Polymorphism and XDuce-style patterns

Jerdome Vouillon

CNRS and Université Paris 7
Jerome.Vouillon@pps.jussieu.fr

Abstract

2. A Taste of XDuce

We present an extension of XDuce, a programming language ded XDuce values aresequence®f elements, where aplementis

icated to the processing of XML documents, with polymorphis
and abstract types, two crucial features for programminghé
large. We show that this extension makes it possible to déal w
first class functions and eases the interoperability witteotan-
guages. A key mechanism of XDuce is its powerful pattern matc
ing construction and we mainly focus on this constructiod &s
interaction with abstract types. Additionally, we presanhovel
type inference algorithm for XDuce patterns, which workdily
on the syntax of patterns.

1. Introduction

XDuce [14] is a programming language dedicated to the peiogs
of XML documents. It features a very powerful type systenpety
are regular tree expressions [15] which correspond clasetiie
schema languages used to specify the structure of XML doetene
The subtyping relation is extremely flexible as it corregfmto the
inclusion of tree automata. Another key feature is a patteaitch-
ing construction which extends the algebraic patterns jaoized
by functional languages by using regular tree expressierzag
terns [13].

In this paper, we aim at extending in a seamless way the XDuce

type system and pattern construction with ML-style prenebyp
morphism and abstract types. These are indeed cruciakésafor
programming in the large in a strongly typed programming lan
guage. In our extension, patterns are not allowed to brestkaa
tion. This crucial property makes it possible to embed fitass
functions and foreign values in a natural way into XDuce &alu

In another paper [21], we present a whole calculus dealitig wi
polymorphism for regular tree types. Though most of the Itesu
in that paper (in particular, the results related to sulstgpcan be
fairly easily adapted for an extension of XDuce, a betteatiment
of patterns is necessary. Indeed, a straightforward egigic of the
results would impose severe restrictions on patterns. istamnce,
binders and wildcards would be required to occur only in tail
position. The present paper is therefore mostly focusecattenms
and overcomes these limitations.

Additionally, we present a novel type inference algorithon f
XDuce patterns, which works directly on the syntax of paiser
rather than relying on a prior translation to tree autoniBités way,
better type error messages can be provided, as the repgpesidre
closer to the types written by the programmer. In particuigre
abbreviations can be preserved, while they would be exmghhyge
the translation into tree automata.

The paper is organized as follows. We introduce the XDuce typ
system (section 2) and present the extension (section &, e
formalize patterns (section 4) and provide algorithms faraking
patterns and performing type inference (section 5). Relaterks
are presented in section 6.

characterized by mameand acontents(Elements may also contain
attributes both in XDuce and XML. We omit attributes here for the
sake of simplicity.) This contents is itself a sequence efreints.
These values corresponds closely to XML documents, sudhisas t
address book example.

<addrbook>
<person>
<name> Haruo Hosoya </name>
<email> hosoya </email>
</person>
<person>
<name> Jerome Vouillon </name>
<tel> 123 </tel>
</person>
</addrbook>

XDuce actually uses a more compact syntax, which we alsotadop
in this paper:

addrbook [
person[name ["Haruo Hosoya"], email["hosoya"l],
person[name["Jerome Vouillon"], tel["123"]]]

The shape of values can be specified usagglar expression types
A sequence of elements is described using a regular expressi
Mutually recursive type definitions make it possible to deith
the nested nature of values. Here are the type definitioreifiness
books.

type Addrbook = addrbook [Personx]

type Person = person[Name,Emailx,Tel?]
type Name = name [String]

type Email = email [String]

type Tel = tel[String]

These type definitions can be read as follows.Mdrbook value

is an element with nameddrbook containing a sequence of any
number ofPerson values. APerson value is an element with
nameperson containing aVame value followed by a sequence of
Email values and optionally &el value. Values of typ&iame,
Email, andTel are all composed of a single element containing
a string of characters.

There is a close correspondence between regular expression
types and tree automata [5]. As the inclusion problem beatwiee
automata is decidable, the subtyping relation can be sidgfiped
as language inclusion [15]. This subtyping relation is extely
powerful. It includes associativity of concatenation @y (B,C)
is equivalent to typ&A,B) ,C), distributivity rules (typea, (BIC)
is equivalent to typ&A,B) | (4,C)).

In order to present the next examples, we find it convenient to
use the following parametric type definition for lists:

type List{X} = element [X]*

Parametric definitions are not currently implemented in X@ubut
are a natural extension and can be viewed as just syntagér:su
all occurrences afist{T} (for any typeT) can simply be replaced
by the typeelement [T]* everywhere in the source code.

Another key feature of XDuce iggular expression patterns
generalization of the algebraic patterns popularized Imgtional
languages such as ML. These patterns are simply types aedota
with binders Consider for instance this function which extracts the
names of a list of persons.

fun names (lst : Person¥) : List{String} =
match lst with
O —
O
| person [name [nm :
rem : Personx —>

element [nm], names (rem)

String], Emailx, Tel?],

The functionnames takes an argumentst of type Person* and
returns a value of typeist{String}. The body of the function

is a pattern matching construction. The value of the argamen

is matched against two patterns. If it is the empty sequehea, it

will match the first patterr() (the type() is the type of the empty
sequence)), and the function returns the empty sequence. Other-
wise, the value must be a non-empty sequence of Pga@on.
Thus, it is an element of namerson followed by a sequence of
type Person*, and matches the second pattern. This second pat-
tern contains two bindersn andrem which are bound to the cor-
responding part of the value.

Sometype inferencas performed on patterns: the type of the
expression being matched is used to infer the type of theesalu
that may be bound to a binder. By taking advantage of this, the
function names can be rewritten more concisely usimgldcard
pattern$ as follows. The type of the bindens andren are inferred
to be respectivelgtring andPerson* by the compiler.

fun names (1 : Person#) : List{String} =
match 1 with
0O —
O
| person [name [nm : _], _], rem : _ —

element [nm], names (rem)

3. Basic ldeas

We want to extend regular expression types and patternsivitith
style polymorphism (with explicit type instantiation) aatistract
types. Such an extension is interesting for numerous reasmnst,

it makes it possible to describe XML documents in which aabjt
subdocuments can be plugged. A typical example is the SOAP
envelop. Here is the type of SOAP messages and of a functain th
extracts the body of a SOAP message.

type Soap_message{X} =
envelope[header[...], body[X]]
fun extract_body :
forall{X}. Soap_message{X} —> X

A more important reason is that polymorphism is crucial foy-p
gramming in the large. It is intensively used for collectidetas-
tructures. As an example, we present a generic map functien o
lists. This function has two type paramet&randy.

1XDuce actually uses the pattekny as a wildcard pattern.

fun map{X}{Y}

(f : X = V)@ : List{X}) : List{Y} =
match 1 with
O —
O
| element[x : _], rem : -

element [f(x)], map{)_(}{Y} (£) (rem)

When using a polymorphic function, type arguments may have t
be explicitly given, as shown in the following expressionend
themap function is applied to the identity function on integers and
to the empty list:

map{Int}{Int} (fun (x : Int) — x) Q.

Indeed, it is possible to infer type arguments in simple sassing
an algorithm proposed by Hosoya, Frisch and Castagna [12], b
not in general, as a best type argument does not necessdsity e
the problem is harder in our case due to function types whieh a
contravariant on the left.

