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Abstract. A general critical pair theory is given for rewriting many sorted terms with overloaded
operations modulo equations. A main notion is sunification, which yields a set of scritical pairs,
such that a set of rules is locally confluent iff they all converge. We prove a sufficient condition for
overlaps to work instead of sunification, show that complete sunifier sets always exist, and are finite
in important special cases. We also sketch a generalization based on category theory, for rewriting in
free objects, e.g., algebras with additional structure, such as many sorts, ordered sorts, equationally
defined subsorts, or continuity.

1 Introduction

This paper generalizes the Knuth-Bendix [20] critical pair tradition, using “sunifier” and “scritical pair”
notions! partly inspired by cognitive linguistics blending [8] and its mathematical formulation in [10].
We show that scritical pair sets always exist, give a separation condition that often reduces them, and
treat important special cases, including C and AC. Section 1.1 briefly reviews some closely related work,
Section 2 gives an algebraic review of basic term rewriting, Section 3 introduces sunification, and Section
4 gives a sufficient condition for sunification to be overlap. Section 5 generalizes to terms in free objects,
which is needed to encompass rewriting in recent algebraic languages. For example, OBJ3 [17] and BOBJ
[15] use order sorted rewriting modulo A/C/1? operations; CafeOBJ [7] and Maude [5] use rewriting over
membership equational modulo A/C/1; and CASL [23] uses rewriting in many sorted partial algebras.
Other applications, e.g., programming language semantics, use algebras with metric or topological struc-
ture, or subsorts defined by conditions. Section 6 gives some conclusions and discusses future work. Many
proofs are omitted or abbreviated in this version.
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1.1 Some Related work

A Dbasic limitation of the original Knuth-Bendix [20] approach is its failure to handle permutative equations
like commutativity, since it orients equations for use as rewrite rules; this failure inspired much subsequent
work. Results of Huet [18] assume rules in A are left linear and equations in B are balanced (i.e., have
the same variables in both sides); also confluence here is not confluence of = 4,p, and critical pairs are
obtained by overlapping rules with one another and with equations in B. Peterson and Stickel [24] restrict
to balanced, linear equations; their “variable extension” notion resembles our sunifier notion, but their
solution to the problem that every reduction has infinitely many variable extensions is restricting to
reductions compatible with the equations. Jouannaud and Kirchner [19] generalize the compatibility of
[24], and their critical pair algorithm assumes finite complete unification and finite equivalence classes.
All these classic papers treat unsorted terms.

Prior categorical formulations of term rewriting have used 2-categories, sesqui-categories, and monads,
but it seems fair to say, as in [21], that this has neither had great impact nor solved significant open

! The letter “s” abbreviates “super,” from our use of a superterm to generalize the usual notions, but we use the
contractions to avoid pretention.
2 This indicates any subset of associative, commutative, and identity laws.



problems; it has been a search for the right formulation. While we do not claim success, we are encouraged
that our formulation is a minimal weakening of Diaconescu’s successful categorical generalization of
equational logic [6,11], and by our unified treatment of special cases.

2 Term Rewriting

To introduce algebraic concepts and notations needed later, we give an algebraic treatment of MSO term
rewriting, which is many sorted term rewriting where operation symbols may be overloaded. Many sorted
rewriting is needed for many computer science applications [13,12]; overloading is less essential, but very
helpful for readability in applicatons. Section 2.1 shows that the obvious generalization of the critical pair
theorem does not hold for rewriting modulo equations.

Let S be a set whose elements are called sorts. The set of finite sequences of sorts is denoted S*. An
S-sorted signature X is an indexed family of sets X, , for w € S* and s € S. The elements of ¥, ,
are called operation symbols of sort s, arity w, and rank (w, s). An operation with empty arity is
a constant. The S-sorted set of ground X-terms is denoted T'x; and has a natural Y-algebra structure
with operation symbols interpreted as constructors. We assume a countable set {2 of variable symbols,
viewed as a signature of constants disjoint from X. If X is a set of variables (i.e., a subsignature of (2),
then the set of X-terms with variables in X is denoted Tx(X); it is the free X-algebra generated by
X, characterized by the universal property that for any X-algebra M and S-sorted function f: X - M
there is a unique X-homomorphic extension f: T (X) — M. For t € Tx(X), let var(t) denote the least
Y C X such that t € T's(Y).

A substitution is an S-sorted map 6: X — Tx(Y) for some signatures of constants X,Y. The X-
homomorphic extension of § to 8: Tx(X) — Tx(Y) may also be denoted 6, and #(t) may be written 6t.
Iff,: X - Tx(Y)and 6,: Y — Tx(Z) are two substitutions, then their composition 6;; 6, is denoted
01;6>. An n-ary context for n > 1is a term in Ty (X U Z) where Z = {21, ..., 2, } with 21, ..., 2z, “fresh”
variables (i.e., not in X); this may be denoted 7[z1]...[zn] Or Y[21, ..., 2n], Or just v when no confusion may
arise. A unary context, or just context, is a term in T (X U {z}), denoted ~[z]; the notation - may also
be used for fresh variables. A binary context may be denoted 7[z1, 22] or ¥[z1][22] or v[][-]. The result
of substituting a term ¢ for - in v[-] is denoted 7[t]. A subterm of ¢t € Tx(X) is t' € Tx(X) such that
t = 4[t'] for some context ; we write t' € t. If : X — Tx(Y) is a substitution and v € Tx(X U Z) is an
n-ary context, then 6 extends to §: X UZ — Tx(Y U Z) by mapping each z € Z to itself, so that 6(v)
is again an n-ary context.

A Y-equation is a pair of terms ¢1,t5 in T's;(X), written (VX) ¢1 = t2; the need for declaring variables
in equations for many sorted deduction is shown in [13]. A Y-rewrite rule is a X-equation (VX) t; = ¢,
with var(ts) C var(t;); we can omit (VX) by assuming X = var(t;). A (many sorted) term rewriting
system (or TRS) is a set of X-rewrite rules. The rewriting relation = 4 of a TRS A is as usual (the
special case of Section 2.1 where the set B of equations is empty). Termination, confluence, and local
confluence are as usual, from the abstract rewrite system (ARS) of the rewriting relation. Two terms
overlap iff one unifies with a subterm of the other, and the subterm is not a variable; if the two terms are
equal, the subterm must be strict. More general overlap, most general overlap, and critical pair
are again special cases of Section 2.1 where B = ). A leisurely algebraic exposition of MSO rewriting
is in [12], and an exposition of basic unsorted rewriting in [1]. Here is the (MSO version of the) classic
Knuth-Bendix result:

Theorem 1. A TRS is locally confluent iff all its critical pairs converge.



