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Abstract
We present an extension of XDuce, a programming language ded-
icated to the processing of XML documents, with polymorphism
and abstract types, two crucial features for programming inthe
large. We show that this extension makes it possible to deal with
first class functions and eases the interoperability with other lan-
guages. A key mechanism of XDuce is its powerful pattern match-
ing construction and we mainly focus on this construction and its
interaction with abstract types. Additionally, we presenta novel
type inference algorithm for XDuce patterns, which works directly
on the syntax of patterns.

1. Introduction
XDuce [14] is a programming language dedicated to the processing
of XML documents. It features a very powerful type system: types
are regular tree expressions [15] which correspond closelyto the
schema languages used to specify the structure of XML documents.
The subtyping relation is extremely flexible as it corresponds to the
inclusion of tree automata. Another key feature is a patternmatch-
ing construction which extends the algebraic patterns popularized
by functional languages by using regular tree expressions as pat-
terns [13].

In this paper, we aim at extending in a seamless way the XDuce
type system and pattern construction with ML-style prenex poly-
morphism and abstract types. These are indeed crucial features for
programming in the large in a strongly typed programming lan-
guage. In our extension, patterns are not allowed to break abstrac-
tion. This crucial property makes it possible to embed first class
functions and foreign values in a natural way into XDuce values.

In another paper [21], we present a whole calculus dealing with
polymorphism for regular tree types. Though most of the results
in that paper (in particular, the results related to subtyping) can be
fairly easily adapted for an extension of XDuce, a better treatment
of patterns is necessary. Indeed, a straightforward application of the
results would impose severe restrictions on patterns. For instance,
binders and wildcards would be required to occur only in tail
position. The present paper is therefore mostly focused on patterns
and overcomes these limitations.

Additionally, we present a novel type inference algorithm for
XDuce patterns, which works directly on the syntax of patterns,
rather than relying on a prior translation to tree automata.This way,
better type error messages can be provided, as the reported types are
closer to the types written by the programmer. In particular, type
abbreviations can be preserved, while they would be expanded by
the translation into tree automata.

The paper is organized as follows. We introduce the XDuce type
system (section 2) and present the extension (section 3). Then, we
formalize patterns (section 4) and provide algorithms for checking
patterns and performing type inference (section 5). Related works
are presented in section 6.

2. A Taste of XDuce
XDuce values aresequencesof elements, where anelementis
characterized by anameand acontents. (Elements may also contain
attributes, both in XDuce and XML. We omit attributes here for the
sake of simplicity.) This contents is itself a sequence of elements.
These values corresponds closely to XML documents, such as this
address book example.

<addrbook>
<person>

<name> Haruo Hosoya </name>
<email> hosoya </email>

</person>
<person>

<name> Jerome Vouillon </name>
<tel> 123 </tel>

</person>
</addrbook>

XDuce actually uses a more compact syntax, which we also adopt
in this paper:

addrbook[
person[name["Haruo Hosoya"], email["hosoya"]],
person[name["Jerome Vouillon"], tel["123"]]]

The shape of values can be specified usingregular expression types.
A sequence of elements is described using a regular expression.
Mutually recursive type definitions make it possible to dealwith
the nested nature of values. Here are the type definitions foraddress
books.

type Addrbook = addrbook[Person*]
type Person = person[Name,Email*,Tel?]
type Name = name[String]
type Email = email[String]
type Tel = tel[String]

These type definitions can be read as follows. AnAddrbook value
is an element with nameaddrbook containing a sequence of any
number ofPerson values. APerson value is an element with
nameperson containing aName value followed by a sequence of
Email values and optionally aTel value. Values of typeName,
Email, andTel are all composed of a single element containing
a string of characters.

There is a close correspondence between regular expression
types and tree automata [5]. As the inclusion problem between tree
automata is decidable, the subtyping relation can be simplydefined
as language inclusion [15]. This subtyping relation is extremely
powerful. It includes associativity of concatenation (typeA,(B,C)
is equivalent to type(A,B),C), distributivity rules (typeA,(B|C)
is equivalent to type(A,B)|(A,C)).



In order to present the next examples, we find it convenient to
use the following parametric type definition for lists:

type List{X} = element[X]*

Parametric definitions are not currently implemented in XDuce, but
are a natural extension and can be viewed as just syntactic sugar:
all occurrences ofList{T} (for any typeT) can simply be replaced
by the typeelement[T]* everywhere in the source code.

Another key feature of XDuce isregular expression patterns, a
generalization of the algebraic patterns popularized by functional
languages such as ML. These patterns are simply types annotated
with binders. Consider for instance this function which extracts the
names of a list of persons.

fun names (lst : Person*) : List{String} =
match lst with
() --->

()
| person [name [nm : String], Email*, Tel?],
rem : Person* --->

element [nm], names (rem)

The functionnames takes an argumentlst of typePerson* and
returns a value of typeList{String}. The body of the function
is a pattern matching construction. The value of the argument lst
is matched against two patterns. If it is the empty sequence,then it
will match the first pattern() (the type() is the type of the empty
sequence()), and the function returns the empty sequence. Other-
wise, the value must be a non-empty sequence of typePerson*.
Thus, it is an element of nameperson followed by a sequence of
type Person*, and matches the second pattern. This second pat-
tern contains two bindersnm andrem which are bound to the cor-
responding part of the value.

Sometype inferenceis performed on patterns: the type of the
expression being matched is used to infer the type of the values
that may be bound to a binder. By taking advantage of this, the
function names can be rewritten more concisely usingwildcard
patterns1 as follows. The type of the bindersnm andrem are inferred
to be respectivelyString andPerson* by the compiler.

fun names (l : Person*) : List{String} =
match l with
() --->

()
| person [name [nm : _], _], rem : _ --->

element [nm], names (rem)

3. Basic Ideas
We want to extend regular expression types and patterns withML-
style polymorphism (with explicit type instantiation) andabstract
types. Such an extension is interesting for numerous reasons. First,
it makes it possible to describe XML documents in which arbitrary
subdocuments can be plugged. A typical example is the SOAP
envelop. Here is the type of SOAP messages and of a function that
extracts the body of a SOAP message.

type Soap_message{X} =
envelope[header[...], body[X]]

fun extract_body :
forall{X}. Soap_message{X} ---> X

A more important reason is that polymorphism is crucial for pro-
gramming in the large. It is intensively used for collectiondatas-
tructures. As an example, we present a generic map function over
lists. This function has two type parametersX andY.

1 XDuce actually uses the patternAny as a wildcard pattern.

fun map{X}{Y}
(f : X ---> Y)(l : List{X}) : List{Y} =

match l with
() --->

()
| element[x : _], rem : _ --->

element[f(x)], map{X}{Y}(f)(rem)

When using a polymorphic function, type arguments may have to
be explicitly given, as shown in the following expression where
themap function is applied to the identity function on integers and
to the empty list:

map{Int}{Int} (fun (x : Int) ---> x) ().

