
Solving equations in a language
with control operators

Stephane Le Roux, Pierre Lescanne

LIP, École Normale Supérieure de Lyon, Lyon, France

{Stephane.Le.Roux,Pierre.Lescanne}@ens-lyon.fr

1 Introduction

Thirty years ago, Huet designed an algorithm for higher-order unification in simply
typed λ-calculus [3, 4]. His algorithm was revisited at several occasions for instance by
Snyder [7] and Prehofer [6]. In the early 90’s, Parigot [5] designed the λµ-calculus, an
extension of the λ-calculus with continuations which offers a Curry-Howard correspon-
dence for the classical logic. Then another calculus with the same “logical” features was
introduced by Curien and Herbelin and called λµµ̃. Roughly speaking λµ and λµµ̃ are
λ-calculi with control operators and continuations. Here we address the question of
solving equations in those languages since it is as important in program manipulation
as is unification in λ-calculus. As a starting point we use the λµµ̃ with the terminology
introduced by Ghilezan and Lescanne [2]. At first glance, the non-determinism of that
calculus hinders us from defining a simple notion of equality, therefore we decided to
restrict our study to a confluent subcalculus which is associated with call by name. Its
grammar, reduction and typing rules are simpler and, above all, it is confluent. This
leads to a natural notion of equality by normalization. In this calculus, there is a natural
notion of extensional equivalence given by two reduction rules. The new calculus is
terminating and confluent.

In the second section, we present the calculus enriched with unknowns and con-
stants. We then define substitutions and equations. In a last section we propose a set of
rules for unification via transformations. First we give a simple general equation trans-
formation system GET which is easily proved correct, and then we give a bound equa-
tion transformation system BET which is obtained from GET by restriction (conditional
use of the transformation rules). BET should terminate (the proof is under way) leading
to completeness. This work is really preliminary and therefore incomplete. Moreover
it requires knowledge about λµ, λµµ̃ and others, therefore it can look a bit technical at
some place for someone not used to these calculi. We apologize to the reader for that,
but we hope to open an exciting field to unification.

2 Calculi

The λµµ̃-calculus was designed by Curien and Herbelin in [1]. As well known there
is no notion of unification without a good notion of equality. For this we focus on a
restricted version of λµµ̃, namely the version without µ̃ which we call λµ. λµ is still

large enough to simulate λ-calculus and to interpret à la Curry-Howard classical logic
through sequent calculus. Moreover

Lemma 1 λµ terminates and is confluent .

In the λ-calculus, beside the β-reduction rule, there is the η-contraction.

λx.Mx → M if x /∈ FV (M)

It captures the extensional equality. Indeed in the simply typed λ-calculus, M and λx.Mx
have the same type and in an appropriate context that provides all the “expected” argu-
ments λxn.(M xn) and M reduce to the same term:

(λxn.(M xn)) Pn →→β M Pn

In λµ we keep the extensional reduction ηµ introduced by Curien and Herbelin.
Those who know λµµ̃ may notice that there is less contexts to distinguish in λµ and
therefore the extensional equality is different. Two terms could now be considered as
equivalent in λµ whereas they are not in λµµ̃. That leads to introduce new contraction
rules. In order to define equational problems, we add constants and unknowns. The
grammar for λµ is as follows:

Definition 1 (Terms)

r ::= x | rc | R | λx.r | µα.c

e ::= α | ec | E | r • e

c ::= 〈r‖e〉

Λµ is the language associated with the above grammar. R and E are unknowns, rc and ec

are constants. Terms of form r are called CalleR, terms of the form e are called CalleE
and terms of the form 〈r‖e〉 are called Capsules. Λµ contains two kinds of bound vari-
ables, x-variables and α-variables. Notice the distinction we make between unknowns
and variables. Unknowns are there to be replaced by terms in substitutions to provide a
solution. Variables are usually bound, but they can be free in some contexts. Λµ0 ⊂ Λµ
is the set of closed terms i.e. variable free.

Definition 2 FV is the set of free variables and UK is the set of unknowns. An index
“a” on a meta-term means that the underlying term is atomic.

