Recursive polymorphic types and parametricity
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Abstract function s andp, called “successor” and “predecessor”:
We construct a realizability model of recursive polymor- N« 1+N N+ {00} 25 14+N+{c0} (2

phic types, starting from an untyped language of terms and
contexts. An orthogonality relation L 7 indicates when  and defined respectively aé«) = 0 ands(n) = n+1, and
a terme and a contextr may be safely combined in the @sp(0) =, p(n + 1) = n andp(co) = oo, foralln € N.
language. Types are interpreted as sets of terms closed The two solutions (2) are canonical in the following
by biorthogonality. Our main result states that recursive Sense. Call prefixpoint and postfixpoiny of equation (1)
types are approximated by converging sequences of intervaPny function:
types. Our proof is based on a “type-directed” approxima- f
tion technique, which departs from the “language-directed” X< 14X and Y L 1+V.
approximation technique developed by MacQueen, Plotkin
and Sethi in the ideal model. We thus keep the language el-Canonicity says that, for any sugh(resp.g), there exists a
ementary (a call-by-nama-calculus) and unstratified (no  Unique functio: (resp.k) making the diagram commute:
typecase, no reduction labels). We also include a short ac-
count of parametricity, based on an orthogonality refation x < 14+ X N4 {oo} — > 1+ N+ {00}
between quadruples of terms and contexts.
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1 Introduction

In other wordss is the “initial” prefixpoint (called inductive

In this article, we describe how a large variety of typ- solution), andp is the “terminal” postfixpoint (called coin-

ing constructions: recursive types, polymorphism, subtyp- ductive solution) of equation (1). What we find here is noth-
ing, product types, intersection types, union types, as welling but the “categorification” of Knaster-Tarski's theory of
as parametricity, may be interpreted and studied in a somed{ixpoints for a monotone function in a complete lattice. A
what ndve and operational framework. We choose to set categorical terminology is generally adopted: the “prefix-
our scene slowly, starting from a brief account of recursive points” and “postfixpoints” are calle@-algebras and’-
types in categories of domains, then shifting gradually to coalgebras for the functdl’ : Set — Set defined as
the operational model we have in mind. T(X) =14 X. And the diagrams of equation (3) express

that theT'-algebras is the “initial” T-algebra, and that the
Recursive types. Solving recursive equations between T-coalgebra is the “terminal’T-coalgebra.

types is generally done in categories. Take for instance the ] ] ] ] ]
Mixed variance. Equation (1) is particularly simple be-

equation . X ¢ &
cause the variabl& occurs only in a covariant (= positive)
X=1+X @ . . . .
position. More complicated recursive equations may be also
in the categonyet of sets and functions, wheie+ X de- considered, like
notes the disjoint union ok and of the singletor = {x}. X=X=>X (4)

This equation has two canonical solutions, namely th&set
of natural numbers, and the $&#-{co} of natural numbers
completed by infinity. By “solution”, one means a sgt
equipped with an isomorphisidi «—— 1 + X, alternatively
seen as its inverse map — 1 + X. Accordingly, each
of the solution set® andN + {co} comes equipped with a

where the variableX appears in a covariant as well as a
contravariant (= negative) position. This kind of equation
may be formulated in any cartesian closed category, where
X = Y denotes the usual arrow construct.

These equations of mixed variance have (in general) no
solution in the categorpet. Typically, equation (4) has
*Postal address: Equipe PPS, CNRS and UnieFris VII, 2 place only the trivial solutionX' = 1, while equation
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has no solution at all, for obvious cardinality reasons. Or alternatively: a “semantic expressiofi"e V is either
Scott invented Domain Theory when he realized that a boolean constant, an integer, a function between expres-
equations of mixed variance like (4) and (5) could be solved sions, a pair of expressions, a left (resp. right) injection of
by shifting from the categornBet to the categoryCPO an expression, the error constahtor the least element.
of domains (= partial orders with a least elementand Second stage: every type is interpreted addaal of
all directed limits) and continuous (= monotone and limit- the domainV, that is, as a non-empty sétC V which
preserving) functions between them. We refer the readeris (1) downward closed, and (2) closed under directed lim-
to [4] for a modern exposition of Domain Theory. its. Notice that ideals are domains themselves. So, types
We only mention here that Freyd [15] derives this exis- are interpreted as domains, just as in mainstream Domain
tence of solutions ilCPO from a striking property of its ~ Theory. There is a major difference, though: these domains
subcategoryCPO | of strict (= L-preserving) functions, are not only domains, they are also “subdomains” of the do-
called “algebraic compactness”. The property states thatmain V. So, subtyping may be interpreted as set-theoretic
the initial 7-algebra and the termindl-coalgebreacoincide inclusion. But this has another key consequence. Defined
for every (well-behaved) covariant endofunctor as the canonical solution of equation (7), the doniis
T:CPO, — CPO,. approximated by a sequeng¥.,, ), <y of domains:

Freyd shows that the catego@PO‘” x CPO | is also VoEViC---CV, 1 CV,CV 1 &---CV

algebraicglly compact, and reformulates 'in this way any each of them image of a projection map : V — V,,.
mixed variance functor oﬁiPO_L as acova_rlant_endpfunc- Besides, every element € V is the least upper bound of
f[orT on this category. The unique canonical flxp0|r_1ﬂbf the directed sefm,(z) | n € N} of its approximations.
'S shovyn.to be of the fqrmD7 D/) whereD apdD' are 1So- This “stratification” of the domairiv enables to define a
morphlg INCPO .. Th|s provides .the solutiod & ' to distancel(1, J) between two ideal$ and.J asd(I,J) =0
the original m|xed-var|anpe equathn 0\@(’0. ' whenl = J, and asi(I, J) = 2" when[ + J, for n the

