
Recursive polymorphic types and parametricity
in an operational framework

Paul-Andŕe Melliès ∗ Jérôme Vouillon∗

Abstract

We construct a realizability model of recursive polymor-
phic types, starting from an untyped language of terms and
contexts. An orthogonality relatione ⊥ π indicates when
a term e and a contextπ may be safely combined in the
language. Types are interpreted as sets of terms closed
by biorthogonality. Our main result states that recursive
types are approximated by converging sequences of interval
types. Our proof is based on a “type-directed” approxima-
tion technique, which departs from the “language-directed”
approximation technique developed by MacQueen, Plotkin
and Sethi in the ideal model. We thus keep the language el-
ementary (a call-by-nameλ-calculus) and unstratified (no
typecase, no reduction labels). We also include a short ac-
count of parametricity, based on an orthogonality relation
between quadruples of terms and contexts.

1 Introduction

In this article, we describe how a large variety of typ-
ing constructions: recursive types, polymorphism, subtyp-
ing, product types, intersection types, union types, as well
as parametricity, may be interpreted and studied in a some-
what näıve and operational framework. We choose to set
our scene slowly, starting from a brief account of recursive
types in categories of domains, then shifting gradually to
the operational model we have in mind.

Recursive types. Solving recursive equations between
types is generally done in categories. Take for instance the
equation

X = 1 +X (1)

in the categorySet of sets and functions, where1 +X de-
notes the disjoint union ofX and of the singleton1 = {∗}.
This equation has two canonical solutions, namely the setN
of natural numbers, and the setN+{∞} of natural numbers
completed by infinity. By “solution”, one means a setX
equipped with an isomorphismX ←− 1 +X, alternatively
seen as its inverse mapX −→ 1 + X. Accordingly, each
of the solution setsN andN + {∞} comes equipped with a

∗Postal address: Equipe PPS, CNRS and Université Paris VII, 2 place
Jussieu, Case 7014, 75251 Paris Cedex 05, FRANCE. Email address:mel-
lies@pps.jussieu.frandvouillon@pps.jussieu.fr

functions andp, called “successor” and “predecessor”:

N s←− 1 + N N + {∞} p−→ 1 + N + {∞} (2)

and defined respectively ass(∗) = 0 ands(n) = n+1, and
asp(0) = ∗, p(n+ 1) = n andp(∞) =∞, for all n ∈ N.

The two solutions (2) are canonical in the following
sense. Call prefixpointf and postfixpointg of equation (1)
any function:

X
f←− 1 +X and Y

g−→ 1 + Y.

Canonicity says that, for any suchf (resp.g), there exists a
unique functionh (resp.k) making the diagram commute:

X 1 +X
foo

N

h

OO

1 + Nsoo

1+h

OO N + {∞}
p // 1 + N + {∞}

Y
g //

k

OO

1 + Y

1+k

OO
(3)

In other words,s is the “initial” prefixpoint (called inductive
solution), andp is the “terminal” postfixpoint (called coin-
ductive solution) of equation (1). What we find here is noth-
ing but the “categorification” of Knaster-Tarski’s theory of
fixpoints for a monotone function in a complete lattice. A
categorical terminology is generally adopted: the “prefix-
points” and “postfixpoints” are calledT -algebras andT -
coalgebras for the functorT : Set −→ Set defined as
T (X) = 1 +X. And the diagrams of equation (3) express
that theT -algebras is the “initial” T -algebra, and that the
T -coalgebrap is the “terminal”T -coalgebra.

Mixed variance. Equation (1) is particularly simple be-
cause the variableX occurs only in a covariant (= positive)
position. More complicated recursive equations may be also
considered, like

X = X ⇒ X (4)

where the variableX appears in a covariant as well as a
contravariant (= negative) position. This kind of equation
may be formulated in any cartesian closed category, where
X ⇒ Y denotes the usual arrow construct.

These equations of mixed variance have (in general) no
solution in the categorySet. Typically, equation (4) has
only the trivial solutionX = 1, while equation

X = 1 + (X ⇒ X) (5)

has no solution at all, for obvious cardinality reasons.
Scott invented Domain Theory when he realized that

equations of mixed variance like (4) and (5) could be solved
by shifting from the categorySet to the categoryCPO
of domains (= partial orders with a least element⊥ and
all directed limits) and continuous (= monotone and limit-
preserving) functions between them. We refer the reader
to [4] for a modern exposition of Domain Theory.

We only mention here that Freyd [15] derives this exis-
tence of solutions inCPO from a striking property of its
subcategoryCPO⊥ of strict (= ⊥-preserving) functions,
called “algebraic compactness”. The property states that
the initialT -algebra and the terminalT -coalgebracoincide
for every (well-behaved) covariant endofunctor

T : CPO⊥ −→ CPO⊥.

Freyd shows that the categoryCPOop
⊥ × CPO⊥ is also

algebraically compact, and reformulates in this way any
mixed variance functor onCPO⊥ as a covariant endofunc-
tor T on this category. The unique canonical fixpoint ofT
is shown to be of the form(D,D′) whereD andD′ are iso-
morphic inCPO⊥. This provides the solutionD ∼= D′ to
the original mixed-variance equation overCPO.

We step back to equation (1) for illustration, slightly gen-
eralized in the categoryCPO as equation:

X = 1⊥ + (A×X) (6)

whereA denotes a fixed domain. That is, the domainX
is required to be isomorphic to the coalesced sum of the
lifted domain1⊥ = {⊥, ∗} with the cartesian product of
the domainsA andX. Just as inSet, equation (6) has an
inductive solution (= the domain of lists overA) and a coin-
ductive solution (= the domain of streams overA) in the
categoryCPO. But in contrast toSet, algebraic compact-
ness implies that the two solutions coincide inCPO.

The ideal model. We found instructive to recall briefly
the categorical approach to recursive types, because it is
elegant and mainstream. We shift now to a different ap-
proach to recursive types, initiated by MacQueen, Plotkin,
and Sethi in theideal model for types[19]. The ideal model
is still domain-theoretic, but not categorical any more. This
brings us one step closer to the operational framework de-
veloped in this article.

The ideal model is built in two stages. First stage: a do-
mainV of “semantic expressions” is fixed, defined in [19]
as the canonical solution inCPO of the equation:

V = T+N+(V→ V)+(V×V)+(V+V)+{0}⊥ (7)

This may be read as follows:V is (isomorphic to) the coa-
lesced sum of the boolean constantsT, the integersN, the
continuous functions fromV toV, the product ofV with it-
self, the sum ofV with itself, and a “type-error” constant0.

Or alternatively: a “semantic expression”f ∈ V is either
a boolean constant, an integer, a function between expres-
sions, a pair of expressions, a left (resp. right) injection of
an expression, the error constant0, or the least element⊥.