λx1.(λx2 . . .(λxn.r) . . .) will be written either λx1x2 . . .xn.r or λxn.r
r1 • (r2 • . . .• (rn • e) . . .) will be written either r1r2 . . .rn • e or rn • e

As usual, the notation f oon will be extensively used to denote n-tuples The reduc-
tion rules for the systems we call λµ (for the two first rules (λ) and (µ)) and λµη (for
the five rules) are as follow.

Definition 3 (Rules)

(λ) 〈λx.r‖r′ • e〉 −→ 〈r[x← r′]‖e〉
(µ) 〈µα.c‖e〉 −→ c[α← e]
(ηµ) µα〈r‖α〉 −→ r if α /∈ FV (r)
(ηλµ) λx.µα.c −→ µα′.c[x•α← α′] with α′ /∈ FV (c) and x,α /∈ c[x•α← α′]
(γ) 〈λxnµβ.c‖α〉 −→ 〈λxnµβc[α← xn •β]‖α〉 if α ∈ FV (c)

We do not display the typing rules (see [1]).

3 Equations

As in any theory (think about differential equations) before solving equations one put
them in canonical forms. Like λ-calculus, this role in λµ is plaid by η-long normal
forms (ηln f). The η-long normal form of a term t is η convertible to t, but every atomic
calleR of t is saturated by arguments according to its types and every atomic calleE of t
is saturated by adding as many λ-abstractions (i.e. calleRs) as the corresponding calleR
in the capsule expects.

Due to lack of space (and time!), we do not tell in this abstract how to compute
η-long normal forms, but we give some of its properties:

Lemma 2 For all terms s and t such that s oooo

λµη
// // t, we have η(s) = η(t).

For all term t we have η(t)
∗
→η t ↓λµη.

η is idempotent, i.e. η(η(t)) = η(t).

Lemma 3 (Surface structure of an η-long normal form) η-long normal forms are

– CalleR: λxn.µα.c where τ(α) = τ is a basic type and c ∈ ηln f .

– CalleE: rn • ea with ri ηln f .

– Capsules: 〈ra‖rn • ea〉 with rn • ea ∈ ηln f or 〈λxn.µα.c‖ea〉 with λxn.µα.c ∈ ηln f .

Definition 4 (Substitution) A substitution is a mapping θ : UK→ Λµ0. We call D(θ)
the support of θ (where θ is not the identity), and I(θ) the set of the unknowns brought
by the image of the support.

Substitution are extended as maps from Λµ to Λµ as usual.

Definition 5 Let W ⊆UK.
We say that two substitutions θ and σ are λµη- equal over W iff ∀X ∈ W one has
θ(X) oooo

λµη
// // σ(X). We then write θ =λµη σ [W].

We say that σ is λµη-more general than θ over W iff there exists another substitution ρ
such that (∀X ∈W) θ(X) oooo

λµη
// // ρ◦σ(X). We then write σ≤λµη θ [W].

Lemma 4 If θ be a substitution and u,v two λµη-convertible terms, then θ(u) oooo

λµη
// // θ(v).

Definition 6 (Normalized substitutions) Let θ be a substitution. The normalized sub-
stitution associated with θ is X 7→ X if θ(X) =λµη X and X 7→ η◦θ(X) otherwise.

Lemma 5 If t is an ηln f and θ is a normalized substitution, then θ(t) ↓λµ is an ηln f .

An equational system is a multi-set of pairs {c ?
c′} {r

?
r′} or {e ?

e′} of
capsules, calleR or calleE. Solving this system means finding a substitution that unifies
all its equations. We write U(S) the set of solutions of S.

Definition 7 (Solved form) An unknown X is in solved form in a system S if it appears

once and only once in S, in the form {X
?

t}.

Lemma 6 Let S and S′ be two equational systems. If S =λµη S′ then U(S) = U(S′).

Thanks to the previous lemma, from now on we consider only systems whose equa-
tions have members that are atomic or ηln f .

4 Solving

For didactic purpose, we design first a general equation transformation system (GET)
which is not meant to be implemented since it leads to obvious dead ends, cycles and
divergences. There are three kinds of rules: decomposition, elimination and addition
rule.

