
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–23
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

From Bytecode to JavaScript:
the Js of ocaml Compiler

Jérôme Vouillon1∗ and Vincent Balat2

1 CNRS, PPS UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
2 Univ Paris Diderot, Sorbonne Paris Cité, PPS UMR 7126, CNRS, INRIA Paris-Rocquencourt, F-75205 Paris, France

SUMMARY

We present the design and implementation of a compiler from OCaml bytecode to JavaScript. The compiler
first translate the bytecode into an SSA intermediate representation on which optimizations are performed,
before generating JavaScript. We believe that taking bytecode as input instead of a high-level language is
a sensible choice. Virtual machines provide a very stable API. Such a compiler is thus easy to maintain. It
is also convenient to use: it can just be added to an existing installation of the development tools. Already
compiled libraries can be used directly, with no need to reinstall anything. Finally, some virtual machines
are the target of several languages. A bytecode to JavaScript compiler would make it possible to retarget all
these languages to Web browsers at once. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Compiler; OCaml; JavaScript; bytecode

INTRODUCTION

We present a compiler translating OCaml [1] bytecode into JavaScript [2]. This compiler makes it

possible to program client-side interactive Web applications in OCaml.

JavaScript is the only language that is readily available in most Web browsers and that provides

a direct access to browser APIs. (Other platforms, such as Flash and Silverlight, are not as widely

available nor as integrated.) It is thus the mandatory language for developing Web applications.

Still, it would be interesting to be able to use a variety of languages on a Web browser: JavaScript

may be suitable for some tasks, but other languages can be more appropriate in other cases. In

particular, being able to use the same language both on browsers and servers makes it possible to

share code and to reduce the language impedance mismatch between the two tiers. For instance,

form validation must be performed on the server for security reasons, and is desirable on the client

to provide an early feedback to the user. Having to maintain two different pieces of code performing

essentially the same task in two different languages is error-prone. When using a single language,

the impedance mismatch in client-server communication is also greatly reduced: data still has to be

marshalled; but the same type definitions can be used on both side, with no need for translation. In

our case, we have appreciated being able to share a large amount of code when developing a graph

viewer application with both a GTK and a Web user interface.

∗Correspondence to: Laboratoire PPS, Université Paris Diderot, Case 7014, 75205 PARIS Cedex 13, FRANCE. E-mail:
jerome.vouillon@gmail.com

Contract/grant sponsor: This work was performed at the IRILL center for Free Software Research and Innovation in Paris,
France, and supported by the French national research agency (ANR), PWD project, grant ANR-09-EMER-009-01.

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 J. VOUILLON AND V. BALAT

Additionally, thanks to recent work on highly-optimized JIT-based interpreters, JavaScript now

exhibits decent performance. For all these reasons, it is a sensible target for a compiler.

We have chosen to take OCaml bytecode as input, rather than source code, based on maintenance

and ease-of-use considerations. Indeed, we have very limited human resources available, and we

are targeting a small community of developers. Virtual machines provide a very stable API. The

JVM (Java Virtual Machine [3]) and .NET Common Language Runtime hardly change, while the

source languages continue to evolve. The same is true for the OCaml virtual machine. Hence,

there is no need to modify the compiler at each release of the language to support the latest

features (or just for it to continue to work, if it were implemented as patches against the main

compiler). This is crucial for us. We have seen too many interesting OCaml-related projects die

due to lack of maintenance: OCamlIl [4] (a compiler to .NET), OCamlExc [5] (a static analyzer of

spurious exceptions), ocamldefun (a defunctorizer), . . . In addition, with our compiler, the barrier

to entry is low for programmers. A programmer wanting to target Web browsers can just install

the compiler as an add-on to its usual OCaml development environment, rather than installing a

specific development environment for the Web. In particular, already installed precompiled libraries

can be used directly. Finally, though this is not the case for the OCaml virtual machine, some virtual

machines are the target of many languages. For the JVM, one can list, among many others, Java,

Scala, Clojure and JRuby. A single compiler from bytecode to JavaScript would provide a tight

integration of all these languages in Web browsers. This is in contrast, for instance, with the Google

Web Toolkit [6] which makes it possible to run Java programs but not Scala programs on a browser,

and misses the latest Java features.

There are challenges to address when starting from bytecode rather than source code. First, the

data representation is low-level. For instance, functions have been compiled down to flat closures;

the bytecode interpreter is a stack machine. Also, little type information remains to help us in the

translation. It was not clear at first whether these data representations could be mapped to available

JavaScript data-structures in an efficient way. Second, one may fear that going from a low-level

language to a higher level language would result in a low code density. Third, one must find ways

to represent unstructured code using the limited JavaScript control statements (JavaScript does not

have a goto statement). Last, one must design a way to use the available JavaScript APIs in an

easy way, though they are object-oriented and the calling convention of JavaScript differs from the

OCaml one. We believe that we have addressed these challenges successfully and that starting from

OCaml bytecode provides a good tradeoff.

One of the design goals for the compiler was to rapidly have a working implementation that yet

provides a solid basis for future developments. Thus, at the moment, no sophisticated optimization

has been implemented. The focus has rather been on simple but effective analyses and code

transformations, designed to achieve good performance, but also to generate compact code. Indeed,

the compiled programs are intended to be transferred a large number of times over the network. It

is thus important to minimize latency (Web page loading times) and bandwidth usage.

The compilation process is fairly standard. We first present the OCaml datastructures and how

they are represented in JavaScript (Section 1). Bytecode programs are converted to an SSA-

based intermediate form (Section 2). Some optimizations are performed on the intermediate code

(Section 3). Then, the intermediate code is translated to JavaScript (Section 4). We document some

OCaml-specific issues in Section 5. The compiler would not be usable without ways of manipulating

JavaScript values and accessing browser APIs. We deal with this interoperability issue in Section 6.

We have performed extensive benchmarks of the compiler to assess its performance (Section 7).

Finally, section 8 and 9 present related and future work.

1. DATA REPRESENTATION

Data representation is crucial performance-wise. One must choose representations that match the

OCaml semantics, and that are implemented efficiently by JavaScript engines.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 3

OCaml has a number of predefined types: integers, floating-point numbers, characters, strings,

booleans, arrays. New types can be declared using a type declaration. For instance, the following

declaration defines trees of integers.

type tree = Leaf | Node of tree * int * tree

A value of type tree is either a leaf, with constructor Leaf, or a node, with constructor Node,

containing two subtrees and an integer.

The OCaml virtual machine differs only slightly from the Zinc machine [7] of Caml Light. It

uses a very uniform memory model. An OCaml value is a word of either 32 or 64 bits depending

on the architecture. This word represents either an integer or a pointer in the heap (integers are

the only unboxed values). They are distinguished by the lower bit, which is 1 for integers and 0

for pointers. The heap is composed of memory blocks of arbitrary size preceded by a one-word

header. This header contains informations such as the size of the block, a tag indicating the kind

of the block, and some bits reserved for the garbage collector. One of the uses of the tag is to

distinguish structured blocks (containing valid values) which should be recursively traversed by the

garbage collectors from blocks containing unstructured data (such as floating-point numbers or the

characters of a string).

With the OCaml virtual machine, integers, booleans and characters are mapped to integers. Arrays

are mapped to structured blocks. String and floating-point numbers are stored into unstructured

blocks. Functional values are mapped to flat closures, that is, blocks with a special tag and that

contain a pointer to the code of the function as well as the values of the free variables of the function.

Constructors with no argument, such as Leaf, are mapped to integers. Other type constructors

are mapped to memory blocks. The integer value and the tag of the memory block make it

possible to distinguish the different constructors of a same type definition. Modules are mapped

to memory blocks; functors (that is, higher-order modules) are mapped to functions taking modules

as arguments and returning a module.

For the translation to JavaScript, we have made the following choices. The integers and floating-

point numbers of the OCaml virtual machine are mapped to JavaScript numbers. Structured blocks

are mapped to JavaScript arrays. The first element of these arrays is the tag; subsequent elements

are the contents of the block. Closures are mapped to JavaScript functions. We take advantage

of the scoping mechanism of JavaScript. The function body is compiled in such a way that free

variables are accessed directly from the outer scopes rather than from the closure. We use our own

implementation of strings. Indeed, OCaml strings are mutable arrays of 8-bit characters, while

JavaScript strings are immutable UTF-16 strings. More details on how integers and strings are

handled are given in Section 5.

We do not perform any special mapping for exceptions. Ocaml exceptions are thus not instances

of JavaScript exception objects. Their semantics is faithfully implemented; in particular, they remain

generative. OCaml objects are mostly compiled away during bytecode generation. Thus, there is not

much to do to support them. There are just a few bytecode instructions for method resolution which

are implemented as JavaScript functions.