Abstract types facilitate interoperability with other tarages.
Indeed, we can consider any type from the foreign languaga as
abstract type as far as XDuce is concerned. For instancéthe
typ€® int can correspond to some XDuce typet. This general-
izes to parametric abstract types: to the ML type array would
correspond the polymorphic XDuce typeray{Int}. Further-
more, if the two languages share the same representatiamof f
tions, ML function types can be mapped to XDuce function $ype
(and conversely). Thus, for instance, a function of type—int
can be written in either language and used directly in therdtn-
guage without cumbersome conversion.

In order to preserve abstraction and to deal with foreignes
that may not support any introspection, some patterns dhioal
disallowed. For instance, this function should be rejedigdhe
type checker as it tries to test whether a vatuef some abstract
typeBlob is the empty sequence.

fun f (x : Blob)
match x with

() — true

| _ — false

: Bool =

Another restriction is that abstract types cannot be puctly
in sequences. Indeed, it does not make sense to concatemate t
values of the foreign language (two ML functions, for inst@n
In order to be put into a sequence, they must be wrapped in an
element. As a type variable may be instantiated to an alh$yae,
and as we want to preserve abstraction for type variablesttieo
same restrictions apply to them: a patterfl ,X,b[]1 implicitly
asserts that the variabte stands for a sequence, and thus would
limit its polymorphism.

There are different ways to deal with type variables andrabst
types occurring syntactically in patterns. The simplesisifality is
not to allow them. Instead, one can use wildcards and relyjoa t
inference to assign polymorphic types to binders. This @gogin is
taken in the related work by Hosoya, Frisch and Castagnafi]
other possibility is to consider that type variables shdadtave as
the actual types they are instantiated to at runtime. Trasiatural
approach, but this implies that patterns do not preserveezabion.
It is also challenging to implement this efficiently, thouighmay
be possible to get good results by performing pattern catipii
(and optimization) at run-time. Finally, it is not clear inig case
how abstract types should behave in patterns. We proposediani
ground, by restricting patterns so that their behaviorsat@aepend
on what type variables are instantiated to, and on what adistr

2We consider here ML as the foreign language, as XDuce is milyrin-
plemented in OCaml. But this would apply equally well to atlamguages.

types stand for. In other words, patterns are not allowed¢alb
abstraction. As a consequence, type variables can be cmirgsl|
wildcards. In other words, type variables and abstractsygmeur-
ring in patterns can be considered as annotations whictharked
at compile time but have no effect at run-time. We indeed itésl
interesting to allow type variables and abstract types ttepas. A
first reason is that it is natural to use patterns to specéytrame-
ters of a functions. And we definitively want to put full typiéere.
For instance, we should be able to write such a function:

fun apply{X}{Y}

(funct[f : X — Y], arglx : X])

Another reason is that one may want to reuse a large type titafini
containing abstract types in a pattern, and it would be inenient

to have to duplicate this definition, replacing abstracet/with
wildcards. Finally, the check can be implemented easilg:tjipe
inference algorithm can be used to find the type of the valoas t
may be matched against any of the type variables occurritigein
pattern, so one just has to check that this type is a subtyieeof
type variable (this usually means that the type is eithertgrop
equal to the type variable, but some more complex relatioas a
possible, as we will see in section 4.3).

: Y = f(x)

4. Specifications

We now specify our pattern matching construction, starfiogn
the data model, continuing with types and patterns, befowlyi
dealing with the whole construction.

4.1 Values

We assume given a set nAmeg and a set oforeign values. A
valuew is either a foreign value or sequencef of elementd[v]
(with namel andcontentsy).

v on= e foreign value
f sequence

foa=).y

We write e for theempty sequengand f, f’ for theconcatenation
of two sequenceg and f’.

Note that strings of characters can be embedded in this»synta
by representing each characteas an element whose name is this
very character and whose contents is empfy}. This encoding
was introduced by Gapeyev and Pierce [9].

4.2 Patterns

We start by two comments clarifying the specification of @ats.
First, in all the examples given up to now, in a pattern elemen
L[T], the constructiom. stands for a single name. It actually corre-
sponds in general to a set of names. This turns out to be estyem
convenient in practice. For instance, this can be used toalefiar-
acter sets (remember that characters are encoded as n&w®es).
ond, abstract types and type variables are very close rsties
sentially, the distinction is a difference of scope: an @usttype
stands for a type which is unknown to the whole piece of code
considered, while a type variable has a local scope (tylgictle
scope of a function). Thus, for patterns, we can unify both no
tions. Parametric abstract types can be handled by comgjdesich

of their instances as a distinct type variable. Thus, the tiypes
Array{Int} andArray{Bool} correspond each to a distinct type
variable in our formalization of patterns. Similarly, edcimction
type T2—>T1 corresponds to a distinct type variable. We explain in
section 4.3 how subtyping can be expressed for these types.

As a running example, we consider the pattern matching code

in functionmap:
match 1 with

O — ...
| element[x : _], rem : List{X} — ...
wherel has typeList{X}.

Such a grammar-based syntax of patterns is convenient fior wr
ing patterns but typically does not reflect their internaresen-
tation in a compiler. For instance, it assumes a notion afepat
names (such akist{X} or Name) which may be expanded away
at an early stage by the compiler. Binders may also be remese
in a different way. Finally, this notation is not precise absub-
pattern identity: for instance, in the pattefi_] |b[_], it in not
clear whether one should consider the two occurrences ofittle
card pattern as two different subpatterns, or as a single subpattern.
The distinction matters as a compiler usually does not ifjeex-
pressions which are structurally equal. In particular, simeuld be
careful not to use any termination argument that relies aucst
tural equality. Another reason is that we need to be ableeocifsp
precisely how a value is matched by a pattern. This is eslbecia
important for type inference (section 4.9), where we gefferdint
result depending on whether we infer a single type for bothuec
rences of the wildcard pattern or a distinct type for eacluoence.

Thus, we define a more abstract representation of patteric wh
provides more latitude for actual implementations. A patie a
rooted labeled directed graph. Intuitively, this graph barunder-
stood as an in-memory representation of a pattern: nodedsstar
memory locations and edges specify the contents of each memo
location. To be more accurate, a pattern is actually a hypphg
as edges may connect a node to zero, one or several nodes: for i
stance, for a patteri§), there is an (hyper)edge with source the
location of the whole pattern and with no target, while foradt@rn
P,Q, there is an (hyper)edge connecting the location of the avhol
pattern to the location of subpattemandQ.

We assume given a family afame setd., a set oftype vari-
ablesX and a sef’ of bindersz. Formally, a pattern is a quadruple
(H7 ¢7 o, B) Of

¢ a finite sefll of pattern locationsr;

e a mappinge : II — C(II) from pattern locations tpattern
componentp € C(II), defined below;

e aroot pattern locationr, € II.
e arelation5 C X' x II between binders and pattern locations.

Pattern components(11) are defined by the following grammar,
parameterized over the ddtof pattern locations.

L[n] element pattern
€ empty sequence pattern

p u=

oy pattern concatenation
mU...Un pattern union

e pattern repetition

O wildcard

X type variable

Binders do not appear directly in patterns. Instead thegeeified
by a relation between binder names and pattern locationis. Th
allows us to simplify significantly the presentation of th#fetent
algorithms on patterns. Indeed, most of them simply ignardérs.