Second stage: every type is interpreted as anideal of
the domainV, that is, as a non-empty setI ⊆ V which
is (1) downward closed, and (2) closed under directed lim-
its. Notice that ideals are domains themselves. So, types
are interpreted as domains, just as in mainstream Domain
Theory. There is a major difference, though: these domains
are not only domains, they are also “subdomains” of the do-
mainV. So, subtyping may be interpreted as set-theoretic
inclusion. But this has another key consequence. Defined
as the canonical solution of equation (7), the domainV is
approximated by a sequence(Vn)n∈N of domains:

V0 ⊆ V1 ⊆ · · · ⊆ Vn−1 ⊆ Vn ⊆ Vn+1 ⊆ · · · ⊆ V

each of them image of a projection mapπn : V −→ Vn.
Besides, every elementx ∈ V is the least upper bound of
the directed set{πn(x) | n ∈ N} of its approximations.
This “stratification” of the domainV enables to define a
distanced(I, J) between two idealsI andJ asd(I, J) = 0
whenI = J , and asd(I, J) = 2−n whenI 6= J , for n the
least number such thatπn(I) 6= πn(J). MacQueen, Plotkin
and Sethi prove that the resulting metric space on ideals is
Cauchy-complete; and deduce that every recursive equation

X = T (X,X)

has auniquesolution, as long as the functorT of mixed
variance iscontractivewith respect to the metric space on
ideals. Remarkably, contractibility holds for a large class of
functorsT , including all our illustrating equations (4), (5)
and (6).

Towards operational semantics. The ideal model suffers
from a serious defect noted in [3] and related to the domain-
theoretic definition ofV: There exist “semantic expres-
sions” f ∈ V which are not defined in the calculus, and
may distort the expected properties of types. This is illus-
trated by the term:

por− explode = λf. if f(true, Ω)
and f(Ω, true)
and not f(false, false)
then 0

else true.

whereΩ denotes thedivergingtermΩ = (λy.y y) (λy.y y)
and0 denotes the “type-error” constantΩ.

What should be the type ofpor− explode? The first
branch of theif− then− else is selected only when the
input f represents the “parallel-or” function (notedpor)
which returnstrue when one of its arguments istrue,
andfalse when its two arguments arefalse. Now, the

2

function por ∈ V is a “semantic expression” which can-
not be represented syntactically in theλ-calculus, or in any
sequential language. So, the termpor− explode returns
true for every termf of type (T × T) → T in any such
language; and consequently should be typed((T × T) →
T) → T there. Unfortunately, this type is not validated
by the ideal model, because the termpor− explode inter-
preted inV returns “error” for the “semantic expression”
por of type(T×T)→ T.

This example suggests to reject the mediation of Domain
Theory, and to recast the ideal model directly inside oper-
ational semantics. The project is fascinating conceptually,
but difficult to realize technically. As we mentioned ear-
lier, the existence of recursive types in the ideal model is
deduced from the “stratification” of the domainV, and the
existence of the projection mapsπn : V→ Vn. Obviously,
shifting to operational semantics requires to find an opera-
tional counterpart to the “stratification” of the domainV.
How and what? This question has attracted considerable
interest in the last decade, leading to a series of major ad-
vances in the field [3, 5, 8, 10, 11, 12, 20, 23]. Four solutions
emerged from the period, which we recall briefly now.

1. Abadi, Pierce and Plotkin [3] do not alter the domain-
theoretic definition ofV (and thus keep its “stratification”)
but restrict the interpretation of types to ideals “gener-
ated” (in the order-theoretic sense) by definable elements.
Strikingly, the resulting ideal model validates that the term
por− explode has type((T×T)→ T)→ T. Other syn-
tactic variants of the ideal model are considered, obtained
in each case by restricting the interpretation to particular
classes of ideals, e.g. the so-called “abstract” and “coarse”
ideals, see [3] for details. In any of these variants, it is tech-
nically crucial that the projection mapsπn : V → Vn are
definable. This requires to enrich the language (an untyped
λ-calculus) with a “typecase” operator which tests whether
a terme is a boolean, a natural, a pair, a sum, or a function,
and then returns a different resultei in each case:

cases e bool : e1

nat : e2

pair : e3

sum : e4

fun : e5

end

This idea has been influential and reappears in many later
attacks to connect operational and denotational semantics,
most notably by Smith, Mason, and Talcott [20, 23] and
Birkedal and Harper [8]. We should add that the article [3]
is also influential for its last section, where the three authors
deliver in a visionary style the principle of an ideal model
living inside operational semantics.

2. Dami [11, 12] takes up the last idea of [3] and recasts
the ideal model inside operational semantics. Several vari-
ants of theλ-calculus are considered, all of them enriched
with reduction labelsinspired from Ĺevy [18]. These la-

bels provide the “stratification” of the language necessary
to solve recursive equations between types.

3. Chroboczek [10] recasts the ideal model in game se-
mantics, by solving an equation similar to (7) in a cate-
gory of games. The resulting gameG is “stratified”, and
recursive equations are thus solved insideG by the same
Cauchy-completeness argument as in [19]. Chroboczek ob-
serves a mismatch between his original operational seman-
tics (a call-by-nameλ-calculus), and the interpretation of
this calculus in the model. He thus designs an adequate lan-
guage by enriching the original language with a “located”
(and in fact ”stratified”) notion of convergence test.

4. Appel and McAllester [5] develop a radically different
approach to the problem, in which (in contrast to1, 2 and
3) they do not need to enrich the original language in order
to stratify it. Their language is defined using a small-step
semantics. This enables them to defineintensionaltypes, in
which an information on the number of steps to compute a
value is provided. Remarkably, this extra information is suf-
ficient to approximate the behavior of a term, and to solve
recursive equations between types.

Realizability and orthogonality. These operational ap-
proaches to recursive types have in common to alter some-
thing of the original syntax of the calculus, or to alter some-
thing of the original definition of types. Here, we want to
interpret recursive polymorphic types in operational seman-
tics, but without “stratifying” the language or the conver-
gence test (as in1,2,3), and without “intensionalizing” the
typing (as in4).

This is a difficult task, which requires to design a
new stratification principle in order to replace the usual
“language-directed” stratification. A clarifying step is taken
in a companion paper [25] where we reformulate the ideal
model in a more conceptual and operational way, inspired
from Krivine’s realizability [17, 13].

In a realizability model (̀a la Krivine), one starts from an
untyped calculus of terms and contexts, and constitutes a
typed language on top of it. The cornerstone of the theory
is a notion oforthogonalitye ⊥ π which indicates when a
terme and a contextπ may be safely combined (no error at
runtime). Orthogonality induces a closure operator which
associates to every setU of terms the setU⊥⊥ of terms
which cannot be separated fromU by a context. This set
U⊥⊥ is called thebiorthogonalof U . Types are interpreted
as setsU = U⊥⊥ closed by biorthogonality, also called
truth values. The formal definition appears in Section 3.

Connecting “types” and “orthogonality” is one of the
nicest discoveries of “French” proof-theory. The idea
emerged after intense reflection on thereducibility candi-
datesmethod to prove strong normalization for SystemF .
Girard reformulates these candidates as biorthogonal sets of
terms, in his proof of cut elimination for linear logic [16].

3

The idea reappears in Parigot’s proof of Strong Normaliza-
tion for second orderλµ-calculus [21]. Meanwhile, Krivine
formulates a comprehensive framework based on orthogo-
nality, in order to analyze types asspecificationsof terms.
Krivine demonstrates that realizability generalizes Cohen’s
forcing and induces models of classical Zermelo-Fraenkel
set theory [13, 17].