2. FROM BYTECODE TO INTERMEDIATE CODE

2.1. OCaml Bytecode

The OCaml virtual machine [7] is a stack machine (like the JVM) with an accumulator (a single

register that stores the result of the last instruction, if any, thus avoiding some stack operations).

A bytecode program is basically composed of a sequence of instructions ending by a STOP

instruction. We list in Figure 1 some of the bytecode instructions. We use them to illustrate the

compilation process. The semantics of these operations is given in Section 2.3 when presenting the

conversion from bytecode to intermediate code. In the actual bytecode, the instruction BGEINT

only takes one target address k. The second address k’ is convenient for specifying the translation

to intermediate code. It will always be the address of the immediately following instruction.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4 J. VOUILLON AND V. BALAT

bytecode stream B ::= I ; B | STOP
bytecode instruction I ::= ACC0 | ACC1 | PUSH stack manipulation

| CONSTINT n | MULINT integer operations

| CLOSURE n,k | APPLY1 function operations

| RETURN n

| BRANCH k | BGEINT n,k,k’ branch instructions

| . . .

Figure 1. Bytecode instructions

68 ACC0 copy top of stack to accu

69 BGEINT 0,79 branch if 0 ≥ accu

72 ACC0

73 PUSH push accu on stack

74 CONSTINT 2 store integer 2 into accu

76 MULINT multiply the two values

77 RETURN 1 pop stack and return

79 ACC0

80 RETURN 1

82 CLOSURE 0,68 allocate closure

85 PUSH

86 CONSTINT 10

88 PUSH

89 ACC1 copy second element of stack to accu

90 APPLY1 invoke function

...

Figure 2. Bytecode sample

As a running example, we consider the OCaml code sample below. A function f is defined. This

function takes as argument an integer x. If the integer is strictly positive, the function returns twice

the integer. Otherwise, it returns the integer itself. The function is later applied to integer 10.

let f(x) = if x > 0 then 2 * x else x

f(10)

The decompiled portion of a bytecode program corresponding to these two lines is shown in

Figure 2. The leftmost column is the address (in words) of each instruction. The bytecode is

generated out of order. The function bodies are produced first, before the code corresponding to

the outer context. Hence, the execution of this piece of code does not start at address 68, which

is the start address of the function body. Rather, when running the program, the execution moves

at some point to address 82. There, the function closure corresponding to function f is allocated

and put in the accumulator. The function has no free variable, hence its environment is empty

(integer argument 0). The code of the function starts at address 68. The closure is pushed on the

stack (instruction PUSH). Then, the function call is performed. The integer constant 10 is loaded

in the accumulator, then pushed on the stack. The closure is retrieved from the stack and put in

the accumulator (instruction ACC1). Finally, the function is invoked (instruction APPLY1). The

execution process thus moves to address 68. The integer 10 at the top of the stack is copied into the

accumulator. As it is not inferior or equal to 0, the conditional branch is not taken. The integer is put

in the accumulator, then pushed again onto the stack. The integer 2 is placed into the accumulator.

The instruction MULINT multiplies the two integers in the accumulator and on the stack top and pop

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 5

intermediate code C ::= i ; C | c
instruction i ::= x = e assignment

| . . .

expression e ::= n integer constant

| fun(σ){κ(σ′)} function closure

| x(σ) function invocation

| “p”(σ) primitive invocation

| . . .

control instruction c ::= branch κ(σ) unconditional branch

| if x then κ(σ) else κ′(σ′) conditional branch

| return x function return

| stop end of program

| . . .

block parameters σ ::= x1, . . . , xn

Figure 3. Intermediate Code

the stack. The resulting integer 20 is in the accumulator. Finally, the function returns, discarding one

value (integer 10) from the stack. The value 20 returned by the function is in the accumulator.

2.2. Intermediate Code

A variant of static single-assignment form (SSA) is used as intermediate representation. This variant

has a more functional flavor than the standard SSA presentation. When two control-flow edges join,

a variable may hold different values depending on the incoming edge. In standard SSA form this is

expressed by a notational trick, the φ function: x = φ(y, z) means that the value of either variable y

or variable z is assigned to variable x, depending on the incoming edge. Here, instead of using

φ functions, blocks are parameterized and values are passed explicitly from blocks to blocks. For

instance, if there is a jump from a source block with arguments z and t to a target block with two

parameters x and y, the values of variables z and t are assigned respectively to variables x and

y when moving from the source block to the destination block. As we shall see at the beginning

of Section 3, there is a simple correspondence between the two notations: a φ function can be

associated to each block parameter. Our variant otherwise keeps the essential property that each

variable in a program has only one definition (it is assigned to only once). The domination-based

scoping of SSA is also kept: the scope of a variable extends from its definition to every places that

can be reached only via its definition.

The intermediate representation is composed of a set of blocks. A block is composed of a block

location κ, the block parameters σ and some code C. The notation κ(σ) is used for a jump to

location κ with arguments σ. The compiler uses integers for block locations (this integer is in fact

the location of the corresponding bytecode sequence in the source program). Block parameters σ

are a sequence of variables x1, . . . , xn. A variable x is represented by an integer. A counter is used

in the implementation to generate fresh variables.

The syntax of intermediate code is given in Figure 3. A piece of intermediate code C is a sequence

of instructions i followed by a control instruction c. One instruction is the assignment of the value of

an expression e to a variable x. Expressions can be, among others, a constant, a function closure, a

function invocation or a primitive invocation. Integer multiplication is one of these primitives. Later,

we present other instructions to manage exceptions (Section 2.4) and deal with memory blocks

(Section 3.3).

2.3. Translation to Intermediate Code

The bytecode program is split by the compiler in blocks of bytecode instructions that are always

executed sequentially. Each block is compiled to intermediate code independently. The first step of

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6 J. VOUILLON AND V. BALAT

x ; x, σ ⊢ B ❀ C

y ; x, σ ⊢ ACC0 ; B ❀ C

y ; x, y, σ ⊢ B ❀ C

z ; x, y, σ ⊢ ACC1 ;B ❀ C

x ; x, σ ⊢ B ❀ C

x ; σ ⊢ PUSH ;B ❀ C

x ; σ ⊢ B ❀ C x fresh

y ; σ ⊢ CONSTINT n ; B ❀ x = n ; C

z ; σ ⊢ B ❀ C z fresh

x ; y, σ ⊢ MULINT ; B ❀ z = “∗”(x, y) ; C

x ; σ ⊢ BRANCH k ;B ❀ branch l(x, σ)

y fresh

x ; σ ⊢ BGEINT n,k,k’ ; B ❀ y = n ≥ x ; if y then l(x, σ) else l′(x, σ)

z ; σ ⊢ B ❀ C z fresh

x ; y, σ ⊢ APPLY1 ; B ❀ z = x(y) ; C

y ; σ ⊢ B ❀ C y and σ′ fresh |σ′| = arity(l)

x ; σ ⊢ CLOSURE 0,k ; B ❀ y = fun(σ′){k(⋄, σ′)} ; C
x ; σ ⊢ RETURN n ;B ❀ return x

x ; σ ⊢ STOP ❀ stop

Figure 4. Translation to intermediate code

the compilation process is to delimit these blocks. The start address of each block can be found by

traversing linearly the code: it is either the address 0 (program entry point), the target of a branch

instruction, the start of a function, or the address of an exception handler (see Section 2.4 for the

latter). The end of a block can be explicitly indicated by a control instruction. It may also be implicit,

when a branch instruction points to the middle of a sequence of instructions. All these implicit

delimitations are collected by scanning the bytecode sequentially from start to end and recording

the target address of each branch instruction.

To compile a block, one also needs its static environment. More precisely, one needs the size of

the current stack frame. For this, a recursive traversal of the program is performed, starting from the

entry point, following the branches, and visiting the function body of each closure, while keeping

track of the size of the current stack frame.

We can now specify the translation of a block. The contents of the accumulator is represented

symbolically by a variable x while the contents of the current stack frame is represented by a

sequence of variables σ. Values flow from previous blocks through the accumulator and the stack.

Hence, the parameters of a block are a concatenation x, σ where x and σ are composed of fresh

variables. The translation of a block, specified in Figure 4 using inductive rules, then takes this pair

as input. It is defined as a predicate x ; σ ⊢ B ❀ C where B is the sequence of bytecode instructions

to compile, andC is the resulting intermediate code. The idea of starting the translation of each block

with fresh variables can also be found in [8] and [9], which propose algorithms to put code into SSA

form. For specifying the translation, we assume that whenever a block is implicitly terminated in

the actual bytecode, a BRANCH instruction has been added to its tail, pointing to the immediately

following block. The actual implementation compares the current location in the bytecode to the

end of the block and generates a branch instruction when the limit is reached.