We ste_:p back to equation (1) for |IIu_strat|0n, slightly gen- least number such that, (1) # m,(.J). MacQueen, Plotkin
eralized in the categor@P O as equation: and Sethi prove that the resulting metric space on ideals is

X=1,4(AxX) (6) Cauchy-complete; and deduce that every recursive equation

where A denotes a fixed domain. That is, the domain X =T(X,X)

is required to be isomorphic to the coalesced sum of the _ _ )

lifted domain1, = {L,x} with the cartesian product of has auniquesolution, as long as the functdr of mixed
the domains4 and X. Just as irSet, equation (6) has an variance iscontractivewith respect to the metric space on
inductive solution (= the domain of lists ovel) and a coin- ideals. Remarkably, contractibility holds for a large class of
ductive solution (= the domain of streams owvé) in the functorsT, including all our illustrating equations (4), (5)
categoryCPO. But in contrast t@et, algebraic compact-  and (6).

ness implies that the two solutions coincidediO. Towards operational semantics. The ideal model suffers

The ideal model. We found instructive to recall briefly ~ 10M a serious defect noted in [3] and related to the domain-
. theoretic definition ofV: There exist “semantic expres-

the categorical approach to recursive types, because it Sions” f € V which are not defined in the calculus, and

elegant and ma|_nstream. .WE’T shift now 10 a different ap- may distort the expected properties of types. This is illus-
proach to recursive types, initiated by MacQueen, Plotkin, {yataq by the term:

and Sethi in thédeal model for typeEl9]. The ideal model

is still domain-theoretic, but not categorical any more. This por —explode = Af. if f(true, ()
brings us one step closer to the operational framework de- and f(Q, true)
veloped in this article. and not f(false,false)
The ideal model is built in two stages. First stage: a do- then U
else true.

main'V of “semantic expressions” is fixed, defined in [19]
as the canonical solution I@P O of the equation: whereQ denotes thelivergingterm® = (\y.y y) (\y.y y)

V = T+N+(V — V)+(VXV)+(VEV)+{0 7 andU denotes the “type-error” constafit
(V= V) I+ )0k (1) What should be the type gfor — explode? The first

This may be read as followd is (isomorphic to) the coa-  branch of theif — then — else is selected only when the

lesced sum of the boolean constdiitsthe integersN, the input f represents the “parallel-or” function (notedr)
continuous functions froriv to V, the product oV with it- which returnstrue when one of its arguments isrue,
self, the sum oV with itself, and a “type-error” constant. and false when its two arguments amalse. Now, the



function por € V is a “semantic expression” which can- bels provide the “stratification” of the language necessary
not be represented syntactically in thesalculus, orinany  to solve recursive equations between types.

sequential language. So, the tepar — explode returns 3. Chroboczek [10] recasts the ideal model in game se-
true for every termf of type (T x T) — T inany such  mantics, by solving an equation similar to (7) in a cate-
language; and consequently should be tyfdd x T) — gory of games. The resulting gan@ is “stratified”, and

T) — T there. Unfortunately, this type is not validated recursive equations are thus solved ins@eby the same

by the ideal model, because the tesar — explode inter- Cauchy-completeness argument as in [19]. Chroboczek ob-
preted inV returns “error” for the “semantic expression” serves a mismatch between his original operational seman-
por of type(T x T) — T. tics (a call-by-name\-calculus), and the interpretation of

This example suggests to reject the mediation of Domain this calculus in the model. He thus designs an adequate lan-
Theory, and to recast the ideal model directly inside oper- guage by enriching the original language with a “located”
ational semantics. The project is fascinating conceptually, (and in fact "stratified”) notion of convergence test.
but difficult to realize technically. As we mentioned ear- 4. Appel and McAllester [5] develop a radically different
lier, the existence of recursive types in the ideal model is approach to the problem, in which (in contrastito2 and
deduced from the “stratification” of the domain, and the  3) they do not need to enrich the original language in order
existence of the projection maps : V. — V,,. Obviously,  to stratify it. Their language is defined using a small-step
shifting to operational semantics requires to find an opera-semantics. This enables them to defimensionaltypes, in
tional counterpart to the “stratification” of the domain which an information on the number of steps to compute a
How and what? This question has attracted considerableyalue is provided. Remarkably, this extra information is suf-
interest in the last decade, leading to a series of major adicient to approximate the behavior of a term, and to solve
vances in the field [3, 5,8,10,11,12, 20, 23]. Four solutions recursive equati()ns between types.
emerged from the period, which we recall briefly now.

1. Abadi, Pierce and Plotkin [3] do not alter the domain- o . . i
theoretic definition oV (and thus keep its “stratification”) Realizability and orthogonality. These operational ap

but restrict the interpretation of types to ideals “gener- prpaches to recursive types have in common to alter some-
ated” (in the order-theoretic sense) by definable elements Ning of the original syntax of the calculus, or to alter some-
Strikingly, the resulting ideal model validates that the term thing of the original definition of types. Here, we want to
por — explode has typg (T x T) — T) — T. Othersyn-  interpret recursive polymorphic types in operational seman-
tactic variants of the ideal model are considered, obtainedtics, but without “stratifying” the language or the conver-
in each case by restricting the interpretation to particular gence test (as ih,2,3), and without “intensionalizing” the
classes of ideals, e.g. the so-called “abstract” and “coarse’typing (as ind).

ideals, see [3] for details. In any of these variants, itistech-  This js a difficult task, which requires to design a

gi(}?”ybclrufr:ihal that the ptrojectiorr: tr:]‘arlﬁ 1V =V, arte 4 new stratification principle in order to replace the usual
efinable This requires to enrich the language (an untype “language-directed” stratification. A clarifying step is taken