As an example, the two patterns:

O
can be formally specified respectively as:
(1L, 6,1,0) (IL, 6,2, {(x,4), (rem, 5)})
where the set of pattern locations is:

and element[x:_],rem:List{X}

and

I ={1,2,3,4,5,6,7}

O——

element|] 0

element/[|

Figure 1. Graphical Depiction of Two Patterns

¢(m) =, 7" p(m) = ', 7" ¢(m) = '
7’ seq 7" seq 7’ seq
mseq o(m)=mU...Umn

7; Seq

Figure 2. Locations in a Sequenceseq

7' wf 7" wi
¢(m) = L[] p(m) =€ p(m) ==, 7"
7 wf 7 wf T wf
w1 WF 7, WF
() =mU...Umn o(m) =0
7 wf 7 wf
—(m seq o(m) =X 7’ wi o(m) = n'*
7 wf T wf

Figure 3. Location Well-Formedness wf

and the mapping from pattern locations to pattern companisnt
the function¢ defined by:

¢(1) = ¢
#(2)=3,5 ¢(3) =element[d] ¢(4)=0
d(5) = 6% ¢(6) = element[7] (7)) =X

(We write element for the name set containing only the name
element.) A graphical depiction of the formal representation of the
two patterns is given in figure 1. The two root locatidrend?2 are
circled. Edges are labeled with the corresponding comgo@are
can see three kind of edges on this picture: the edges withslab
O andX have no target; one edge with lahel has two target8
and5 and corresponds to the componént5; some edges with
label_* orelement[.] has a single target. Note that the locatiéns
to 7 correspond to the expansion of typest{X}.

Not all patterns are correct. The most important restnicto
that cycles are not allowed except when going through an ele-
mentL[x’']: for instance, the pattern

Balanced = a[], Balanced, b[]
should be rejected, while the pattern
Tree = leaf[]

is accepted. This restriction ensures that the set of vahagshing
a given pattern is a regular tree languhgehe other restriction is
that pattern variables should not occur in sequences. Btarioe,

| node[Tree, Tree]

3 Actually this is not quite accurate due to type variablesorider to state
the regularity property precisely, the semantics of pastshould be defined

the patterna[],X andX*, whereX is a pattern variable, are re-
jected. Indeed, the semantics of a pattern variable mauofur-
eign values, which cannot be concatenated. These twoatésts

are formally specified using a well-formedness conditiarstFwe
define when a pattern location is in a sequence (figure 2).,Then
we define the well-formedness condition for pattern locetifig-

ure 3). There is one rule per pattern component. For all roles
one, in order to deduce that a pattern location is well-fathome
must first show that its subpatterns are themselves wethddr
This ensures that there is no cycle. The exception is thefoule
element patternd.[7’'], hence cycles going through elements are
allowed. The rule for type variable¥ additionally requires that
the pattern location is not in a sequence. Finally, a paiswell-
formedif all its locations are. These restrictions could also have
been enforced syntactically [11, 17], but we prefer to kéepsyn-
tax as simple and uniform as possible. In the remainder sfgtat
per, all patterns are implicitly assumed to be well-formed.

4.3 Typing Environments

In order to provide a semantics to patterns, we assume giglasa
of binary relations between values and types variableschwvie
call typing environments. Equivalently, we can consideyyairg
environment as a function from type variables to their seiosn
which is a set of values). We have two motivations for restric
ourselves to a class of such relations rather than allowlinmgla-
tions. First, some type variables may have a fixed semaidies;
tical in all typing environments. This makes it possible &fide
the type of a functiomr2—T1 (assuming thar1 and T2 are pure
regular expression types, without type variables). Thesseits of
some type variables may also be correlated to the semahtitisey
type variables. For instance, the semantics of the tpey{X}
depends on the semantics of the type variabl&econd, for se-
mantic reasons, the semantics of any type, and thus the seman
of type variables, may be required to satisfy some closuvpepr
ties. This is the case for instance in the ideal model [16].

4.4 Pattern Matching

In order for the algorithms presented in this paper to be émpl
mentable, the family of name sefsshould be chosen so that the
following predicates are decidable:

e the inclusion of a name in a name sett L;

¢ the non-emptiness of a name seL (that is, there exists a name
[such that < L);

e the non-disjointness of two name sefs: X L (that is, there
exists a namésuch that < L, andl < Ly).

Furthermore, for technical reasons (see section 4.7 thneist be
a name sef containing all names.

The semantics of a patteiil, ¢, wo, B) is given in figure 4
using inductive rules. It it parameterized over a typingieomment,
that is a relationrv < X which provides a semantics to each
type variable. We define simultaneously the relatiom 7 (the
valuev matches the pattern locatiar) and a relationf <. = (the
sequence’ matches a repetition of the pattern location Then, a
valuev matches a whole pattern if it matches its root location, that
iS, v 4 To.

A matchof a valuev against a locationr is a derivation of
v < . Given such a match, we define thigbmatchess the set of
assertions’ < 7’ which occur in the derivation. These submatches
indicate precisely which parts of the value is associatedaith

in two steps. The first step would be a semantics in which gatwatain
variables matching the variables in the pattern. With thigal semantics,
the denotation of a pattern would indeed be a regular tregutege. The
second step would correspond in substituting values fotyje variables.

MATCH-ELEMENT MATCH-EPS
laL van ¢(m) = Lx"] o(m) =€
lv]am edT
MATCH-CONCAT
f/ Q 7.‘_/ f// Q 7.‘_II ¢(ﬂ') — 71_l7 7.‘_//
f,7f” 4 T

MATCH-UNION MATCH-WILD

VAT o(m)=mU...Um, o(m) =0
V4T vda T
MATCH-ABSTRACT MATCH-REP
va X o(m) =X fawn o(m) = 7'*
vd T fam

MATCH-REP-CONCAT
fam f awm

ff aem

MATCH-REP-ONCE
fam
fm

MATCH-REP-EPS
€ <x T

Figure 4. Matching a Value against a Patterri 7

location in the pattern. They can thus be used to define waklev
to associate to each binder during pattern matching.

We choose to use a non-deterministic semantics: there may
be several ways to match a value against a given pattern. The
reasons are twofold. First, this yields much simpler speatibns
and algorithms. Second, we don’t want to commit ourselves to
particular semantics. Indeed, we may imagine that the progrer
is allowed to choose between different semantics, such asta fi
match policy (Perl style) or a longest match policy (Posi®egt
Our algorithms will be sound in both cases, without any aataqr
needed.

4.5 Types

A pattern specifies a set of values: the set of values whiclkhmeat
this pattern. So, patterns can be used as types. More fyeeise
define aypeas a patterrill, ¢, wo,) with no wildcardO (that is,
¢() is different from the wildcardd for all locationsm € II) and
no binder (the relatiod is empty).

o], f =5 Lo, f Folv] == Lo,f

Figure 5. Value Decomposition —° [,v,v

LABEL-TRANS

5 5
o — L,o1,02 v — 1,02

l< L V1 € 01 V2 € 02
veEoT
EPS-TRANS ACCEPT
! /
o~ 0 vEOoT ol
vEOT vECT

Figure 6. Automaton Semantics € o

of patterns, we now define a notion of tree automata, which we

call bidirectional automataThese automata are used in particular

to specify which patterns should be rejected. They capthee t

idea that a value is matched from its root and that a sequence i

matched one element at a time from its extremities. Stilneo

freedom is left over the implementation. In particular, diutomata

do not mandate any specific strategy (such as left to right) fo

the traversal of sequences. This is achieved thanks to gimali

feature of the automata: at each step of their executioom#iehed

sequence may be consumed from either side. This symmetngin t

definition of automata results in symmetric restrictiongatterns:

if a pattern is disallowed, then the pattern obtained by nsng

the order of all elements in all sequences is also disallowésl

believe this is easier to understand for a programmer. Axfditly,

this feature is a key ingredient for our type inference atpar.
Formally, a bidirectional automaton is composed of

e a finite set® of statess;

aninitial stateoo € 3;

a set oflabeled transitionsr —° L,0,0;
a set ofepsilon transitiongr ~ o;
animmediate acceptance relation| v.