Parametricity. It should be said that the idea of orthog-
onality is not only “French”: Andy Pitts discovered it in-
dependently in his remarkable work on operational equiva-
lence [22] — see also [1]. We indicate in Section 9 (alas too
briefly for lack of space) how Pitts’ operational approach to
parametricity may be reflected in a realizability framework.

Type-directed stratification. What about recursive
types? We are looking for an operational counterpart to
“algebraic compactness” in Domain Theory. This should
ensure (for instance) that the type of lists of booleans and
the type of streams of booleans coincide in the model. Take
the setU of boolean lists(e1, ..., en) in which each termei
is eithertrue or false. Any such list is easily encoded in
aλ-calculus with pairs. Now, take the term:

e∞ = Y (λx.(true, x))

in which Y = λf.(λx.f xx)(λx.f xx) is the Kleene fix-
point. The terme∞ implements the infinite stream oftrue,
thus is element of the truth valueV of boolean streams. But
e∞ is not an element ofU . It is not difficult to see how-
ever thate∞ is an element ofU⊥⊥. Indeed, every contextπ
which combines safely with all the boolean lists, combines
safely with all the boolean streams, includinge∞. We con-
clude from this andU ⊆ V thatV = U⊥⊥.

The equalityU⊥⊥ = V captures the essence of coinci-
dence, and we shall prove it for every recursive type (Theo-
rem 5). Note that the equality generally fails when orthog-
onality amounts totermination(e ⊥ π iff e combined to
π converges) instead ofsafety. Indeed, there may exist a
contextπ (think of a length function) which terminates on
every list and loops on every stream.

The framework described in [25] is technically enlight-
ening, but still based on a “language-directed” stratifica-
tion technique, which we reject here. We develop instead
a “type-directed” stratification technique, in which every
(possibly infinite) typeτ is approximated by finite trees
called interval types. Each interval typeK is interpreted
in the model as a triple(U, V, φK) whereU ⊆ V are truth
values, andφK is a conversion term sending every term
e ∈ V to a termφK e ∈ U . These “type-directed”φK
replace the “language-directed” projectionsπn of the ideal
model. The resulting “type-directed” picture is closer to
Domain Theory, in which the solution of a recursive equa-
tion X = T (X,X) is computed as limit of a categorical
diagram defined by the typeT .

Related works. As noted earlier, the literature on types is
huge, even if one restricts one’s attention to recursive types,
subtyping, or polymorphism. We did our best to give a com-
prehensive panorama of the field in the introduction, but it
is obviously too brief, and far from exhaustive, for lack of
space. The interested reader will find complementary infor-
mation in the companion paper [25].

Outline. In the remainder of the paper, we introduce a
call-by-name calculus (Section 2) for which we formulate
an orthogonality relation between terms and stacks, in the
style of Krivine (Section 3). This defines a truth value as a
set of terms orthogonal to a set of stacks. Then, we intro-
duce our syntax of types and of interval types (Section 4).
We interpret types as truth values in two stages: first, we
interpret inductivelyevery interval type as a pair of truth
values, with a conversion term between them (Section 5);
then, we interpret types byapproximatingthem with inter-
val types (Section 6). We sketch how to treat intersection
and union types by moving to a nondeterministic language
(Section 7). We prove soundness of our interpretation for
a typing system with universal and existential types, and
subtyping (Section 8). Finally, we give a brief account of
parametricity (Section 9) and conclude (Section 10).

2 A simple call-by-name calculus

2.1 The terms

We start from an untypedλ-calculus with pairs and con-
ditional branch, defined by the syntax below:

e ::= x variable
| λx.e abstraction
| e e application
| (e, e) pair
| fst(e) first projection
| snd(e) second projection
| if e then e else e conditional branch
| true constant true
| false constant false

2.2 The operational semantics

We choose to apply a call-by-name evaluation strategy
between terms, which we describe using a small-step se-
mantics. This is only a matter of choice: all the construc-
tions in this paper work also if one starts from acall-by-
valueλ-calculus. The definition goes in two steps. First, we
introduce a class ofevaluation contexts, indicating where a
symbolic transformation may be applied in a term. Then,
we specify five rewriting rules, formulated as an interaction
between a term and its evaluation context.

4

Evaluation contexts are finite lists defined by the grammar:

E ::= nil head context
| e · E application
| fst · E first projection
| snd · E second projection
| (if e, e) · E conditional branch

Every terme and evaluation contextE may be combined to
generate a term denoted〈e | E〉 and defined as follows:

〈e | nil〉 = e
〈e | e′ · E〉 = 〈e e′ | E〉
〈e | fst · E〉 = 〈fst(e) | E〉
〈e | snd · E〉 = 〈snd(e) | E〉
〈e | (if e1, e2) · E〉 = 〈if e then e1 else e2 | E〉

The reduction relation→ is defined as the smallest rela-
tion between terms containing any instance of five rewriting
rules: the usualβ-rule:

〈λx.e | e′ · E〉 → 〈e[x := e′] | E〉

two rules for the products:

〈(e1, e2) | fst · E〉 → 〈e1 | E〉
〈(e1, e2) | snd · E〉 → 〈e2 | E〉

and two rules for the conditional:

〈true | (if e1, e2) · E〉 → 〈e1 | E〉
〈false | (if e1, e2) · E〉 → 〈e2 | E〉

wheree, e′, e1, e2 denote terms andE denotes an evaluation
context. Observe that the resulting reduction→ is deter-
ministic in the sense that:

∀e, e1, e2, e→ e1 and e→ e2 ⇒ e1 = e2.

3 Realizability

3.1 The safe terms

We write→∗ for the reflexive and transitive closure of
the relation→, and say that:

• a terme reducesto a terme′ whene→∗ e′,

• a terme loopswhen there exists an infinite sequence
of reductions:

e→ e1 → e2 → · · ·

• a term issafewhen it loops, or when it reduces to one
of the two boolean constantstrue or false,

• a term isunsafewhen it is not safe.

An example of safe term isΩ, defined as:

Ω = (λx.x x) (λx.x x).

An example of unsafe term is0, defined as:

0 = (true) (true).

3.2 The stacks

The terms of the language will be tested by evaluation
contextsE, as well as by two “constant” contextsΩ and0

which we add here for convenience. We call these testing
contextsstacks, and note themπ as in [17, 13].

π ::= E evaluation context
| Ω safe
| 0 unsafe

A stackπ is calledstrict when it is an evaluation context,
safewhenπ = Ω andunsafewhenπ = 0.

We extend the definition of〈− | E〉 to stacks in the ex-
pected way. Thus for every terme:

〈e | Ω〉 def= Ω, 〈e | 0〉 def= 0.

Similarly, we extend to stacks the constructors defined for
evaluation contexts in Section 2.2. This is simply done by
applying the convention below, for any termse, e1, e2:

e · Ω = fst · Ω = snd · Ω = (if e1, e2) · Ω
def= Ω,

e · 0 = fst · 0 = snd · 0 = (if e1, e2) · 0
def= 0.

3.3 Orthogonality

The orthogonalityrelation⊥ between terms and stacks
is defined as follows:

e ⊥ π ⇐⇒ the term〈e | π〉 is safe.