Indeed, it is possible to infer type arguments in simple cases, using
an algorithm proposed by Hosoya, Frisch and Castagna [12], but
not in general, as a best type argument does not necessarily exist:
the problem is harder in our case due to function types which are
contravariant on the left.

Abstract types facilitate interoperability with other languages.
Indeed, we can consider any type from the foreign language asan
abstract type as far as XDuce is concerned. For instance, theML
type2 int can correspond to some XDuce typeInt. This general-
izes to parametric abstract types: to the ML typeint array would
correspond the polymorphic XDuce typeArray{Int}. Further-
more, if the two languages share the same representation of func-
tions, ML function types can be mapped to XDuce function types
(and conversely). Thus, for instance, a function of typeint--->int
can be written in either language and used directly in the other lan-
guage without cumbersome conversion.

In order to preserve abstraction and to deal with foreign values
that may not support any introspection, some patterns should be
disallowed. For instance, this function should be rejectedby the
type checker as it tries to test whether a valuex of some abstract
typeBlob is the empty sequence.

fun f (x : Blob) : Bool =
match x with

() ---> true
| _ ---> false

Another restriction is that abstract types cannot be put directly
in sequences. Indeed, it does not make sense to concatenate two
values of the foreign language (two ML functions, for instance).
In order to be put into a sequence, they must be wrapped in an
element. As a type variable may be instantiated to an abstract type,
and as we want to preserve abstraction for type variables too, the
same restrictions apply to them: a patterna[],X,b[] implicitly
asserts that the variableX stands for a sequence, and thus would
limit its polymorphism.

There are different ways to deal with type variables and abstract
types occurring syntactically in patterns. The simplest possibility is
not to allow them. Instead, one can use wildcards and rely on type
inference to assign polymorphic types to binders. This approach is
taken in the related work by Hosoya, Frisch and Castagna [12]. An-
other possibility is to consider that type variables shouldbehave as
the actual types they are instantiated to at runtime. This isa natural
approach, but this implies that patterns do not preserve abstraction.
It is also challenging to implement this efficiently, thoughit may
be possible to get good results by performing pattern compilation
(and optimization) at run-time. Finally, it is not clear in this case
how abstract types should behave in patterns. We propose a middle-
ground, by restricting patterns so that their behaviors do not depend
on what type variables are instantiated to, and on what abstract

2 We consider here ML as the foreign language, as XDuce is currently im-
plemented in OCaml. But this would apply equally well to other languages.



types stand for. In other words, patterns are not allowed to break
abstraction. As a consequence, type variables can be compiled as
wildcards. In other words, type variables and abstract types occur-
ring in patterns can be considered as annotations which are checked
at compile time but have no effect at run-time. We indeed feelit is
interesting to allow type variables and abstract types in patterns. A
first reason is that it is natural to use patterns to specify the parame-
ters of a functions. And we definitively want to put full typesthere.
For instance, we should be able to write such a function:

fun apply{X}{Y}
(funct[f : X ---> Y], arg[x : X]) : Y = f(x)

Another reason is that one may want to reuse a large type definition
containing abstract types in a pattern, and it would be inconvenient
to have to duplicate this definition, replacing abstract types with
wildcards. Finally, the check can be implemented easily: the type
inference algorithm can be used to find the type of the values that
may be matched against any of the type variables occurring inthe
pattern, so one just has to check that this type is a subtype ofthe
type variable (this usually means that the type is either empty or
equal to the type variable, but some more complex relations are
possible, as we will see in section 4.3).

4. Specifications
We now specify our pattern matching construction, startingfrom
the data model, continuing with types and patterns, before finally
dealing with the whole construction.

4.1 Values

We assume given a set ofnamesl and a set offoreign valuese. A
valuev is either a foreign value or asequencef of elementsl[v]
(with namel andcontentsv).

v ::= e foreign value
f sequence

f ::= l[v], . . . , l[v]

We writeǫ for theempty sequence, andf, f ′ for theconcatenation
of two sequencesf andf ′.

Note that strings of characters can be embedded in this syntax
by representing each characterc as an element whose name is this
very character and whose contents is empty:c[ǫ]. This encoding
was introduced by Gapeyev and Pierce [9].

4.2 Patterns

We start by two comments clarifying the specification of patterns.
First, in all the examples given up to now, in a pattern element
L[T], the constructionL stands for a single name. It actually corre-
sponds in general to a set of names. This turns out to be extremely
convenient in practice. For instance, this can be used to define char-
acter sets (remember that characters are encoded as names).Sec-
ond, abstract types and type variables are very close notions. Es-
sentially, the distinction is a difference of scope: an abstract type
stands for a type which is unknown to the whole piece of code
considered, while a type variable has a local scope (typically, the
scope of a function). Thus, for patterns, we can unify both no-
tions. Parametric abstract types can be handled by considering each
of their instances as a distinct type variable. Thus, the twotypes
Array{Int} andArray{Bool} correspond each to a distinct type
variable in our formalization of patterns. Similarly, eachfunction
typeT2--->T1 corresponds to a distinct type variable. We explain in
section 4.3 how subtyping can be expressed for these types.

As a running example, we consider the pattern matching code
in functionmap:

match l with

() ---> ...
| element[x : _], rem : List{X} ---> ...

wherel has typeList{X}.
Such a grammar-based syntax of patterns is convenient for writ-

ing patterns but typically does not reflect their internal represen-
tation in a compiler. For instance, it assumes a notion of pattern
names (such asList{X} or Name) which may be expanded away
at an early stage by the compiler. Binders may also be represented
in a different way. Finally, this notation is not precise about sub-
pattern identity: for instance, in the patterna[ ]|b[ ], it in not
clear whether one should consider the two occurrences of thewild-
card pattern as two different subpatterns, or as a single subpattern.
The distinction matters as a compiler usually does not identify ex-
pressions which are structurally equal. In particular, oneshould be
careful not to use any termination argument that relies on struc-
tural equality. Another reason is that we need to be able to specify
precisely how a value is matched by a pattern. This is especially
important for type inference (section 4.9), where we get a different
result depending on whether we infer a single type for both occur-
rences of the wildcard pattern or a distinct type for each occurrence.

Thus, we define a more abstract representation of patterns which
provides more latitude for actual implementations. A pattern is a
rooted labeled directed graph. Intuitively, this graph canbe under-
stood as an in-memory representation of a pattern: nodes stands for
memory locations and edges specify the contents of each memory
location. To be more accurate, a pattern is actually a hypergraph,
as edges may connect a node to zero, one or several nodes: for in-
stance, for a pattern(), there is an (hyper)edge with source the
location of the whole pattern and with no target, while for a pattern
P,Q, there is an (hyper)edge connecting the location of the whole
pattern to the location of subpatternsP andQ.

We assume given a family ofname setsL, a set oftype vari-
ablesX and a setX of bindersx. Formally, a pattern is a quadruple
(Π, φ, π0,B) of

• a finite setΠ of pattern locationsπ;
• a mappingφ : Π → C(Π) from pattern locations topattern

componentsp ∈ C(Π), defined below;
• a root pattern locationπ0 ∈ Π.
• a relationB ⊆ X × Π between binders and pattern locations.