2.1 Term Rewriting Modulo Equations

If B is a set of Y-equations, then t;,ty € Tx(X) are equivalent modulo B, denoted t; ~p to, iff the
corresponding Y-equation follows from equations in B by equational deduction; ~p is a X-congruence
relation. An equation is balanced iff its two sides have the same variables, and is linear iff each variable
occurs at most once on each side. Two n-ary contexts v,~' are equivalent modulo B (written v ~p v')
iff the terms 7[z1, ..., 2n] and v'[21, ..., 2,] are equivalent modulo B. A many sorted term rewriting
system modulo equations (MTRS) is (X, A, B) for X a sorted signature, A a set of X-rewrite rules,
and B a set of X-equations. If ¢;,ts are Y-terms, then t; rewrites to t with A modulo B iff there are
1,15 such that t] =4 t5, t; ~p t) and ty ~p t;. The rewriting relation modulo B is denoted = 4,5

and its reflexive transitive closure is denoted = 4 /B- Terms t,t' converge, indicated t | 4/p t', iff they
can be rewritten with A modulo B to a common term.

Let Tx:, g(X) denote the quotient Tsyx /~y; it is the free (X, B)-algebra generated by X, character-
ized by the property that for any (X, B)-algebra M and S-sorted function f: X — M there is a unique
Y-homomorphic extension f: Ts g(X) — M. We will write [t]p (or just [¢] if confusion is unlikely) for
the B-class of a Y-term t. The class rewriting relation =>[4,p is defined for ¢1,c2 € Tx B(X), by
c1 =/ 2 iff t1 = 4/p ta2 for some 1 in ¢; and t3 in c2; we may omit subscripts A/B and [A/B] if they
are clear from context. Although it is in general inefficient or even impossible to implement directly, we
consider class rewriting the “gold standard” semantics for concepts in term rewriting modulo equations.

A class substitution is §: X — Tx p(Y); its homomorphic extension 6: Tx; p(X) — Tx,5(Y) may
also be denoted 6. The composition of 6;: X — Tx g(Y) with 62: ¥ — Tx 5(2) is 61;6,, denoted
01;02. A class term ¢ in Ts; g(X) can be viewed as a class substitution ¢: {w} — T g(X) for some
variable w. An n-ary class context for n > 1 is a class term in T g(X U Z) where Z = {z1,..., 25}
contains fresh variables; terms representing class contexts may have multiple occurrences of some z;. If
0: X - Tx g(Y) is a class substitution and v € T's g(X U Z) is an n-ary class context, then 8 extends
to0: T, (X UZ) — Ty g(Y UZ) by mapping each [z;] to itself, so that §(vy) is also an n-ary context.

If v € Ty p(X U Z) where Z = {z1,...,2}, and ¢; € Ty g(Y) for i = 1,...,n, then v[¢y]...[c,] or
vlet, ---, ¢n] denotes the class term ac, .. ., (7) where ac,,. .. X UZ — Ty g(X UY) is the identity on
X and a,....,c, (#i) = ¢i. A subterm modulo B of t € T;(X) is t' € Tx(X) that is a subterm of some
term equivalent to ¢; we may write t' <p t. Also, ¢’ is a class subterm of ¢ iff ¢ = 7[¢] for some class
context vy, written ¢’ < ¢. Then:

Lemma 1. The relation <p is reflexive and transitive. Also t Kp t' iff [t] < [t'], for t,t' € Tx(X).
Definition 1. Two terms overlap modulo B iff one unifies modulo B with a subterm modulo B of the
other, and the subterm is not just a variable. Thus rewrite rules with leftsides t,t' overlap modulo B
iff for some substitution 8 and term v[to] where ty is not just a variable, t ~p [to] and 0(ty) ~p 6(¢t');
the substitution 0 is called the (modulo B) overlap of t,t' at the subterm (modulo B) to of t. The pair
of terms obtained by rewriting 6(t) with A modulo B using the two rules is called the critical pair of
the overlap. A critical pair is said to converge iff its two terms converge.

Note that this definition of overlap is symmetric with respect to the two rules, and that any unifier is
an overlap. The following shows that, unlike term rewriting modulo B = (, when the rules coincide, the
subterm should not be required to be strict:

Example 1 Let X contain constants a,b and binary operations +, %, let B consist of the commutative
law for +, and let A consist of just  + y — x xy. Then a + b rewrites with A modulo B to both a x b
and b x a. Hence this rule should be considered self-overlapping, with (a * b,b* a) a critical pair. O
Lemma 2. If 0 is an overlap of t1,t> at a subterm (modulo B) of to then 0t; <p 0t2.

The converse is not true. For example, let B contain associativity and commutativity and let a, b, c be
constants. Consider the terms ¢t = a + x,t2 = b + y and the substitution 8z = b, 8y = a + c¢. Then
0t1 <p 6ty but § is not an overlap.



Definition 2. Given modulo B overlaps 6,0' of t,t' at subterms modulo B to,t, of t such that t ~p
Y[to] =B Y'[ts], ¥ ~B ' and ty ~p t;, we say that 6 is more general than (or subsumes) §' iff ¢’ is
a substitution instance of 0, i.e., iff there is a substitution p such that 0' ~pg 0;p. A modulo B overlap 0
of t,t' at a subterm modulo B of t is most general iff it is more general than any modulo B overlap of
t,t' at the same subterm modulo B of t. An MTRS has most general overlaps modulo B iff whenever
two terms t,t' overlap modulo B at a subterm of t, there is a most general overlap modulo B for t,t' at
the same subterm (modulo B).

Lemma 3. Let 6,6 be two overlaps modulo B of rules £ — r,0' — r' at subterms £y, ¥t of £, such that '
s more general than 6. If the critical pair of ' is convergent then the critical pair of 8 is also convergent.

If an MTRS has most general overlaps, then we need only consider critical pairs corresponding to
most general overlaps. Most general overlaps modulo B do not always exist, but one can look instead for
complete sets of overlaps and consider only the corresponding critical pairs. Complete sets of overlaps
always exist, though they might be infinite (at most countable). However, minimal complete sets of
overlaps do not always exist. If B consists of associative and idempotent laws for an operation, then
minimal complete sets of overlaps need not exist, because minimal complete sets of unifiers modulo
AT do not always exist. When B contains only associativity, finite complete sets of overlaps need not
exist, since unification modulo associativity is infinitary, in that there exist terms with no finite minimal
complete set of unifiers (e.g., [3]). Because unification modulo commutativity is finitary [3], the following
implies that finite complete sets of overlaps modulo commutativity always exist:

Proposition 1. If equivalence classes modulo B are finite then finite complete sets of unifiers modulo B
exist iff finite complete sets of overlaps modulo B exist.

An MTRS is locally confluent iff whenever t = 4 /B 1 and t = A/B t2, then ¢; and ¢y converge.
Translating Theorem 1 to MTRS’s gives the following conjecture:

An MTRS is locally confluent iff all its critical pairs converge.