We present the translation of the most interesting instructions. No code is produced when

translating a stack access ACC0. One just records that afterwards the value of the accumulator is

the top element of the stack. The BRANCH k instruction is compiled to a branch instruction. The

target block of the branch is at location k. The block arguments are the concatenation of the contents

of the accumulator and of the stack. The APPLY1 instruction is compiled to the call of the function

contained in the accumulator applied to a single parameter at the top of the stack. The results of

the call is stored in a fresh variable z. Afterwards, the top element of the stack is discarded and the

accumulator contains the value returned by the function. The CLOSURE instruction is compiled to a

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 7

function closure allocation. We show here only the translation when the function has no free variable

(when its environment is empty). The closure parameters are a sequence of fresh variables σ′.

Their number is given by the arity of the function, which can be obtained from the location of

its body k. The arguments are expected on the stack. The contents of the accumulator is unknown

at the beginning of a function body and will not be used. Hence, a dummy variable ⋄ is used to

symbolize this contents. The closure is stored in a fresh variable y. Afterwards, the accumulator

contains the closure. The RETURN instruction is compiled to a corresponding return instruction.

The number n of stack items to be discarded is not useful after translation. The returned value x is

in the accumulator.

When compiling a function, one actually needs to deal with the environment of the current

function, that contains the values of the free variables of the function. We only sketch the translation

of functions with non-empty environments. A bytecode closure is a memory block containing

a pointer to the function code followed by the value of each free variable of the function. The

CLOSURE n,k instruction grabs the n topmost elements of the stack to build the closure. When

executing the body of a function, its closure is stored in a specific environment register. The ENVACC

n instruction copies the n-th element of the environment to the accumulator. The compiler takes

advantage of JavaScript static scoping. For this, the environment is eliminated in a way similar to

the stack. The translation predicate x ; σ ; η ⊢ B ❀ C takes an additional argument η representing

symbolically the contents of the environment register. This argument is a sequence of variables

each standing for an element of the environment. The translation of the ENVACC instruction is then

similar to the ACCn instructions, except that the new contents of the accumulator is taken from the

environment rather than from the stack.

y ; σ ; η ⊢ B ❀ C η(n) = y

x ; σ ; η ⊢ ENVACC n ;B ❀ C

As an example, the translation of the piece of bytecode in Figure 2 is given in Figure 5. The

translation process starts at address 82 that corresponds to the closure allocation and the function

application. (There is a branch instruction pointing to this address, not shown here.) We assume that

the stack is empty at the beginning of the block (we write • for an empty sequence of variables).

2.4. Exceptions

Three bytecode instructions are dedicated to exception handling.

I ::= . . . | RAISE | PUSHTRAP k | POPTRAP

The virtual machine keeps in a register a pointer to the stack frame describing the current

exception handler, if any. This stack frame contains the address of the handler, the current function

environment and a pointer to the frame of the previous handler. The PUSHTRAP instruction installs

a handler by recording such a frame. The POPTRAP instruction restores the previous handler and

pop the frame. The RAISE instruction pops all elements of the stack including the stack frame of the

current handler. It restores the previous handler. Finally, it jumps to the handler. It expects the raised

exception to be in the accumulator. The intermediate code has corresponding control instructions.

c ::= pushtrap (κ1(σ1), λx. κ2(σ2))
| poptrap κ(σ) | raise x | . . .

Besides, an exception handler (x, (κ2, σ)) is associated to each block in between a PUSHTRAP and

the matchingPOPTRAP. The arguments σ to the exception handler are the bound variable x standing

for the raised exception as well as the variables corresponding to the portion of the stack available

to the handler. These arguments change from block to block, as fresh variables are used each time.

This associated handler makes it explicit which variables of a block are passed to the handler, which

is crucial for correct code analyses.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8 J. VOUILLON AND V. BALAT

Accu and stack Bytecode Intermediate code

block 68(a, b)
a ; b 68 ACC0

b ; b 69 BGEINT 0,79 c = 0 ≥ b

if c then 79(b, b)
else 72(b, b)

block 72(d, e)
d ; e 72 ACC0

e ; e 73 PUSH

e ; e, e 74 CONSTINT 2 f = 2
f ; e, e 76 MULINT g = “∗”(f, e)
g ; e 77 RETURN 1 return g

block 79(h, i)
h ; i 79 ACC0

i ; i 80 RETURN 1 return i

block 82(j)
j ; • 82 CLOSURE 0,68 l = fun(m){68(⋄,m)}
l ; • 85 PUSH

l ; l 86 CONSTINT 10 n = 10
n ; l 88 PUSH

n ; n, l 89 ACC1

l ; n, l 90 APPLY1 o = l(n)
o ; l . . .

Figure 5. Example of translation

3. CODE ANALYSES AND TRANSFORMATIONS

Several code analyses and transformations are performed on the intermediate code in order to

improve the performance of the generated code and reduce its size. The main issue, performance-

wise, is the calling convention mismatch between OCaml, which encourages a curried style, and

JavaScript, that does not support currying. To deal with this, the closures possibly involved at each

call point are computed (Section 3.3). Then, optimized function calls are generated when the closure

arities match the number of arguments provided (see Section 5 for details). Self-tail calls are very

common and should be implemented using constant stack depth (Section 3.1). Finally, dead code

elimination is performed (Section 3.4). A difficulty is that all the components of a module are

stored in a common memory block. Thus, if there is any reference to this block, a rough dead code

elimination algorithm would retain the contents of the whole module. We thus use an algorithm that

is aware of structured memory blocks. The strategy used is to eliminate references to these blocks

by replacing field accesses by direct reference to the field contents (Section 3.3).

At the moment, the compiler only uses intraprocedural analyses. Indeed, they are much simpler

to implement and are already quite effective. In order to define some of the code analyses, it is

convenient to associate to each variable x of the program its definition def(x) as follows:

• def(x) = e if there exists an instruction x = e in the program;

• def(x) = φ(x1, . . . , xn) if variable x is a block parameter and variables x1 to xn are the

possible corresponding arguments (this is the φ function of standard SSA form);

• def(x) = ⋆ if x is a function parameter.

As each variable is assigned to only once, this defines a total function over variables. We consider

the arguments of the φ function as a set of variables. Thus, for instance, φ(x, x) = φ(x).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 9

block 68()
c = 0 ≥ m

if c then 79() else 72()

block 72()
f = 2
g = “∗”(f,m)
return g

block 79()
return m

block 82()
l = fun(m){68()}
n = 10
o = k(n)
. . .

Figure 6. Code after redundant variable removal

3.1. Self-Tail Call Optimization

Tail recursion optimization is performed first. Whenever a function f calls itself in tail position, the

call is replaced by a branch to the beginning of the function. Formally, suppose we have a function

definition:

f = fun(σ1){κ(σ2)}

If one of the blocks of the function body ends with:

x = f(σ3); return x

then, these two instructions are replaced by:

branch κ(σ4)

where the arguments σ4 are built from the block arguments σ2 by replacing any variable in the

function parameters σ1 by the corresponding variable in the function arguments σ3.

3.2. Minimizing Variable Passing between Blocks

So far, the number of parameters of a block is equal to the depth of the stack frame at this

corresponding point in the bytecode program. By a suitable renaming of variables, the number of

arguments passed from one block to its successors can be greatly reduced. The compiler follows

the approach in [9]. Whenever one has def(x) = φ(y) or def(x) = φ(x, y), one can replace all

usages of variable x by variable y. Indeed, any value assigned to variable x must in both cases

have been assigned to variable y beforehand. Then, the block parameter x can be eliminated. By

performing this operation repeatedly until no such definition remains, one reduces the number of

φ-functions (that is, the number of block parameters) in the program. It can be proved that this

algorithm is correct, and besides, that it computes the minimal φ-function placement for reducible

control-flow graphs [9], which the OCaml compiler always generates. The implementation does

not actually perform variable substitution eagerly. A union-find datastructure is used to keep track

of which variable should be replaced by which. A global substitution is performed once no more

simplification is possible. The block parameter and argument simplification is also not performed at

this point, but by dead code elimination (Section 3.4). Figure 6 shows the result of the transformation

(together with dead code elimination) applied to the code in Figure 5. In this example, all block

parameters are eliminated.