Thus, a terme and a stackπ are orthogonal when combining
them induces a term〈e | π〉 which loops, or reduces to one
of the boolean constantstrue or false.

Some readers will find it unexpected to see terms like
λx.e counted among our unsafe terms. This seems to con-
tradict the accepted notion ofvaluein functional program-
ming. Well, not really. The idea is that a term likeλx.e is
unsafe until it receives an argumente′ and induces a safe
term(λx.e) e′. We write thisλx.e ⊥ e′ · nil, and note that
observing boolean constants (and only them) is enough to
characterize types semantically.

Note finally that the stackΩ is orthogonal to every term,
and that the stack0 is orthogonal to no term.

3.4 Truth values

A terme is orthogonal to a set of stacksΠ when:

∀π ∈ Π, e ⊥ π.

In that way, every set of stacksΠ defines a set of termsΠ⊥,
called theorthogonalof Π:

Π⊥ = {e | ∀π ∈ Π : e ⊥ π}.

5

Conversely, every set of termsΛ defines a set of stacksΛ⊥,
consisting of all the stacks orthogonal toΛ:

Λ⊥ = {π | ∀e ∈ Λ : e ⊥ π}.
Taking twice the orthogonal of a set of termsΛ induces a set
of termsΛ⊥⊥ called thebiorthogonalof Λ. This operation
(Λ 7→ Λ⊥⊥) defines a closure operator in the lattice of sets
of terms, ordered by inclusion. In particular,Λ ⊆ Λ⊥⊥.

A truth valueU is a set of terms closed by biorthogonal-
ity, that is, satisfyingU = U⊥⊥. Note that the orthogonal
Π⊥ to a given set of stacksΠ is always a truth value, and
that truth values are closed under (arbitrary) intersection.

3.5 Two constructions on truth values

Suppose thatU andV are two truth values. We define
the truth valuesU ⇒ V andU × V as follows.

The arrow construction. The truth valueU ⇒ V is de-
fined as the set of terms orthogonal to the stackse ·π where
e ∈ U andπ is a stack orthogonal toV .

Lemma 1 For every truth valuesU, V and terme, the fol-
lowing facts are equivalent :

1. e ∈ U ⇒ V ;
2. ∀e′ ∈ U, e e′ ∈ V .

The product construction. The truth valueU × V is de-
fined as the set of terms orthogonal to the stacksfst · π
whereπ is a stack orthogonal toU , andsnd · π whereπ is
a stack orthogonal toV .

Lemma 2 A term is element ofU ×V iff the term loops, or
reduces to a pair(e, e′) wheree ∈ U ande′ ∈ V .

4 Types

4.1 Syntax of types

Types are defined in two steps. First, finite patterns
(called type patterns) are defined inductively. Then, these
patterns are assembled coinductively into possibly infinite
trees (calledtypes). This two-step construction rules out ill-
defined types, such asτ = ∀α.τ , in that case because∀α.τ
is not a pattern. Indeed, any occurrence of a type in a pattern
is below aconstructor→ or×.

We assume given a set of type variablesα and a single
type constantBool . Given a set of typesτ , we definetype
patternst inductively by the grammar below.

t ::= Bool boolean type
| τ × τ pair type
| τ → τ function type
| α type variable
| > top type
| ∀α.t universal quantification
| ⊥ bottom type
| ∃α.t existential quantification

The different type constructions are standard. See Sec-
tions 5 and 6 for a precise description of their meaning.

We write t(τ1, . . . , τk) when the patternt has leavesτ1,
. . . , τk, where eachτi occurs linearly int. The finite pat-
ternst are assembled coinductively as follows:

τ ::= t(τ1, . . . , τk) coinductively.

By coinduction, every typeτ is of the formt(τ1, . . . , τk).
So, we can reason inductively on the structure of type pat-
terns, then coinductively on the structure of types. This
turns out to be very convenient. Besides, all the construc-
tions→, ×, . . . , on type patterns define constructions on
types in the obvious way. This enables to write types like
τ1 → τ2, τ1 × τ2 or ∀α.τ .

Types are considered modulo renaming of their bound
variables. This does not contradict the coinductive defini-
tion of types on the alphabet of patterns since, in fact,α-
conversion is only a handy presentation of de Bruijn indices.
Note also that we don’t assume types to beregular: types
may have an infinite number of distinct subtrees.

Remark: the sum types are not treated for lack of space only.
They are very easily integrated in the framework by ex-
tending the language of terms with three operatorsinl(e),
inr(e), caseof(e, e1, e2), and the language of evaluation
contexts with one operator(case e1, e2) · E, with the fol-
lowing equation:

〈e | (case e1, e2) · E〉 = 〈caseof(e, e1, e2) | E〉

and the two additional rewriting rules:

〈inl(e) | (case e1, e2) · E〉 → 〈e1 e | E〉
〈inr(e) | (case e1, e2) · E〉 → 〈e2 e | E〉

4.2 Syntax of interval types

In contrast to types, which may be infinite,interval types
are finite trees, defined inductively by the grammar below.

K ::= Bool boolean type
| K ×K pair type
| K → K function type
| α type variable
| > top type
| ∀α.K universal quantification
| ⊥ bottom type
| ∃α.K existential quantification
| [⊥,>] interval

In Section 6, we will use these interval types to “approx-
imate” types, in order to interpret them. Accordingly, the
type constructions are the same as for types. The only nov-
elty is the interval type[⊥,>], which will be interpreted in
the next section (Section 5) as the largest possible “inter-
val”, bounded by the smallest and largest nonempty truth
values.

6

4.3 Types approximated by interval types

We say that an interval typeK approximates a typeτ ,
which we write asK v τ , when the typeτ may be obtained
syntactically by replacing every leaf labelled[⊥,>] inK by
a type. For instance:

∀α.∀β.[⊥,>]⇒ [⊥,>] v ∀α.∀β.α⇒ (α⇒ β).

5 Interpretation of interval types

5.1 Adjunction

Let φ be a term andψ be a function on stacks. One says
thatψ is the adjoint ofφwhen, for every terme and stackπ:

φ e ⊥ π ⇐⇒ e ⊥ ψ π.

Note that the adjointψ is characterized byφ modulo ob-
servational equivalence, in the sense that ifψ′ is another
adjoint ofφ, then, for every stackπ:

{ψ π}⊥ = {ψ′ π}⊥.

This enables to use the notationφ∗ for the adjointψ.

5.2 Semantic intervals

A semantic intervalis a triple(U, V, φ) consisting of two
nonempty truth valuesU andV satisfyingU ⊆ V , and a
termφ ∈ V ⇒ U having an adjointφ∗. We generally note
semantic intervals as follows:

U
φ←− V.

The termφ is called the conversion of the semantic interval.
Recall from Section 3 thatφ ∈ V ⇒ U means that:

∀e ∈ V, φ e ∈ U.

Lemma 3 The functionφ∗ sends every stackπ ∈ U⊥ to a
stackφ∗π ∈ V ⊥.

Remark: The adjointφ? is here to take full advantage of
the duality between terms and stacks, saying that every ex-
istential type ontermsis at the same time a universal type
on stacks. Or similarly, that every union type on terms (see
Section 7) is at the same time an intersection type on stacks.
This dual perspective is crucial, we believe, to interpret ex-
istential and union types in the presence of recursive types
(without any recourse to a “language-based” stratification).