A-calculus) with a “typecase” operator which tests whether . . X
a terme is a boolean, a natural, a pair, a sum, or a function, " @ Companion paper [25] where we reformulate the ideal

and then returns a different resultin each case: model in amore goncg_ptual and operational way, inspired
from Krivine's realizability [17, 13].
cases € bool : e In a realizability model la Krivine), one starts from an
nat i e untyped calculus of terms and contexts, and constitutes a
pair : e3

typed language on top of it. The cornerstone of the theory
is a notion oforthogonalitye 1 7« which indicates when a
terme and a contextr may be safely combined (no error at
runtime). Orthogonality induces a closure operator which
This idea has been influential and reappears in many laterassociates to every sét of terms the setU+ of terms
attacks to connect operational and denotational semanticsywhich cannot be separated froth by a context. This set
most notably by Smith, Mason, and Talcott [20, 23] and U=+ is called thebiorthogonalof U. Types are interpreted
Birkedal and Harper [8]. We should add that the article [3] as setsU = U~ closed by biorthogonality, also called
is also influential for its last section, where the three authorstruth values The formal definition appears in Section 3.
deliver in a visionary style the principle of an ideal model Connecting “types” and “orthogonality” is one of the
living inside operational semantics. nicest discoveries of “French” proof-theory. The idea
2. Dami [11, 12] takes up the last idea of [3] and recasts emerged after intense reflection on tieelucibility candi-
the ideal model inside operational semantics. Several vari-datesmethod to prove strong normalization for Systém
ants of thel-calculus are considered, all of them enriched Girard reformulates these candidates as biorthogonal sets of
with reduction labelsnspired from levy [18]. These la-  terms, in his proof of cut elimination for linear logic [16].

sum :oeq
fun T oes
end



The idea reappears in Parigot’s proof of Strong Normaliza- Related works. As noted earlier, the literature on types is
tion for second ordeku-calculus [21]. Meanwhile, Krivine  huge, even if one restricts one’s attention to recursive types,
formulates a comprehensive framework based on orthogo-subtyping, or polymorphism. We did our best to give a com-
nality, in order to analyze types apecificationf terms. prehensive panorama of the field in the introduction, but it
Krivine demonstrates that realizability generalizes Cohen’s is obviously too brief, and far from exhaustive, for lack of
forcing and induces models of classical Zermelo-Fraenkel space. The interested reader will find complementary infor-
set theory [13, 17]. mation in the companion paper [25].

Parametricity. It should be said that the idea of orthog- outline
onality is not only “French”: Andy Pitts discovered it in- '
dependently in his remarkable work on operational equiva-
lence [22] — see also [1]. We indicate in Section 9 (alas too
briefly for lack of space) how Pitts’ operational approach to
parametricity may be reflected in a realizability framework.

In the remainder of the paper, we introduce a
call-by-name calculus (Section 2) for which we formulate
an orthogonality relation between terms and stacks, in the
style of Krivine (Section 3). This defines a truth value as a
set of terms orthogonal to a set of stacks. Then, we intro-
duce our syntax of types and of interval types (Section 4).

Type-directed stratification. What about recursive \We interpret types as truth values in two stages: first, we
types? We are looking for an operational counterpart to interpretinductivelyevery interval type as a pair of truth
“algebraic compactness” in Domain Theory. This should values, with a conversion term between them (Section 5);
ensure (for instance) that the type of lists of booleans andthen, we interpret types bgpproximatingthem with inter-

the type of streams of booleans coincide in the model. Takeval types (Section 6). We sketch how to treat intersection

the setl/ of boolean listgey, ..., e,,) in which each terne; and union types by moving to a nondeterministic language
is eithertrue or false. Any such list is easily encoded in  (Section 7). We prove soundness of our interpretation for
a \-calculus with pairs. Now, take the term: a typing system with universal and existential types, and
subtyping (Section 8). Finally, we give a brief account of
o =Y (Az.(true, z)) parametricity (Section 9) and conclude (Section 10).

in whichY = Af.(Az.f zz)(Az.f zx) is the Kleene fix- )

point. The terne., implements the infinite stream ofue, 2 Asimple call-by-name calculus

thus is element of the truth valdé of boolean streams. But

e~ iS Not an element of/. It is not difficult to see how- 2.1 The terms

ever that,,, is an element of/ . Indeed, every context

which combines safely with all the boolean lists, combines  We start from an untyped-calculus with pairs and con-

safely with all the boolean streams, including. We con- ditional branch, defined by the syntax below:
clude from this and/ C V thatV = U++.

The equalityU -+ = V captures the essence of coinci- e z variable
dence, and we shall prove it for every recursive type (Theo- Az.e abstraction
rem 5). Note that the equality generally fails when orthog- ee application
onality amounts tdermination(e L = iff e combined to (e,e) pair

|
|
| . . .
7 converges) instead afafety Indeed, there may exist a | fst(e) first projection
|
|
|
|

contextr (think of a length function) which terminates on snd(e) second projection

every list and loops on every stream. if e then e else e conditional branch
The framework described in [25] is technically enlight- true constant true

ening, but still based on a “language-directed” stratifica- false constant false

tion technique, which we reject here. We develop instead

a “type-directed” stratification technique, in which every 2.2 The operational semantics

(possibly infinite) typer is approximated by finite trees

calledinterval types Each interval typeX is interpreted We choose to apply a call-by-name evaluation strategy
in the model as a tripl€U, V, ¢ ) whereU C V are truth between terms, which we describe using a small-step se-
values, andpx is a conversion term sending every term mantics. This is only a matter of choice: all the construc-
e € Vtoaterm¢gge € U. These “type-directedd tions in this paper work also if one starts frontall-by-
replace the “language-directed” projectiangs of the ideal value\-calculus. The definition goes in two steps. First, we
model. The resulting “type-directed” picture is closer to introduce a class adfvaluation contexigndicating where a
Domain Theory, in which the solution of a recursive equa- symbolic transformation may be applied in a term. Then,
tion X = T(X,X) is computed as limit of a categorical we specify five rewriting rules, formulated as an interaction
diagram defined by the tygg. between a term and its evaluation context.