Pattern componentsC(Π) are defined by the following grammar,
parameterized over the setΠ of pattern locations.

p ::= L[π] element pattern
ǫ empty sequence pattern
π, π pattern concatenation
π ∪ . . . ∪ π pattern union
π∗ pattern repetition
� wildcard
X type variable

Binders do not appear directly in patterns. Instead they arespecified
by a relation between binder names and pattern locations. This
allows us to simplify significantly the presentation of the different
algorithms on patterns. Indeed, most of them simply ignore binders.

As an example, the two patterns:

() and element[x:_],rem:List{X}

can be formally specified respectively as:

(Π, φ, 1, ∅) and (Π, φ, 2, {(x, 4), (rem, 5)})

where the set of pattern locations is:

Π = {1, 2, 3, 4, 5, 6, 7}
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and the mapping from pattern locations to pattern components is
the functionφ defined by:

φ(1) = ǫ
φ(2) = 3, 5 φ(3) = element[4] φ(4) = �

φ(5) = 6∗ φ(6) = element[7] φ(7) = X

(We write element for the name set containing only the name
element.) A graphical depiction of the formal representation of the
two patterns is given in figure 1. The two root locations1 and2 are
circled. Edges are labeled with the corresponding component. One
can see three kind of edges on this picture: the edges with labelsǫ,
� andX have no target; one edge with label, has two targets3
and 5 and corresponds to the component3, 5; some edges with
label * or element[ ] has a single target. Note that the locations5
to 7 correspond to the expansion of typeList{X}.

Not all patterns are correct. The most important restriction is
that cycles are not allowed except when going through an ele-
mentL[π′]: for instance, the pattern

Balanced = a[], Balanced, b[]

should be rejected, while the pattern

Tree = leaf[] | node[Tree, Tree]

is accepted. This restriction ensures that the set of valuesmatching
a given pattern is a regular tree language3. The other restriction is
that pattern variables should not occur in sequences. For instance,

3 Actually this is not quite accurate due to type variables. Inorder to state
the regularity property precisely, the semantics of patterns should be defined

the patternsa[],X andX*, whereX is a pattern variable, are re-
jected. Indeed, the semantics of a pattern variable may contain for-
eign values, which cannot be concatenated. These two restrictions
are formally specified using a well-formedness condition. First, we
define when a pattern location is in a sequence (figure 2). Then,
we define the well-formedness condition for pattern locations (fig-
ure 3). There is one rule per pattern component. For all rulesbut
one, in order to deduce that a pattern location is well-formed, one
must first show that its subpatterns are themselves well-formed.
This ensures that there is no cycle. The exception is the rulefor
element patternsL[π′], hence cycles going through elements are
allowed. The rule for type variablesX additionally requires that
the pattern location is not in a sequence. Finally, a patternis well-
formed if all its locations are. These restrictions could also have
been enforced syntactically [11, 17], but we prefer to keep the syn-
tax as simple and uniform as possible. In the remainder of this pa-
per, all patterns are implicitly assumed to be well-formed.

4.3 Typing Environments

In order to provide a semantics to patterns, we assume given aclass
of binary relations between values and types variables, which we
call typing environments. Equivalently, we can consider a typing
environment as a function from type variables to their semantics
which is a set of values). We have two motivations for restricting
ourselves to a class of such relations rather than allowing all rela-
tions. First, some type variables may have a fixed semantics,iden-
tical in all typing environments. This makes it possible to define
the type of a functionT2--->T1 (assuming thatT1 andT2 are pure
regular expression types, without type variables). The semantics of
some type variables may also be correlated to the semantics of other
type variables. For instance, the semantics of the typeArray{X}
depends on the semantics of the type variableX. Second, for se-
mantic reasons, the semantics of any type, and thus the semantics
of type variables, may be required to satisfy some closure proper-
ties. This is the case for instance in the ideal model [16].

4.4 Pattern Matching

In order for the algorithms presented in this paper to be imple-
mentable, the family of name setsL should be chosen so that the
following predicates are decidable:

• the inclusion of a name in a name set:l ⊳ L;
• the non-emptiness of a name set:⊳L (that is, there exists a name
l such thatl ⊳ L);

• the non-disjointness of two name sets:L1 1 L2 (that is, there
exists a namel such thatl ⊳ L1 andl ⊳ L2).

Furthermore, for technical reasons (see section 4.7), there must be
a name set⊤ containing all names.

The semantics of a pattern(Π, φ, π0,B) is given in figure 4
using inductive rules. It it parameterized over a typing environment,
that is a relationv ⊳ X which provides a semantics to each
type variable. We define simultaneously the relationv ⊳ π (the
valuev matches the pattern locationπ) and a relationf ⊳∗ π (the
sequencef matches a repetition of the pattern locationπ). Then, a
valuev matches a whole pattern if it matches its root location, that
is, v ⊳ π0.

A matchof a valuev against a locationπ is a derivation of
v ⊳ π. Given such a match, we define thesubmatchesas the set of
assertionsv′ ⊳ π′ which occur in the derivation. These submatches
indicate precisely which parts of the value is associated toeach

in two steps. The first step would be a semantics in which values contain
variables matching the variables in the pattern. With this initial semantics,
the denotation of a pattern would indeed be a regular tree language. The
second step would correspond in substituting values for thetype variables.
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Figure 4. Matching a Value against a Patternv ⊳ π

location in the pattern. They can thus be used to define which value
to associate to each binder during pattern matching.

We choose to use a non-deterministic semantics: there may
be several ways to match a value against a given pattern. The
reasons are twofold. First, this yields much simpler specifications
and algorithms. Second, we don’t want to commit ourselves toa
particular semantics. Indeed, we may imagine that the programmer
is allowed to choose between different semantics, such as a first-
match policy (Perl style) or a longest match policy (Posix style).
Our algorithms will be sound in both cases, without any adaptation
needed.

4.5 Types

A pattern specifies a set of values: the set of values which matches
this pattern. So, patterns can be used as types. More precisely, we
define atypeas a pattern(Π, φ, π0,B) with no wildcard� (that is,
φ(π) is different from the wildcard� for all locationsπ ∈ Π) and
no binder (the relationB is empty).

The wildcard has a somewhat ambiguous status: it stands for
any value when not in a sequence, but only stands for sequence
values when it occurs inside a sequence. For instance, the values
accepted by a pattern,P are not the concatenations of the values
accepted by patternand patternP, as some values in patterncan-
not be concatenated. Due to this ambiguous status, type inference
would be more complicated if the wildcard pattern was allowed in
types.

4.6 Subtyping

We define a subtyping relation<: in a semantic way on the loca-
tionsπ1 ∈ Π1 andπ2 ∈ Π2 of two patternsP1 = (Π1, φ1, π

0

1,B1)
andP2 = (Π2, φ2, π

0

2,B2) by π1 <: π2 if and only if, for all typ-
ing environments and for all valuesv, the assertionv ⊳ π1 implies
the assertionv ⊳ π2. Two patterns are in a subtype relation, writ-
tenP1 <: P2, if their root locations are. The actual algorithmic
subtyping relation used for type checking does not have to beas
precise as this semantics subtyping relation. This will simply result
in a loss of precision.