The following shows the “if” part is false, which is why we generalize overlap and critical pair:
Example 2 Let X contain a binary operation + and constants a, b, let B contain only the associativity
law for +, and let A = {a +b — b, b+ a — a}. Then there are no critical pairs because A is non-
overlapping, but the MTRS (X, B, A) is not locally confluent because a + b + a rewrites with A modulo
B both to a and to a + a, which are not equivalent modulo B. [

3 Sunification

Definition 3. A sunifier (or superunifier) of t1,t2 € Tx(X) is (0,u1,us,t) where §: X — Tx(Y) is
o substitution, t € Tx(Y), and u,u2 € Tx (Y U{2}) are contexts such that ui[6(t1)] ~p u2[0(t2)] ~5 t;
we call t the term of the sunifier. We may use notations t1ta, g ouyugt or just & for (6,u1,uz,t).

Overlap is the special case where one of g, uy is the identity context (u[z] = z), and unification is the
special case where both are the identity. Unlike overlap, sunification treats t;,ts the same way. If 6 is an
overlap of t1, ¢ty at subterm to of ¢5, then (0,6(u), z,6(t2)) is a sunifier of ¢1,t2, where u is the context of
to in the term equivalent to to, called the sunifier corresponding to the overlap 6.

Definition 4. Let (¥, A, B) be an MTRS with £; — r1,€5 — 72 rules in A (having disjoint variables),
and let (0,u1,u2,t) be a sunifier of {1,¢>. Then t rewrites with A modulo B to both p; = u[0r1] and
D2 = us[fra], and {(p1, p2) is called its associated scritical (or supercritical) pair. A scritical pair
(p1, p2) converges iff p1 La/B P2



A simple criterion for a scritical pair to converge is that p; and ps are equivalent modulo B; another
is that ¢ — r; applies to p and ¢ — ro applies to p; and some result of applying ¢ — 71 to ps is
equivalent to some result of applying 2 — 72 to p;. In particular, if { = (0,v1,72,t) is a sunifier of
41,45 and there exists some binary context -y such that v [z] ~p v[2][042] and v2[z] ~p Y[8¢1][#] then the
scritical pair of { is convergent.

Proposition 2. If $ = (0,71,72,t) is a sunifier of £1,0s such that 04y is a subterm modulo B of 6z for
some variable x in £y then the scritical pair of { is convergent.

Example 3 Let X have one sort, constants a, b, ¢ and binary operation +, let B consist of associativity
for 4+, and consider terms t; = a +x and t2 = b+ y. There is a sunifer of ¢;,ty having term ¢t = a + b+ y,
substitution § = (z — b, y — y), and contexts u1[z] = z+y, uz[z] = a+ z, since u;[0(¢;)] = t for i = 1, 2.
Another sunifer of t1,t; has term ' = a + b + ¢ + a, substitution ' = (z — b, y — ¢), and contexts
ui[z] = 2+ c+a, uh[z] =a+ 2z +aq, since uj[f'(t;)] = ¢ for i =1,2. 0

We want to use as few sunifiers as possible in computing scritical pairs, and one way to reduce the set of
sunifiers is to eliminate those that are less general than others, in the following sense:

Definition 5. A sunifier (6,u1,us,t) of t1,t2 subsumes another (6, u},ul,t") iff there exist a substitu-
tion p and context u such that §' ~p 6;p and u}[] ~B u[p(u;[-])] for i = 1,2. We also say (', u},ub,t")
is less general than (0,u1,us,t). If u is not the identity context then (6,uy,us,t) strictly subsumes
(0", ui, up, t').

This definition implies that ¢’ ~p u[pt]. Subsumption is reflexive and transitive but not total. Intuitively,
the subsumed sunifier may be thought of as “larger,” in both its substitution and its term; the substitution
is larger in that some variables are replaced by terms, and the term is larger in being a superterm. If
(0,u1,u2,t) sunifies t1,t2 and t is a subterm of ¢, then (8,u},u},t') also sunifies ¢1,%2, and is subsumed
by (0, u1,us,t), where uj[2] = ufu;[2]] for u a context such that t' ~p u[t].

Proposition 3. The convergence of the scritical pair obtained from a sunifier that is subsumed by a
second sunifier is implied by the convergence of the scritical pair obtained from the subsuming sunifier.

The following can eliminate some sunifiers that only yield convergent scritical pairs:

Definition 6. Terms t1,t3 € Tx(X) are separated (modulo B) in a term t € Tx(X) iff t1,t2 are
subterms modulo B of t and there is a binary context v € Tx;(X U {21, 22}) such that t ~p Y[t1,t2]. 4
sunifier (0,u1,u2,t) of t1,t2 is a separated sunifier iff 0(t1),0(t2) are separated in t.

If B is such that no term is equivalent to a proper subterm, then the sunifier corresponding to an overlap
is not separated.

Example 4 Continuing Example 3, note that both sunifiers (6, u1, uz,t) and (', u},u),t") of t1,t, are
not separated, since there is no binary context u such that ¢ = u[ft;,6t2] or t' = u[0't1,6't2]. O

Example 5 Continuing Example 2, the terms a + b and b + a admit sunifiers a + b+ a and b+ a + b,
but neither is a subterm of the other, so neither subsumes the other. Thus most general sunifiers do not
necessarily exist. [

This motivates the following:

Definition 7. A set I of [unseparated] sunifiers of terms t1,t2 is complete iff every [unseparated] suni-
fier of t1,t2 is subsumed by one in I. A complete set of [unseparated] sunifiers of t1,t2 is minimal iff no
proper subset is also complete.



Proposition 4. Complete [unseparated] sunifier sets always exist, and are at most countable (though the
unseparated ones may be empty), and minimal complete [unseparated] sunifier sets exist whenever finite
[unseparated] complete sunifier sets ezist.

We now give class versions of the concepts introduced above:

Definition 8. A sunifier (or superunifier) of c¢;,co € Tx g(Y) is (8,u1,u2,c) with ¢ € Tx p(X),
u,us € T p(X U{z}) and 0: Y — Tx p(X) such that ¢ = u1[0(c1)] = u2[b(c2)]; ¢ is the term of
the sunifier. Class terms c1,¢2 € T, g(Y) are separated in ¢ € Ts; g(X) iff there exist a binary class
context vy and class substitution §: Y — Tx g(X) such that c = y[0(c1),6(c2)]. A separated sunifier of
c1,¢9 48 (0,u1,us,c) such that 6(c1),0(c2) are separated in c. The class version of subsumption replaces
terms with class terms and equality with class equivalence in Definition 5.

Proposition 5. For t1,ts € Tx(Y), t € Tx(X) and §: Y — Tx(X), then (6,71,72,t) is a sunifier of
t1, ta iff ([6], [n], 2], [t]) is a sunifier of [ti1],[t2], and Ot1,0ts are unseparated in t iff [0][t1],[0][t2] are
unseparated in [t].