3.3. Data Flow Analysis

The compiler performs an analysis to determine an overapproximation of which values may be

contained in each variable. This analysis has to deal in a sound fashion with mutable fields and

function calls, including calls to arbitrary external functions. Thus, it combines a flow-insensitive

data-flow analysis with an escape analysis that computes which values might be modified. A major

use of the analysis is for shortcutting memory block accesses, replacing field accesses by direct

references to the contents of the field. If the compiler is able to remove all accesses to a given

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10 J. VOUILLON AND V. BALAT

def(x) = φ(x1, . . . , xn) xi ←[y

x←[y

def(x) = y[i] y ←[z

def(z) = [j|x1, . . . , xi, . . . , xn] xi ←[t

x←[t

def(x) = e

e not of the shape y[i]

x←[x

def(x) = ⋆

x←[x

Figure 7. Propagation of known values

memory block, then the block does not have to be allocated anymore. Besides, then, any value

stored in one of its fields but not otherwise used also becomes unnecessary. As OCaml modules

are implemented as memory blocks, this optimization is crucial for effective dead code elimination.

The analysis is also used to generate optimized code for some operations: function calls (Section 5),

integer multiplication (Section 5), JavaScript method invocations (Section 6), . . .

The analysis deals in a special way with the following memory block operations. The expression

[i|x1, . . . , xn] of the intermediate code allocates a memory block with a tag i and n fields whose

values are given by variables x1 to xn. The expression x[i] accesses field i of the memory block

contained in value x. The instruction x[i] = y stores the value of variable y in field i of the memory

block contained in value x.

e ::= . . .

| [i|x1, . . . , xn] block allocation

| x[i] field access

i ::= . . .

| x[i] = y field update

The analysis consists in computing two predicates. Predicate x←[y indicates that variable x

may contain values coming from variable y. Predicate x←[? holds when x may contain values of

unknown origin. Thus, when x←[? does not hold, the only possible values for variable x are the

values of expressions def(y) where x←[y.

The first step of the analysis is the computation of predicate x←[y, as specified in Figure 7. The

idea is to track how values flow through code blocks and memory blocks. Basically, source variables

are propagated through block parameters (first rule) and field accesses (second rule). In all other

cases, we take x←[x. The implementation collects for each variable x the set of variables y such

that x←[y. A standard work list algorithm is used. A pitfall is that the dependency graph between

variables is not fully known initally and has to be updated dynamically. Indeed, for the second rule,

whenever one learns that y ←[z, one must add a dependency of variable x on the corresponding

variable xi.

As a second step, an escape analysis is performed. This is specified as predicate ‘x escapes’

in Figure 8. In this figure, we write i ∈ P to mean that the instruction i occurs somewhere in the

whole program. The goal is to determine which memory blocks may be modified, which is predicate

‘x mutable’ in the same figure. If a variable z either occurs as parameter of a function or a primitive,

is returned, is raised, or is assigned to the field of a block, then all its possible known values, given

by variables t such that z ←[t, escape (first five rules). If a block escapes, then the values of all its

fields also escape (sixth rule). A value is considered mutable if either it escapes or it is the target of

a block update (last two rules). The two predicates can be computed using recursive functions.

Finally, the predicate x←[? specified in Figure 9 can be computed. It indicates which variables x

may contain other unknown values besides the values given by predicate x←[y. If variable xi may

contain unknown values and is assigned to variable x (by branching to a code block), then variable x

may contain unknown values (first rule). If we access a block y but do not know enough information

regarding the accessed field, either because not all possible shapes for block y are known precisely

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 11

def(x) = y(. . . , z, . . .)
z ←[t

t escapes

def(x) = “p”(. . . , z, . . .)
z ←[t

t escapes

return z ∈ P z ←[t

t escapes

raise z ∈ P z ←[t

t escapes

x[i] = z ∈ P
z ←[t

t escapes

x escapes def(x) = [j|x1, . . . , xn]
xi ←[y

y escapes

x escapes

x mutable

x[i] = y ∈ P x←[z

z mutable

Figure 8. Escaping values

def(x) = φ(x1, . . . , xn)
xi ←[?

x←[?

def(x) = y[i]
y ←[?

x←[?

def(x) = y[i] y ←[z

def(z) not of the shape [j|x1, . . . , xi, . . . , xn]

x←[?

def(x) = y[i] y ←[z z mutable

x←[?

def(x) = y[i] y ←[z

def(z) = [j|x1, . . . , xi, . . . , xn] xi ←[?

x←[?

Figure 9. Propagation of unknown values

0 reachable
κ reachable

code(κ) reachable

i ; C reachable

i reachable C reachable

x[i] = y reachable

x live y live

x = xm

0
(x1, . . . , xn) reachable

n > m, or n = m and x0 effectful

xi live

x = “p”(x1, . . . , xn) reachable

p effectful

xi live

return x reachable

x live

raise x reachable

x live

branch κ(σ) reachable

κ reachable

poptrap κ(σ) reachable

κ reachable

if x then κ(σ) else κ′(σ′) reachable

x live κ reachable κ′ reachable

pushtrap (κ1(σ1), λx. κ2(σ2)) reachable

κ1 reachable κ2 reachable

x live def(x) = φ(x1, . . . , xn)

xi live

x live def(x) = e

e live

x0(x1, . . . , xn) live

xi live

“p”(x1, . . . , xn) live

xi live

[i|x1, . . . , xn] live

xi live

y[i] live

y live

fun(σ){κ(σ′)} live

κ reachable

Figure 10. Live variable analysis

or the field contents may have been modified, then we may get some unknown values (remaining

three rules). A work list algorithm is used in the implementation.

The result of the analysis is used to eliminate field accesses. This is done through variable

renaming. Indeed, if the predicate x←[? does not hold and there is a single variable y such that

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12 J. VOUILLON AND V. BALAT

x←[y, then all occurrences of variable x can be replaced by variable y. If we happen to have

def(x) = z[i], this will turn the field access into dead code. This only works when the field value has

a single known definition. But there is a second case where a variable renaming can be performed. If

we have def(x) = y[i], the predicate y ←[? does not hold and, for all variables z such that y ←[z, the

definition of z is of the shape [j| . . . , t, . . .] where a same variable t is at index i, then all occurrences

of variable x can be replaced by variable t.

3.4. Dead Code Elimination

An analysis is performed to determine which parts of the code are reachable and which variables

are used. Unreachable code and effect-free expressions whose results are not used are discarded.

So as to get a more precise result, the compiler first determines which functions may be effectful.

We write ‘x effectful’ to mean that the functions bound to variables x may be effectful. In the

current implementation, non-terminating functions are considered effectful; expressions which may

only raise exceptions due to programmer errors, such as out of bound accesses, are not considered

as effectful.

The live variable analysis is specified in Figure 10 as five mutually defined predicates:

‘κ reachable’, ‘C reachable’, ‘i reachable’, ‘x live’ and ‘e live’. Location 0 (the program entry

point) is reachable. If a location κ is reachable, then the code of the block at location κ, written

code(κ), is reachable. If a piece of code C is reachable, all the instruction it contains are reachable.

If a block update or an effectful assignment is reachable, then all its free variables are live. The

variable in a reachable return or raise instruction is live. If a control instruction is reachable, then

all the locations it points to are reachable. In the case of a reachable conditional instruction, the

condition variable is live. If a block parameter is live, then the corresponding arguments are also

live. If a live variable is assigned to some expression e, then the expression is live. If an expression

is live, then all its free variables are live. Finally, if a closure expression is live, then its body location

is reachable. This analysis is implemented using recursive functions.

Then, dead code elimination can take place. Unreachable blocks are discarded. Assignments

x = e where x is not live and e is not effectful are removed. Block parameters that are not live

are also removed, as well as the corresponding block arguments.

During the live variable analysis, the compiler actually computes how many time each variable is

used. This is only a slight variation of the live variable analysis presented above, where a counter,

associated to each variable, is incremented each time one would deduce that a variable is live. One

just has to be careful to consider expressions only once (two distinct rules applies for effectful

expressions). This information is used to perform some inlining locally during code generation

(Section 4).

The analysis is effective at eliminating unused functions in modules (see Figure 14). It is not

powerful enough to deal with functors (modules parameterized by other modules) in the general

case. An interprocedural analysis would be needed for that.

3.5. Function Inlining

The OCaml bytecode compiler does not perform any inlining. There are thus lots of opportunities for

inlining. At the moment, only functions that are used exactly once are inlined. This is guaranteed to

make the code smaller and is simple to implement. In particular, no variable renaming is necessary.

This is performed as follows. The block containing the function call is split at the call instruction.

The function call is replaced by a branch to the function body. The arguments passed to the block can

be deduced from the function parameters. Each return instruction in the function body is replaced

by a branch to the instruction just after the function call, with a single argument which is the return

value of the function.