4.7 Bidirectional Automata and Disallowed Matchings

In the previous section, the semantics of patterns is specified in
a declarative way. In order to clarify the operational semantics

l[v], f
l

−→ l,v,f f, l[v]
r

−→ l,v,f

Figure 5. Value Decompositionv −→δ l,v,v
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Figure 6. Automaton Semanticsv ∈ σ

of patterns, we now define a notion of tree automata, which we
call bidirectional automata. These automata are used in particular
to specify which patterns should be rejected. They capture the
idea that a value is matched from its root and that a sequence is
matched one element at a time from its extremities. Still, some
freedom is left over the implementation. In particular, theautomata
do not mandate any specific strategy (such as left to right) for
the traversal of sequences. This is achieved thanks to an original
feature of the automata: at each step of their execution, thematched
sequence may be consumed from either side. This symmetry in the
definition of automata results in symmetric restrictions onpatterns:
if a pattern is disallowed, then the pattern obtained by reversing
the order of all elements in all sequences is also disallowed. We
believe this is easier to understand for a programmer. Additionally,
this feature is a key ingredient for our type inference algorithm.

Formally, a bidirectional automaton is composed of

• a finite setΣ of statesσ;
• an initial stateσ0 ∈ Σ;
• a set oflabeled transitionsσ −→δ L,σ,σ;
• a set ofepsilon transitionsσ ; σ;
• an immediate acceptance relationσ ↓ v.

The transitions are annotated by a tagδ ∈ {l, r} which indicates
on which side of the matched sequence they take place: eitheron
the left (tagl) or on the right (tagr). The semantics of automata
is given in figure 6: the relationv ∈ σ specifies when a valuev
is acceptedby a stateσ of the automaton. A value is accepted
by a whole automaton if it is accepted by its initial stateσ0. The
rule LABEL -TRANS states that, starting from a goalv ∈ σ, a
labeled transitionσ −→δ L,σ1,σ2 may be performed provided that
the valuev decomposes itself on sideδ into a element with namel
and contentsv1 followed by a valuev2 (value decomposition is
specified in figure 5). The namel must furthermore be included
in the name setL. One then gets two subgoalsv1 ∈ σ1 and
v2 ∈ σ2. The rule EPS-TRANS moves to another state of the
automaton while remaining on the same part of the value. Usually,
automata have a set of accepting states, which all accept theempty
sequenceǫ. Here, we use an accepting relation, so that a state
may accept whole values at once (rule ACCEPT). This is necessary
to deal with type variablesX that match a possibly non-regular
set of values and with foreign valuese which are not sequences.
The use of an epsilon transition relation simplify the translation
from patterns to automata. It also keeps the automata smaller.
Indeed, eliminating epsilon transitions may make an automaton
quadratically larger. Note that our automata are non-deterministic.
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Not all patterns could be translated into deterministic automata as
top down deterministic tree automata are strictly less powerful than
non-deterministic ones [5].

An example of bidirectional automaton is depicted in figure 7.
This automaton recognizes the sequencea[],b[]. It has four states
Σ = {ab, a, b, ǫ}. The initial stateab is circled. The labeled
transitions are all of the formσ −→δ L,ǫ,σ′ and are represented
by an arrow from stateσ to stateσ′ with label the pairδ, L. There
is no epsilon transition. The acceptance relation, not represented, is
reduced toǫ ↓ ǫ. In order to recognize the sequencea[],b[], one can
first consumea[] from the left and then the remaining partb[] from
either side, or consume the partb[] before the parta[].

The automata we build below satisfy some commutation prop-
erties, which ensure that the strategy used to match a value is not
important. For instance, one can choose to consume values only
from the left, or only from the right, or any combination of these
two strategies. In all cases, the set of accepted values remain the
same. We do not state these properties.

We now specify the translation of a pattern(Π, φ, π0,B) into
an automaton. This translation is inspired by some algorithms by
Hopkins [10] and Antimirov [2] for building a non-deterministic
automaton usingpartial derivativesof a regular expression. The
way we apply the same operations symmetrically on both sides
of a pattern is inspired by Conway’sfactors [6, 18]. At the root
of all these works is Brzozowski’s notion of regular expression
derivatives[3].

The key idea for the translation is that each state corresponds to
a regular expression that exactly matches what is accepted by the
state, and a transition corresponds to a syntactic transformation of
a regular expression into the regular expression of the nextstate.
In our case, one may have expected pattern locations to take the
role of regular expression. As they are not flexible enough, we
actually use finite sequences of pattern locations (plus some non-
binding variants). Thus, a stateσ of the automaton is defined by the
following grammar.

s ::= π single pattern
∗π non-binding pattern repetition
3 non-binding wildcard

σ ::= [s; . . . ; s] pattern sequence

We write [ ] for the empty pattern sequence, andσ;σ′ for the con-
catenation of the pattern sequencesσ andσ′. The intuition behind
non-binding variants is the following. Suppose we match a value
a[],a[],a[] against a patternA*. As we will see, this pattern re-
duces to something akin toA,A* by epsilon transitions. According
to the semantics of patterns, the beginning of the valuea[] is in-
deed bound to the location of subpatternA, but the remaining part
a[],a[] is not bound to any location. Thus, the subpatternA* does
not correspond to a pattern location, but rather to a repetition of the
location of the subpatternA.

The initial state of the automaton is the sequence[π0] containing
only the rootπ0 of the pattern. The epsilon transitions, the labeled
transitions and the immediate acceptance relation are respectively

DEC-EPS
φ(π) = ǫ

[π]
δ
; [ ]
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φ(π) = π
′

, π
′′

[π]
δ
; [π′;π′′]
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Figure 8. Epsilon Transitionsσ ;
δ σ

φ(π) = L[π′]

[π]
δ

−→ L,[π′],[ ]
[3]

δ
−→ ⊤,[3],[3]

σ
l

−→ L,σ1,σ2
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σ
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Figure 9. Labeled Transitionsσ −→δ L,σ,σ

[ ] ↓ ǫ [3] ↓ e
v ⊳ X φ(π) = X

[π] ↓ v

Figure 10. Immediate Acceptance Relationσ ↓ v

defined in figure 8, 9, and 10. The assertionσ ; σ holds when
either assertionσ ;

l σ or σ ;
r σ holds. Note that the definition

of the immediate acceptance relation depends on the typing envi-
ronment.

As there is an infinite number of sequencesσ, we define the
finite set of statesΣ of the automaton as the set of sequences
reachable from the initial state[π0] of the automaton through the
transitions. The following lemma states that we define this way a
finite automaton.

LEMMA 1 (Finite Automaton).The number of statesσ reachable
from the initial state[π0] through the transition relations is finite.