Thus by Proposition 3, if a complete (preferably minimal) set of sunifiers exists, it suffices to use only
the scritical pairs corresponding to these sunifiers. We want the same for unseparated sunifiers, but the
following shows there are B such that separated sunifiers generate non-convergent scritical pairs:

Example 6 Let X be the one sorted signature with unary function symbols f, g, 4, binary function symbol
h, and constants a, b, c. Let B contain equations f(i(a)) = g(i(b)) = h(i(a),i(b)), and let A contain rules
i(a) — a and i(b) — c¢. Then there are no unseparated sunifiers of i(a) and ¢(b), and thus no unseparated
scritical pairs. But this system is not confluent modulo B. O

In some cases all scritical pairs of separated sunifiers are convergent.

Definition 9. A minimal sunifier is one that is minimal with respect to the strict subsumption relation
(i.e., there is no other sunifier that strictly subsumes it.)

Proposition 6. If B consists of A/C laws and { = (8,71,72,t) is a minimal separated sunifier, then its
scritical pair is convergent.

Proof Let the leftsides be l1,l5. Then by definition there is a binary context v such that v,[0l;] ~p
v2[0l2] ~pB [011][0l2]. The AC laws require that the top operator is the same in each of 1 [8l1], y2[0l2], Y[011][012].
Assume first that the top operator is an m-ary operator f not in the signature of B, for some m > 1.
Then v;[0l:] = f(t1,...,t},) for some terms t}, with i = 1,2 and 1 < j < m such that t} ~p t3 for every
j- Furthermore, there exist contexts +;,7v4 and positions j, k such that t; = 4][0/1] and ¢ = ~5[6l5]. If j
and k are distinct, then clearly the scritical pair of ¢ is convergent. Otherwise, i [l1] ~p 75[0l2]. But
this means (0,1, v9,71[0l1]) is a sunifier of l1,[5 that strictly subsumes <.
Assume now that the top operator + is binary and associative but not commutative. Then ~;[0;] ~p
th +...+th, and v[011][6ls] ~p t} # for-bdthe m > 1 and terms ¢}, with i = 1,2,3and 1 < j <m
such that tj ~p t; ~p tJ for every j and the top operator in each ¢} is not +. Furthermore, in each
of the 3 groups {t} | 1 < j < m} either there is a term with 6l; as subterm or 6l; is equivalent to the
sum of a consecutive subset of the terms tj-, 7 = 1,...,m. The same is true for 6l in place of 6. If
the terms involved with the occurrence of 6l are disjoint from the terms involved with the occurrence
of 8l, then the scritical pair of ¢ is convergent. Suppose the opposite holds. Since in the third group the
terms involved with the specified occurrence of l; are disjoint from the terms involved with the specified
occurrence of 0l,, it follows that in the first group there is an additional occurrence of 6l; or 6ly (or
both), which is (are) disjoint from the specified occurrence of 6l;. Similarly, in the second group there is



an additional occurrence of 0l, or, respectively, of 812 (or both), which is (are) disjoint from the specified
occurrence of 8ly. This implies the existence of a sunifier of 1,1y that strictly subsumes <.

If the top operator + is commutative but not associative then the proof is similar to the associative
case, but the terms t; may need to be reordered.

Assume now that the top operator is an AC binary operator +. Then ;[0l;] ~p u; + 6l; and
~¥[011][0l2] ~B u+ 8l; + 6l for some terms uy, uz,u. From u; + 0l ~p u+6l; + 6, follows u; ~p u+ 6,
and from us + 0l ~p u + 0l; + 0I5 follows us ~p u + 6l;. Then the scritical pair is convergent since both
terms converge to u + 0ry + 0ry. O

Example 7 Let X have one sort with constants a,b,c and a binary operation +, let B consist of as-
sociativity for +, and let A contain the rules a +x — r; and b+ ¢ — ry. If a term has instances of
a + x and b + ¢ as subterms modulo associativity, then it must have the form ¢; + a + t3 + b+ ¢+ t3 or
t1 + b+ c+ts + a + t3 where each ¢; is a term or else is absent. Any sunifier with the term of the second
form is separated, therefore only the first form is considered below. Replacing each ¢; by a variable in
each of the 8 cases gives the following sunifier terms:

a+b+c y+a+b+c a+y+b+c
at+btcty y1+aty2+b+c y1+a+b+c+ys
at+yi+b+c+y: yitat+y+b+c+uys

If we eliminate sunifiers that are subsumed by others, we obtain a minimal complete set of sunifiers
(see Proposition 3) for the terms a + = and b + ¢. To obtain a minimal set of scritical pairs, we also
eliminate separated sunifiers (by Proposition 6). The following lists these 6 unseparated sunifiers with
their corresponding scritical pairs, in which 6 denotes the substitution of its sunifier:

((x—=b+c),z,a+2z,a+b+¢) 0(r1), a +r2)
((x—=b),z+ca+z,a+b+c) @(r1) + ¢, a+r3)
(= y+bdte)z,aty+z,aty+bdte) (0(r1), a+y+r2)
(z—y+b),z+caty+zaty+bdte) (0(r1) +c, a+y+rs)
((x—=b+ct+u),z,a+z+u,a+b+c+u) 0(r1), a+ra + u)
((—y+b+ctu),z,aty+z4+u,at+y+b+c+u) (8(r1),a+y+r2+u)

Note that only 4 of the original 8 terms appear, but that the same term can appear in more than
one distinct sunifier, when its substitution and/or subterm inclusions are different. Note also that some
terms may have a different substitution under which they are separated; one such example is ((z —
y),z+b+c,a+y+ z,a+y+ b+ c). Finally, one can check that by Proposition 2, the first, third, fifth
and sixth sunifiers have convergent scritical pairs, because they satisfy the property 6l < 6x. O

Theorem 2. An MTRS is locally confluent iff all its scritical pairs converge.

Proof For the only if, local confluence implies by definition that all scritical pairs converge.

For the converse, we may assume without loss of generality that rules have disjoint sets of variables.
Now assuming that all scritical pairs converge, we prove local confluence. Let t,%1,t2 be X-terms such
that ¢ =4/p t1 and t = 4/p t2. Then by definition, there exist rules £, — r; and £ — 72 in A (not
necessarily distinct), contexts 71,72, and substitution 6 such that ¢t ~p v1[6¢;] and t ~p Y2[6¢>] and
t1 ~p 1[0r1] and t5 ~p Y2[0rs]. Then { = (6,v1,72,t) is a sunifier for ¢4, £5, and the scritical pair of
O is (p1,p2) = (MmlOr1],y2[0rs]). Clearly, t1,ts converge if p;,ps converge. Let I be a complete set of
sunifiers for £, £5. By hypothesis, all scritical pairs of sunifiers in I converge. If ) is not in I, then there
exists a sunifier ¢’ € I for £1, s such that ¢’ subsumes <}, and the scritical pair of ' converges. So by
Proposition 3, the scritical pair of { also converges. O

Peterson and Stickel [24] give a similar result (their Theorem 8.12) involving unifiers of all “variable
extensions of rules,” but it always gives an infinite set of pairs to be checked, whereas the sets from



Theorem 2 can be finite, e.g., if B is C or AC. The following shows that finite complete sets of sunifiers
modulo associativity do not always exist:

Example 8 Let B contain only associativity and let x + 2 — = and a+y +y + a — y be two rules in A.
For every n > 1, the substitution 6, is defined by 8,,(z) = a + na and 6, (y) = na. Then, for every n > 1,
(0n,2,2,a+ na + a + na) is a sunifier of z + z and a + y + y + a. This infinite set of sunifiers cannot be
subsumed by any finite set of sunifiers.

