:

c ::= Id identity
c ◦ F frame concatenation
c ∨ c join

F ::= e

fst

snd

if = κ then e else e

A context c can be viewed as a stack, with a weird “stack join” operation, and
F can be viewed as a stack frame. Every context c and term e may be combined
to generate a term denoted c e and defined as follows:

Id e = e

(c ◦ F) e = c (F [e])
(c ∨ c′) e = let x = e in ((c x) ∨ (c′ x)) where x is fresh .

A term e is safe when it does not reduce to the error:

S = {e | ¬(e ⇓ error)} .

The orthogonality relation is defined by:

e ⊥ c iff c e ∈ S .

As indicated in the previous section 3.2, this induces a closure operator on sets
of terms. The choice of this operator is crucial: it controls what can be observed
by typed terms. We should therefore explain how the contexts are chosen. The
identity context Id ensures that S is closed. The frame concatenation operation
c◦F ensures that each frame is continuous (by Lemma 1). The join operation c∨c′

allows for disjunctive tests. For instance, the context (Id ◦fst)∨(Id ◦ diverge)
will behave properly against terms which reduce to either a pair or a function,
but will fail with other terms. This ensures that the closed union E ∪ E′ of two
semantic types E and E′ is not “too large” (see Sect. 3.4 for a more precise
characterization of this property).

3.4 Properties of the Calculus

We study some notable properties of the calculus. The completeness proof will
make use of all these properties.

Terms and Values. An important property of the calculus is that the behavior
of a term (as specificed by the closure operator) is characterized by the behavior
of the values it reduces to.

Lemma 2 (Terms and Values). A term e is included in a closed set of terms
E if and only if any value v it reduces to is included in E.

The contexts has been carefully chosen for the lemma 2 to hold. For instance,
it does not hold if the syntax of frames is extended with a family of frames e .
Indeed, consider the term:

f = λx.if κ = x then (if κ = x then diverge else error) else diverge .

We have f κ′ ∈ S for all constant κ′, but f (κ t κ′) 6∈ S if the constants κ and
κ′ are distinct. So, if Id ◦ (f) is a context, then we have κ′ ∈ {Id ◦ (f)}⊥ for

all constant κ′, but not κ t κ′ ∈ {Id ◦ (f)}⊥ (when the constants κ and κ′ are
distinct).

Intuitively, the result holds if the evaluation of a term c e first involves the
evaluation of the term e. We formalize this property by introducing a notion of
linearity: we say that a function f from terms to terms is linear when for any
term e and value v, f e ⇓ v if and only if there exists a value v′ such that e ⇓ v′

and f v′ ⇓ v. We then have the expected result.

Lemma 3 (Context Linearity). Contexts are linear.

Ordering of Terms and Contexts. We define the contextual preorder on
terms by e ≤ e′ if and only if {e} ⊆ {e′}. Likewise, we define a preorder on
contexts by c ≤ c′ if and only if {c}⊥ ⊆ {c′}⊥. We present the relative ordering
of some interesting terms and contexts. This ordering is illustrated below.

error

e1 t e2

e1 e2

diverge

Id

c1 ∨ c2

c1 c2

Lemma 4 (Least Upper Bounds). For all terms e, e′ and for all contexts c,
c′, we have: {e t e′} = {e} ∪ {e′}and {c∨c′}⊥ = {c}⊥ ∪ {c′}⊥. As a consequence,
the term et e′ is a least upper bound of the two terms e and e′, and the context
c ∨ c′ is a least upper bound of the two contexts c and c′.

Lemma 5 (Divergence). The term diverge is a least term. In particular,
diverge ∈ ⊥ .

Sets of Values. We write V(E) for the set of values contained in a set of terms E:
V(E) = {v | v ∈ E}. A direct consequence of Lemma 2 (Terms and Values) is that

a closed set of terms is characterized by its values: E = V(E). It seems therefore
natural to study some of the properties of the sets of values V(E).

Lemma 6 (Least Semantic Type). The least semantic type ⊥ = N does not
contain any value. As a consequence, it is the least closed set of terms: ⊥ = ∅.