The number of states can however be exponential in the size ofthe
pattern due to sharing. A typical example is the type definitions
below.

type T = a[],a[] and U = T,T and V = U,U

We expect the state of the automata to be reasonable in practice.
Indeed, for patterns without sharing of locations, the bound is much
better: it is quadratic in the size of the pattern.

An example of translation is given in figure 11. The pattern
a[],b[] is represented using the same notation as in figure 1. For
the sake of simplicity, we do not represent the part of the automa-
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Figure 11. Pattern and its Translation (Simplified)

φ(π) is a test

e  [π]

σ ; σ
′
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′
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σ
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−→ L,σ1,σ2 v
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v  σ

σ
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−→ L,σ1,σ2 v
δ
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l ⊳ L v2  σ2
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Figure 12. Disallowed Matchingv  σ

ton corresponding to the element contents. The initial state of the
automaton is the sequence[1]. An epsilon transition yields from
this state to the state[2; 4]. Then, values can either be consumed
from the left or from the right. The first case correspond to a tran-
sition [2; 4] −→l a,[3],[4], depicted as an arrow from state[2; 4] to
state[4] with label l, a.

Some matchings of a value against a pattern should not be
allowed, either because they are not implementable, or because
they would break abstraction. As the automata describe the opera-
tional semantics of patterns, they are the right tool to specify which
matchings should be rejected. Thisdisallowed matchingrelation
v  σ is defined in figure 12. Automaton matching can be viewed
as a dynamic process: for matching a valuev against a pattern se-
quenceσ, we start from the assertionv ∈ σ and try to consume
the whole value by applying repeatedly the rules in figure 6. We
should never arrive in a position where a test needs to be performed
on an external value. Therefore, in the definition of the disallowed
matching relation, there is one rule corresponding to epsilon transi-
tions and two rules corresponding to labeled transitions, depending
on whether the failure occurs in the element contents or in the se-
quence but outside this element. The last rule corresponds to an
immediate failure, where a test is performed on an external value.
The following pattern components aretests:L[π], ǫ, (π, π), andπ∗.
Basically, a test is a pattern component that only accepts sequences.
For this last rule, we only need to consider the case when the pat-
tern sequence contains a single pattern location. Indeed, one can
easily show that the only way to arrive to a sequence which is not
of this form is through epsilon transitions, starting from asequence
of this form. This specification of disallowed matchings is quite al-

MATCH-SEQ-EPS

ǫ ⊳ [ ]

MATCH-SEQ-SINGLE

v ⊳ π

v ⊳ [π]

MATCH-SEQ-STAR

f ⊳∗ π

f ⊳ [∗π]

MATCH-SEQ-WILCARD

v ⊳ [3]

MATCH-SEQ-CONCAT

f ⊳ σ f
′

⊳ σ
′

f, f
′

⊳ σ;σ′

Figure 13. Matching a Value against a Pattern Sequencev ⊳ σ

gorithmic. Still, we are confident it can be understood intuitively
by a programmer.

We now relate the semantics of a pattern to the semantics of its
translation into an automaton. It is convenient to first extend the
semantics of pattern locations to pattern sequences (figure13). We
then have the following result.

LEMMA 2. A value is matched by a pattern if and only if it is
matched by the corresponding automaton, as long as the matching
is allowed: ifv  [π0] does not hold, thenv ∈ [π0] if and only if
v ⊳ π0. More generally, for any valuev and any stateσ such that
v  σ does not hold, we havev ∈ σ if and only ifv ⊳ σ.

The restriction to allowed matchings is important. Indeed,consider
the pattern(),_. It matches only sequences but it is translated into
an automaton that matches everything, as the empty sequenceis
eliminated by epsilon transitions (rule DEC-CONCAT followed by
rule DEC-EPStogether with rule DEC-LEFT).

Our automata are actually designed for analyzing patterns rather
than for being executed. They make it possible to focus on a partic-
ular part of a pattern by consuming subpatterns from both sides. For
instance, if we have a patternA,B,C, we can focus onB by consum-
ing A on the left andC on the right. Thus, type inference can be per-
formed by consuming a type and a pattern in a synchronized wayin
order to find out which parts of the type corresponds to which parts
of the pattern. For instance, if we have a typea[],T,b[] and a pat-
terna[],(x : ),b[], we can compute that the type of the vari-
ablex is T by simultaneously consuming the elementsa[] andb[]
of the type and the pattern. For this to work, it must be possible to
associate a state to each part of a value matched by a pattern.As
a consequence, there is a slight mismatch between our definition
and what should be an actual implementation of patterns. First, the
rule for type variables in the definition of the acceptance relation is
important for analyzing patterns but would not be used in an actual
implementation, where matching against a type variable should al-
ways succeed. Second, when in state[3], only foreign values are
immediately accepted while sequence values are progressively de-
composed. Thus is crucial for type inference but cannot be imple-
mented: foreign values cannot be tested and thus an implementation
cannot adopt a different behavior depending on whether a value is a
sequence or a foreign value. A simple change is sufficient to adapt
the automaton: make the state[3] accept any value and remove any
transition from this state. Note that this change does not affect the
disallowed matching relation.

4.8 Pattern Matching Construction

We can now complete our specification of pattern matching. We
are only interested in how a value is matched in a pattern matching
construction: which branch is selected and which values areassoci-
ated to the binders in this branch. We do not consider what happens
afterwards. Thus, we can ignore the body of each branch of the
construction and can formalize a pattern matching construction as
a list of patterns. It turns out to be convenient to share between all
patterns a set of pattern locations and a mapping from pattern lo-



cation to pattern components. Therefore, a pattern construction is
characterized by:

• a set of pattern locationsΠ;
• a mappingφ : Π → C(Π);
• a family (πi) of root pattern locations (πi ∈ Π);
• a family (Bi) of binder relations (Bi ⊆ X × Π)

The i-th pattern is defined asPi = (Π, φ, πi,Bi). For instance,
the pattern construction in the body of the functionmap presented
in section 4.2 can be specified by reusing the corresponding def-
initions of the setΠ and mappingφ and defining(πi) and (Bi)
by

π1 = 1 B1 = ∅
π2 = 2 B2 = {(x, 4), (rem, 5)}

In order to type-check a pattern construction, the typeT of the
values that may be matched by the pattern must be known. In
our example, this type isList{X}, which can be represented as
a pattern(R,ψ, 1, ∅) with

R = {1, 2, 3}

and

ψ(1) = 2∗ ψ(2) = element[3] ψ(3) = X.

The semantics of pattern matching is as follows. Given a
valuev0 belonging to the input typeT , a patternPi is chosen such
that the valuev0 matches the root locationπi of the pattern, that
is, so that there exists a derivation ofv0 ⊳ πi. We then consider all
submatches, that is, all assertionsv ⊳ π which occur in this deriva-
tion. This defines a relationM between locations and values. The
compositionM◦ B = {(x, v) | ∃π.(x, π) ∈ B ∧ (π, v) ∈ M} of
this relation with the binder relationB is then expected to be a total
function from the set of binders of the pattern to parts of value v.
This function indicates which part of the valuev is bound to each
binderx.