Evaluation contexts are finite lists defined by the grammar:

E &= nil head context
| e-E application
| fst-E first projection
| snd-E second projection
|

(if e,e) - E conditional branch

Every terme and evaluation conteXf may be combined to
generate a term denotéd | E) and defined as follows:

(e | nil) = e

(e e E) = (e | E)

(e ]| fst - E) = (fst(e) | E)
(e | snd - E) = Esnd(e) | E)

<€ ‘ (if 61,62) . E>

The reduction relation— is defined as the smallest rela-

if e thene; else ez | E)

tion between terms containing any instance of five rewriting

rules: the usuab-rule:
(Mz.e| € -E) — (elr :=¢€] | E)
two rules for the products:

((e1,e2) | £st - E)
((e1,e2) | snd - E)

—

{e1 | E)
— (e2|E)

and two rules for the conditional:

(true | (if e1,e9) - E)
(false | (if e1,e2) - E)

—

(e1 | E)
(e2 | E)
wheree, €/, e1, e5 denote terms anbl denotes an evaluation

context. Observe that the resulting reductienis deter-
ministicin the sense that:

—

Ve, ey, ea, e—e ande—ey = e =es.

3 Realizability
3.1 The safe terms

We write —* for the reflexive and transitive closure of
the relation—, and say that:

e aterme reducedo a terme’ whene —* ¢/,

e aterme loopswhen there exists an infinite sequence
of reductions:

€ — €1 —> ey — -

e aterm issafewhen it loops, or when it reduces to one
of the two boolean constantgue or false,

e aterm isunsafewhen it is not safe.
An example of safe term 1, defined as:
Q=Azxzx)(\.xx).
An example of unsafe term 8, defined as:

U = (true) (true).

3.2 The stacks

The terms of the language will be tested by evaluation
contextsE, as well as by two “constant” contexsand
which we add here for convenience. We call these testing
contextsstacks and note themr as in [17, 13].

7w == E evaluation context
|  Q safe
| U unsafe
A stackr is calledstrict when it is an evaluation context,
safewhenw = ) andunsafewhenw = U.
We extend the definition of— | E) to stacks in the ex-
pected way. Thus for every teren

(e Q) ¥a,

(e | ) ¥ o.

Similarly, we extend to stacks the constructors defined for

evaluation contexts in Section 2.2. This is simply done by

applying the convention below, for any termg, ea:
e'Q:fSt'Q:SDd'Q:(if€1,€2)'QdéfQ,

e-U:fst-U:snd~U:(ifel,eg)-UdéfU.

3.3 Orthogonality

The orthogonalityrelation L. between terms and stacks
is defined as follows:

e L m < theterm(e | m) is safe.

Thus, a terne and a stack are orthogonal when combining
them induces a terrfe | =) which loops, or reduces to one
of the boolean constantsue or false.

Some readers will find it unexpected to see terms like
Az.e counted among our unsafe terms. This seems to con-
tradict the accepted notion whluein functional program-
ming. Well, not really. The idea is that a term like:.e is
unsafe until it receives an argumeritand induces a safe
term(\z.e) /. We write thishz.e L ¢’ - nil, and note that
observing boolean constants (and only them) is enough to
characterize types semantically.

Note finally that the stack is orthogonal to every term,
and that the staclk is orthogonal to no term.

3.4 Truth values
A terme is orthogonal to a set of stackswhen:
Vrell,e L 7.

In that way, every set of stackbdefines a set of ternig=,
called theorthogonalof IT:

Mt ={e|Vrell:e L}



Conversely, every set of termsdefines a set of stacks’,
consisting of all the stacks orthogonalAo

At ={r|VecA:e L}

Taking twice the orthogonal of a set of terthénduces a set

of termsA++ called thebiorthogonalof A. This operation
(A — AtL) defines a closure operator in the lattice of sets
of terms, ordered by inclusion. In particular,C A+,

A truth valueU is a set of terms closed by biorthogonal-
ity, that is, satisfying/ = U+*. Note that the orthogonal
II+ to a given set of stackH is always a truth value, and
that truth values are closed under (arbitrary) intersection.

3.5 Two constructions on truth values

Suppose thal/ and V' are two truth values. We define
the truth valued/ = V andU x V as follows.

The arrow construction. The truth valud/ = V is de-
fined as the set of terms orthogonal to the stackswhere
e € U andr is a stack orthogonal to'.

Lemma 1 For every truth value$/, V' and terme, the fol-
lowing facts are equivalent :

1. eeU=1V,;
2. Ve eU, ee' eV.

The product construction. The truth valudJ x V' is de-
fined as the set of terms orthogonal to the statks - =
wherer is a stack orthogonal t&', andsnd - = wherer is
a stack orthogonal t&'.

Lemma 2 Atermis element df x V iff the term loops, or
reduces to a paife, ') wheree € U ande’ € V.

4 Types
4.1 Syntax of types

Types are defined in two steps. First, finite patterns
(calledtype patternsare defined inductively. Then, these
patterns are assembled coinductively into possibly infinite
trees (calledypeg. This two-step construction rules out ill-
defined types, such as= Va.r, in that case because.T

is not a pattern. Indeed, any occurrence of a type in a pattern

is below aconstructor— or x.

We assume given a set of type variableand a single
type constanBool. Given a set of types, we definetype
patternst inductively by the grammar below.

t == Bool boolean type
| 7x7 pairtype
| 7— 7 functiontype
| « type variable
| T top type
| Va.t  universal quantification
| L bottom type
|  3Jat  existential quantification

The different type constructions are standard. See Sec-
tions 5 and 6 for a precise description of their meaning.

We writet(ry, . . ., 7x) when the patterm has leaves,
..., Tk, Where each; occurs linearly int. The finite pat-
ternst are assembled coinductively as follows:

T t(m,...,7) coinductively.