The wildcard has a somewhat ambiguous status: it stands for The transitions are annotated by a tag {I, r} which indicates
any value when not in a sequence, but only stands for sequencegn which side of the matched sequence they take place: either

values when it occurs inside a sequence. For instance, thesva
accepted by a patternP are not the concatenations of the values
accepted by patternand patterrp, as some values in patterican-
not be concatenated. Due to this ambiguous status, typesidfe
would be more complicated if the wildcard pattern was alldive

types.

4.6 Subtyping

We define a subtyping relatiof: in a semantic way on the loca-
tions7y € II; andrs € 11 of two patternsP; = (I11, ¢1, 7%, B1)
and P, = (Tl2, ¢2, 73, Ba) by w1 <: 72 if and only if, for all typ-
ing environments and for all values the assertiom < 71 implies
the assertion < 72. Two patterns are in a subtype relation, writ-
ten P; <: P, if their root locations are. The actual algorithmic
subtyping relation used for type checking does not have tashe
precise as this semantics subtyping relation. This wiljgymesult

in a loss of precision.

4.7 Bidirectional Automata and Disallowed Matchings

In the previous section, the semantics of patterns is spdcifi
a declarative way. In order to clarify the operational setican

the left (tagl) or on the right (tag). The semantics of automata
is given in figure 6: the relatiom € o specifies when a value

is acceptedby a statec of the automaton. A value is accepted
by a whole automaton if it is accepted by its initial state The
rule LABEL-TRANS states that, starting from a goal € o, a
labeled transitiom —° L,o1,02 may be performed provided that
the valuev decomposes itself on sidento a element with namé
and contents); followed by a valuev, (value decomposition is
specified in figure 5). The namemust furthermore be included
in the name sef.. One then gets two subgoals € o; and
vy € o02. The rule BPSTRANS moves to another state of the
automaton while remaining on the same part of the value. lysua
automata have a set of accepting states, which all accephtpgy
sequence:. Here, we use an accepting relation, so that a state
may accept whole values at once (rule@eP7). This is necessary
to deal with type variableg that match a possibly non-regular
set of values and with foreign valueswhich are not sequences.
The use of an epsilon transition relation simplify the ttatisn
from patterns to automata. It also keeps the automata smalle
Indeed, eliminating epsilon transitions may make an automa
quadratically larger. Note that our automata are non-detestic.

b
l,a \b
r,b
(ab) €
l,a
a

r,b
Figure 7. Example of Bidirectional Automaton

Not all patterns could be translated into deterministiométa as
top down deterministic tree automata are strictly less phwthan
non-deterministic ones [5].

An example of bidirectional automaton is depicted in figure 7
This automaton recognizes the sequeafiéh[]. It has four states
> = {ab,a,b,e}. The initial statead is circled. The labeled
transitions are all of the forrem —° L.e,o’ and are represented
by an arrow from state to states’ with label the paiw, L. There
is no epsilon transition. The acceptance relation, noesprted, is
reduced ta | e. In order to recognize the sequerajgbl], one can
first consuma[] from the left and then the remaining paft from
either side, or consume the péft before the para[].

The automata we build below satisfy some commutation prop-
erties, which ensure that the strategy used to match a valoeti
important. For instance, one can choose to consume valdgs on
from the left, or only from the right, or any combination oktte
two strategies. In all cases, the set of accepted valuesimeima
same. We do not state these properties.

We now specify the translation of a pattefd, ¢, 7o, B) into
an automaton. This translation is inspired by some algmstiy
Hopkins [10] and Antimirov [2] for building a non-determgtic
automaton usingpartial derivativesof a regular expression. The
way we apply the same operations symmetrically on both sides
of a pattern is inspired by Conwayfactors [6, 18]. At the root
of all these works is Brzozowski's notion of regular expiess
derivativeq3].

The key idea for the translation is that each state correfsptm
a regular expression that exactly matches what is acceptéueb
state, and a transition corresponds to a syntactic tramstfioon of
a regular expression into the regular expression of the staxé.

In our case, one may have expected pattern locations to lake t
role of regular expression. As they are not flexible enougé, w
actually use finite sequences of pattern locations (plusesoon-
binding variants). Thus, a stateof the automaton is defined by the
following grammar.

s u=w single pattern
*TT non-binding pattern repetition
< non-binding wildcard

[

[s;...58]

We write [] for the empty pattern sequence, and’ for the con-
catenation of the pattern sequeneeando’. The intuition behind
non-binding variants is the following. Suppose we match lae/a
all,al]l,a[] against a patterax. As we will see, this pattern re-
duces to something akin o, A* by epsilon transitions. According
to the semantics of patterns, the beginning of the vallieis in-
deed bound to the location of subpattesrbut the remaining part
a[],al] is not bound to any location. Thus, the subpattermloes
not correspond to a pattern location, but rather to a répetitf the
location of the subpatteru

The initial state of the automaton is the sequeneécontaining
only the rootr of the pattern. The epsilon transitions, the labeled
transitions and the immediate acceptance relation arecgsely

pattern sequence

Dec-Eps Dec-CONCAT DEec-UNION
o(m) =€ d(n) =’ 7" () =mU...Umy
[r] 5[] 7]~ [7" [7] 5 [mi]
DEC-REP DEC-WILDCARD
o(r) — '+ g(m) = O
[7] > [[7] > [0]

DEC-REP-LEFT DEC-REP-RIGHT DEC-REP-EPS

pr] o frien] Bl DAl])

DEC-WILDCARD-EPS
5
(O]~ 1]

DEC-LEFT
I
o~

[o
~ 00

DEC-RIGHT
o~

7 ", r "ot
o0 0 0~ 0 ;0

Figure 8. Epsilon Transitions ~»° &

¢(m) = L[]

ol = T [0],[0
7] 5 L] [©] [©],[€]

| r
o— L,oi1,02 o — L,o1,02

o;0' — L,oi,(02;0") o's0 = Lo1,(0';02)

Figure 9. Labeled Transitions —° L,o,0

vaX pr)=X

[Ile 1o

[©] Le

Figure 10. Immediate Acceptance Relatien| v

defined in figure 8, 9, and 10. The assertion o holds when
either assertioor ~' o or o ~+" o holds. Note that the definition
of the immediate acceptance relation depends on the typivig e
ronment.

As there is an infinite number of sequeneeswe define the
finite set of states: of the automaton as the set of sequences
reachable from the initial stafeo] of the automaton through the
transitions. The following lemma states that we define thay &
finite automaton.

LEmMMA 1 (Finite Automaton).The number of states reachable
from the initial statg{mo] through the transition relations is finite.

The number of states can however be exponential in the sithe of
pattern due to sharing. A typical example is the type defingi
below.

type T = al[l,al] and U = T,T and V = U,U

We expect the state of the automata to be reasonable ingwacti
Indeed, for patterns without sharing of locations, the lsbisrmuch
better: it is quadratic in the size of the pattern.

An example of translation is given in figure 11. The pattern
al[l,b[] is represented using the same notation as in figure 1. For
the sake of simplicity, we do not represent the part of theraat

- = 2 a[—] 3 € {
4 il 5—
La s I,b
r,b
)~ 24 =
r,b /a
(2]

Figure 11. Pattern and its Translation (Simplified)

/
g~ 0

!