According to our measurements, inlining has no significant impact on performance. On the

other hand, it helps for dead code elimination, as it can expose opportunities for code removal.

In particular, the dead code elimination algorithm is not smart enough to eliminate unused functions

in a functor (that is, in a higher-order module). On the other hand, if the body of the functor is

inlined, unused functions can be eliminated. Function inlining has also turned out to be a good way

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 13

to stress the compilation process, and hence shake out bugs in the compiler, as it makes the control

flow significantly more complex.

4. JAVASCRIPT GENERATION

The compiler first produces a JavaScript abstract syntax tree, which is then printed. Thus,

parentheses and whitespaces do not have to be dealt with during code generation. They are added

only when necessary when serializing the abstract syntax tree. The use of an abstract syntax tree

makes it also possible to perform some peephole optimizations at the JavaScript level.

A naive compilation of our running example (Figure 6) would yield the following JavaScript

piece of code:

function f(x){

var b = 0 < x;

if (b) {

var t = 2; var y = caml_mul(t,x); return y;

} else { return x; }

}

var x = 10; var z = f(x);

We describe the function body. The code for block at location 68 is generated first. The conditional

instruction at the end of the block is translated into a JavaScript conditional statement. The code for

blocks at locations 72 and 79 is inserted in the branches. The actual result, assuming that function f

is not inlined, is the following:

function f(x){return 0<x?2*x|0:x;}

var y=f(10);

Unnecessary variable assignments are avoided (Section 4.1). A direct multiplication can be

performed without loss of information (JavaScript uses IEEE 754 floating point arithmetic).

The result is converted back to a 32-bit integer using the construction e|0 (see Section 5 for

details). Finally, a peephole optimization turns statement “if(e)return e1;else return

e2;” into statement “return e?e1:e2;”. (This is only to save space; it does not make any

performance difference with current JavaScript engines).

We now detail the code generation process: first, how expressions are generated, and then how

the control flow graph is compiled to JavaScript.

4.1. Generating Expressions

In order to get compact code, the compiler produces nested expression when possible, skipping

assignments to intermediate variables. It is careful to preserve the order of evaluation. For this,

three kinds of expressions are distinguished: expressions that always evaluate to the same result and

have no side-effect are pure (for instance, integer addition x+ y); expressions that have side-effects

are mutators; (for instance, array update); expressions that do not have side-effects but which may

evaluate to different values due to side-effect are mutable (for instance, block access x[i]).
Pure and mutable expressions can be reordered freely. The order of mutator expressions has to be

preserved. A mutable and a mutator expression cannot be swapped. The compiler provides a way to

declare external primitives and specify their kind.

When compiling a piece of intermediate code, the compiler keeps a set of pending assignments of

a JavaScript expression to a JavaScript variable, together with the kind of each of these expressions.

When compiling a statement x = e, the JavaScript expression corresponding to expression e

is produced first. In doing so, any variable defined in the assignment set is replaced by the

corresponding expression (and the assignment is removed from the set). Then, if expression e is

a mutator, all the assignments corresponding to mutable or mutator expressions are emitted. If

expressions e is mutable, any assignment corresponding to a mutator expression is emitted (note

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14 J. VOUILLON AND V. BALAT

a

d

b c

(a) simple conditional

b c

a

d

(b) general shape

a

b

d

(c) with critical edge

Figure 11. Recognizing conditionals

b c

a

d

(a) before

b c

a

d

(b) after

Figure 12. Switch insertion

that there can be at most one). Finally, if the variable x is used only once, the current assignment is

added to the set of pending assignments. Otherwise, the assignment is directly emitted. When the

variable x is not used, only the code of the expression is emitted, not the assignment to the variable.

At the moment, all pending assignments are flushed before the compilation of a function closure.

The compiler could be more precise and flush just the assignments to variables occurring in the

closure. The pending assignments are also flushed before emitting any control statement.

4.2. Compiling the Control Flow Graph

The control flow graph has to be mapped to JavaScript control statements. The compiler uses for

statements for loops, and conditional and switch statements for other control flow graph edges. In

both cases, a crucial ingredient is the computation of the dominance frontier [10] of each block.

The dominance frontier of a block a is the set of blocks b such that the block a dominates one

predecessor of b (every path from the entry that reaches this predecessor has to pass through block

a), but not all of them.

The OCaml bytecode compiler always generates reducible control flow graphs: there are no cross

edges (edges that points to a block which is neither an ancestor nor a descendant of the current

block). Loops can be found by a depth first traversal: a block is the start of a loop if there exists a

back edge pointing to it. Loops are compiled into for statements:

label:for(;;){ (loop body) break;}

In the loop body, branching back to the beginning of the loop is performed by emitting the code

for passing arguments to the block at the top of the loop followed by a continue statement.

The argument passing must be performed by parallel variable renaming: for instance, when the

parameters are a pair of variables (a, b) and the arguments are the same pair in reverse order (b, a),
the content of the two variables must be swapped; it would be incorrect to first assign the contents

of b to a then the new contents of a to b. When loops are nested, a label is used to specify at the

beginning of which loop the execution should proceed. Blocks in the dominance frontier of the first

block of the loop are not part of the loop, but just after. If the flow of control reaches the end of the

loop body without encountering a backward edge, the execution should leave the loop. Hence the

break instruction at the end of the loop above.

We now explain how forward edges are handled. A recursive process is used, which compiles a

block and all the blocks it dominates. We illustrate this process on the graph in Figure 11(a). The

compilation starting at block a proceeds as follow. First, the instructions of the block are compiled.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 15

Then, the control instruction is handled. Here, there are two edges, hence a conditional statement is

used. With more than two edges, a switch statement is used. If there is a single edge (as for block b,

for instance), no code is produced at this point and the compilation process proceeds linearly right

after the already emitted statements (see just below). The argument passing code corresponding to

each edge is inserted in the corresponding branch of the conditional. Then, if the target block has

a single incoming edge, the block (and the blocks it dominates) is recursively processed. Thus, the

instructions of block b are inserted in the first branch of the conditional followed by the argument

passing code to block d, and similarly for the second branch of the conditional. However, the code

corresponding to the instructions of block d is, rightly, not inserted in any of the branches, as the

block has two incoming edges. Now that the conditional statement has been produced, the blocks

that are either on the dominance frontier of one of the branches or are the target of critical edges

coming from block a (that is, edges which are neither the only edges leaving their source block, nor

the only edges entering their destination block) are considered. (See Figure 11(c) for an example of

critical edge, from block a to block d). Here, block d is the only such a block. The compilation thus

proceeds recursively at this block. There can be no such block, for instance if block c ended with a

return instruction, rather than branching to block d. In this case, the compilation process stops here.

There can also be more than one such blocks, as shown in Figure 12(a). Such control graphs may

arise due to compilation of pattern matching and shortcut boolean operators (&& and ||). Then,

an intermediate block s is inserted (Figure 12(b)). A fresh variable x is used to indicate which

block ought to be executed next. The block s performs a switch on this variable and dispatches

to the adequate block (here, either block d or e). Jumping to block d from one of the branches of

the conditional is compiled as first performing the argument passing to this block and then setting

the variable x appropriately. The insertion of the intermediate block s is done on the fly. Indeed,

it cannot be performed at the intermediate code level, as its successor blocks have incompatible

parameters in general.

5. LANGUAGE SPECIFIC ISSUES

Deviations from the standard OCaml implementation. At the moment, integers are 32-bits,

rather than 31 or 63 bits with the standard OCaml implementation depending on the architecture.

Indeed, there is no implementation reason to lose one bit. The compiler could provide 31 bit integers

at a reasonable cost by masking appropriately the result of each integer operation. But we do not

think this choice will result in many compatibility issues. Programs for which the integer size

matters already deal with several sizes and usually use masking for that. For instance, the Random

module from the standard library, which implements pseudo-random number generators, works

perfectly well with our compiler.

The compiler performs self-tail call optimization, but not general tail call optimization. The

general case could be implemented using trampolines, but at a high cost. Indeed, implementing

properly tail call optimization when targeting a runtime with no tail call support was considered

both for Scala [11] (JVM) and Hop [12] (JavaScript), but was not implemented for any of these

languages. We hope JavaScript interpreters will eventually support tail call optimization in strict

mode [2], which does not allow stack inspection.

Integer operations. JavaScript only provides floating point arithmetic operations (using double-

precision 64-bit format IEEE 754 values). It performs logical operations by first converting the

operands to 32-bit integers (non-integer values are truncated toward zero). Addition and subtraction

on 32-bit integers can be implemented by performing the corresponding float operation and then

converting back to integer using a logical operation(x+y)|0. Multiplying two 32-bit integers can

require up to 62 significant bits (not including the sign), while floats only provide 53 significant bits.