By coinduction, every type is of the formt(r, ..., 7).

So, we can reason inductively on the structure of type pat-
terns, then coinductively on the structure of types. This
turns out to be very convenient. Besides, all the construc-
tions —, x, ..., on type patterns define constructions on
types in the obvious way. This enables to write types like
T — To, T1 X Ty OFVa.T.

Types are considered modulo renaming of their bound
variables. This does not contradict the coinductive defini-
tion of types on the alphabet of patterns since, in faet,
conversion is only a handy presentation of de Bruijn indices.
Note also that we don’t assume types toregular. types
may have an infinite number of distinct subtrees.

Remark: the sum types are not treated for lack of space only.
They are very easily integrated in the framework by ex-
tending the language of terms with three operaiers(e),
inr(e), caseof(e, e, e3), and the language of evaluation
contexts with one operatdrase ey, e9) - E, with the fol-
lowing equation:

(e ] (caseey,en) - E) = (caseof(e, e, eq) | E)
and the two additional rewriting rules:

(inl(e) | (case e, ez)-E) — (e1e]| E)
(inr(e) | (case er,eq)-E) — (ege | E)

4.2 Syntax of interval types

In contrast to types, which may be infinitaterval types
are finite trees, defined inductively by the grammar below.

K := Bool boolean type
| K xK pairtype
| K — K function type
| « type variable
| T top type
| VoK universal quantification
| L bottom type
|  Ja.K existential quantification
| [L,T] interval

In Section 6, we will use these interval types to “approx-
imate” types, in order to interpret them. Accordingly, the
type constructions are the same as for types. The only nov-
elty is the interval type_L, T], which will be interpreted in

the next section (Section 5) as the largest possible “inter-
val”, bounded by the smallest and largest nonempty truth
values.



4.3 Types approximated by interval types One needs to prove for each construction that the interpre-

) , tation defines a semantic interval — which is not really dif-
We say that an interval typ&A approximates a type,

ficult.
which we write ask’ C 7, when the type- may be obtained
syntactically by replacing every leaf labelled, T] in K by Arrow type: [K - K'],=V=U' Vina.dl RN V0
d i : o=
atype. Forinstance: whereg = ¢ = Az.( o z 0 ¢) = Aw Ayt (« (6)).

VaVB.[L, T] = [L,T] C VaVi.a = (a = ).
. . Product type: [[KxK’]]p:UxU’MVxV’
5 Interpretation of interval types wheres x 1 = Aa.(¢ £5t(x), 1 snd(z)).

5.1 Adjunction

Az.x

Boolean type: [Bool], =W «— W
Let ¢ be a term and be a function on stacks. One says wherelV is the biorthogonal of the sétrue, false}.
that is the adjoint ofp when, for every terna and stackr:

belm — el g Bottom:. [[L]]p:W?””—‘“CW .
whereWV is the smallest nonempty truth value, alternatively
Note that the adjoint) is characterized by modulo ob- the set of looping terms, or the biorthogonal of the singleton
servational equivalence, in the sense that’ifis another  {Q}.
adjoint of ¢, then, for every stack:

. Az.
{wﬂ_}L :{,(/Jlﬂ_}l. TOp [[T}]p:W<ﬁW .
where W is the largest truth value, that is, the set of all
This enables to use the notatigh for the adjoint;. terms, or alternatively, the set of all terms orthogonal to the
5.2 Semantic intervals stackq?.
. i Az.x
A semantic intervais a triple(U, V, ¢) consisting of two ~ 1YP€ variable: [a], =W W

nonempty truth value® andV satisfyingU C V, and a whereW is the truth value associated to the type variable
term¢ € V = U having an adjointy*. We generally note ~ bY the environmenp.

semantic intervals as follows: é
Universal type: Va.K],=U «—V

¢ . ; .
U—V whereU (resp.V) is the intersection of all truth valués,
The termg is called the conversion of the semantic interval. (resp. Vr) such that[K], .71y = Ur 2T v for T
Recall from Section 3 that € V = U means that: ranging over truth values. As usudl], ...\ denotes

the interpretation of{ in the environmenp in which the
VeeV, geel. type variablen is assigned t@”. The termé is defined by

Lemma 3 The functiony* sends every stack € U+ toa  showing thatyr = ¢ for any truth value§” and7”, and
stackg*r € V+. then takingp = ¢ for any truth valuer.

Remark; The adjoint* is here to take fuII_ advantage of Existential type: [Ea.K], = U Oy
the duality between terms and stacks, saying that every ex- . ! .
) : . . . where U (resp. V) is the biorthogonal of the union of
istential type ortermsis at the same time a universal type
L . all truth valuesUr (resp. Vr) such that[K], o—7) =

on stacks Or similarly, that every union type on terms (see b _ '
Section 7) is at the same time an intersection type on stackslUr < V7 for T' ranging over truth values. The term
This dual perspective is crucial, we believe, to interpret ex- is defined by showing thatr = ¢ for any truth valued’
istential and union types in the presence of recursive typesand”, and then taking = ¢ for any truth valuer'.
(without any recourse to a “language-based” stratification). o
Interval type: [L, T, =U«—V
whereU (resp.V) is the smallest (resp. largest) nonempty

We call semantic environment any function from type truth value. l\_Iote that the terfa transports every term €
variables to truth values. To any such environmeand in- V' 0 the looping ternf2e € U.
terval typeK we define a semantic intervpk(] , by struc- .
tural induction onk . So, all along the section, we suppose 6  Interpretation of types
given two interval types and K’ interpreted as:

5.3 Interpretation of interval types

Here comes the crux of the paper: we show that every
[K],=U L v, [K'],=U’ v (possibly infinite) typer generates a converging sequence



of interval types, the limit of which defines the interpreta-
tion of 7 in the model. The proof is based on a simula-
tion lemma (lemma 4) showing that, under some appropri-
ate conditions, the conversion termg associated to our
semantic intervals behave likgconversions or reduction
labels in the\-calculus [18].