5.3 Interpretation of interval types

We callsemantic environmentρ any function from type
variables to truth values. To any such environmentρ and in-
terval typeK we define a semantic interval[[K]]ρ by struc-
tural induction onK. So, all along the section, we suppose
given two interval typesK andK ′ interpreted as:

[[K]]ρ = U
φ←− V, [[K ′]]ρ = U ′

ψ←− V ′.

One needs to prove for each construction that the interpre-
tation defines a semantic interval — which is not really dif-
ficult.

Arrow type: [[K → K ′]]ρ = V ⇒ U ′
φ⇒ψ←− U ⇒ V ′

whereφ⇒ ψ = λx.(ψ ◦ x ◦ φ) = λx.λy.ψ (x (φ y)).

Product type: [[K ×K ′]]ρ = U × U ′ φ×ψ←− V × V ′
whereφ× ψ = λx.(φ fst(x), ψ snd(x)).

Boolean type: [[Bool]]ρ = W
λx.x←−W

whereW is the biorthogonal of the set{true, false}.

Bottom: [[⊥]]ρ = W
λx.x←−W

whereW is the smallest nonempty truth value, alternatively
the set of looping terms, or the biorthogonal of the singleton
{Ω}.

Top: [[>]]ρ = W
λx.x←−W

whereW is the largest truth value, that is, the set of all
terms, or alternatively, the set of all terms orthogonal to the
stackΩ.

Type variable: [[α]]ρ = W
λx.x←−W

whereW is the truth value associated to the type variableα
by the environmentρ.

Universal type: [[∀α.K]]ρ = U
φ←− V

whereU (resp.V) is the intersection of all truth valuesUT
(resp. VT) such that[[K]]ρ,(α7→T) = UT

φT←− VT for T
ranging over truth values. As usual,[[K]]ρ,(α7→T) denotes
the interpretation ofK in the environmentρ in which the
type variableα is assigned toT . The termφ is defined by
showing thatφT = φT ′ for any truth valuesT andT ′, and
then takingφ = φT for any truth valueT .

Existential type: [[∃α.K]]ρ = U
φ←− V

whereU (resp. V) is the biorthogonal of the union of
all truth valuesUT (resp. VT) such that[[K]]ρ,(α7→T) =

UT
φT←− VT for T ranging over truth values. The termφ

is defined by showing thatφT = φT ′ for any truth valuesT
andT ′, and then takingφ = φT for any truth valueT .

Interval type: [[[⊥,>]]]ρ = U
Ω←− V

whereU (resp.V) is the smallest (resp. largest) nonempty
truth value. Note that the termΩ transports every terme ∈
V to the looping termΩ e ∈ U .

6 Interpretation of types

Here comes the crux of the paper: we show that every
(possibly infinite) typeτ generates a converging sequence

7

of interval types, the limit of which defines the interpreta-
tion of τ in the model. The proof is based on a simula-
tion lemma (lemma 4) showing that, under some appropri-
ate conditions, the conversion termsφK associated to our
semantic intervals behave likeη-conversions or reduction
labels in theλ-calculus [18].

6.1 Term expansion

A terme′ obtained from a terme by inserting conversion
termsφK is called an expansion ofe. We write thise ; e′.
This may be formalized by structural induction on the term:

e ; e
e ; e′

e ; φK e′
e ; e′

λx.e ; λx.e′

e1 ; e′1 e2 ; e′2

e1 e2 ; e′1 e′2

e1 ; e′1 e2 ; e′2

(e1, e2) ; (e′1, e
′
2)

e ; e′

fst(e) ; fst(e′)

e ; e′

snd(e) ; snd(e′)

e1 ; e′1 e2 ; e′2 e3 ; e′3

if e1 then e2 else e3 ; if e′1 then e′2 else e′3

whereφK indexed by the interval typeK denotes the con-
version of any semantic interval[[K]]ρ, for ρ an arbitrary
semantic environment.

The depth of an interval typeK is defined by structural
induction:

‖K ×K′‖ = ‖K → K′‖ = 1 + min(‖K‖, ‖K′‖)
‖α‖ = ‖Bool‖ = +∞
‖⊥‖ = ‖>‖ = +∞
‖∀α.K‖ = ‖∃α.K‖ = ‖K‖
‖[⊥,>]‖ = 0

We speak of anexpansion of depthk when all theφK in-
troduced by expansion are indexed by interval typesK of
depth greater or equal tok. In that case, we writee ;k e

′.

6.2 The simulation lemma

Lemma 4 (simulation) For every pair of terms(e, e′) such
that e →∗ e′, there exists an integerp such that whenever
e ;p+k f for a safe termf and integerk, there exists a
termf ′ satisfyingf →∗ f ′ ande′ ;k f

′.

6.3 Interpretation of types

Let ρ denote a semantic environment. Every typeτ de-
fines a set of approximating interval typesK v τ , each of
them interpreted as a semantic interval

[[K]]ρ = UK
φK←− VK .

We defineU∞
def=

⋃
Kvτ UK andV∞

def=
⋂
Kvτ VK . Ob-

viously,U∞ ⊆ V∞ becauseUK ⊆ VK for everyK v τ .

We deduce thatV∞ coincides with the biorthogonal ofU∞
(theorem 5) from the property:

∀e ∈ V∞,∀π ∈ U⊥∞, e ⊥ π.

Theorem 5 (coincidence)V∞ = U⊥⊥∞ .

We therefore interpret the typeτ in the environmentρ as
[[τ]]ρ = V∞ = U⊥⊥∞ . Note that the definition ensures sub-
stitution properties like[[τ]]ρ+(α7→[[τ ′]]ρ) = [[τ [α := τ ′]]]ρ for
every typesτ andτ ′, and type variableα.

7 Intersection and Union

We indicate briefly how we interpret union and intersec-
tion types in the presence of recursive types, see also [24].
The first step is to define two constructs∧ (intersection) and
∨ (union) on truth valuesU, V , just in the expected way:

U ∧ V = U ∩ V, U ∨ V = (U ∪ V)⊥⊥.

Our proof technique in Sections 5 and 6 requires to define
the conversionsφ∧ψ andφ∨ψ associated to the constructs
∧ and∨ on interval types. We believe that this not pos-
sible in the operational model based on the call-by-name
λ-calculus defined in Section 2. But this may be achieved
by enriching the language with an “error-avoiding” nonde-
terministic choice operator‖, with the additional rules:

〈e1‖e2 | E〉 → 〈e1 | E〉 〈e1‖e2 | E〉 → 〈e2 | E〉

with E an evaluation context in the sense of Section 2.2.
The conversionsφ ∧ ψ andφ ∨ ψ may then be defined as
the termφ‖ψ. The existence of an adjoint for the termφ‖ψ
requires to extend our class of stacks with an operator‖,
building stacksπ1‖π2 with the obvious action on terms:

〈e | π1‖π2〉 = 〈e | π1〉 ‖ 〈e | π2〉

We clarify now the orthogonality relation⊥ associated to
this non-deterministic calculus. A term is calledsafewhen
it may loop, or may reduce totrue or false. A term e is
orthogonalto a stackπ when〈e | π〉 is safe. For instance,
the terme = true ‖ λx.x is orthogonal to the stackπ =
0 ‖ (true · nil) because the term〈e | π〉 reduces to the
constanttrue. It is not difficult to see then that the adjoint
of φ‖ψ is the function which associates to every stackπ the
stackφ∗π‖ψ∗π, whereφ∗ (resp.ψ∗) denotes the adjoint of
the termφ (resp.ψ).