Thus, a custom multiplication function is used in general. When one of the operands is statically

known to be small, thanks to the data flow analysis, a direct JavaScript multiplication is performed,

followed by a conversion to 32-bit integer. Division by zero raises an exception in OCaml, while

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16 J. VOUILLON AND V. BALAT

it returns Nan (not a number) in JavaScript. Thus, a custom division function is used when the

compiler cannot determine that the divisor is different from 0. The modulo operation is implemented

similarly.

Array bound checking. JavaScript returns the undefined value when an out-of-bound array

access is performed, rather than raising an exception. The compiler follows the OCaml semantics

and inserts bound checks by default.

Function invocation. The OCaml language encourages a curried style. From a semantic point

of view, OCaml functions always take a single argument. A function expecting more than one

argument is actually a function that takes a first argument and returns a function consuming the

remaining arguments. This style is inefficient if implemented naively. Thus, implementations of the

language use n-ary functions internally, with a suitable invocation strategy to simulate the expected

semantics.

The data flow analysis is used to optimize function calls. At each call point, the expected arities of

the possible closures is computed. If the arity is known and matches the number of arguments, the

function can be called directly. Otherwise, an intermediate function is called with the closure and

the arguments to perform the call appropriately. The compiler generates one such function for each

call-site arity. The function used when two arguments are provided is given below. In JavaScript,

the property f.length of a function f is its expected arity. If the arities correspond, which is

likely, the function is invoked directly. Otherwise, the invocation is performed by a generic function

caml_call_gen which handles currying.

function caml_call_2(f,x,y) {

return f.length==2?f(x,y):

caml_call_gen(f,[x,y]); }

Strings. JavaScript only provides immutable UTF-16 strings, while OCaml strings are mutable

arrays of 8-bit characters. Thus, strings are implemented as objects that act as proxies for three

possible representations: a UTF-16 JavaScript string, a string of bytes stored in a JavaScript string

(one byte per UTF-16 code unit), and a JavaScript array of bytes. The first representation is

used when converting to and from JavaScript. The second allows efficient string read access and

concatenation and can be converted efficiently to the first. The last is only used when the string is

modified. Conversions are automatically performed when needed.

Concurrency. JavaScript has no multi-threading support. Thus, the OCaml thread library cannot

be used. However, the Lwt cooperative thread library [13] works out of the box, without modification

nor recompilation.

6. INTEROPERABILITY WITH JAVASCRIPT

It is crucial to be able to access the browser APIs in a natural way. The moduleJs provides functions

for manipulating JavaScript values (strings, booleans, null and undefined values) from OCaml

and performing conversions between the two worlds. For instance, the parametric type ’a Js.opt

stands for values which are either null or of type ’a. A number of functions are available to

manipulate values of this type: testing whether a value is null, performing different operations

whether a value is null or not, . . .

JavaScript object types are encoded using OCaml object types. An abstract type constructor

Js.t with a phantom parameter is used to denotes JavaScript objects. The parameter describes

the methods and properties of the objects. For instance, consider the class type definition sketched

below (we show only some of the methods).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 17

0

1

2

3

4

5

almabench

bdd
boyer

boyer_no_exc

fft fib hamming

kb kb_no_exc

nucleic

quicksort

raytrace

soli
splay

takc
taku

E
x
e
c
u
ti
o
n
 t
im

e

11.95

ocamlopt ocamlc V8 Nitro JaegerMonkey

Figure 13. Relative execution time

class type canvasContext = object

method canvas : canvasElement t readonly_prop

method save : unit meth

method restore : unit meth

method scale : float -> float -> unit meth

method rotate : float -> unit meth

method lineWidth : float prop

...

end

Such a class type definition does not correspond to any actual OCaml object. It is just used to specify

a type abbreviation canvasContext that stands for an object type with the given methods. Then,

type canvasContext Js.t is the type used to denote JavaScript canvasContext objects.

Each method in the OCaml object type corresponds either to a property or a method of the JavaScript

object. We use type constructors with a phantom parameter to differentiate the different cases.

Constructor readonly_prop is used for read-only properties and constructor prop for read-

write properties. For instance, property canvas is read-only and contains a canvasElement

JavaScript object; property lineWidth contains a floating point number and can be modified.

Field scale is a method with two arguments of type float and that returns nothing. The result

type is marked by a parametric type meth. This delimits precisely the part of the type corresponding

to arguments and the part corresponding to the method return value, even when a function is

returned. (This is important, as JavaScript does not support currying.) Though JavaScript is untyped,

this scheme works well in practice. Indeed, browser APIs are specified using the Document Object

Model (DOM), which is a typed language-independent convention.

A Camlp4 syntax extension is used to perform method invocations and to access

object properties in a type safe way. For instance, a method invocation is written

e##m(e1,...,en), with the number of arguments made explicit by the tuple notation.

This method invocation expression is desugared into a call to an untyped primitive

caml_js_meth_call(e,"m",[|e1,...,en|]), with appropriate type constraints not

shown here. The array makes the number of arguments explicit. This primitive is recognized by

the compiler which generates a direct JavaScript method call. Object property access e##m and

update e##m <- e’ are also defined as syntax extension and are compiled in a similar way.

A naming trick is used to map several method names on the OCaml side to the same method in

JavaScript to deal with overloading (in particular, methods with optional parameters are common in

JavaScript): any leading underscore character is removed from the OCaml method name; then, the

underscore occurring last and whatever follows is also removed. Thus, names concat, _concat,

and concat_2 are all mapped to the same JavaScript name concat.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

18 J. VOUILLON AND V. BALAT

0

0.5

1

1.5

2

2.5

3

almabench

bdd
boyer

fft fib hamming

kb nucleic

quicksort

raytrace

soli
splay

takc
taku

boulderdash

canvas

cubes
minesweeper

planet

sudoku

js_of_ocaml

ocsigen_server

ocamlc

unison

S
iz

e

10.79 4.69 3.36 3.34 5.25

Source

Bytecode

Runtime

0

0.5

1

1.5

2

2.5

3

almabench

bdd
boyer

fft fib hamming

kb nucleic

quicksort

raytrace

soli
splay

takc
taku

boulderdash

canvas

cubes
minesweeper

planet

sudoku

js_of_ocaml

ocsigen_server

ocamlc

unison

S
iz

e

10.79 4.69 3.36 3.34 5.25

Generated code

Figure 14. Relative size of OCaml source programs and bytecode w.r.t. generated programs

7. CURRENT STATUS AND PERFORMANCE

Status. The compiler is publicly available†. It is currently about 6000 lines of OCaml. We believe

it is a solid implementation that can be used for real applications. Most of the OCaml standard

library is supported. A binding for a large part of the browser APIs, including manipulation of the

HTML DOM tree, is provided.

We have written a few sample demos that can be tried online. One of them is an OCaml toplevel

than runs fully on the browser. It includes both the OCaml compiler and the Js of ocaml, compiled

to JavaScript; commands are compiled on the browser to bytecode, then to Javascript, before

being executed. A second one is an interactive tree viewer, which can be used to browse a large

phylogenetic tree of animals, layed out on the hyperbolic plane. A third one is a graphic viewer with

both a GTK and Web user interface, (lot of code being shared between the two), which we use to

visualize the huge graphs of package dependencies in GNU/Linux distributions. A last one is a 3D

real-time animation of the Earth based on the HTML canvas element.

Performance. We tested the compiler with several programs, most of them taken from the

standard OCaml benchmarks, as well as two JavaScript tests rewritten in OCaml: splay from the

V8 benchmarking suite and raytrace from the Webkit benchmarking suite. We ran the generated

programs with the Google V8 (version 3.1.5), Apple Nitro (revision 79445 of the Subversion

repository of Webkit) and Mozilla JaegerMonkey (revision 62992 of the Mercurial repository)

JavaScript engines. All tests were performed on an Intel Core i7-870 platform running a 64 bit

Debian GNU/Linux operating system. Each program was run at least ten times. We report average

time. In each case, the measurement error is below 3% at 99% confidence, as estimated using

Students t-distribution.