6.1 Term expansion

Aterme¢’ obtained from a term by inserting conversion
termsgg is called an expansion ef We write thise ~» ¢'.
This may be formalized by structural induction on the term:

! !
e~ e e — S —
e~ Pk e AT.e ~ \x.e
/ / / !
er ~ e €2 ~> €y e1 ~ e €2~ €y

el egf\»ell 6/2 (61762)’\" (6/176/2)

’
€~ €

snd(e) ~ snd(e’)

/
e~ €

fst(e) ~ fst(e’)

’ / /
e1 ~ e €2~ €y e3 ~ e3

. . ! / /
if e then es else ez ~ if €] then ey else e3

whereg¢y indexed by the interval typ&” denotes the con-
version of any semantic intervg],, for p an arbitrary
semantic environment.

The depth of an interval typ& is defined by structural
induction:

1K x K'| = |[K— K| = 1+ min(||K]|,[|K]])
lel| = | Bool]| = +oo

LI = [Tl = +oo

Vo K|| =[S K| = K]

1L TII =0

We speak of arexpansion of depth when all the¢x in-
troduced by expansion are indexed by interval typesf
depth greater or equal fa In that case, we write ~», ¢’.

6.2 The simulation lemma

Lemma 4 (simulation) For every pair of termge, ¢’) such
thate —* ¢, there exists an integer such that whenever
e ~,4 f for a safe termf and integerk, there exists a
term f’ satisfyingf —* f’ ande’ ~, f'.

6.3 Interpretation of types

Let p denote a semantic environment. Every typde-
fines a set of approximating interval typ&sC 7, each of
them interpreted as a semantic interval

K], = Ux 25 V.

We definel def Uk, Uk andV def Nk, Vi Ob-

viously, Uy, C Vi, becausd/x C Vi for everyK C 7.

We deduce that,, coincides with the biorthogonal &f,
(theorem 5) from the property:

Ve € Voo, VT € UL, e L m.

Theorem 5 (coincidence)V,, = UL*.

We therefore interpret the typein the environmenp as
[7], = Voo = UL*. Note that the definition ensures sub-
stitution properties likér] .1 (o [1,) = [T]a := 7']], for
every types and7’, and type variable..

7 Intersection and Union

We indicate briefly how we interpret union and intersec-
tion types in the presence of recursive types, see also [24].
The first step is to define two construgtgintersection) and
V (union) on truth value#’, V, just in the expected way:

UNV=UnNYV, UVvV =(UuV)*+t,

Our proof technique in Sections 5 and 6 requires to define
the conversiong Ay and¢ V 1 associated to the constructs
A andV on interval types. We believe that this not pos-
sible in the operational model based on the call-by-name
A-calculus defined in Section 2. But this may be achieved
by enriching the language with an “error-avoiding” nonde-
terministic choice operatdf, with the additional rules:

(erllez | E) = (er | E)  (erllez | E) — (e2 | E)

with E an evaluation context in the sense of Section 2.2.
The conversion® A ¢ and¢ Vv ¢» may then be defined as
the termg||1p. The existence of an adjoint for the tetftjy)
requires to extend our class of stacks with an opergtor
building stacksr ||z with the obvious action on terms:

(e | mlm2) (e |m) Il {e]m)

We clarify now the orthogonality relatiorh associated to
this non-deterministic calculus. A term is calledfewhen

it may loop, or may reduce torue or false. A terme is
orthogonalto a stackr when(e | ) is safe. For instance,
the terme = true || Az.z is orthogonal to the stack =

U || (true - nil) because the terrfe | 7) reduces to the
constantrue. It is not difficult to see then that the adjoint
of ¢||v is the function which associates to every stadke
stacko™n||y*m, whereg* (resp.y*) denotes the adjoint of
the termg (resp.v)).

8 Typing judgement

In order to demonstrate the power of our semantic anal-
ysis, we deliver a series of typing rules (figure 1) for the
untyped calculus of Section 2, and prove that these rules are
sound We take the usual notions tfping environment’
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VAR-ACCESS Fterim—m ABS PAIR FsT SND
N(z)=r1 T'kes:m Tx:mbe:m T'kFe :m1 T'key:m I'kFe:m1 X7 T'ke:T X7
TrFax:7 T'kFeiex:m T'FAte:mo — 11 'k (e1,e2) : 71 X T2 't fst(e) : 1 ' snd(e) : 72
CONDITIONAL
' ey : Bool FIXPOINT ALL-INTRO ALL-ELIM
CONSTANT TRUE CONSTANT FALSE F'kex:r F'keg:T I'kFe:T—r Iake:r I'ke:Va.r
T' - true : Bool '+ false : Bool 7
' if e; thenegelsees : 7T 'tYe:r I'te:Var T'ke:r[r'/a]
EXISTS-ELIM
I'te:3Ja.r’
EXISTS-INTRO Da,z:7'F(z|E): 7 Sus
T'ke:r[r'/a] agFV(r) x¢FV(E) Tre:7 <7
I'ke:3ar '-(e|E):T 'ke:T

Figure 1. Typing rules

and oftyping judgement + e : 7, and refer to [25] for for-
mal definitions. Our typing rules are also canonical, except
for the elimination rule of the existential, which is inspired
from [14]. We writeI'(x) for the type of the variable in

the environment’, andFV for the set of free variables of a
type or an evaluation context.

The typing system depends on a subtyping relation
between types, which appears in t8ab rule. The only
hypothesis that we make on the relatianis that for every
two typest, 7’ such thatr <: 7/, and for every semantic
environmeni, we have the inclusiofir],, C [7'],. This is
sufficient to establish that the typing system is sound:

Theorem 6 (Soundness)- e : 7 impliese € [7].
This establishes that every closed term of type! is safe.