In order to ensure that this matching process succeeds for any
value of the input typeT , the following checks must be performed:

• exhaustiveness: for all typing environments and for all valuesv
in the input typeT , there must exists a patternPi such that the
valuev matches the root locationπi of this pattern;

• linearity: for all typing environments, for all valuesv in the
input typeT and for all derivationsv ⊳ πi whereπi is the
root location of one of the patternsPi, the compositionM◦X
defined above must be a function.

These two checks are standard [13]. In our case, two additional
checks must be performed. Indeed, some matchings are not allowed
in order to preserve abstraction and for the patterns to be imple-
mentable. Furthermore, patterns are not implemented directly but
only after erasure. We define theerasureof a pattern(Π, φ, π0,B)
as the pattern(Π, φ′, π0,B) where:

φ
′(π) =

(

� if φ(π) is a type variableX
φ(π) otherwise.

An erasedpattern is a pattern containing no pattern variable (that
is, φ(π) is different from any variableX for all locationsπ in the
pattern). The semantics remain the one given above, but applied to
the erased patterns. We thus have these two additional checks:

• allowed patterns: the erasure of each patternPi should be
allowed with respect tothe input typeT , that is, we must not
havev  πi for any valuev in the input typeT , any erasure of
patternPi, and any typing environment.

• preservation of the semantics: for all typing environments and
for all valuesv in T , the valuev is matched the same way by
each patternPi and its erasure;

By “matched the same way”, we mean that, if there is a derivation
of v ⊳ πi in one of the patternsPi, then there must be an identical
derivation in the erasure of patternPi (except for applications of
rule MATCH-ABSTRACTwhich should be replaced by applications
of rule MATCH-WILD ), and conversely. Algorithms for perform-
ing all these checks are presented section 5. The linearity check
algorithm is actually omitted as it is standard and its presentation is
long.

4.9 Type Inference

An additional operation we are interested in is type inference:
we want to compute for each binder a type which approximates
the set of values that may be bound to it. From the semantics
of the pattern matching construction above, we can derive the
following characterization of this set of values. Consideran input
type(Π1, φ1, π

0

1, ∅) and a pattern(Π2, φ2, π
0

2,B2). Then, a valuev
may be bound to a binderx if there exists a valuev0 and a
locationπ ∈ Π2 such that:

• v0 ⊳ π
0

1 (the valuev0 belongs to the input type);
• v0 ⊳ π

0

2 (the value is matched by the pattern);
• (x, π) ∈ B2 (the binderx is at locationπ in the pattern);
• there exists a derivation ofv0 ⊳ π

0

2 containing an occurrence of
the assertionv ⊳ π (the assertionv ⊳ π is a submatch).

Several algorithms forprecisetype inference have been pro-
posed [7, 13, 20]. These algorithms are tuned to a particularmatch-
ing policy (such as the first-match policy). With these algorithms,
the semantics of the type computed for a binder is exactly theset of
values that may be bound to it. (As binders are considered indepen-
dently, any correlation between them is lost, though.) For instance,
let us consider the following function.

fun f (x : (a[] | b[] | c[])) =
match x with

b[] ---> ...
| y : (a[] | b[] | d[]) ---> ...
| _ ---> ...

A precise type algorithm infers the typea[] for the bindery. In-
deed, values of typeb[] are matched by the first line of the pat-
tern. Therefore, only values of type the difference betweentype
a[]|b[]|c[] and typeb[], that is, typea[]|c[] may be matched
by the second pattern. Finally, the values matching the second pat-
tern must also have typea[]|b[]|d[], hence their type is the in-
tersection ofa[]|c[] anda[]|b[]|d[], that is,a[]. Such a type
algorithm is implemented in CDuce and was initially implemented
in XDuce.

Difference is costly to implement. Besides, though this is not
apparent in the example above, difference operations may need
to be performed at many places in the pattern, especially when
binders are deeply nested. Hosoya proposed a simpler design[11],
remarking that with a non-deterministic semantics (in other words,
when the matching policy is left unspecified) no difference oper-
ation needs to be performed. An intersection operation still needs
to be performed, but only once per occurrence of a binder. So,in
our example, the second line of the pattern still matches values of
typeb[]. Therefore, the type ofy is the intersection of the initial
typea[]|b[]|c[] and the typea[]|b[], that is,a[]|b[].

In our case, even the intersection operations must be avoided.
Indeed, our types are not closed under intersection: for instance,
there is no type that corresponds to the intersection of two type
variables. Xtatic has the same issue [8, section 5.3]. The current



implementation of Xtatic thus computes an approximation ofthe
intersection. Another reason to avoid intersection is thatit is not a
syntactic operation on types in XDuce. Thus, in order to compute
an intersection, types must first be translated to automata and the
intersection must be translated back from an automaton to a type.
In the process, the type may become more complex. In the worst
case, the size of the intersection of two automata is quadratic in the
size of these automata. Also, some type abbreviations may belost
during the successive translations.

What we propose is to infer types not for binders but for wild-
cards_ and compute the type of binders by substitutions. The key
idea is that the intersection of a type with a wildcard is the type it-
self. Thus, no intersection is actually needed. Consider for instance
the function below.

fun g (x : (a[],b[])) =
match x with
y : (_,(b[]|c[])) ---> ...

The type inferred for the wildcard isa[]. Thus, by substitution, the
type inferred for the bindery is a[],(b[]|c[]). We deliberately
gave an example for which the inferred type is not precise, inorder
to emphasize the difference with other specifications of type infer-
ence. We expect this weaker form of type inference to performwell
in practice. In particular, type inference is still precisefor wild-
cards (assuming a non-deterministic semantics). When needed, the
programmer can provide explicitly a more precise type. We exper-
imented with the examples provided with the XDuce distribution.
Only some small changes were necessary to get them to compile.
What we actually had to do was to replace by wildcards some ex-
plicit types which were not precise enough.

More formally, we define thesemantics of a locationπ of the
pattern as the set of valuesv such that there exists a valuev0 such
that the assertionsv0 ⊳ π0

1 andv0 ⊳ π0

2 holds and the assertion
v ⊳ π is a submatch of a derivation ofv0 ⊳ π

0

2. The type inference
algorithm then consists in computing for each location correspond-
ing to a wildcard a type whose semantics is the semantics of this
location and substituting this type in place of the wildcard. The sub-
stitution may not preserve pattern well-formedness. In this case, the
type checking fails. But we believe this is unlikely to occurin prac-
tice, as this can only happen when a wildcard location is shared in
two different contexts. For instance, consider the typea[X] and the
patterna[Q],Q whereQ = . The type inferred for the wildcard is
X|() and substituting this type does not preserve well-formedness.
If the resulting pattern is well-formed, then it is a type: itdoes not
contain any wildcard. The type of a binder is the type correspond-
ing to the union of the locations the binder is associated to.