¢(m) is atest vio

e 4 [l vy§o
5
v — l,v1,V2
U1 é g1
v4o

5
o — L,01,02
[L

5
v — 1,01,V
V2 é g2
v4o

)
o — L,01,02

l< L

Figure 12. Disallowed Matching 4 o

ton corresponding to the element contents. The initiabstéthe
automaton is the sequen¢H. An epsilon transition yields from

MATCH-SEQ-SINGLE
V4T

MATCH-SEQ-STAR
fam

[< [x7]
MATCH-SEQ-CONCAT
f<o fao

f.f aod

MATCH-SEQ-EPS
e<|]

v < 7]

MATCH-SEQ-WILCARD
v < [C]

Figure 13. Matching a Value against a Pattern Sequemnees

gorithmic. Still, we are confident it can be understood ittaly
by a programmer.

We now relate the semantics of a pattern to the semantics of it
translation into an automaton. It is convenient to first edtéhe
semantics of pattern locations to pattern sequences (figd)raVe
then have the following result.

LEMMA 2. A value is matched by a pattern if and only if it is
matched by the corresponding automaton, as long as the ingtch
is allowed: ifv 4 [mo] does not hold, them € [r(] if and only if

v < 7. More generally, for any value and any stater such that

v 4 o does not hold, we have € o if and only ifv < o.

The restriction to allowed matchings is important. Indesshsider
the pattern() , _. It matches only sequences but it is translated into
an automaton that matches everything, as the empty seqignce
eliminated by epsilon transitions (rulee@-CoNcAT followed by
rule DEc-EPstogether with rule Ec-LEFT).

Our automata are actually designed for analyzing pattether
than for being executed. They make it possible to focus ontacpa
ular part of a pattern by consuming subpatterns from botssigor
instance, if we have a patteanB, C, we can focus oB by consum-
ing A on the left and on the right. Thus, type inference can be per-
formed by consuming a type and a pattern in a synchronizedway
order to find out which parts of the type corresponds to whanttsp
of the pattern. For instance, if we have a tydé ,T,b[] and a pat-
ternal], (x : _),b[], we can compute that the type of the vari-

this state to the stat; 4]. Then, values can either be consumed ablex is T by simultaneously consuming the elemeaf$ andb[]

from the left or from the right. The first case correspond toaa-t
sition [2; 4] —' a,[3],[4], depicted as an arrow from stde 4] to
state[4] with labell, a.

of the type and the pattern. For this to work, it must be pdssib
associate a state to each part of a value matched by a patern.
a consequence, there is a slight mismatch between our @@finit

Some matchings of a value against a pattern should not be @d what should be an actual implementation of patternst, fire

allowed, either because they are not implementable, oruseca
they would break abstraction. As the automata describepbeae
tional semantics of patterns, they are the right tool to ifpedich
matchings should be rejected. Thisallowed matchingelation

rule for type variables in the definition of the acceptandatien is
important for analyzing patterns but would not be used incna
implementation, where matching against a type variablelshe-
ways succeed. Second, when in stat¢ only foreign values are

v 4 o is defined in figure 12. Automaton matching can be viewed immediately accepted while sequence values are progeggsie-

as a dynamic process: for matching a valuggainst a pattern se-
quenceos, we start from the assertion € o and try to consume

composed. Thus is crucial for type inference but cannot kpteim
mented: foreign values cannot be tested and thus an imptatigan

the whole value by applying repeatedly the rules in figure 8 W cannot adopt a different behavior depending on whethena\ala

should never arrive in a position where a test needs to benpeefl
on an external value. Therefore, in the definition of the lthaaed
matching relation, there is one rule corresponding to epsitansi-
tions and two rules corresponding to labeled transitioapedding
on whether the failure occurs in the element contents orerst:
guence but outside this element. The last rule correspands t
immediate failure, where a test is performed on an exteralalev
The following pattern components aests Lr], €, (7,), andm.
Basically, a test is a pattern component that only accepissees.
For this last rule, we only need to consider the case whendbte p
tern sequence contains a single pattern location. Indeezcan
easily show that the only way to arrive to a sequence whiclots n
of this form is through epsilon transitions, starting froreeuence
of this form. This specification of disallowed matchings istg al-

sequence or a foreign value. A simple change is sufficientap&a
the automaton: make the stateg accept any value and remove any
transition from this state. Note that this change does rfetathe
disallowed matching relation.

4.8 Pattern Matching Construction

We can now complete our specification of pattern matching. We
are only interested in how a value is matched in a patternhimagc
construction: which branch is selected and which valuessseci-
ated to the binders in this branch. We do not consider whaidap
afterwards. Thus, we can ignore the body of each branch of the
construction and can formalize a pattern matching construas
a list of patterns. It turns out to be convenient to share betwall
patterns a set of pattern locations and a mapping from pater

cation to pattern components. Therefore, a pattern cartiiruis
characterized by:

¢ a set of pattern locatiorg;
e a mappingp : II — C(II);
a family (7;) of root pattern locationst(; € II);
e a family (B;) of binder relations8; C X" x II)

The i-th pattern is defined aB; = (II, ¢, 7;, B;). For instance,
the pattern construction in the body of the functicap presented
in section 4.2 can be specified by reusing the correspondifig d
initions of the seflI and mappingy and defining(w;) and (B;)
by

Bi=10

By ={(x,4), (rem,5)}

In order to type-check a pattern construction, the typef the

7T1:1
o = 2

e preservation of the semantid®r all typing environments and
for all valueswv in T', the valuev is matched the same way by
each patter?; and its erasure;

By “matched the same way”, we mean that, if there is a dedwuati
of v < 7; in one of the pattern®;, then there must be an identical
derivation in the erasure of pattef (except for applications of
rule MATCH-ABSTRACTWhich should be replaced by applications
of rule MATCH-WILD), and conversely. Algorithms for perform-
ing all these checks are presented section 5. The linedrigkc
algorithm is actually omitted as it is standard and its pnéestéon is
long.

4.9 Type Inference

An additional operation we are interested in is type infeeen
we want to compute for each binder a type which approximates
the set of values that may be bound to it. From the semantics

values that may be matched by the pattern must be known. In of the pattern matching construction above, we can derige th

our example, this type isist{X}, which can be represented as
a pattern R, v, 1,) with

R={1,2,3}
and

(1) =2+ (2) = element[3] (3) =X.

The semantics of pattern matching is as follows. Given a
valuewv, belonging to the input typ&’, a patternP; is chosen such
that the valuevy matches the root location; of the pattern, that
is, so that there exists a derivationwf < ;. We then consider all
submatches, that is, all assertians 7 which occur in this deriva-
tion. This defines a relatioM between locations and values. The
compositionM o B = {(z,v) | Ir.(x,7) € B A (7,v) € M} of
this relation with the binder relatiofi is then expected to be a total
function from the set of binders of the pattern to parts ofigal.
This function indicates which part of the valuds bound to each
binderz.

In order to ensure that this matching process succeeds yor an
value of the input typ&’, the following checks must be performed:

e exhaustivenessor all typing environments and for all values
in the input typeT’, there must exists a pattef) such that the
valuev matches the root location; of this pattern;

e linearity: for all typing environments, for all values in the
input typeT" and for all derivationsy <« 7; wherer; is the
root location of one of the patterrd3, the compositionM o X
defined above must be a function.

These two checks are standard [13]. In our case, two addition
checks must be performed. Indeed, some matchings are ootall

in order to preserve abstraction and for the patterns to Ipéeim
mentable. Furthermore, patterns are not implementedtbjireat
only after erasure. We define teeasureof a pattern(I, ¢, mo, B)

as the patterdIl, ¢’, w0, B) where:

if ¢(m) is a type variableX
otherwise.