If the rules are b+ z+2z >z and a+y+y+a+c— y then (0,,b+2,2+c¢c,b+a+na+a+na+c)
is a sunifier of b+ z + x and a + y + y + a + ¢ for every n > 1. In this case, as opposed to the previous
one, 6, is not a unifier. [

Definition 10. A set of [unseparated] sunifiers is sufficient iff every [unseparated] sunifier is either
subsumed by one in the set, or else its scritical pair is convergent.

Theorem 3. Finite minimal sufficient sets of sunifiers modulo AC always exist.

Proof First consider the “elementary” case where X' contains only one AC operator +. Then any context
v other than z is equivalent to a context z + t for some term t € T (X). Let 1,1l € Tx(X) be terms
(leftsides of rewrite rules); let uy, uz be fresh variables (not occurring in either Iy or l5); let I} = I; + u; for
i=1,2;let I, I, I3, I be finite complete sets of unifiers respectively for Iy and lo, [1 and I, I and l2, I}
and . Then every 6 € I; for j = 1,2,3,4 determines a sunifier {? for I;,l, namely ¢f = (¢, z, z,6l1),
Q8 = (0,2, 2+ 0us, 011), O§ = (0", 2+0uy, 2,604, Of = (0, 2+0uy, 2+0us, 01, where @' is 6 restricted to
the variables in [, l2. The set of all these sunifiers is finite. To show it is also complete, let $ = (8,71, Y2, 1)
be a sunifier for 1, /5. There are four possibilities.

1. If v1 = 79 = z then 6 is a unifier for [1,ls therefore it is subsumed by a unifier §* € I;. The sunifier
corresponding to 6* is (6*, z, z,60*[1) and it subsumes { = (0, z, z, t).

2. If 4y = z and 75 # z then 5 ~p 2z + t2 for some term t,. Let 6’ be the substitution that maps us to
t2 and is the same as 6 for every variable in I1,l5. Then 6’ is a unifier of I; and Il + us, therefore it
is subsumed by some unifier 8* € I,. The sunifier corresponding to 6* is (68**, z, z + 6*us, 6*11) where
6** is the restriction of 8* to the variables in Iy, 1, and it subsumes ¢ = (0, z, z + t2, t).

3. If vo = z and 1 # z then ; ~p z + t; for some term ¢;. The proof is symmetrical with 2., using I3
instead of Is.

4. If 1 # z and 72 # z then 71 ~p 2z + t; and 72 ~p 2z + t» for some terms t;,t2. Let 6' be the
substitution that maps u; to 1, us to to and is the same as 6 for every variable in ly,l>. Then @' is a
unifier of 1 + uy,ls + us2, and thus is subsumed by some unifier §* € I,. The sunifier corresponding
to 8% is (6**,z + 0*u1, 2z + 6*uq,0*l;) where 6** is the restriction of 8* to the variables in lq,l2, and
it subsumes ¢ = (0,2 + t1, 2z + t2, t).

When X' contains several AC operators, then the sets I, I, I3, I are built for each one. The proof is the
same as above, but in the last case the top AC operator in ; may be different from the top AC operator
in ys.

If ¥ contains other operators than the AC ones (including constants) then the problem is reduced
to the “elementary” case. Let ¢ = (6,71,72,t) be a sunifier for l;,l2. Then v1[60l1] ~p ¥2[0l2] and thus
the top operator in ~y;[6l1] is the same as in ¥2[fl2]. Assume first that the top operator, f, is not an AC
operator. The corresponding arguments of f must be equivalent. Moreover, one of the arguments of f in
~1[0l1], say the ith, must be of the form ~;[6l;] for some context ~{. Similarly, one of the arguments of f
in 5[0l5], say the jth, must be of the form ~4[6l2] for some context 4. If ¢ and j are distinct, then the
scritical pair of ¢ is convergent. Otherwise, i = j and ~;[0l1] ~p 74[0l2] which means (8,71, 75, v5[0l2]) is
a sunifier of I1,ls that subsumes .

Assume that the top operator in 7 [01],v2[0l2] is an AC operator, say +, but there are other operators
in 71,7v2. Then each of v, [0l1],2[0l2] is a sum of terms whose top operators are not +. The number of



such terms must be the same in 7 [0l1] and ¥2[fl2], and the terms must be equivalent (one from - [61]
with one from 72[6l2]). As in the previous case, there is a sunifier that subsumes .

The only case left is when both v; and 72 contain only + operators (there might be other operators
in 61y or 6l5). This is the same as the case where the signature contains only the + operator.

In conclusion, the algorithm to obtain a complete set of sunifiers is the same. More precisely, there
are three possibilities:

1. The top operators in [y, [y are distinct. Then the set I; is empty and the sunifiers corresponding to
unifiers in I have convergent scritical pairs. Therefore a complete set of sunifiers is obtained from
unifiers in I» and I3.

2. The top operators in 1,5 are the same but other than 4. Then the unifiers in Iy are either unifiers in
I or have corresponding sunifiers with convergent scritical pairs. Therefore a complete set of sunifiers
is obtained from unifiers in I, I and I3.

3. The top operator is + in both Iy and l5. Then a complete set of sunifiers is obtained from unifiers in
Il, .[2 13 and I4.

0O
Note that the same algorithm works for AC1 because any number of occurrences of the identity element
in terms (other than the identity element itself) can be ignored.

Proposition 7. Finite minimal sufficient sets of sunifiers modulo AC1 always exist.

4 A Sufficient Condition

Theorem 4 below shows that the following condition implies that Theorem 2 using overlapping and
ordinary critical pairs, instead of sunification and scritical pairs, holds for MTRS’s:

(C) For all X¥-terms t,t',u such that t ~p t' and t = y[u] for some context [-|, there exist a context v'[]
and X-term u' such that vy ~g 7', u ~p u' and t' = '[u'].