5. Algorithms on Patterns
We define a number of algorithms for type checking and type
inference for patterns. Each of these algorithms is specified in an
abstract way, by defining a relation over a finite domain using
inductive definitions. Actually implementing them is a constraint
solving issue. Standard techniques can be used, such as search
pruning (when an assertion is either obviously true or obviously
false), memoization (so as not to perform the same computation
several times), and lazy computation (in order not to compute
unused parts of the relation).

The size of the finite domain provides a bound on the complex-
ity of the algorithm. We don’t study the precise complexity of these
algorithms, as we believe this would not be really meaningful. In
particular, the complexity of all these algorithms is polynomial in
the sizes of the automata associated to the patterns it operates on,
but these sizes can be exponential in the size of the patterns. Our
experience on the subject leads us to believe that the algorithms
should perform well in practice.
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Figure 14. Type Propagationσ ⌣ σ

5.1 Exhaustiveness

The input of the algorithm is the input typeT = (R,ψ, π, ∅)
and the different patternsPi = (Π, φ, πi,Bi) of the pattern
construction. We define the union of the patternsPi by P =
(Π ∪ {⋆}, φ′, ⋆, ∅) where the location⋆ is assumed not to be inΠ
and the mappingφ′ is such thatφ′(⋆) = π1 ∪ . . . ∪ πn (the union
of all root locations) andφ′(π) = φ(π) for π ∈ Π One can easily
prove that the semantics of the patternP is the union of the seman-
tics of the patternsPi. Then, the pattern is exhaustive if and only if
T <: P .

Note that the union construction above can be applied to any fi-
nite set of patterns sharing a common mappingφ. This construction
is also used for type inference (section 5.6).

5.2 Type Propagation

This algorithm propagates type information in a pattern. Itis used
both for checking whether a pattern is allowed (section 5.4)and for
type inference (section 5.6). The input of the algorithm is composed
of two patternsP1 = (Π1, φ1, π

0

1,B1) andP2 = (Π2, φ2, π
0

2,B2)
and a relationσ1 ↔ σ2 (where the sequencesσ1 andσ2 range over
the states of the automata associated respectively toP1 andP2).
The relation controls when the type information is propagated
across an element. The algorithm is defined in figure 14 as a relation
σ1 ⌣ σ2. The roots of the two patterns are related (rule ROOT).
The relation is preserved by epsilon transition (rules DEC-LEFT
and DEC-RIGHT). The rules ENTER and SHIFT specify how the
relation is propagated to the contents of an element and aside an
element.

Though the rules are symmetric, the algorithm is used in an
asymmetric way. One of the pattern is actually always a type and
the algorithm can be read as propagating type information derived
from this type into the other pattern. Besides, we are not interested
in computing the whole relationσ1 ⌣ σ2. Rather, for some given
sequencesσ1, the set of pattern sequencesσ2 such thatσ1 ⌣ σ2

must be computed.
As the algorithm is defined as a binary relationσ1 ⌣ σ2 over

the states of the automata associated to the patternsP1 andP2, it is
quadratic in the size of these automata.
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5.3 Type Non-Emptiness

In order to check whether a pattern is allowed (section 5.4),it turns
out that we need an algorithm to decide whether, given a pattern
P = (Π, φ, π0,B), the semantics of a pattern locationπ or a
pattern sequenceσ (belonging to the set of states of the automaton
associated to patternP ) is empty, that is, whether there exists a
valuev such thatv ⊳ π or v ⊳ σ. These algorithms are defined
in figure 15 as two relations⊳ π and⊳ σ. Their properties can be
stated as follows.

LEMMA 3. Letπ be a location in patternP andσ be a state of the
automaton associated to patternP . If there exists a valuev such
that v ⊳ π, then⊳ π. Likewise, if there exists a valuev such that
v ⊳ σ, then⊳ σ. The converse holds in any typing environment such
that for all type variablesX there exists at least a valuev such that
v ⊳ X.

The proof of the lemma is straightforward. The reason for the
restriction in the converse case can be seen on the last rule in
figure 15: ifφ(π) = X, then we have⊳ π. We thus need to ensure
that there exists a valuev such thatv ⊳ X .

The inference rules define a relation⊳ π over the finite set of
pattern locationsΠ in patternP . Each rule can be implemented in
constant time. Hence, computing the relation for all locations in
a pattern can be done in linear time in the size of the patternP .
Likewise, the relation⊳ σ can be computed in linear time in the
size of the automaton associated to the patternP .

5.4 Disallowed Pattern

The algorithm checking whether a patternP = (Π2, φ2, π
0

2,B2)
is allowed with respect to an input typeT = (Π1, φ1, π

0

1,B1) is
based on an instance of the type propagation algorithm (section 5.2)
applied to the typeT and the patternP . For this instance, we take
σ1 ↔ σ2 iff ⊳ σ1. Intuitively, if we have a typeL[T1],T2 and
a patternL’[P1],P2 such that the setsL andL’ are not disjoint,
the type informationT1 should be propagated in the patternP1, but
only if there is indeed a value of typeL[T1],T2, thus in particular
only if the semantics of typeT2 is not empty. On the other hand,
as the implementation of the automaton may try to match a value
against the subpatternP1 before considering the subpatternP2,
nothing should be assumed aboutP2. The algorithm relies on the
following theorem.
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THEOREM4. If the patternP is disallowed with respect to the
typeT , then there exists two locationsπ1 ∈ Π1 and π2 ∈ Π2

such thatφ(π1) is a type variableX, the locationπ2 is a test (as
defined in section 4.7), and[π1] ⌣ [π2]. The converse holds in any
typing environment such that for all type variablesX there exists a
foreign valuee such thate ⊳ X.

The restriction in the converse case ensures that the relation ⊳ σ
really coincide with the non-emptiness of the sequenceσ. It also
ensures that ifφ(π1) = X andπ2 is a test, then there exists a
foreign valuee such thate  π2. From this and[π1] ⌣ [π2], one
can then show that the whole pattern is disallowed.

A naı̈ve implementation of the algorithm would compute all
pairs of locationsπ1 and π2 such that[π1] ⌣ [π2] and then
checks whether there exists a pair for which bothφ(π1) is a type
variableX and the locationπ2 is a test. This implementation would
have the same complexity as the type propagation algorithm.An
immediate optimization is to stop propagating type information
whenever a type locationπ1 with no type variable below it is
reached.

5.5 Non-Disjointness

The type inference algorithm relies on an algorithm that, given a
type

T = (Π1, φ1, π
0

1,B1)

and an erased pattern

P = (Π2, φ2, π
0

2,B2),

decides the non-disjointness of the semantics of two pattern se-
quencesσ1 andσ2 belonging to the states of the automata asso-
ciated respectively to the typeT and the patternP . The patternP
is assumed to be allowed with respect to typeT . The algorithm is
defined in figure 16 as a relationσ1 1 σ2. It is based on a standard
algorithm for checking non-disjointness of tree automata,with a
special case for type variablesX. Note that only transitions with
tag l are used. The relation would remain unchanged if this restric-
tion was removed.