9 Parametricity and typed realizability

We explain briefly how realizability may be adapted to
account for logical relations and parametricity. Follow-
ing [2, 6, 9, 7, 22] among a few others, we would like to
interpret types asaturated relations A saturated relation
(~1, 7, ~2) over the set of termA consists of a binary rela-
tionr C A2 and two partial equivalence relations (pers)
and~, overA, such that:

Y(a,b,c,d) € A*, a~jbandbrcandc~yd = ard.

We find useful to express every saturated relation

(~1, 7, ~2) as the following set of quadruples:
R={(a,b,c,d) € A*,a ~1 b, br candc ~y d}.

We define an orthogonality relatiohs®* between quadru-
ples of terms and stacks of our deterministic language of
Section 2, by Writing(el, €9, €3, 64) | sat (71'1, T, T3, 71'4)
precisely when

<61 | 7Tl> —safe <61 | 7T2> —safe <62 ‘ 7T1> —safe <€2 | T2
<€3 | 7TS> —safe <63 | 7T4> —safe <€4 ‘ 7T3> —safe <€4 | T4
(e2 | m2) =sate (€3 | 73)

)
)

wheree =, ¢/ means that (1) the termsande’ are safe
and (2a) eithee ande’ reduce to the same boolean constant,
or (2b) bothe ande’ loop. A key observation follows:

Lemma 7 (Saturation) Every biorthogonal set of quadru-
ples of terms is a saturated relatid

Itis then easy to construct a realizability model of recursive
types based obiorthogonal relationsnstead of truth val-
ues. The operators- and x are adapted to biorthogonal
relations. That isR = S denotes the set of quadruples or-
thogonal to every quadruple; - 71, e - T2, €3 - T3, €4 - T4)
Where(el, €9, €3, 64) €ER and(m, T, T3, 7T4) € S+, Sim-
ilarly for the productR x S of two biorthogonal relations.
Then, one interprets recursive types by approximating
them by interval types, in the lines of Sections 5 and 6. This
defines a biorthogonal relatidfr]), for every typer and
semantic environment from type variables to biorthogo-
nal relations. Now, suppose that the subtyping relation
verifies that for every two types <: 7/, and for every se-
mantic environmeng, we have the inclusiofir],, C [7'],.
We prove that:

Theorem 8 (Soundness)- ¢ : T implies(e, e, e, e) € [[7].

Consider two closed terms, andes typed as- e; : 7
andk e, : 7 in our typing system. We say that the terms
e1, eo are parametrically equivalent (notegdA7™e;) when
(e1,e1,ea,e2) € [[7]. And that they are contextually equiv-
alent (notede; ~7, e2) Whenee; =g eeo for every
closed terme typed as- e : 7 — Bool in our typing sys-
tem. We prove that for every type

Lemma 9 (in untyped realizability) AT C T

This indicates that there are more parametricity tests in the
untyped realizability universe, than in the typed syntax. To
obtain equality ofA™ and~7,, we thus need to shift to a

typedsetting, in which only typed terms and stackslé



Church) are considered. The orthogonality relation
holds when the terne | 7) is well-typedand safe. The def-
inition of A7 is immediately adapted to this typed setting.
We establish in this way the key property stated by Pitts for
his PolyPCF (theorem 4.15 [22]), reformulated in our poly-
morphic typing system with subtyping and recursive types.

Theorem 10 (in typed realizability)

10

AT = ~T.

ctx *

Conclusion and future works

We have shown how recursive polymorphic types, as
well as subtyping, may be interpreted operationally without [13]
altering the original syntax of the-calculus. We have also
indicated how parametricity may be integrated smoothly in
the framework. It will be interesting to see in future work
how the methodology scales up to languages with effects, [14]
and to process calculi.
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Appendix
Proofs of section 5

Arrow type. We prove that

VU ZUu=v

defines a semantic interval.
Conversion :We prove first that

(p=v)e(U=V)=(V=U). (8)

Suppose that € U = V’. We want to prove thaty =
P)e € V.= U’. Itis enough to prove thadlp = ) e is
orthogonal to every stack’ = ¢’ - m wheree’ € V andr is
orthogonal tadJ’. By hypothesisl/’ is nonempty; thuss is
not the unsafe stadk. On the other hand, the case when
is the safe stack is immediate. There remains to treat the
case whenmr is an evaluation conteX. In that case,

((9=v)e|r") Az Ay.o (z(oy)) [ e e - E)
(Ay1p (e (oy)) | € - E)
(¥ (e(o€)) | E)

There remains to show that the tethie (¢ e)) is element

—
—

of U’. But this is a consequence of lemma 1, and the joint

facts thaty € V = U, thate € U = V'’ and thaty) ¢
V' = U’. We conclude that¢ = v)e L 7'/, and thus
property (8).

Adjoint : We define(¢ = ¢)* and prove that this is indeed
the adjoint of(¢ = ).

e (¢ = ¢)*m = 7 whenr is the safe stack. Indeed,
in that case, botli¢p = ¢) e L 7 ande L , for every
terme.

o (p=V)'m=¢e-p*Ewhenr = e-E for some term
e and evaluation conteft. Indeed,(¢ = ¢)e’ L e-E
iff (e (pe)) L Eiff ¢ (dpe) L Y*Eiff ¢ L ge-
»*E, for ¢’ an arbitrary term.

e (¢ = ¥)*m = U otherwise. Indeed, in that case, the
term{(¢ = ) e | m) is easily shown to be unsafe.