Lemma 7 (Union and Values). The values of the closed union of two closed
sets is the union of the values of each closed sets: V(E ∪ E′) = V(E) ∪ V(E′)

Lemma 8 (Prime when Directed). If the set V(E) is directed then the set E

is prime, that is, if E ⊆ E1 ∪ E2, then either E ⊆ E1 or E ⊆ E2.

Instance of the Family of Calculi. We have the expected result:

Lemma 9. The calculus is in instance of the family specified in Sect. 2.2.

Orthogonality Functions-Arguments. Just like we defined an orthogonality
relation between terms and contexts in Sect. 3.2, we can define a family of
orthogonality relations between functions and arguments.

In the remainder of this section, we assume given a semantic type E0. We
define an orthogonality relation between the elements of T (all terms), consid-
ered as function arguments, and the elements of S (safe terms), considered as
functions: an argument e′ ∈ T is orthogonal to a function e ∈ S when e e′ ∈ E0.
From this relation, we define the orthogonal of a set E of arguments by

E
fun = {e ∈ S | ∀e′ ∈ E.e e′ ∈ E0} = E → E0

and the orthogonal of a set E ⊆ S of functions by

E
arg = {e′ | ∀e ∈ E.e e′ ∈ E0} .

The function E 7→ E
fun arg is a closure on set of arguments.

Lemma 10 (Function Orthogonality). The closure induced by function or-
thogonality is strictly finer than the closure induced by context orthogonality: for
all set of terms E, we have:

E
fun arg ⊆ E ,

but the converse inclusion does not always hold. As a consequence,

E
fun arg

= Efun arg = E

E
fun

= E → E0

E = (E → E0)
arg .

The key idea to prove the first inclusion is to show that for each context c there
is a function 〈c〉 that behaves “similarly”. This function is defined as follows.

〈c〉 = λx.let y = c x in diverge

It satisfies the following property.

Lemma 11 (Context as Function). For any set of terms E and any context c,
we have c ∈ E

⊥ if and only if 〈c〉 ∈ E → E0.

4 A Simple Type System

We present a simple type system and prove its soundness and completeness.
These properties have been mechanically checked using the Coq proof assis-
tant [5].

4.1 Types

The syntax of types is given by the following grammar.

τ ::= χ constructed type χ ::= τ → τ function type
⊥ bottom type τ × τ pair type
τ ∪ τ union type κ constant type

The semantics JτK of a type τ is defined inductively on the syntax of types in a
straigtforward manner:

Jτ → τ ′K = JτK → Jτ ′K J⊥K = ⊥
Jτ × τ ′K = JτK × Jτ ′K Jτ ∪ τ ′K = JτK ∪ Jτ ′K
JκK = κ

Clearly, the semantics JτK of a syntactic type τ is a semantic type.

4.2 Subtyping Relation

The subtyping relation <: is defined inductively. The subtyping rules are given
in Fig. 2 . Note that the rules are syntax-directed, that is, an assertion τ <: τ ′

can be derived from at most one rule.

Function
τ1 <: τ ′

1 τ ′

2 <: τ2

τ2 → τ1 <: τ ′

2 → τ ′

1

Pair
τ1 <: τ ′

1 τ2 <: τ ′

2

τ1 × τ2 <: τ ′

1 × τ ′

2

Constant

κ <: κ
Bottom

⊥ <: τ

Union-Left
τ <: τ ′′ τ ′ <: τ ′′

τ ∪ τ ′ <: τ ′′

Union-Right-1
χ <: τ

χ <: τ ∪ τ ′

Union-Right-2
χ <: τ ′

χ <: τ ∪ τ ′

Fig. 2. Subtyping Rules

4.3 Soundness of the Subtyping Relation

The soundness of the subtyping relation is straightforward.

Theorem 12 (Soundness). If τ <: τ ′, then JτK ⊆ Jτ ′K.

Proof. By induction on a derivation of τ <: τ ′.