An erasedpattern is a pattern containing no pattern variable (that
is, ¢() is different from any variableX for all locationsr in the
pattern). The semantics remain the one given above, buedpl
the erased patterns. We thus have these two additional £heck

¢ allowed patterns the erasure of each pattef should be
allowed with respect tohe input typeT’, that is, we must not
havev 4 m; for any valuev in the input typ€el’, any erasure of
patternP;, and any typing environment.

following characterization of this set of values. Considarinput
type(IT1, ¢1, 7], 0) and a patterlls, 2, 73, B2). Then, avalue
may be bound to a bindet if there exists a value), and a
locationm € II such that:

e 1y < 7§ (the valuevo belongs to the input type);
e vy < 73 (the value is matched by the pattern);
e (z,m) € B2 (the binderz is at locationr in the pattern);

e there exists a derivation of, < 73 containing an occurrence of
the assertiom < 7 (the assertiom < = is a submatch).

Several algorithms foprecisetype inference have been pro-
posed [7, 13, 20]. These algorithms are tuned to a particudach-
ing policy (such as the first-match policy). With these aions,
the semantics of the type computed for a binder is exactlgehef
values that may be bound to it. (As binders are considerezpigrt
dently, any correlation between them is lost, though.) Rstance,
let us consider the following function.

fun £ (x : (all | b[d | c[1)) =
match x with
b[] - ...
'y : @0 I 0 | dl1) — ...
| _ - ...

A precise type algorithm infers the tyre] for the bindery. In-
deed, values of type[]1 are matched by the first line of the pat-
tern. Therefore, only values of type the difference betwspe
alllb[1lc[] and typev[1, thatis, typea[] | c[]1 may be matched
by the second pattern. Finally, the values matching thergkpat-
tern must also have type[] Ib[1 4[], hence their type is the in-
tersection ok [1|c[] andall|v[]1d[], thatis,a[]. Such atype
algorithm is implemented in CDuce and was initially implerresl

in XDuce.

Difference is costly to implement. Besides, though thisas n
apparent in the example above, difference operations mayg ne
to be performed at many places in the pattern, especialljnwhe
binders are deeply nested. Hosoya proposed a simpler dédign
remarking that with a non-deterministic semantics (in otherds,
when the matching policy is left unspecified) no differenpere
ation needs to be performed. An intersection operatiohrséds
to be performed, but only once per occurrence of a binderirSo,
our example, the second line of the pattern still matchesegbf
typeb[]. Therefore, the type of is the intersection of the initial
typeal]lIb[]Ic[] and the typea[] Ib[], thatis,a[]|b[].

In our case, even the intersection operations must be aloide
Indeed, our types are not closed under intersection: fdaine,
there is no type that corresponds to the intersection of type t
variables. Xtatic has the same issue [8, section 5.3]. Thescu

implementation of Xtatic thus computes an approximatiorthef
intersection. Another reason to avoid intersection is ithiatnot a
syntactic operation on types in XDuce. Thus, in order to cat@p

an intersection, types must first be translated to autonratate
intersection must be translated back from an automaton ype t

In the process, the type may become more complex. In the worst
case, the size of the intersection of two automata is quadrethe

size of these automata. Also, some type abbreviations mé&ysbe
during the successive translations.

What we propose is to infer types not for binders but for wild-
cards_ and compute the type of binders by substitutions. The key
idea is that the intersection of a type with a wildcard is yyetit-
self. Thus, no intersection is actually needed. Consideng&tance
the function below.

fun g (x : (all,b[])) =
match x with

y + (0Ol — ...

The type inferred for the wildcard s[]. Thus, by substitution, the
type inferred for the bindey is all, (b[11c[1). We deliberately
gave an example for which the inferred type is not preciserder

to emphasize the difference with other specifications oé tysber-
ence. We expect this weaker form of type inference to perfoeth

in practice. In particular, type inference is still preciee wild-
cards (assuming a non-deterministic semantics). Wheredeéue
programmer can provide explicitly a more precise type. Weeex
imented with the examples provided with the XDuce distiitmut
Only some small changes were necessary to get them to compile
What we actually had to do was to replace by wildcards some ex-
plicit types which were not precise enough.

More formally, we define theemantics of a location of the
pattern as the set of valuessuch that there exists a valug such
that the assertionsy, < 7§ andvo < 79 holds and the assertion
v < 7 is a submatch of a derivation of, < 73. The type inference
algorithm then consists in computing for each locationespond-
ing to a wildcard a type whose semantics is the semanticsi®f th
location and substituting this type in place of the wildcdrde sub-
stitution may not preserve pattern well-formedness. Isthse, the
type checking fails. But we believe this is unlikely to ocauprac-
tice, as this can only happen when a wildcard location isexhar
two different contexts. For instance, consider the type] and the
patterna[Q] ,Q whereQ = _. The type inferred for the wildcard is
X1 (O and substituting this type does not preserve well-formssine
If the resulting pattern is well-formed, then it is a typeddes not
contain any wildcard. The type of a binder is the type commesp
ing to the union of the locations the binder is associated to.

5. Algorithms on Patterns

We define a number of algorithms for type checking and type
inference for patterns. Each of these algorithms is spécifiean
abstract way, by defining a relation over a finite domain using
inductive definitions. Actually implementing them is a coamt
solving issue. Standard techniques can be used, such a sear
pruning (when an assertion is either obviously true or olbsip
false), memoization (so as not to perform the same compatati
several times), and lazy computation (in order not to comput
unused parts of the relation).

The size of the finite domain provides a bound on the complex-
ity of the algorithm. We don't study the precise complexifylese
algorithms, as we believe this would not be really meanihdfu
particular, the complexity of all these algorithms is palymal in
the sizes of the automata associated to the patterns ittepera,
but these sizes can be exponential in the size of the patt®urs
experience on the subject leads us to believe that the Higmi
should perform well in practice.

RooT
0 0
[m1] — [m2]
DEC-LEFT DEC-RIGHT
/ /
g1~ 02 g1~ 01 g1~ 02 g2~ 09
/ /
g1~ 02 01 ~— Oy
ENTER
01— 02
5 / "
Ly X Lo o1 — L1,01,07
" 7" 6 ron
01 <> 03 o2 — L2,05,09
! !
01~ 09
SHIFT
g1 ~ 02
5 / "
Ly X Lo o1 — L1,01,07
’ / § ron
01 <> 03 02 — L2,05,05

1"

"
g1 ~ 029

Figure 14. Type Propagation — o

5.1 Exhaustiveness

The input of the algorithm is the input tygE = (R,,,0)
and the different pattern®; = (II, ¢, m;, B;) of the pattern
construction. We define the union of the pattefdsby P =
(ITU {x}, ¢, %, 0) where the location is assumed not to be i
and the mapping’ is such thaty’(x) = w1 U... U, (the union
of all root locations) and’(7) = ¢(r) for = € I One can easily
prove that the semantics of the pattétris the union of the seman-
tics of the patterng;. Then, the pattern is exhaustive if and only if
T <: P.

Note that the union construction above can be applied to any fi
nite set of patterns sharing a common mappinghis construction
is also used for type inference (section 5.6).

5.2 Type Propagation

This algorithm propagates type information in a patteris lised
both for checking whether a pattern is allowed (section &) for
type inference (section 5.6). The input of the algorithmoisiposed
of two patternsP; = (IIy, ¢1, 7], B1) and P> = (T2, g2, 7%, B2)
and arelatio; < o2 (Where the sequences ando; range over
the states of the automata associated respectiveR; tand P).
The relation controls when the type information is propadat
across an element. The algorithm is defined in figure 14 astael
o1 — o2. The roots of the two patterns are related (ruledR).
The relation is preserved by epsilon transition (rulescELEFT
and DeC-RIGHT). The rules BITER and SHIFT specify how the
relation is propagated to the contents of an element an& asid
element.