Product type. We prove that
[KxK]=UxU &LV x V'

defines a semantic interval.
Conversion :We prove first that
(px)e(VxV)= (UxU). 9)

Suppose that € V' x V’. We want to prove thatp x ¢) e €
U x U'. This means proving thd x v) e is (1) orthogonal
to every stackst - * wherer is orthogonal td/, and also
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(2) orthogonal to every stagkd - 7’ wheren’ is orthogonal

to V'. We only show point (1), since point (2) is proved in
a similar fashion. By hypothesi¥] is is nonempty; thusr

is the unsafe stackl. On the other hand, the case when
is the safe stack is immediate. There remains to treat the
case whemr is an evaluation conteX. In that case,

((px¢)el st E)
2)\90.(4[) fst(z),1y snd(z)) | e- fst - E)
(

(pfst(e),® snd(e)) | fst - E) —
¢fst(e) | E)

Now, (¢ fst(e) | E) is safe iff¢p £st(e) L Eiff £st(e) L
o*Eiff e L fst - ¢*E. Now, the stack)*E is orthogonal
to U, ande is element oft” x V’. From this and definition
of V' x V' follows thate is orthogonal tafst - ¢*E. We
conclude that¢ fst(e) | E) is safe, and thus thdty x
Y)e L £st-E. As we said, point (2) is established similarly.
We conclude thate x ¢)e € U x U’.

Adjoint : We define(¢ x v¢)* and prove that this is indeed
the adjoint of(¢ x ).

e (¢ x ¥)*r = m whenr is the safe stackl. Indeed,
in that case, botlip x ¥)e | 7w ande L m, for every
terme.

o (¢ x ¢)*1m = fst - ¢*E whenrt = fst - E for some
evaluation contexE. Indeed,(¢ x )¢’ L £st - E iff
pfst(e) LEIff e L fst - ¢*E, for every terme.

e similarly, (¢ x ¢¥)*m = snd - ¢*E whenn = snd - E
for some evaluation contekt.

e (¢ x ¥)*m = U otherwise. Indeed, in that case, the
term((¢ x v) e | m) is easily shown to be unsafe.

Boolean type, bottom, top, type variable. In each case,
the term)z.x is element ofi = W and has the identity
function on stacks as adjoi(hx.z)*.

Universal type. We prove that
NVo.K], =U <& v

defines a semantic interval. By definition, the te¢ms
equal to the terng for any truth valuel’. Consequently,
the term¢ has an adjoinp* = ¢r.

Conversion :There remains to prove that

peV="U.

Suppose that is a term inV/, and thatr is a stack orthogo-
nal toU. Suppose thdl’ is a truth value. Then, the term
is element ofV-. Thus, the terng e is element of/. This
is true for every truth valu@’. Thus, the terng e is element
of V, for every terme € V.. We conclude thap € V = U.



Existential type. We prove that
Vo.K], =U <= v

defines a semantic interval. By definition, the tegms
equal to the termp for any truth valuel’. Consequently,
the term¢ has an adjoind* = ¢r.

Conversion:There remains to prove that

eV ="U.

Suppose that is a term inV/, and thatr is a stack orthog-
onal toU. Suppose thdl is a truth value. Then, the stack
7 is orthogonal taUr. Thus, the stack*r is orthogonal
to V. This is true for every truth valu€. Thus, the stack
¢* m is orthogonal toV/. In particular,e L ¢* 7. It fol-
lows immediately that e L 7. This is true for every term
e element ofl/ and for every stack orthogonal to/. We
concludethap €¢ V = U.

Interval type. The definition works because the tefire
is element ofU for every terme element ofV (that is: for
every term). Besides, the terffhhas an adjoinf2*, which
transports every stackto the safe stack.

Proofs of Section 6.2 and Section 6.3 (sketched)

Lemma 4 (simulation) For every pair of termge, ¢’) such
thate —* ¢/, there exists an integer such that whenever
e ~p4 f for a safe termf and integerk, there exists a
term f’ satisfying:

f—=* flande ~, f'.

Proof: (sketch) The general idea is that expanding a term
e to a termf with a conversionyx either induces an error
in f, or behaves just like amrexpansion. Typically,

<¢K2:>K1 (6) | e E> —" <¢K1 (6 (¢K2 6/)) | E>

One important point is that no conversiéhassociated to
the interval type/ L, T] applies inside the reductiofi —*

f’. This would break the simulation. For that reason, we
require an expansion depth~ . f larger than the prod-
uct p of the length of the shortest reductien—* ¢/, and

of the maximum length of an evaluation context involved
in the reduction. Théengthof an evaluation context is the
number of application nodes E in its definition.l

Theorem 5 (coincidence)V,, = UL+,
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Proof: (sketch) We deduce that,, C V., from the fact
thatUx C Vi for every interval typeK' C 7. The truth
value V, which contains/,, contains also its biorthogo-
nal Ut*. This establishes thafL! C V... We prove the
converse inclusioir,, C UL+, which may be reformulated
as the statement below:

Ve € Voo, VT € UL, e L m.

The orthogonal ot/ is given by an intersection:

Us = () Uk
KCTt

So, every stackr € UL is orthogonal tol/x, and every
elemente € V,, is transported to a termig ¢ € Uk, for
K C 7. We conclude that

VKCT, ¢ge L. (20)
We claim that this implies that | «. This is immediate
when is one of the stack® or U. We proceed by con-
tradiction when the stack = E is strict (= an evaluation
context). Suppose that the terfa | E) is unsafe. This
means thate | E) — ¢’ to a terme’ which cannot be fur-
ther reduced by-, but which is neither the constatitue
nor the constantalse. By lemma 4, we may choose an
integerp such that, for everyK of depthp + k&, the term
f = (¢x e | E) reduces to a ternf’ such that’ ~, f’.

It is not difficult to see that, if; is chosen larger than the
length of any evaluation context i, then the term/’ is
just as unsafe as. We conclude that¢x e | E) is unsafe,
or equivalently thatpi e is not orthogonal td, and thus
reach a contradiction with (10). We conclude that 7. B