– Rule Function: by covariance and contravariance of the operation → .
– Rule Pair: by covariance of the operation × .
– Rule Constant: immediate.
– Rule Bottom: the semantic type ⊥ is the least semantic type.
– Rule Union-Left: by induction hypothesis, JτK∪Jτ ′K ⊆ Jτ ′′K; hence, as Jτ ′′K

is closed, JτK ∪ Jτ ′K = JτK ∪ Jτ ′K ⊆ Jτ ′′K.
– Rule Union-Right-1: JτK ⊆ JτK ∪ Jτ ′K.
– Rule Union-Right-2: Jτ ′K ⊆ JτK ∪ Jτ ′K. ut

4.4 Properties of Constructed Types

Before proving the completeness of the subtyping relation <:, we first state some
interesting properties of the semantics of constructed types.

Lemma 13 (Homogeneity). The set of values V(JχK) of a constructed type χ

is homogeneous: V(Jτ ′ → τK) only contain functions, V(Jτ × τ ′K) only contain
pairs, V(JκK) only contain the constant κ.

Lemma 14 (Directed Set). The set of values V(JχK) is directed.

These two lemmas are illustrated below, respectively for function types, pair
types and constant types. Values are underlined. The value just above diverge

is included in all constructed type of the corresponding kind. Given two values,
one of their upper bound is given.

λx.(e1 t e2)

(λx.e1) t (λx.e2)

λx.e1 λx.e2

λx.diverge

diverge

((e1 t e2), (e1 t e2))

(e1, e
′
1) t (e2, e

′
2)

(e1, e
′
1) (e2, e

′
2)

(diverge, diverge)

diverge

κ

diverge

4.5 Completeness of the Subtyping Relation

We now have all the elements to prove the completeness of the subtyping relation.

Theorem 15 (Completeness). If JτK ⊆ Jτ ′K for all calculi, then τ <: τ ′.

At several times in the proof of completeness, we need to prove an inclusion
Jτ1K ⊆ Jτ ′

1K assuming that an inclusion between the semantics of two types built
from τ1 and τ ′

1 (for instance, Jτ1 × τ2K ⊆ Jτ ′
1 × τ ′

2K) holds. The proof is similar
in each case. Let us call typed transformation a pair of a function F from types
to types and a function f from terms to terms such that, for all type τ and all
term e, e ∈ JτK if and only if f(e) ∈ JF (τ)K. Then, it is easy to see that, if (F, f)
is a typed transformation and JF (τ)K ⊆ JF (τ ′)K, then JτK ⊆ Jτ ′K, We thus define
three families of typed transformations.

Lemma 16 (Typed Transformations). The following families of pairs of
functions are typed transformations (for the calculus of Sect. 3).

F1(τ
′) : τ 7→ τ × τ ′ f1 : e 7→ (e, diverge)

F2(τ
′) : τ 7→ τ ′ × τ f2 : e 7→ (diverge, e)

F3(τ
′) : τ 7→ τ ′ → τ f3 : e 7→ λx.e

Proof (of Theorem 15: Completeness). We interprete the semantics of types in
the calculus defined in Sect. 3. In order to handle the contravariance of the
function type, we simultaneously prove by induction on τ and τ ′ that if JτK ⊆ Jτ ′K
then τ <: τ ′, and if Jτ ′K ⊆ JτK then τ ′ <: τ . For each pair of type τ and τ ′, we
prove that if JτK ⊆ Jτ ′K, then there exists a subtyping rule whose conclusion is
τ <: τ ′ and whose premises are a consequence of the induction hypothesis.

– Case J⊥K ⊆ JτK. By rule Bottom, we have ⊥ <: τ .
– Case Jτ ∪ τ ′K ⊆ Jτ ′′K. This implies JτK ⊆ Jτ ′′K and Jτ ′K ⊆ Jτ ′′K. Hence, by

induction hypothesis, τ <: τ ′′ and τ ′ <: τ ′′. Finally, by rule Union-Left,
τ ∪ τ ′ <: τ ′′.

– Case JχK ⊆ J⊥K. By lemma 6 (Least Semantic Type), the set J⊥K does not
contain any value. By Lemma 14 (Directed Set), JχK contains at least one
value. Thus, this case is not possible.

– Case JχK ⊆ Jτ ∪ τ ′K. This is a direct corollary of Lemmas 14 (Directed Set)
and 8 (Prime when Directed).