Though the rules are symmetric, the algorithm is used in an
asymmetric way. One of the pattern is actually always a typk a
the algorithm can be read as propagating type informationett
from this type into the other pattern. Besides, we are netasted
in computing the whole relation; — o2. Rather, for some given
sequences, the set of pattern sequences such thato; — o2
must be computed.

As the algorithm is defined as a binary relation — o over
the states of the automata associated to the patfgragd P, it is
quadratic in the size of these automata.

Pattern

¢(m) = Lx"] <L an’ o(m) =€
am am
o(m) = 71, T2 Qmy AT
am
o(m) =m U UTn AT o(m) = 7%
am am
¢(m) =0 P(m) = X
am am
Pattern sequence
47 01 02
all < [er]] alx] Q01502

Figure 15. Non-Emptinessi and< o

5.3 Type Non-Emptiness

In order to check whether a pattern is allowed (section &.4)rns

out that we need an algorithm to decide whether, given arpatte
P = (II, ¢, mo, B), the semantics of a pattern locatianor a
pattern sequence (belonging to the set of states of the automaton
associated to patterR) is empty, that is, whether there exists a
valuewv such thatv < 7 or v < o. These algorithms are defined
in figure 15 as two relationsw and<o. Their properties can be
stated as follows.

LEMMA 3. Letw be a location in patterr® and o be a state of the
automaton associated to pattefn If there exists a value such
thatv < =, then< . Likewise, if there exists a valuesuch that

v < o, then<o. The converse holds in any typing environment such
that for all type variablesX there exists at least a valuesuch that
vaX.

The proof of the lemma is straightforward. The reason for the
restriction in the converse case can be seen on the lastnule i
figure 15: if¢(7) = X, then we haveiw. We thus need to ensure
that there exists a valuesuch that) < X.

The inference rules define a relatianr over the finite set of
pattern locationdI in patternP. Each rule can be implemented in
constant time. Hence, computing the relation for all lamagi in
a pattern can be done in linear time in the size of the patfern
Likewise, the relatiorko can be computed in linear time in the
size of the automaton associated to the pattern

5.4 Disallowed Pattern

The algorithm checking whether a pattePn= (T2, ¢2, 73, B2)

is allowed with respect to an input tyf® = (TI1, ¢1, 7, B1) is
based on an instance of the type propagation algorithmi¢sesR)
applied to the typd” and the patterd. For this instance, we take
o1 < o9 iff 9o1. Intuitively, if we have a type.[T1],T2 and
a patternL’ [P1],P2 such that the sefis andL’ are not disjoint,
the type informatiorT1 should be propagated in the pattem but
only if there is indeed a value of tygd T1],T2, thus in particular
only if the semantics of typ&2 is not empty. On the other hand,
as the implementation of the automaton may try to match aevalu
against the subpatterhi before considering the subpattepa,
nothing should be assumed ab®at The algorithm relies on the
following theorem.

0'/1[>40'2 01'\»0/1 UlMUIQ 02«»0'2
o1 X oa o1 X oo
I
oy Moy o1 — Ly,0%,07
I
ol Xoy 02— L2,0%,0%
Ly X Lo
01 NO’Q
(1] o(m) =X
[r]) [C]

Figure 16. Non-Disjointnessr X o

THEOREMA4. If the pattern P is disallowed with respect to the
type T, then there exists two locations, € II; and e € Il
such thate (1) is a type variableX, the locationr, is a test (as
defined in section 4.7), arfjd:] ~— [r2]. The converse holds in any
typing environment such that for all type variabl&sthere exists a
foreign valuee such thate < X.

The restriction in the converse case ensures that thearlatr
really coincide with the non-emptiness of the sequenct also
ensures that ifp(w1) = X and . is a test, then there exists a
foreign valuee such that 4 m2. From this andri] — [r2], one
can then show that the whole pattern is disallowed.

A naive implementation of the algorithm would compute all
pairs of locationsm: and w2 such that[ri] — [r2] and then
checks whether there exists a pair for which b¢thr1) is a type
variableX and the locatiorr,, is a test. This implementation would
have the same complexity as the type propagation algorifm.
immediate optimization is to stop propagating type infdiora
whenever a type locatiom; with no type variable below it is
reached.

5.5 Non-Disjointness

The type inference algorithm relies on an algorithm thategia
type

T = (1, ¢, 7Y, B1)
and an erased pattern

P = (HQ,(Z&Q,TF%,BQ),

decides the non-disjointness of the semantics of two pater
quencess; ando belonging to the states of the automata asso-
ciated respectively to the typgg and the patter®. The patternP

is assumed to be allowed with respect to typeThe algorithm is
defined in figure 16 as a relation X o». Itis based on a standard
algorithm for checking non-disjointness of tree automatih a
special case for type variable§. Note that only transitions with
tagl are used. The relation would remain unchanged if this gestri
tion was removed.

The intended semantics of the algorithm is that X o5 if
and only if there exists a value such thatv < o1 andv < os.
However this does not hold for arbitrary sequengesindo,. The
completeness of the algorithm can be stated as follows.

LEMMA 5 (Completeness).et o1 and o2 be two states of the
automata associated respectively to the t¥pand the patternP.
We assume that:

¢ the patternP is allowed with respect to typE

e 01 — o2 (where this relation is the instance defined in sec-
tion 5.4 for checking for disallowed patterns);

e the typing environment is such that for all type variablEs
there exists at least a valuesuch thaty < X.

Then, ifo; X o2, there exists a value such thatv <« o; and
v<d0o2.

The conditioro; — o together with the allowed pattern condition
ensures that, for instance, one never considers the typeisegjr|
with ¢(7) = X against the pattern sequeriee <] for which the
algorithm may give a wrong answer: one Ha$ X [¢; <] as the
sequencg<; <] reduces by epsilon transition to the sequeizg
but there is not reason for the sequenggsand [¢; O] to share

o1 — o2 can be improved by stopping the propagation of type
information whenever one reach a pattern sequencavith no
location whose type needs to be inferred below it.
5.7 Preservation of the Semantics
The input of the type inference algorithm is a type

T= (H17¢177T?761)
and a pattern

P = (Ilz, ¢o, 5, Ba).

a common value. The constraint on typing environments can be The algorithm is as follows. For each locatiarin the patternP

easily understood by looking at the rule concerning typéixdes.

corresponding to a type variablé (that is,¢:(7) = X), a type

The soundness property is hard to state. Rather than defining7” is computed using the type inference algorithm on the era-

precisely when it holds, which would involve defining an aidafial
complex relation, we use the following somewhat imprectages
ment.

LEMMA 6 (Soundness).et o1 and o2 be two sequences of the
automaton respectively associated to the input type andninet
pattern. In any position where the relatiarny X o2 is used in
the type inference algorithm below (section 5.6), if thexists a
valuew such thatv < o1 andv < o2, thenoy, X os.

The algorithm is quadratic in the size of the automata aasedito
the typeT” and the patteri.

5.6 Type Inference
The input of the type inference algorithm is a type
T = (I, ¢, 75, B1)
and an erased pattern
P = (Ia, ¢2, 73, Ba).
The patternP is assumed to be allowed with respect to the type

sure of patternP. We then compare this type with the part of the
pattern P corresponding to locatiom, that is, the patterd®®’ =
(Il2, ¢2, ™, B2). The semantics is preserved if for all such loca-
tions T we haveT” <: P’. The soundness of the algorithm relies
on the following theorem.