We view (C) as an abstract commutativity condition, and consider Theorem 4 below as explaining why

equation sets like C are so well behaved. Neither A nor AC satisty (C):

Example 9 Let t =a+ (b+¢), let t' = (a+b) +¢, let ¥[z] = a+ 2z, and let u = b+ ¢. Then ¢t = y[u] but
there are no ', v’ such that ¢/ = 4'[u'] with v ~p v’ and u ~p /. O

Example 10 Condition (C) is satisfied by a commutative binary operation f, with f(z,y) = f(y, z).
More generally, (C) is satisfied by commutative n-ary operations; for example, for f ternary, B would
contain all five of the combinations, f(z,y,2) = f(y,z,2), f(z,y,2) = f(y, 2,z), etc. O

Below is the key technical result for proving Theorem 4, the main result of this section:

Proposition 8. Letl; — ry,ly — 1o be rules in A. If condition (C) holds for B, then for every sunifier
(0,71, 7v2,t) of l1,la, either 8 is an overlap of l1,l> and the corresponding sunifier subsumes (6,v1,72,t) or
else the scritical pair generated by (0,71, 72,t) is convergent. Moreover, if 6 is an overlap then convergence
of its critical pair implies the convergence of the scritical pair generated by (8,71,7v2,t).

Proof If (6,71,72,t) is a sunifier of I1,ls then t ~p v1[0(11)] =5 Y2[6(l2)], and this occurrence of (1) is
always meant whenever the term 6(l,) appears in this proof. Condition (C) ensures that v,[0(l2)] = v[u]
some context v ~p v, and for some term u ~pg 6(I;). Since u is a subterm of v,[6(l)], one of the following
holds:
(i) (1) is a subterm of u in Y2[6(l2)]
(ii) u is a subterm of 6(l2) in ¥,[6(l2)]
(iii) u and 6(l2) are disjoint subterms of v2[6(l2)].



If (i) holds then 6(l2) is equivalent to a subterm of 6(l; ) because u ~p 6(l;) and condition (C) holds. This
means u = v'[0(l2)] and I3 = vo[lo] such that v ~p () and (l2) ~p 8(lp). If ly is not just a variable,
then 6 is an overlap of l1,l> at a subterm modulo B of 1 and (6, 2,0(),0(l1)) is the corresponding
sunifier of [y and l5. (In this case the subterm is actually a subterm of /; and not just a subterm modulo
B of 1 as required by Definition 1.) The fact that (6, z,60(7),6(l1)) is more general than (6,71,7s,1)
is ensured by the following: v1[6(7v0)] ~B Y[0(70)] ~B Y[Y'] = 72- If the critical pair (0(r1),8(v0)[0(r2)])
generated by the overlap is convergent then also the scritical pair (y1[0(r1)],72[0(r2)]) is convergent
because 1[0(70)[8(r2)]] =z 12[0(r2)]

Otherwise, lo = z for some z € var(l1). Let §' be the substitution that coincides with  everywhere
except z, where 6'(x) = 6(r2). Then 0(ry) :*>A/B 0'(r1) by applying rule ls — 5 with redex 6(l3) at every
occurrence of x in ;. Also 6()[0(r2)] =4 /B 0'(l1) by applying rule Iy — ry with redex 6(l) at every
occurrence of  in 7, and finally 6'(l1) = 4,5 6'(r1). It follows that the scritical pair (y1[0(r1)], 72[0(r2)])
is convergent because 2[0(r2)] =B 71[0(70)[0(r2)]]-

If (ii) holds then Iy = 7o[lo] such that u = 6(ly) ~p 6(l1). If Iy is not just a variable then 8 is an
overlap of /; and I at a subterm modulo B of Iy and (8,6(y0), 2,0(l2)) is the corresponding sunifier of I
and lo. (Again, ly is actually a subterm of /> and not just a subterm modulo B of I5.) Since v2[0(70)] = 7
it follows that v2[0(y0)] ~B 71, therefore (6,6(o0), z,0(l2)) is more general than (8,1, ¥z, t). If the critical
pair (6(0)[6(r1)], 8(r2)) generated by the overlap is convergent, then the scritical pair {y1[0(71)], y2[0(r2)])
is also convergent, because v1[0(r1)] ~B Y2[0(70)[€0(r1)]]-

Otherwise, lp = x for some z € var(l2). Let §' be the substitution that coincides with 8 everywhere
except z and 8'(z) = 6(r1). Then 6(r2) :*>A/B 0'(r2) by applying rule Iy — 71 with redex 6(l1) at every
occurrence of = in 7. Also 6(70)[0(r1)] =4 /B 0'(I2) by applying rule Iy — r1 with redex 6(l1) at every
occurrence of z in 7o, and finally 6'(l2) = 4/p 0'(r2). It follows that the scritical pair (y1[0(r1)], y2[0(r2)])
is convergent because 71[0(r1)] =B ¥2[0(70)[0(r1)]]-

If (iii) holds then ~,[-] = 4'[u][-] and []] = ¥'[-][0(l2)] for some binary context '. Then 12[0(r2)] =
V[u][6(r2)] =5 v'[B(11)][0(r2)] S a/5 +'[0(r1)][0(r2)] and n[(r1)] =B [(r1)] = V'rV]00)] S a/8
~'[6(r1)][0(r2)]- Therefore the scritical pair generated by (6,71,72,t) is convergent. O

Theorem 4. An MTRS that satisfies (C) is locally confluent iff all its critical pairs converge.

Proof If the MTRS is locally confluent then all its critical pairs are convergent by definition. For the
other direction, assume that ¢t =4 /B t1 and t =4 /B t2 and t1,ty are not equivalent modulo B. We will
show that t; | t2. By the definition of = 4,p, there exist terms u;, v; such that t ~p u; =4 v; ~p t; for
i =1,2. Let I; — r; for i = 1,2 be the rules in A used for these rewritings. There exist a substitution
and contexts 71,7y, such that u; = v;[0(1;)] and v; = v;[0(r;)]. Therefore (8,7v1,72,t) is a sunifier of I4,1,
and the scritical pair it generates is (v1,v2). By Proposition 8, either 6§ is an overlap or else (vq,vs) is
convergent. If # is an overlap then it is subsumed by an overlap whose critical pair is convergent. Therefore
the critical pair of 8 is also convergent, by Lemma 3. Then (v;,v2) is again convergent, by Proposition 8.
Finally, (t1,t2) is convergent iff (vy,vs) is convergent. O

Proposition 9. If B satisfies (C) and finite complete sets of overlaps modulo B exist, then finite suffi-
cient sets of sunifiers also exist, and the resulting scritical pairs are the critical pairs of the overlaps.