CD Capsule decomposition
ED CalleE decomposition
RD CalleR decomposition
UE Unknown elimination
EE Equation elimination
EA Equation addition

CD {〈r‖e〉
?
〈r′‖e′〉}∪S⇒ {r

?
r′, e

?
e′}∪S

ED {r • e
?

r′ • e′}∪S⇒ {r
?

r′, e
?

e′}∪S

RD {λxnµα.c
? λxnµα.c′}∪S⇒ {c

?
c′}∪S

UE {X
?

t}∪S⇒ {X
?

t}∪ (S[X← t] ↓λµ)

EE {t
?

t}∪S⇒ S

EA S⇒ {t
?

t ′}∪S

Lemma 7 The system GET is correct, i.e. if S⇒GET S′ and θ ∈U(S′) then θ ∈U(S)

We first restrict the scope where we seek for solutions.

Lemma 8 Let S be an equational system and θ ∈U(S), then there exists a normalized
substitution σ such that:

1. D(σ)⊂UK(S) and I(σ)∩ (UK(S)∪D(σ)) = /0.
2. σ ∈U(S).
3. σ≤λµη θ[UK(S)] and θ≤λµη σ[UK(S)].

We call such a substitution a standard solution. The lemma says that we only need to
seek for standard solutions: we can get the others afterwards by a normalized renaming.

As we have already mentioned, the system GET is far too general. A system that
prevents non-termination is obtained by restricting applications of the rules. Especially
(EA) is changed into seven so-called committing rules which are combination of EA
with another. As in the higher-order unification in the λ-calculus, equations added by

EA are of the form {X ?
t} where t is a term with a rigid (i.e. not unknown) surface

and only unknowns below that surface. t is called a partial commitment for the un-
known X because it commits only for the surface and postpones questions like “what’s
below?”. Of course, commitment are chosen as ηln f and the new unknowns introduced
by the commitment are fresh hence outside UK(S). There are two rules for calleE com-
mitments (a calleE unknown can be instantiate either with an atom or with a compound
calleE) and five rules for calleR commitments. We give one of each as examples:

PECc(Partial commitment for compound calleE)

{〈λx.r‖E〉
?

c}∪S
⇓

{E
? η(R′)•E ′}∪ ({〈λx.r‖E〉

?
c}∪S)[E← η(R′)•E ′] ↓λµ

PRCi,p(Partial commitment for imitation-projection calleR)

{〈R‖rn • ea〉
?
〈ra‖λzpmµβ.cm • ea〉}∪S
⇓

{R
?

ti,p(n,ra,Rm)}∪

{(f (zpm ,β,rn,ea,Rm)
?

cm}∪S)[R← ti,p(n,ra,Rm)] ↓λµ

where
ti,p(n,ra,Rm) = λxn.µγ.〈ra‖g(pm,xn,γ,Rm).γ〉

g(p,xn,γ,R) = λzp.µβ. f (zp,β,xn,γ,R)

f (zp,β,xn,γ,R) = 〈R‖λx.µα.〈x‖zp •β〉 •λyknµε.〈xn‖ykn • ε〉• γ〉

5 Conclusion

The new rules are derived from a correct system, so correctness is preserved. The proof
of termination is under way and from it we expect completeness. Currently we build
its proof on a three-stage lexicographic order, slightly more complex than this of λ-
calculus.

References

1. Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings of the
5 th ACM SIGPLAN International Conference on Functional Programming (ICFP’00), pages
233–243. ACM, 2000.

2. S. Ghilezan and P. Lescanne. Classical proofs and typed processes: intersection types and
strong normalization. In TYPES 03 workshop, volume 3085 of Lecture Notes in Computer
Science. Springer-Verlag, 2004.

3. G. Huet. A unification algorithm for typed lambda calculus. Theoretical Computer Science,
1(1):27–57, 1975.

4. G. Huet. Résolution d’équations dans les langages d’ordre 1,2, ...,ω. Thèse de Doctorat
d’Etat, Université de Paris 7 (France), 1976.

5. M. Parigot. An algorithmic interpretation of classical natural deduction. In Proc. of Int. Conf.
on Logic Programming and Automated Reasoning, LPAR’92, volume 624 of Lecture Notes in
Computer Science, pages 190–201. Springer-Verlag, 1992.

6. C. Prehofer. Solving Higher-Order Equations From Logic to Programming. Progress in The-
oretical Computer Science. Birkhäuser, 1997.

7. Wayne Snyder. A proof theory for general unification, volume 11 of Progress in computer
science and applied logic. Birkhäuser, 1991.