8 Typing judgement

In order to demonstrate the power of our semantic anal-
ysis, we deliver a series of typing rules (figure 1) for the
untyped calculus of Section 2, and prove that these rules are
sound. We take the usual notions oftyping environmentΓ

8

VAR-ACCESS
Γ(x) = τ

Γ ` x : τ

APP
Γ ` e1 : τ2 → τ1

Γ ` e2 : τ2

Γ ` e1 e2 : τ1

ABS
Γ, x : τ2 ` e : τ1

Γ ` λx.e : τ2 → τ1

PAIR
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

FST
Γ ` e : τ1 × τ2

Γ ` fst(e) : τ1

SND
Γ ` e : τ1 × τ2

Γ ` snd(e) : τ2

CONSTANT TRUE
Γ ` true : Bool

CONSTANT FALSE
Γ ` false : Bool

CONDITIONAL
Γ ` e1 : Bool

Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

FIXPOINT
Γ ` e : τ → τ

Γ ` Y e : τ

ALL -INTRO
Γ, α ` e : τ

Γ ` e : ∀α.τ

ALL -ELIM
Γ ` e : ∀α.τ

Γ ` e : τ [τ ′/α]

EXISTS-INTRO
Γ ` e : τ [τ ′/α]

Γ ` e : ∃α.τ

EXISTS-ELIM
Γ ` e : ∃α.τ ′

Γ, α, x : τ ′ ` 〈x | E〉 : τ
α 6∈ FV(τ) x 6∈ FV(E)

Γ ` 〈e | E〉 : τ

SUB
Γ ` e : τ ′ τ ′ <: τ

Γ ` e : τ

Figure 1. Typing rules

and oftyping judgementΓ ` e : τ , and refer to [25] for for-
mal definitions. Our typing rules are also canonical, except
for the elimination rule of the existential, which is inspired
from [14]. We writeΓ(x) for the type of the variablex in
the environmentΓ, andFV for the set of free variables of a
type or an evaluation context.

The typing system depends on a subtyping relation<:
between types, which appears in theSub rule. The only
hypothesis that we make on the relation<: is that for every
two typesτ, τ ′ such thatτ <: τ ′, and for every semantic
environmentρ, we have the inclusion[[τ]]ρ ⊆ [[τ ′]]ρ. This is
sufficient to establish that the typing system is sound:

Theorem 6 (Soundness)̀ e : τ impliese ∈ [[τ]].

This establishes that every closed term of typeBool is safe.

9 Parametricity and typed realizability

We explain briefly how realizability may be adapted to
account for logical relations and parametricity. Follow-
ing [2, 6, 9, 7, 22] among a few others, we would like to
interpret types assaturated relations. A saturated relation
(∼1, r,∼2) over the set of termsΛ consists of a binary rela-
tion r ⊆ Λ2 and two partial equivalence relations (pers)∼1

and∼2 overΛ, such that:

∀(a, b, c, d) ∈ Λ4, a ∼1 b andb r c andc ∼2 d ⇒ a r d.

We find useful to express every saturated relation
(∼1, r,∼2) as the following set of quadruples:

R = {(a, b, c, d) ∈ Λ4, a ∼1 b, b r c andc ∼2 d}.
We define an orthogonality relation⊥sat between quadru-
ples of terms and stacks of our deterministic language of
Section 2, by writing(e1, e2, e3, e4) ⊥sat (π1, π2, π3, π4)
precisely when

〈e1 | π1〉 =safe 〈e1 | π2〉 =safe 〈e2 | π1〉 =safe 〈e2 | π2〉
〈e3 | π3〉 =safe 〈e3 | π4〉 =safe 〈e4 | π3〉 =safe 〈e4 | π4〉

〈e2 | π2〉 =safe 〈e3 | π3〉

wheree =safe e
′ means that (1) the termse ande′ are safe

and (2a) eithere ande′ reduce to the same boolean constant,
or (2b) bothe ande′ loop. A key observation follows:

Lemma 7 (Saturation) Every biorthogonal set of quadru-
ples of terms is a saturated relationR.

It is then easy to construct a realizability model of recursive
types based onbiorthogonal relationsinstead of truth val-
ues. The operators⇒ and× are adapted to biorthogonal
relations. That is,R ⇒ S denotes the set of quadruples or-
thogonal to every quadruple(e1 ·π1, e2 ·π2, e3 ·π3, e4 ·π4)
where(e1, e2, e3, e4) ∈ R and(π1, π2, π3, π4) ∈ S⊥. Sim-
ilarly for the productR× S of two biorthogonal relations.

Then, one interprets recursive types by approximating
them by interval types, in the lines of Sections 5 and 6. This
defines a biorthogonal relation[[[τ]]]ρ for every typeτ and
semantic environmentρ from type variables to biorthogo-
nal relations. Now, suppose that the subtyping relation<:
verifies that for every two typesτ <: τ ′, and for every se-
mantic environmentρ, we have the inclusion[[[τ]]]ρ ⊆ [[[τ ′]]]ρ.
We prove that:

Theorem 8 (Soundness)̀ e : τ implies(e, e, e, e) ∈ [[[τ]]].

Consider two closed termse1 and e2 typed as` e1 : τ
and` e2 : τ in our typing system. We say that the terms
e1, e2 are parametrically equivalent (notede1∆τe2) when
(e1, e1, e2, e2) ∈ [[[τ]]]. And that they are contextually equiv-
alent (notede1 ∼τctx e2) when e e1 =safe e e2 for every
closed terme typed as̀ e : τ → Bool in our typing sys-
tem. We prove that for every typeτ :

Lemma 9 (in untyped realizability) ∆τ ⊆ ∼τctx.

This indicates that there are more parametricity tests in the
untyped realizability universe, than in the typed syntax. To
obtain equality of∆τ and∼τctx, we thus need to shift to a
typedsetting, in which only typed terms and stacks (à la

9

Church) are considered. The orthogonality relatione ⊥ π
holds when the term〈e | π〉 is well-typedand safe. The def-
inition of ∆τ is immediately adapted to this typed setting.
We establish in this way the key property stated by Pitts for
his PolyPCF (theorem 4.15 [22]), reformulated in our poly-
morphic typing system with subtyping and recursive types.

Theorem 10 (in typed realizability) ∆τ = ∼τctx .

10 Conclusion and future works

We have shown how recursive polymorphic types, as
well as subtyping, may be interpreted operationally without
altering the original syntax of theλ-calculus. We have also
indicated how parametricity may be integrated smoothly in
the framework. It will be interesting to see in future work
how the methodology scales up to languages with effects,
and to process calculi.

References

[1] M. Abadi. top-top-closed relations and admissibility.Math-
ematical Structures in Computer Science, 10(3):313–320,
2000.