– Case JχK ⊆ Jχ′K where χ and χ′ are distinct constructed types. By Lem-
mas 14 (Directed Set) and 13 (Homogeneity), constructed types all contain
at least a value, and their values are homogeneous. Hence, JχK contains a
value which is not in Jχ′K. This case is not possible.

– Case Jτ2 → τ1K ⊆ Jτ4 → τ3K. We prove that Jτ1K ⊆ Jτ3K and Jτ4K ⊆ Jτ2K.
This allow us to conclude by induction hypothesis and rule Function.
The inclusion Jτ1K ⊆ Jτ3K is a direct consequence of Lemma 16 (Typed
Transformations).
Let us prove that Jτ4K ⊆ Jτ2K. It is sufficient to show that Jτ2K

⊥ ⊆ Jτ4K
⊥. Let

c in Jτ2K
⊥. By Lemma 11 (Context as Function), 〈c〉 ∈ Jτ2K → Jτ1K = Jτ2 →

τ1K ⊆ Jτ4 → τ3K = Jτ4K → Jτ3K. Hence, by this lemma again, c ∈ Jτ4K
⊥.

– Case Jτ1 × τ2K ⊆ Jτ3 × τ4K. By Lemma 16 (Typed Transformations), Jτ1K ⊆
Jτ3K and Jτ2K ⊆ Jτ4K. We conclude by induction and rule Pair. ut

The proof of the completeness theorem actually leaded us to use an orthogonality
relation to define types. Indeed, for completeness to hold, we must have that, if
τ1 → τ <: τ2 → τ , then τ2 <: τ1. This means that, if a term e has type τ2 but
not type τ1, then there must exist a function e′ of type τ1 → τ but not τ2 → τ .
Given that the term e has type τ2, a natural way to prove that the function e′

does not have type τ2 → τ is to show that the term e′ e does not have type τ .
So, now, for any term e of type τ2 but not τ1, we must be able to find a function
of type τ1 → τ such that the term e′ e does not have type τ . This must hold for
any type τ2, so the assumption that the term e has type τ2 does not really put
any constraint on the term e and it is natural to drop it. So, finally, we would
like that if a term e does not have type τ1, then there is a function e′ of type
τ1 → τ such that e′ e does not have type τ . In other words, if e 6∈ Jτ1K, then
there exists a function e′ ∈ Jτ1K

fun such that e and e′ are not orthogonal. That
is, if a term is orthogonal to all functions in Jτ1K

fun, then it should have type
Jτ1K: the set Jτ1K must be closed.

A noteworthy point in this discussion is that if τ is not a subtype of τ ′, then
it is unsafe to apply a function accepting terms of type τ ′ to a term of type τ .

Lemma 17. For the calculus of Sect. 3, if τ is not a subtype of τ ′, then there
exists a term e in JτK and a function e′ in Jτ ′ → ⊥K such that e′ e ⇓ error.

5 Related Work

This work is a continuation of our work with Melliès on semantic types [6, 7].
These two papers focus on defining types, especially recursive types, as set of
terms, while we study here the subtyping relation induced by these definitions.

Defining the semantics of types as closed sets of terms is very natural. For
instance, in domain theory, types can be interpreted as ideals [8], that is, sets
that are downward closed and closed under directed limits. Reducibility candi-
dates [9] are also closed sets of terms. Girard [10] reformulates the candidates as
sets of terms closed by biorthogonality in his proof of cut elimination for linear
logic. Meanwhile, Krivine [11, 12] has developped a comprehensive framework
based on orthogonality, in order to analyze types as specification of terms. In
semantics, Pitts [13] uses relations closed by biorthogonality to study parametric
polymorphism in an operational setting.

Damm [3] studies subtyping for a deterministic calculus with recursive types
with union and intersection. He takes a domain theoretic approach based on the
ideal model [8]. A subtyping algorithm is specified by encoding types into tree
automata and defining the subtyping relation as the inclusion of the recognized
languages. The soundness and completeness of this algorithm with respect to
the semantics of types is proven.