The intended semantics of the algorithm is thatσ1 1 σ2 if
and only if there exists a valuev such thatv ⊳ σ1 andv ⊳ σ2.
However this does not hold for arbitrary sequencesσ1 andσ2. The
completeness of the algorithm can be stated as follows.

LEMMA 5 (Completeness).Let σ1 and σ2 be two states of the
automata associated respectively to the typeT and the patternP .
We assume that:

• the patternP is allowed with respect to typeT;
• σ1 ⌣ σ2 (where this relation is the instance defined in sec-

tion 5.4 for checking for disallowed patterns);



• the typing environment is such that for all type variablesX
there exists at least a valuev such thatv ⊳ X.

Then, ifσ1 1 σ2, there exists a valuev such thatv ⊳ σ1 and
v ⊳ σ2.

The conditionσ1 ⌣ σ2 together with the allowed pattern condition
ensures that, for instance, one never considers the type sequence[π]
with φ(π) = X against the pattern sequence[3; 3] for which the
algorithm may give a wrong answer: one has[π] 1 [3; 3] as the
sequence[3; 3] reduces by epsilon transition to the sequence[3],
but there is not reason for the sequences[π] and [3; 3] to share
a common value. The constraint on typing environments can be
easily understood by looking at the rule concerning type variables.

The soundness property is hard to state. Rather than defining
precisely when it holds, which would involve defining an additional
complex relation, we use the following somewhat imprecise state-
ment.

LEMMA 6 (Soundness).Let σ1 and σ2 be two sequences of the
automaton respectively associated to the input type and theinput
pattern. In any position where the relationσ1 1 σ2 is used in
the type inference algorithm below (section 5.6), if there exists a
valuev such thatv ⊳ σ1 andv ⊳ σ2, thenσ1 1 σ2.

The algorithm is quadratic in the size of the automata associated to
the typeT and the patternP .

5.6 Type Inference

The input of the type inference algorithm is a type

T = (Π1, φ1, π
0

1,B1)

and an erased pattern

P = (Π2, φ2, π
0

2,B2).

The patternP is assumed to be allowed with respect to the typeT .
The algorithm is based on an instance of the type propagation
algorithm (section 5.2) applied to the typeT and the patternP . For
this instance, we takeσ1 ↔ σ2 iff σ1 1 σ2. Intuitively, if we have
a typeL[T1],T2 and a patternL’[P1],P2, the type informationT1
should be propagated in the patternP1, but only if there is indeed a
value of the whole type matched by the whole pattern. In particular,
there should be a value shared by the typeT2 and the patternP2.
We rely on the following result.

THEOREM 7. If a valuev is included in the semantics of a loca-
tion π2 of the pattern, then there exists a sequenceσ1 such that
σ1 ⌣ [π2]. The converse holds in any typing environment such
that for all type variablesX there exists at least a valuev such that
v ⊳ X.

The type inferred for a subpatternπ2 should thus corresponds to
the union of the sequencesσ1 such thatσ1 ⌣ [π2]. One can show
that for any such sequenceσ1, as it belongs to the set of states of
an automaton associated to a type, one can build a typeT1 with
the same semantics. Then, the type inferred for the subpattern π2

can be build by taking the union of these types, as defined in
section 5.1.

The algorithm is complete only when all type variables have a
non-empty semantics. It may be possible to get a stronger result
by extending our type system withconditional types[1]. But we
believe this would unnecessarily complicate the type system.

An interesting feature of this algorithm is that it works directly
on the syntax of patterns and types. In particular, the inferred
type is build from the input type using only simple operations
(concatenation and union).

As in the case of the “disallowed pattern” check (section 5.4),
a naı̈ve implementation which would compute the whole relation

σ1 ⌣ σ2 can be improved by stopping the propagation of type
information whenever one reach a pattern sequenceσ2 with no
location whose type needs to be inferred below it.

5.7 Preservation of the Semantics

The input of the type inference algorithm is a type

T = (Π1, φ1, π
0

1,B1)

and a pattern

P = (Π2, φ2, π
0

2,B2).

The algorithm is as follows. For each locationπ in the patternP
corresponding to a type variableX (that is,φ1(π) = X), a type
T ′ is computed using the type inference algorithm on the era-
sure of patternP . We then compare this type with the part of the
patternP corresponding to locationπ, that is, the patternP ′ =
(Π2, φ2, π,B2). The semantics is preserved if for all such loca-
tionsπ we haveT ′ <: P ′. The soundness of the algorithm relies
on the following theorem.

THEOREM8. The semantics of the pattern is preserved by erasure
if and only if for any pattern locationπ2 such thatφ(π2) = X (for
any type variableX) and any type locationσ1 such thatσ1 ⌣ π2

(by type inference on the erasure of patternP ), we haveσ1 <: [π2].

6. Related Works
As mentioned in the introduction, we presented in a previouspa-
per [21] a calculus dealing with polymorphism for regular tree
types. Values are binary trees rather than sequences of elements.
It is straightforward to translate sequences into binary trees by rep-
resenting an element contents as a node whose first child is its con-
tents and second child is its right sibling. A similar translation can
be defined to some extent for patterns. But there is a number of
restrictions. In particular, wildcards and binders shouldonly occur
in tail position. The present paper deals directly with sequences,
which makes it possible to avoid these restrictions. Additionally,
we specify patterns in a more precise way: we believe very fewex-
tensions to patterns, besides support for XML attributes, would be
necessary for a realistic implementation.

Hosoya, Frisch and Castagna have also proposed an extension
of XDuce with polymorphism [12], now implemented in the latest
release. In their work, type variables range over sets of basic XDuce
values rather than over sets of arbitrary values. This results in
design decisions which are drastically different from ours. For
instance, they consider that pattern matching on values whose type
is a type variable is possible (as the structure of all such values can
be explored by pattern matching), while we consider that this would
break abstraction. They can deal with bounded quantification. On
the other hand, it is not clear how to extend their work to dealwith
foreign types and higher-order functions.

Sulzmann and Lu propose to use a structured representation of
XDuce values [19] and interpret subtyping as a runtime coercion.
As types reflect the structure of values, they do not have the issue
of concatenating foreign values: the values of typeA,B are pairs,
rather than concatenations of values of typeA and typeB. However,
they may need to use algorithms similar to ours in order to ensure
that pattern matching interact well with polymorphism.

Several type inference algorithms have been proposed for reg-
ular expression types. The first one [13], by Hosoya and Pierce, is
precise (assuming a first-match policy) but can infer a type only for
binders in tail position in the pattern. Hosoya later proposed a sim-
pler design [11], corresponding to a non-deterministic semantics
for patterns, where this restriction was removed. Both algorithms
use a translation of types and patterns into tree automata. Several
algorithms for precise type inference for different match policies



have also been presented by Vansummeren [20]. They work di-
rectly on the syntax of patterns but require complex operations on
types such as intersection and difference.

CDuce [4] has some extensive support for importing functions
from OCaml. Contrary to what we propose in section 3, their
extension relies on a runtime translation of ML values into CDuce
values according to their types.
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