The execution time of the code generated by our compiler is compared on Figure 13 with the

execution time of the same programs compiled with the OCaml native code compiler (ocamlopt)

and the OCaml bytecode compiler (ocamlc). The running times are normalized and we take

the performance of the Google V8 engine as reference. Overall, the JavaScript engines are faster

than the bytecode interpreter, V8 being the fastest. Exceptions are extremely expensive, especially

with Nitro: boyer and kb heavily uses exception; variants boyer no exc and kb no exc uses

option types rather than exceptions in most cases and are thus more competitive. Strings and 64-bit

integers are not natively supported in JavaScript. This explains the low performance with hamming

and splay. JaegerMonkey appears to be slower than other engines with simple recursive functions

(fib and takc). We were not able to measure its performance on the hamming and splay

benchmarks as the standalone JaegerMonkey engine fails with an “out of memory” error on these

benchmarks (though Firefox 4.0 is able to run them successfully).

Comparison with JavaScript programs. Making a fair comparison with handwritten JavaScript

programs is hard. We are unlikely to match the performance of heavily hand-tuned programs. On

†http://ocsigen.org/js_of_ocaml/

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 19

0

0.5

1

1.5

2

2.5

bdd
fft fib raytrace

splay

E
x
e
c
u
ti
o
n
 t
im

e

native JS (V8)

compiled to JS (V8)

Figure 15. Comparison of generated
code with handwritten JavaScript code

0
0.5

1
1.5

2
2.5

3
3.5

4

almabench

bdd
boyer

boyer_no_exc

m
kb kb_no_exc t

takc

E
�
e
�
�
��
�
�
��
�

e

5�5	 11.28 8.80

d
��
��

u���

N� ���� �����������u

Figure 16. Impact of array bound checking and function call
optimization

0

0.5

1

1.5

2

2.5

almabench

bdd
boyer

fft fib hamming

kb nucleic

quicksort

raytrace

soli
splay

takc
taku

boulderdash

canvas

cubes
minesweeper

planet

sudoku

js_of_ocaml

ocsigen_server

ocamlc

unison

S
iz

e

2.73 2.91 11��� 4��� 3��� ���� 4�44 4�4� ���4 ���� 3��� 4���� 11�31 ��1� 4�4� 13���

D�� !"# no inlini$% no compact code no dead code remo&al

Figure 17. Impact of optimizations on the size of generated code

the other hand, one may hope to match casually written JavaScript code. We hope the following

results will give an idea of where we stand, though they should be taken with a grain of salt.

We compared the performance of compiled programs and handwritten JavaScript versions of the

same programs: bdd, fft, fib, raytrace and splay (Figure 15). We translated the first three

programs from OCaml and the last two from JavaScript. In three cases, the generated program is

only a little bit slower than the native version. This tends to indicate that the generated code is quite

good. The JavaScript version of raytrace creates a lot of objects for vectors and colors. This is

very natural as it allows to name the vector components. The OCaml version uses records, which

are compiled to literal arrays. This appears to be much faster. The splay program performs quite a

lot of string operations. We are at a disadvantage here, as we cannot use the native JavaScript string

implementation.

Size of generated code. As mentioned already, it is important to produce compact code. The

relative size of the OCaml source code and of the bytecode, compared to the code produced by

the compiler, is shown in Figure 14. For the latter, we distinguish between generated code and

runtime. The runtime consists of handwritten JavaScript functions that correspond to C functions

in the bytecode interpreter. It is not optimized for space at the moment. We omitted benchmarks

that were too small to give significant results and added several concrete programs: O’Browser [14]

examples (minesweeper, sudoku and boulderdash), an ocamljs [15] example (canvas)

and some other small programs (planet, cubes). These programs make more use of external

libraries, which explains the large size of the bytecode compared to the source code. We also tested

the compiler on large OCaml programs: the OCaml bytecode compiler, the Ocsigen Web server, the

Unison file synchronizer and the compiler itself.

In all cases but one (boyer, that contains a large constant value), the generated code is smaller

than the bytecode. For large program, with little dead code, the generated code is about 30% smaller

than bytecode. It is much smaller for medium-sized programs as a large part of the included libraries

is dead code.

When comparing source code with compiled code, we should keep in mind that some of the

generated code comes from libraries, which are not included in the given source code size. We

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

20 J. VOUILLON AND V. BALAT

Program Time (s)

almabench 0.06

bdd 0.04

boulderdash 0.54

fib 0.02

ocamlc 9.81

ocsigen server 15.91

unison 3.82

Table I. Compilation times

believe it is also fairer not to take into account the size of runtime code, as this size is bounded and

become negligeable for large programs. With these caveats, the generated code is smaller than the

source code for most benchmarks and comparable for others. For medium-sized applications, it is

larger, as the code corresponding to libraries is not accounted for by the source size. Overall, the

compiler appears to produce consistently compact code.

Performance optimizations. We present in Figure 16 the impact on execution time (using the

V8 engine) of disabling the function call optimization and of disabling bound checks for array and

string accesses (option -unsafe of the OCaml compiler).

The function call optimization is very effective for programs performing a lot of function calls

(bdd, fib, quicksort, raytrace, takc, taku). Array bound checking has a large impact on

programs working on arrays (fft, quicksort, soli).

Code size optimizations. The code size impact of turning off inlining, dead code elimination or

compact expression generation (Section 4.1) is shown in Figure 17. We compare the size of the

generated code, runtime code omitted. As expected, dead code elimination is extremely effective on

medium-sized programs making use of libraries. Overall, the two other optimizations each yield a

code size reduction of about 5%. This is small but not negligible. The improvement is sometimes

larger with inlining as it can expose opportunities for dead code removal.

Compilation time. We report the time taken by our compiler to translate some bytecode programs

to JavaScript in Table I. Even large programs are compiled in less than thirty seconds.

Conclusion. Our benchmarks show that the compiler generates compact code with good

performance for most tested programs, even compared to handwritten JavaScript programs. By

using compiler options to disable some optimizations, we checked that our analyses were effective,

both with regard to performance and code size. Finally, we can see that modern implementations of

JavaScript are getting reasonably fast, as the performance achieved is comparable to those of OCaml

bytecode programs.

8. RELATED WORK

The compilation process from a low level language to a high level language has clear relationship

with decompilation [16, 17, 18]. In particular, one finds the same issues of recovering the control

flow and mapping it to high level constructions. However, while decompilation put the emphasis

on readability, we are rather interested in concise and fast code. In particular, basic techniques

are sufficient in our case. We are not interested in choosing informative names for variables, or in

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 21

detecting specific high-level constructions.

A growing number of compilers target JavaScript. We present the most interesting and relevant

ones. First, several other compilers for functional languages have been written: the Links

compiler [19], SMLtoJs [20], F# Web Tools [21], ocamljs [15], and Hop [22, 12]. Of these

compilers, only Hop, which compiles a dialect of Scheme, put the emphasis on performance and

is actively maintained at the moment. While we try to follow closely the behavior of the standard

OCaml, the ocamljs compiler takes a more pragmatic approach and attempt to map OCaml datatypes

(functions, strings, objects, . . .) into the corresponding JavaScript datatypes. Due to the semantics

differences, this can yield runtime failures which are not caught by the type system. Ocamljs

generates much slower and much larger code than our compiler. Programs run typically several

times slower. It appears that function calls are implemented in an inefficient way. The compiler does

no static analysis on the argument length of a function and thus, all function calls involve auxiliary

functions which manage currying. It is using trampolines to implement tail recursion properly.

The Google Web Toolkit (GWT) [6] was one of the first toolkit providing a compiler targeting

JavaScript and aiming for good performances. It makes it possible to write applications in Java

and run them on all browsers. We find it noteworthy that it only support Java 6 one year after the

release of Java 7. As a contrast, no change to the Js of ocaml compiler were necessary to support

OCaml 4.0, a new major release of the language: we only had to implement of few additional

runtime functions. Dart [23] is a language designed by Google that aims to become an alternative

to JavaScript on Web browsers. A lot of effort is currently being put on making the Dart compiler

generate efficient and compact JavaScript code.

Emscripten [24] is an LLVM-to-JavaScript compiler, taking as input the intermediate

representation of the LLVM compiler. It makes it possible to run C and C++ code on Web browsers.

The performances are quite impressive. Indeed, arithmetic operations and array accesses are

especially well optimized by current JavaScript engines, and Emscripten is able to take advantage

of that. However, a low-level memory model is used: basically, C programs manipulate an array of

integers and cannot directly access any other JavaScript value. As a consequence, some glue code

has to be written in JavaScript to access the browser APIs.

XMLVM [25, 26, 27, 28, 29] is a cross-compiler toolchain that takes as input Java or .Net

bytecode and can produce as output one of these bytecodes, JavaScript code, or Objective-C

code. This makes it possible to develop Android applications and cross-compile them to other

smartphones. At the moment, the compilation is implemented in a very straightforward way,

without much optimization. A Javascript bytecode file is first converted into an XML document

containing a textual representation of its contents. Then, Javascript code is generated by an XSL

stylesheet that replaces each Java bytecode instruction by a sequence of JavaScript instructions

performing the same operation.