THEOREM8. The semantics of the pattern is preserved by erasure
if and only if for any pattern locatiorr2 such thatp(m2) = X (for
any type variableX) and any type location; such thatoy — 72
(by type inference on the erasure of pattét)y we haver; <: [m2].

6. Related Works

As mentioned in the introduction, we presented in a previgas

per [21] a calculus dealing with polymorphism for regulagetr
types. Values are binary trees rather than sequences oéelem

It is straightforward to translate sequences into binaggrby rep-
resenting an element contents as a hode whose first chi&lderit
tents and second child is its right sibling. A similar tratiin can

be defined to some extent for patterns. But there is a number of
restrictions. In particular, wildcards and binders shauritly occur

The algorithm is based on an instance of the type propagationin tail position. The present paper deals directly with ssmes,

algorithm (section 5.2) applied to the tyfpeand the patterd. For
this instance, we take; < o3 iff 01 X o2. Intuitively, if we have
atypeL[T1],T2 and a patter’ [P1],P2, the type informatioiT1
should be propagated in the patt@m but only if there is indeed a
value of the whole type matched by the whole pattern. In alr,
there should be a value shared by the typeand the patter®2.
We rely on the following result.

THEOREM?Y. If a valuew is included in the semantics of a loca-
tion w2 of the pattern, then there exists a sequeagesuch that

o1 — [m2]. The converse holds in any typing environment such
that for all type variablesX there exists at least a valuesuch that
vaX.

The type inferred for a subpatterr» should thus corresponds to
the union of the sequences such thatr; — [r2]. One can show
that for any such sequeneq, as it belongs to the set of states of
an automaton associated to a type, one can build aTypeith

the same semantics. Then, the type inferred for the sulbpatte
can be build by taking the union of these types, as defined in
section 5.1.

The algorithm is complete only when all type variables have a
non-empty semantics. It may be possible to get a strongettres
by extending our type system wittonditional typeq1]. But we
believe this would unnecessarily complicate the type syste

An interesting feature of this algorithm is that it workseditly
on the syntax of patterns and types. In particular, the iater
type is build from the input type using only simple operasion
(concatenation and union).

As in the case of the “disallowed pattern” check (section),5.4
a naive implementation which would compute the whole i@tat

which makes it possible to avoid these restrictions. Addiily,
we specify patterns in a more precise way: we believe veryefew
tensions to patterns, besides support for XML attributes)ld/be
necessary for a realistic implementation.

Hosoya, Frisch and Castagna have also proposed an extension
of XDuce with polymorphism [12], now implemented in the kite
release. In their work, type variables range over sets of d3uce
values rather than over sets of arbitrary values. This t®sol
design decisions which are drastically different from oufer
instance, they consider that pattern matching on valuesavtype
is a type variable is possible (as the structure of all sutiegacan
be explored by pattern matching), while we consider thatwhuld
break abstraction. They can deal with bounded quantificatn
the other hand, it is not clear how to extend their work to aati
foreign types and higher-order functions.

Sulzmann and Lu propose to use a structured representdtion o
XDuce values [19] and interpret subtyping as a runtime doerc
As types reflect the structure of values, they do not havestheei
of concatenating foreign values: the values of typa are pairs,
rather than concatenations of values of tymend typeB. However,
they may need to use algorithms similar to ours in order taiens
that pattern matching interact well with polymorphism.

Several type inference algorithms have been proposed der re
ular expression types. The first one [13], by Hosoya and Pjésc
precise (assuming a first-match policy) but can infer a typg for
binders in tail position in the pattern. Hosoya later praba sim-
pler design [11], corresponding to a non-deterministic a&etns
for patterns, where this restriction was removed. Both rétlgms
use a translation of types and patterns into tree automateer&
algorithms for precise type inference for different matctigies

have also been presented by Vansummeren [20]. They work di- [21] J. Vouillon. Polymorphic regular tree types and patser In Pro-

rectly on the syntax of patterns but require complex openation
types such as intersection and difference.

CDuce [4] has some extensive support for importing funation
from OCaml. Contrary to what we propose in section 3, their
extension relies on a runtime translation of ML values infuCe
values according to their types.

References

[1] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing
with conditional types. IlPOPL '94: Proceedings of the 21st
ACM SIGPLAN-SIGACT symposium on Principles of programming
languagespages 163-173, New York, NY, USA, 1994. ACM Press.

[2] V. Antimirov. Partial derivatives of regular express®and finite
automaton constructionsTheor. Comput. S¢i.155(2):291-319,
1996.

[3] J. A. Brzozowski. Derivatives of regular expressiond. ACM
11(4):481-494, 1964.

[4] CDuce Development Team.CDuce Programming Language
User's Manual Available from http://www.cduce.org/
documentation.html.

[5] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. leagiS. Ti-
son, and M. Tommasi. Tree automata techniques and appheati
Available on:http://www.grappa.univ-1ille3.fr/tata,

1997. release October, 1rst 2002.

[6] J. H. ConwayRegular Algebra and Finite MachinggVilliam Clowes
and Sons, 1971.

[7] A. Frisch, G. Castagna, and V. Benzaken. Semantic suigypin
17th IEEE Symposium on Logic in Computer Sciepeges 137-146.
IEEE Computer Society Press, 2002.

[8] V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. Théa¥c
experience. IWorkshop on Programming Language Technologies
for XML (PLAN-X) Jan. 2005. University of Pennsylvania Technical
Report MS-CIS-04-24, Oct 2004.

[9] V. Gapeyev and B. C. Pierce. Regular object types Elmopean
Conference on Object-Oriented Programming (ECOOP), Déauts
Germany 2003. A preliminary version was presented at FOOL '03.

[10] M. W. Hopkins. Converting regular expressions to n@tedministic
finite automata, May 1992. Newsgroup message on comp.theory

[11] H. Hosoya. Regular expression pattern matching — aleingesign.
Technical Report 1397, RIMS, Kyoto University, 2003.

[12] H. Hosoya, A. Frisch, and G. Castagna. Parametric poipimism
for XML. In POPL '05: Proceedings of the 32nd ACM SIGPLAN-
SIGACT sysposium on Principles of programming languapages
50-62. ACM Press, 2005.

[13] H. Hosoya and B. C. Pierce. Regular expression pattetcmng. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), London, EnglarzD01. Full version irdournal
of Functional Programmingl3(6), Nov. 2003, pp. 961-1004.

[14] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML
processing languageACM Transactions on Internet Technolegy
3(2):117-148, May 2003.

[15] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expi@stypes for
XML. In Proceedings of the International Conference on Functional
Programming (ICFP)2000.

[16] D. MacQueen, G. Plotkin, and R. Sethi. An ideal modelrémursive
polymorphic typesinformation and Contrgl 71(1-2):95-130, 1986.

[17] M. Murata. Hedge automata: a formal model for XML sché&ma
http://www.xml.gr.jp/relax/hedge_nice.html, 2000.

[18] G. Sittampalam, O. de Moor, and K. F. Larsen. Incremlexacution
of transformation specification&§IGPLAN Not.39(1):26-38, 2004.

[19] M. Sulzmann and K. Z. M. Lu. A type-safe embedding of xelircto
ml. In ACM SIGPLAN Workshop on Minformal proceedings, Sept.
2005.

[20] S. Vansummeren. Type inference for unique pattern niragc ACM
Transactions on Programming Languages and Systems (TOPLAS
2003. To appear.

ceedings of the 33th ACM Conference on Principles of Prognarg
LanguagesCharleston, USA, Jan. 2006. To appear. Available from
http://www.pps. jussieu.fr/~vouillon/publi/.