Proof Let I be a finite complete set of overlaps modulo B. Then the set U of sunifiers that correspond to
overlaps in [ is also finite and sufficient. To prove this, let (8, 1,72, t) be a sunifier for l1, l>. Proposition 8
ensures that either @ is an overlap of l;,ls or else the scritical pair is convergent. Assume that 6 is an
overlap of 1,1l at a subterm modulo B of, say, l> and that Iy = 7o[lp]. (Equality holds here and not
just equivalence because in the proof of Proposition 8 the overlap holds for a subterm and not for a
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subterm modulo B.) If § is in I then the corresponding sunifier is in U and subsumes (8,71, v2,t) (by
Proposition 8). Otherwise, let 8’ € I be a more general overlap of l1,l» at the same subterm modulo
B of ly. Then Iy ~p ~{[li] such that vo ~p 4 and lp ~p Ij. Also § = 6';p for some substitution
p- The sunifier in U corresponding to 8’ is (6',60'(vy),2,0'(l2)), and it subsumes (6,71,72,t) because

Y2[p(8'(7))] = 1210(70)] =B 12[0(70)] =B 71 (see proof of Proposition 8) and 2 = y2[p(2)]. If 6 is an
overlap of l1,[l5 at a subterm modulo B of I; the proof is similar. O

When B contains just the commutative law for a binary operation +, then condition (C) is satisfied
and finite complete sets of overlaps always exist (see Section 2.1). Theorem 4 thus yields an algorithm to
decide local confluence modulo commutativity, provided an algorithm to compute complete sets of overlaps
exists. (The same result can be obtained using sunifiers. By Proposition 9, finite sufficient sets of sunifiers
always exist and Theorem 2 yields an algorithm to decide local confluence modulo commutativity.)

Proposition 10. For any B, condition (C) is equivalent to the following:

(C") For every equation (VX) t =t' in B, for every context y[-] and X-term u, if t = y[u] then t' = v'[u']
for some context +'['] and X-term u' such that uw ~p u' and v ~p 7'.

This implies if B and the equivalence classes are recursive, then it is decidable whether B satisfies (C). In
particular, if B contains m equations and each equivalence class modulo B contains at most n elements,
there is a straightforward algorithm running in time O(mn?p?), where p is the maximum number of
subterms in the left- or rightsides of equations in B. It would be interesting to find conditions like (C)
that are both necessary and sufficient, but the next section generalizes the notions of unifier and critical
pair, instead of constraining B.

5 Categorical Term Rewriting and Sunification

This section assumes familiarity with the basics of category theory, for which see e.g. [9, 25, 22]. Our setup
was inspired by Diaconescu’s category based equational logic [6,11], the categorical approach to unifica-
tion given in [9], the theory of conceptual blending from cognitive linguistics [8], and its mathematical
formulation in [10]. These theories helped us in formulating the right definitions. By way of notation, we
use the “bbold” font, A, B, C, etc., for categories; also we let |C| denote the class of objects of C, we let
“” denote composition in any category, and we let 14 denote the identity morphism at an object A. Set
denotes the category of sets.

Our (basic) setup assumes an arbitrary faithful functor &/ : A — B with left adjoint F: B — A,
where A is the category of models, B the base category, U the forgetful functor, and F the free
functor. In examples, A is a category of algebras with additional structure. We often further assume
that B is a functor category of the form Set® where S is a set (represented as a discrete category)
whose elements are called sorts. For X an object of B, we usually write X, instead of X (s), and call
z € X5 an element of sort s, thinking of objects in Set® as S-indezed sets, or S-indexed tuples, for
which the notation (X | s € S) may be more familiar. If X, Y are objects of B, then X C Y makes sense,
meaning X, CY; for all s € S, and similarly for XUY, X NY, X — Y, etc.. Elements of free algebras,
t € (U(F(X)))s should be thought of terms with variables in X; these are class terms in many special
cases. Maps 6: X — U(F(Y)) are indexed tuples of terms, sometimes used as substitutions. Let § denote
the adjoint morphism F(X) — F(Y) to the morphism 6: X — U(F (X)), often abbreviated to §. When

3 Although this set theoretic notation runs counter to categorical ideology, it is very useful, and can be given a
more politically correct basis, and much greater generality, by assuming B is an inclusive category in the sense
of [4]. However, the special case is adequate for this paper.
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X has a single element, say of sort s, then X — U(F(Y)) represents a single term of that sort. Given
t € U(F(X))s let var(t) denote the least V C X such that t € U(F(V))s.

Let K denote the Kleisli category of the adjunction, the objects of which are those of B, with
morphisms from X to Y maps X — U(F(Y)) in B, and with the composition in K of ¢t: X — Y with
t': Y — Z, written t;#', defined to be t;#' in B; then the identity morphism on an object X is the unit
X = U(F(X)) of the adjunction. If ¢t = t';u, then u serves as a context for ¢’ in ¢, and we may write
u[t'], especially if the target of u has just one element. If the source of u, which is var(u), has n elements,
then v is an n-ary context.

Definition 11. A rewrite rule is a pair of terms £, € U(F(X))s such that var(r) C var(f), usually
written £ — r. A set A of rewrite rules is a categorical term rewriting system, abbreviated CTRS.
A match of the leftside £ of a rule £ — r to a term t € U(F(X))s is a pair (6,u) such that t = 0;4;u,
where 8: X =Y and u is a context of sort s'; then t' = 0;/ is the redex of the match, and 6;r;u is the
result of rewriting t with the rule £ — r, written t = 4 t'. As usual, =4 denotes the transitive reflexive
closure of = 4.

The notations u[f(¢)] and u[f(r)], where the former indicates the match, may seem clearer than the
compositions 8;/4;u and 6;r;u, respectively. Note that any CTRS A defines an ARS, as the set of all
pairs (¢,t') such that ¢ rewrites to ¢’ using a rule in A (though this should be viewed as an S-valued set).
The notions of termination, confluence, local confluence, etc., and all ARS results, including the Newman
Lemma are available for CTRS’s.

Example 11 For the unsorted case, S is a one element set, so B is (isomorphic to) the category Set
of sets. Fixing an unsorted signature X, the functor F maps a set X to Tx(X), the free X-algebra on
X, and the forgetful functor U returns the underlying sets of X-algebras. It is well known that F is left
adjoint to U, and it is not difficult to see that the resulting notions of term, context, rewrite rule, etc.
agree with the usual ones. [

Example 12 The many sorted case discussed in Section 2 is nearly the same as the example above,
except that an overloaded S-sorted signature X' is used instead of an unsorted signature, and many
sorted X-algebras are used instead of unsorted algebras. O

Example 13 To get overloaded many sorted term rewriting modulo equations (MTRS), as in Section
2.1, in addition to a fixed S-sorted signature X as in Example 12, assume a set B of Y-equations, and let
F(X) be Ts; g(X), the free (X, B)-algebra generated by X, with I/ the usual forgetful functor. Again, it
is known that these functors are adjoint, and it is not difficult to see that the resulting notions of term,
rewrite rule, etc. agree with the usual class rewriting notions. It seems rather elegant to pull this out of
our setup so easily. O

Example 14 Order sorted algebra (i.e., overloaded many sorted algebra with subsorts) goes much the
same way, by fixing an S-sorted signature X' that includes a partial order on the sorts, with a fixed set
B of XY-equations, and then letting F(X) be Tx, g(X), the free (X, B)-algebra generated by X, with U
the usual forgetful functor. These functors are known to be adjoint [14]. One also can go a little further
and add sort constraints (which are equationally defined subsorts) to B. O

It is easy to impose various notions of order, continuity, etc. on algebras, by assuming the algebras in
A have the desired structure; background is in [16] and other sources.