Frisch, Castagna and Benzaken [14] use an approach similar to ours to design
a subtyping relation for a typed calculus with union and intersection types. They
want to define the subtyping relation of this calculus in a semantic way, as the
inclusion of the denotation of types. But their calculus is typed, so its semantics
depends on the subtyping relation. In order to get rid of this circularity, they
consider a family of calculi (called models). While we try to describe as large a
family as possible, the authors design a family such that the subtyping relation
has good properties (for instance, distributivity of union and intersection).

6 Extensions and Future Work

Polymorphism and type constructors. In an extended version of the paper [4], we
present a refined type system with ML-style polymorphism and type constructors
and we similarly prove its soundness and completeness. This is omitted here for
lack of space.

Strict Pairs and Recursive Types. The type system presented here is not as rich
as the type systems of XDuce [15] or CDuce [14] for two reasons. First, for the
sake of simplicity, we have not considered recursive types. But we believe we
have all the tools [6, 7] at hand to handle them. Second, the subtyping relation
is not as rich. For instance, the two types (τ1 ∪ τ2) × τ and (τ1 × τ) ∪ (τ2 × τ)
are not equivalent according to our subtyping relation. The reason is that the
family of calculi we consider is too large (as hinted in the introduction).

Intersection Types. Intersection types are harder to handle than union types.
The natural semantics for intersection types is set intersection:

E ∩ E
′ = E ∩ E

′ .

Then, it is clear that the dual of the subtyping rules for union types are sound.
But there are other sound subtyping rules. For instance, we have (τ1 × τ3) ∩
(τ2 × τ4) <: (τ1 ∩ τ2) × (τ3 ∩ τ4). Another issue is that the distributivity law
(τ1 ∪ τ2) ∩ τ = (τ1 ∩ τ) ∪ (τ2 ∩ τ2) does not hold in general.

References

1. Pierce, B.C.: Programming with Intersection Types and Bounded Polymorphism.
PhD thesis, Carnegie Mellon University (1991) Available as School of Computer
Science technical report CMU-CS-91-205.

2. Dami, L.: Labelled reductions, runtime errors and operational subsumption. In
Degano, P., Gorrieri, R., Marchetti-Spaccamela, A., eds.: ICALP. Volume 1256 of
Lecture Notes in Computer Science., Springer (1997) 782–793

3. Damm, F.: Subtyping with union types, intersection types and recursive types II.
Research Report 2259, INRIA Rennes (1994)

4. Vouillon, J.: Subtyping union types (extended version) (2004) Available from
http://www.pps.jussieu.fr/~vouillon/publi/#union.

5. Coq Development Team: The Coq Proof Assistant Reference Manual – Version
V7.4. (2003) Available from http://coq.inria.fr/doc/main.html.

6. Vouillon, J., Melliès, P.A.: Semantic types: A fresh look at the ideal model for
types. In: Proceedings of the 31th ACM Conference on Principles of Programming
Languages, Venezia, Italia, ACM Press (2004) 52–63

7. Melliès, P.A., Vouillon, J.: Recursive polymorphic types and parametricity in
an operational framework (2004) Available from http://www.pps.jussieu.fr/

~vouillon/publi/#semtypes2.
8. MacQueen, D., Plotkin, G., Sethi, R.: An ideal model for recursive polymorphic

types. Information and Control 71 (1986) 95–130
9. Girard, J.Y.: Interprétation fonctionelle et élimination des coupures dans l’ari-

thmétique d’ordre supérieur. Thèse de doctorat d’etat, University of Paris VII
(1972)

10. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1–102
11. Danos, V., Krivine, J.L.: Disjunctive tautologies and synchronisation schemes. In:

Computer Science Logic’00. Volume 1862 of Lecture Notes in Computer Science.,
Springer (2000) 292–301

12. Krivine, J.L.: Typed lambda-calculus in classical zermelo-fraenkel set theory.
Archive of Mathematical Logic 40 (2001) 189–205

13. Pitts, A.M.: Parametric polymorphism and operational equivalence. Mathematical
Structures in computer Science 10 (2000) 321–359

14. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping. In: 17th IEEE Sympo-
sium on Logic in Computer Science, IEEE Computer Society Press (2002) 137–146

15. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. (ACM
Transactions on Programming Languages and Systems (TOPLAS)) To appear;
short version in ICFP 2000.