[2] M. Abadi, P.-L. Curien, and G. Plotkin. Formal paramet-
ric polymorphism.Theoretic Computer Science, 121(1 and
2):9–58, 1993.

[3] M. Abadi, B. Pierce, and G. Plotkin. Faithful ideal mod-
els for recursive polymorphic types.International Journal
of Foundations of Computer Science, 2(1):1–21, Mar. 1991.
Summary in Fourth Annual Symposium on Logic in Com-
puter Science, June, 1989.

[4] S. Abramsky and A. Jung. Domain theory. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors,Handbook of
Logic in Computer Science, volume 3, pages 1–168. Claren-
don Press, 1994.

[5] A. W. Appel and D. McAllester. An indexed model
of recursive types for foundational proof-carrying code.
ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 23(5):657–683, 2001.

[6] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott.
Functorial polymorphism. In G. Huet, editor,Logical
Foundations of Functional Programming, pages 315–330.
Addison-Wesley, Reading, MA, 1990.

[7] R. Bellucci, M. Abadi, and P.-L. Curien. A model for for-
mal parametric polymorphism: A per interpretation for sys-
tem r. In M. Dezani-Ciancaglini and G. Plotkin, editors,
Typed Lambda Calculi and Applications: Proc. of the 2nd
International Conference on Typed Lambda Calculi and Ap-
plications, pages 32–46. Springer, Berlin, Heidelberg, 1995.

[8] L. Birkedal and R. Harper. Constructing interpretations of
recursives types in an operational setting.Information and
Computation, 155:3–63, 1999.

[9] K. Bruce and J. C. Mitchell. Per models of subtyping, recur-
sive types and higher-order polymorphism. InPOPL ’92:
Proceedings of the 19th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 316–
327, New York, NY, USA, 1992. ACM Press.

[10] J. Chroboczek. Games semantics and subtyping. PhD the-
sis and LFCS report ECS-LFCS-03-432, University of Ed-
inburgh, Great Britain, 2003.

[11] L. Dami. Labelled reductions, runtime errors and op-
erational subsumption. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors,ICALP, volume 1256
of Lecture Notes in Computer Science, pages 782–793.
Springer, 1997.

[12] L. Dami. Operational subsumption, an ideal model of sub-
typing. In A. D. Gordon, A. M. Pitts, and C. Talcott, editors,
Second Workshop on Higher-Order Operational Techniques
in Semantics, volume 10 ofElectronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 2000.

[13] V. Danos and J.-L. Krivine. Disjunctive tautologies and syn-
chronisation schemes. InComputer Science Logic’00, vol-
ume 1862 ofLecture Notes in Computer Science, pages 292–
301. Springer, 2000.

[14] J. Dunfield and F. Pfenning. Type assignment for intersec-
tions and unions in call-by-value languages. InProc. 6th In-
ternational Conference on Foundations of Software Science
and Computation Structures (FOSSACS’03), Lecture Notes
in Computer Science. Springer–Verlag, 2003.

[15] P. J. Freyd. Algebraically complete categories. In A. Car-
boni, M. C. Pedicchio, and G. Rosolini, editors,Proceed-
ings of the 1990 Como Category Theory Conference, vol-
ume 1488 ofLecture Notes in Mathematics, pages 131–156.
Springer–Verlag, 1991.

[16] J.-Y. Girard. Linear logic.Theoretical Computer Science,
50:1–102, 1987.

[17] J.-L. Krivine. Typed lambda-calculus in classical zermelo-
fraenkel set theory. Archive of Mathematical Logic,
40(3):189–205, 2001.

[18] J.-J. Ĺevy. An algebraic interpretation of the lambda beta K-
calculus; and an application of a labelled lambda-calculus.
Theoretical Computer Science, 2(1):97–114, June 1976.

[19] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model
for recursive polymorphic types.Information and Control,
71(1-2):95–130, 1986.

[20] I. A. Mason, S. F. Smith, and C. L. Talcott. From operational
semantics to domain theory.Information and Computation,
128(1):26–47, 1996.

[21] M. Parigot. Strong normalization for second order classical
natural deduction. In8th Annual IEEE Symposium on Logic
in Computer Science, pages 39–46, Montreal, Canada, June
1993. IEEE Computer Society Press.

[22] A. M. Pitts. Parametric polymorphism and operational
equivalence.Mathematical Structures in computer Science,
10:321–359, 2000.

[23] S. F. Smith. The coverage of operational semantics. In A. D.
Gordon and A. M. Pitts, editors,Higher Order Operational
Techniques in Semantics, Publications of the Newton Insti-
tute, pages 307–346. Cambridge University Press, 1998.

[24] J. Vouillon. Subtyping union types. In J. Marcinkowski and
A. Tarlecki, editors,18th International Workshop CSL 2004,
volume 3210 ofLecture Notes in Computer Science, pages
415–429. Springer-Verlag, September 2004.

[25] J. Vouillon and P.-A. Mellìes. Semantic types: A fresh look
at the ideal model for types. InProceedings of the 31th
ACM Conference on Principles of Programming Languages,
pages 52–63, Venezia, Italia, Jan. 2004. ACM Press.

10

Appendix

Proofs of section 5

Arrow type. We prove that

V ⇒ U ′
φ⇒ψ←− U ⇒ V ′

defines a semantic interval.
Conversion :We prove first that

(φ⇒ ψ) ∈ (U ⇒ V ′)⇒ (V ⇒ U ′). (8)

Suppose thate ∈ U ⇒ V ′. We want to prove that(φ ⇒
ψ) e ∈ V ⇒ U ′. It is enough to prove that(φ ⇒ ψ) e is
orthogonal to every stackπ′ = e′ · π wheree′ ∈ V andπ is
orthogonal toU ′. By hypothesis,U ′ is nonempty; thus,π is
not the unsafe stack0. On the other hand, the case whenπ
is the safe stackΩ is immediate. There remains to treat the
case whenπ is an evaluation contextE. In that case,

〈(φ⇒ ψ) e | π′〉 = 〈λx.λy.ψ (x (φ y)) | e · e′ · E〉
→ 〈λy.ψ (e (φ y)) | e′ · E〉
→ 〈ψ (e (φ e′)) | E〉

There remains to show that the termψ (e (φ e′)) is element
of U ′. But this is a consequence of lemma 1, and the joint
facts thatφ ∈ V ⇒ U , that e ∈ U ⇒ V ′ and thatψ ∈
V ′ ⇒ U ′. We conclude that(φ ⇒ ψ) e ⊥ π′, and thus
property (8).
Adjoint : We define(φ⇒ ψ)∗ and prove that this is indeed
the adjoint of(φ⇒ ψ).

• (φ ⇒ ψ)∗π = π whenπ is the safe stackΩ. Indeed,
in that case, both(φ⇒ ψ) e ⊥ π ande ⊥ π, for every
terme.

• (φ⇒ ψ)∗π = φ e ·ψ∗E whenπ = e ·E for some term
e and evaluation contextE. Indeed,(φ⇒ ψ) e′ ⊥ e ·E
iff ψ (e′ (φ e)) ⊥ E iff e′ (φ e) ⊥ ψ∗E iff e′ ⊥ φ e ·
ψ∗E, for e′ an arbitrary term.