Another approach for running bytecode programs on browsers is to use a bytecode interpreter

written in JavaScript. O’Browser [14] shows that this is indeed feasible, at least for short programs.

But the performance hit is high.

9. FUTURE WORK

The compiler was started as an experiment: when compiling OCaml bytecode to JavaScript, was it

possible to get acceptable performance as well as keep the size of the generated code moderate?

The result, as shown by the benchmarks, is well beyond our expectations. But there is always

room for improvement. In particular, there remains some low-hanging fruits regarding code size.

A better choice of variable names, taking into account the scope of variables, could yield a 10 to

15% improvement in code size. This requires a liveness analysis followed by graph coloring, as if

performing register allocation [30, 31].

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

22 J. VOUILLON AND V. BALAT

A natural application of the compiler is for multi-tier programming. We have extended the

Ocsigen Web programming framework [32] to provide a uniform framework where OCaml is used

both on the server and on Web browsers.

We are interested in reusing the front-end of the compiler to target other languages. Native code

could be generated through the LLVM compilation framework [33]. This would yield an alternate

native code compiler, more portable than the current one. Other possible targets include the Java

and .Net virtual machines, or the Dalvik virtual machine, to run OCaml programs on Android. A

difficulty with these targets is the generation of typed bytecode from untyped bytecode. Finally,

the compiler could also be made to output optimized OCaml bytecode. This would be especially

interesting for resource-constrained systems, such as microcontrollers.

A last possible direction would be to take a different source bytecode, such as the Java

bytecode or .NET Common Intermediate Language. Compilation of method invocation should be

straightforward. On the other hand, more complex analyses should be required for eliminating dead

code effectively, as the control flow is usually less explicit than in OCaml.

REFERENCES

1. Leroy X, Doligez D, Garrigue J, Vouillon J, Rémy D. The Objective Caml system. Software and documentation
available on the Web 2008. URL http://caml.inria.fr/.

2. E C M A International. ECMA-262: ECMAScript Language Specification. Third edn., ECMA (European
Association for Standardizing Information and Communication Systems): Geneva, Switzerland, 1999.

3. Lindholm T, Yellin F. Java Virtual Machine Specification. 2nd edn., Addison-Wesley Longman Publishing Co.,
Inc.: Boston, MA, USA, 1999.

4. Montelatici R, Chailloux E, Pagano B. Objective Caml on .NET: the OCamIL compiler and toplevel. 3rd
International Conference on .NET Technologies, 2005; 109–120. URL http://hal.archives-ouvertes.
fr/hal-00003784/en/.

5. Leroy X, Pessaux F. Type-based analysis of uncaught exceptions. ACM Trans. Program. Lang. Syst. March 2000;
22:340–377, doi:10.1145/349214.349230.

6. Google Inc. Google Web Toolkit 2006.
http://code.google.com/webtoolkit/.

7. Leroy X. The ZINC experiment: an economical implementation of the ML language. Technical report 117, INRIA
1990.

8. Appel AW. SSA is functional programming. SIGPLAN Not. April 1998; 33:17–20, doi:10.1145/278283.278285.
9. Aycock J, Horspool RN. Simple generation of static single-assignment form. CC ’00: Proceedings of the 9th

International Conference on Compiler Construction, Springer-Verlag: London, UK, 2000; 110–124.
10. Cooper KD, Harvey TJ, Kennedy K. A simple, fast dominance algorithm. Software Practice and Experience 2001;

4:1–10.
11. Schinz M, Odersky M. Tail call elimination on the Java virtual machine. Proceedings of the First Workshop on

Multi-Language Infrastructure and Interoperability, 2001.
12. Loitsch F, Serrano M. Hop client-side compilation. Trends in Functional Programming, Trends in Functional

Programming, vol. 8, Morazán MT (ed.), Intellect, UK/The University of Chicago Press, USA, 2008; 141–158.
13. Vouillon J. Lwt: a cooperative thread library. Workshop on ML, ACM, 2008; 3–12, doi:10.1145/1411304.1411307.
14. Canou B, Balat V, Chailloux E. O’browser: Objective Caml on browsers. ML, Sumii E (ed.), ACM, 2008; 69–78,

doi:10.1145/1411304.1411315.
15. Donham J. ocamljs 2007.

http://jaked.github.com/ocamljs/.
16. Cifuentes C. Reverse compilation techniques. PhD Thesis, Queensland University of Technology Jul 1994.
17. Miecznikowski J, Hendren LJ. Decompiling Java bytecode: Problems, traps and pitfalls. CC ’02: Proceedings of

the 11th International Conference on Compiler Construction, Springer-Verlag: London, UK, 2002; 111–127.
18. Miecznikowski J, Hendren L. Decompiling Java using staged encapsulation. WCRE ’01: Proceedings of the Eighth

Working Conference on Reverse Engineering (WCRE’01), IEEE Computer Society: Washington, DC, USA, 2001;
368.

19. Cooper E, Lindley S, Wadler P, Yallop J. Links: Web programming without tiers. FMCO, Lecture Notes in Computer
Science, vol. 4709, Springer, 2006; 266–296.

20. Elsman M. SMLtoJs: hosting a standard ML compiler in a web browser. Proceedings of the 1st ACM SIGPLAN
international workshop on Programming language and systems technologies for internet clients, PLASTIC ’11,
ACM: New York, NY, USA, 2011; 39–48, doi:10.1145/2093328.2093336. URL http://doi.acm.org/10.
1145/2093328.2093336.

21. Petr̆ı́c̆ek T, Syme D. F# Web tools: Rich client/server web applications in F# 2007. Unpublished draft.
22. Serrano M, Gallesio E, Loitsch F. Hop: a language for programming the Web 2.0. OOPSLA Companion, Tarr PL,

Cook WR (eds.), ACM, 2006; 975–985, doi:10.1145/1176617.1176756.
23. Google Inc. Dart 2011.

http://www.dartlang.org/.
24. Zakai A. Emscripten: an LLVM-to-JavaScript compiler. Proceedings of the ACM international conference

companion on Object oriented programming systems languages and applications companion, SPLASH ’11,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

FROM BYTECODE TO JAVASCRIPT 23

ACM: New York, NY, USA, 2011; 301–312, doi:10.1145/2048147.2048224. URL http://doi.acm.org/
10.1145/2048147.2048224.

25. Puder A. Cross-compiling Android applications to the iPhone. Proceedings of the 8th International Conference
on the Principles and Practice of Programming in Java, PPPJ ’10, ACM: New York, NY, USA, 2010; 69–77,
doi:10.1145/1852761.1852772. URL http://doi.acm.org/10.1145/1852761.1852772.

26. Puder A, Haeberling S, Todtenhoefer R. An MDA approach to byte code level cross-compilation. Proceedings of
the 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, SNPD ’08, IEEE Computer Society: Washington, DC, USA, 2008; 251–256, doi:
10.1109/SNPD.2008.109. URL http://dx.doi.org/10.1109/SNPD.2008.109.

27. Puder A. Byte code transformations using XSL stylesheets. Proceedings of the 2008 Ninth ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,
SNPD ’08, IEEE Computer Society: Washington, DC, USA, 2008; 563–568, doi:10.1109/SNPD.2008.164. URL
http://dx.doi.org/10.1109/SNPD.2008.164.

28. Puder A, Lee J. Towards an XML-based bytecode level transformation framework. Electron. Notes Theor. Comput.
Sci. Dec 2009; 253(5):97–111, doi:10.1016/j.entcs.2009.11.017. URL http://dx.doi.org/10.1016/j.
entcs.2009.11.017.

29. Puder A, Häberling S. Byte code level cross-compilation for developing Web applications. Sci. Comput. Program.
Mar 2009; 74(5-6):379–396, doi:10.1016/j.scico.2009.01.009. URL http://dx.doi.org/10.1016/j.
scico.2009.01.009.

30. Park J, Moon SM. Optimistic register coalescing. ACM Trans. Program. Lang. Syst. 2004; 26(4):735–765, doi:
10.1145/1011508.1011512.

31. George L, Appel AW. Iterated register coalescing. POPL, 1996; 208–218, doi:10.1145/237721.237777.
32. Balat V, Vouillon J, Yakobowski B. Experience report: Ocsigen, a Web programming framework. ICFP, ACM,

2009; 311–316, doi:10.1145/1596550.1596595.
33. Lattner C, Adve V. LLVM: A compilation framework for lifelong program analysis & transformation. Proceedings

of the 2004 International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, California, 2004.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