We will need the following construction: given a category C, let C* denote the category whose objects
are the morphisms of C, and whose morphisms from f to g are all those morphisms ¢ in C such that
g = f;tin C, with composition in C* of t: f — g with ¢': g — h defined to be ¢;¢' in C, and with the
identity at f in C*® defined to be 1y, where Y is the target of f. We leave the reader to check that this
is a category. It may be helpful to notice that if t: f — g, then ¢t and g have the same target in C, and
f and g have the same source, because f;t = g.
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Definition 12. Given morphisms t1,t2: X =Y in K, a (t1,t2)-diamond is a diagram in K as shown
below, where 8: Z — X and t: Z — W are objects of K* (i.e., morphisms of K), while u;: 0;t; — t
for i = 1,2 are morphisms of K*. Then t;: 6§ — 0;t; are also morphisms of K®, and the diagram below
commutes in K®, since it satisfies 0;t;;u; =t for i = 1,2. This diagram may be denoted $o uy ust-

t
N
0;t1 0;t2
0

A sunifier (or superunifier) of two morphisms t1,t2 in K is a diamond gy, us,t- A sunifier $o.u, usa it
is separated iff there exists a binary context u such that t = u[ty,ts].

In general, W, Y have just one element, so t € U(F(Z)),t; € U(F(X)) are terms.

Example 15 The MTRS sunifier in Example 3 is also a CTRS sunifier, since MTRS is the special of
CTRS with F(X) = Ty, g(X), the free (X, B)-algebra generated by X, according to Example 13. O

Definition 13. Given rewrite rules {1 — r1 and o — 72, if $ouyua,t 05 0 sunifier for €1, 4, then both
rules apply to t, giving the results p1 = u1[0(r1)] and p2 = ua[0(r2)]; in this case, the pair (p1,p2) is called
a scritical pair, and is said to converge iff its two terms can be rewritten to a common term, indicated
D1 da P2 If Qourus i 15 a separated sunifier for £q1,4s, call (p1,p2) a separated scritical pair.

Definition 14. Given morphisms t1,ta: X — Y in K and (t1,t2)-diamonds $p uy,ust and Qorut ul 5
then @ morphism from $g uy ust 10 ot u) uy e 15 @ triple (p,u) of morphisms of K such that ' = p; 0
and p;t =t';u and ui;u = u} in K for i =1,2. We may call this a (t1,t2)-diamond morphism.

Example 16 The MTRS sunifiers and subsumption in Example 7 also define a CTRS subsumption,
since MTRS is the special of CTRS with F(X) = Tx g(X), the free (X, B)-algebra generated by X,
according to Example 13. O

Definition 15. Given morphisms t1,t2: X — Y in K, and (t1,t2)-diamond morphisms (p,u) from
Q0,u1,us,t 10 Qo up 7 and (1,v) from Qo uly 1 10 Qo wy o5 then their composition is the diamond
morphism (7;p,u;v) from $puyust 10 Qo uy uy . The identity (t1,t2)-diamond morphism in Dy, 4,
o1 guyusst 5 (12,12, 1w).

Proposition 11. Given morphisms t1,t2: X — Y in K, the (t1,t2)-diamonds with their morphisms
form a category, denoted Dy, 1, ; in particular, the composition of (t1,t2)-diamond morphisms is a (t1,12)-
diamond morphism, this composition is associative, and has identities as in Definition 15.

The proof is an easy diagram chase left to the reader. If we assume U (F (X)) is countable for any countable
X, which holds for every interesting example we know, then Dy, s, has at most countably many objects,
although it could also be the empty category.

Proposition 12. The convergence of the scritical pair obtained from a sunifier that is subsumed by a
second sunifier is implied by the convergence of the scritical pair obtained from that second sunifier.

Definition 16. An object in a category C is weak initial iff there is a morphism from it to any other
object in C; this morphism need not be unique. A weak initial set 7 in C is a set 7 of objects in C such
that for any object C in C, there exists an object I in T and a morphism from I to C. A weak initial set
is minimal iff no proper subset of it is weak initial.
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We would like to have a weak initial object in Dy, ;, but since these need not exist, we consider weak
initial sets, which do always exist (e.g., all the objects in Dy, ,); however, minimal weak initial sets may
not exist. As in Section 3, we use the following terminology:

Definition 17. A weak initial set in Dy, 4, is called a complete set of sunifiers forti,t2, and is minimal
complete if no proper subset is also complete. Given a set I of sunifiers for ti,ts, call the resulting set
of scritical pairs complete, and minimal complete, if 7 is. The same terminology is used for separated
sunifiers. Given a CTRS A and a complete set of sunifiers for each pair of leftsides of rules in A, the set of
scritical pairs of A is the union of the scritical pairs for each pair of rules. The unseparated scritical
pairs are defined analogously. A set of [unseparated] sunifiers is sufficient iff every [unseparated] sunifier
is either subsumed by one in the set, or else its critical pair is convergent.

Lemma 4. If a CTRS A has finite complete sets of sunifiers for all rule pairs, then it has a finite
sufficient set of critical pairs.

The following generalization of Theorem 2 follows from the construction of diamond morphisms:

Theorem 5. A CTRS is locally confluent iff oll its scritical pairs converge.

6 Conclusions and Future Research

There are large literatures on term rewriting, unification, and completion modulo equations, with impor-
tant applications, e.g., to theorem proving; we hope methods like those in this paper can lend greater
unity and generality to this area, and provide a general basis for the modular construction of various
algorithms. It is intriguing that our sunification construction resembles the blending of conceptual spaces
developed in cognitive linguistics [8]; shared phenomena include the key role of “diamond” diagrams, and
the non-uniqueness of results [12]. Our category theoretic approach is still at an early stage, but we believe
it shows promise for unifying, generalizing, and simplifying, by better separating conceptual issues from
algorithmic issues. Interesting future projects include generalizing Proposition 6, and extending meth-
ods for combining unification and constraint solving algorithms (e.g., [2]) to sunification. Toyama-style
modularity results also seem suitable for our framework, using ideas like [21]. The scritical pair theorem
(2) has a pleasing simplicity, and the sunifier and separation notions seem very natural. The sufficient
condition for sunification to agree with overlapping is interesting, and technically non-trivial. It is also
encouraging that we can treat the A/C cases, and we expect to treat more cases in future work.
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