• (φ ⇒ ψ)∗π = 0 otherwise. Indeed, in that case, the
term〈(φ⇒ ψ) e | π〉 is easily shown to be unsafe.

Product type. We prove that

[[K ×K ′]] = U × U ′ φ×ψ←− V × V ′

defines a semantic interval.
Conversion :We prove first that

(φ× ψ) ∈ (V × V ′)⇒ (U × U ′). (9)

Suppose thate ∈ V ×V ′. We want to prove that(φ×ψ) e ∈
U×U ′. This means proving that(φ×ψ) e is (1) orthogonal
to every stackfst · π whereπ is orthogonal toV , and also

(2) orthogonal to every stacksnd ·π′ whereπ′ is orthogonal
to V ′. We only show point (1), since point (2) is proved in
a similar fashion. By hypothesis,V is is nonempty; thus,π
is the unsafe stack0. On the other hand, the case whenπ
is the safe stackΩ is immediate. There remains to treat the
case whenπ is an evaluation contextE. In that case,

〈(φ× ψ) e | fst · E〉 =
〈λx.(φ fst(x), ψ snd(x)) | e · fst · E〉 →
〈(φ fst(e), ψ snd(e)) | fst · E〉 →
〈φ fst(e) | E〉

Now, 〈φ fst(e) | E〉 is safe iffφ fst(e) ⊥ E iff fst(e) ⊥
φ∗E iff e ⊥ fst · φ∗E. Now, the stackφ∗E is orthogonal
to U , ande is element ofV × V ′. From this and definition
of V × V ′ follows thate is orthogonal tofst · φ∗E. We
conclude that〈φ fst(e) | E〉 is safe, and thus that(φ ×
ψ) e ⊥ fst·E. As we said, point (2) is established similarly.
We conclude that(φ× ψ) e ∈ U × U ′.
Adjoint : We define(φ × ψ)∗ and prove that this is indeed
the adjoint of(φ× ψ).

• (φ × ψ)∗π = π whenπ is the safe stackΩ. Indeed,
in that case, both(φ × ψ) e ⊥ π ande ⊥ π, for every
terme.

• (φ × ψ)∗π = fst · φ∗E whenπ = fst · E for some
evaluation contextE. Indeed,(φ× ψ) e′ ⊥ fst · E iff
φ fst(e) ⊥ E iff e ⊥ fst · φ∗E, for every terme.

• similarly, (φ × ψ)∗π = snd · φ∗E whenπ = snd · E
for some evaluation contextE.

• (φ × ψ)∗π = 0 otherwise. Indeed, in that case, the
term〈(φ× ψ) e | π〉 is easily shown to be unsafe.

Boolean type, bottom, top, type variable. In each case,
the termλx.x is element ofW ⇒ W and has the identity
function on stacks as adjoint(λx.x)∗.

Universal type. We prove that

[[∀α.K]]ρ = U
φ←− V

defines a semantic interval. By definition, the termφ is
equal to the termφT for any truth valueT . Consequently,
the termφ has an adjointφ∗ = φT .
Conversion :There remains to prove that

φ ∈ V ⇒ U.

Suppose thate is a term inV , and thatπ is a stack orthogo-
nal toU . Suppose thatT is a truth value. Then, the terme
is element ofVT . Thus, the termφ e is element ofUT . This
is true for every truth valueT . Thus, the termφ e is element
of V , for every terme ∈ V . We conclude thatφ ∈ V ⇒ U .

11

Existential type. We prove that

[[∀α.K]]ρ = U
φ←− V

defines a semantic interval. By definition, the termφ is
equal to the termφT for any truth valueT . Consequently,
the termφ has an adjointφ∗ = φT .
Conversion:There remains to prove that

φ ∈ V ⇒ U.

Suppose thate is a term inV , and thatπ is a stack orthog-
onal toU . Suppose thatT is a truth value. Then, the stack
π is orthogonal toUT . Thus, the stackφ∗π is orthogonal
to VT . This is true for every truth valueT . Thus, the stack
φ∗ π is orthogonal toV . In particular,e ⊥ φ∗ π. It fol-
lows immediately thatφ e ⊥ π. This is true for every term
e element ofV and for every stackπ orthogonal toU . We
conclude thatφ ∈ V ⇒ U .

Interval type. The definition works because the termΩ e
is element ofU for every terme element ofV (that is: for
every term). Besides, the termΩ has an adjointΩ∗, which
transports every stackπ to the safe stackΩ.

Proofs of Section 6.2 and Section 6.3 (sketched)

Lemma 4 (simulation) For every pair of terms(e, e′) such
that e →∗ e′, there exists an integerp such that whenever
e ;p+k f for a safe termf and integerk, there exists a
termf ′ satisfying:

f →∗ f ′ ande′ ;k f
′.

Proof: (sketch) The general idea is that expanding a term
e to a termf with a conversionφK either induces an error
in f , or behaves just like anη-expansion. Typically,

〈φK2⇒K1 (e) | e′ · E〉 →∗ 〈φK1 (e (φK2 e
′)) | E〉.

One important point is that no conversionΩ associated to
the interval type[⊥,>] applies inside the reductionf →∗
f ′. This would break the simulation. For that reason, we
require an expansion depthe ;p+k f larger than the prod-
uct p of the length of the shortest reductione →∗ e′, and
of the maximum length of an evaluation context involved
in the reduction. Thelengthof an evaluation context is the
number of application nodese · E in its definition.�

Theorem 5 (coincidence)V∞ = U⊥⊥∞ .

Proof: (sketch) We deduce thatU∞ ⊆ V∞, from the fact
thatUK ⊆ VK for every interval typeK v τ . The truth
valueV∞ which containsU∞ contains also its biorthogo-
nalU⊥⊥∞ . This establishes thatU⊥⊥∞ ⊆ V∞. We prove the
converse inclusionV∞ ⊆ U⊥⊥∞ , which may be reformulated
as the statement below:

∀e ∈ V∞,∀π ∈ U⊥∞, e ⊥ π.

The orthogonal ofU∞ is given by an intersection:

U⊥∞ =
⋂
Kvτ

U⊥K

So, every stackπ ∈ U⊥∞ is orthogonal toUK , and every
elemente ∈ V∞ is transported to a termφK e ∈ UK , for
K v τ . We conclude that

∀K v τ, φK e ⊥ π. (10)

We claim that this implies thate ⊥ π. This is immediate
whenπ is one of the stacksΩ or 0. We proceed by con-
tradiction when the stackπ = E is strict (= an evaluation
context). Suppose that the term〈e | E〉 is unsafe. This
means that〈e | E〉 → e′ to a terme′ which cannot be fur-
ther reduced by→, but which is neither the constanttrue
nor the constantfalse. By lemma 4, we may choose an
integerp such that, for everyK of depthp + k, the term
f = 〈φK e | E〉 reduces to a termf ′ such thate′ ;k f

′.
It is not difficult to see that, ifk is chosen larger than the
length of any evaluation context ine′, then the termf ′ is
just as unsafe ase′. We conclude that〈φK e | E〉 is unsafe,
or equivalently thatφK e is not orthogonal toE, and thus
reach a contradiction with (10). We conclude thate ⊥ π. �

12

