
Tree Automata and Rewriting

Tree Automata and Rewriting

Ralf Treinen

Université Paris Diderot
UFR Informatique
Laboratoire Preuves, Programmes et Systèmes

treinen@pps.jussieu.fr

July 23, 2010

treinen@pps.jussieu.fr

Tree Automata and Rewriting

Extensions

What happened at the last episode

I Automata can be used (in some cases) to model
FO-structures.

I Crucial properties of automata: emptiness decidable, closure
under Boolean operations, but also under projection and
cylindrification.

I Automata on finite or infinite words or trees can be used.

I Yields decidability of the logic S2S , probably the “strongest”
known decidability result of a FO theory.

Tree Automata and Rewriting

Extensions

Extensions of the “classical” automaton model

1. Alternating automata

2. Two-way automata

3. Equational tree automata theory

4. Automata with constraints

5. Automata on different tree models, in particular unranked
trees (like XML documents)

Tree Automata and Rewriting

Alternation

Definition

I Standard tree automata are given by a set of Horn clauses

Q(f (x1, . . . , xn))← Q1(x1), . . . ,Qn(xn)

where x1, . . . , xn are distinct variables.

I Alternating tree automata:

Q(f (x1, . . . , xn))← Q1(y1), . . . ,Qm(ym)

where x1, . . . , xn are distinct variables (but y1, . . . , ym are not
necessarily distinct)

Tree Automata and Rewriting

Alternation

I Example:

q1(f (x1, x2))← q2(x1), q3(x2), q4(x2)

The subtree x2 must be recognized both in state q3 and q4.

I Any alternating TA can be transformed into an equivalent
standard TA (possibly exponentially bigger).
Idea: use states (q1 ∧ . . . ∧ qn)(x), expressing that x is
recognized in all of q1 . . . , qn.
Details: Exercise!

Tree Automata and Rewriting

Alternation

I Further generalization:

Q(f (x1, . . . , xn))← t

with t positive Boolean combination of Q1(y1), . . . ,Qm(ym).

I Boolean operations are very easy in this form.

I Transformation into standard TA as before

Tree Automata and Rewriting

Two-Way

Definition

I Word automata: two-way automata have in addition an
indication of the direction (they are like a Turing machine on
a read-only tape).

I Equivalent to standard word automata (see Hopcroft-Ullman)

I Generalization to trees : Pop clauses

Q(x)← Q ′(t)

where t is a linear term.

I Example:

Q(pair(x1, x2)) ← Q(x1),Q(x2) push clause
Q(x1) ← Q(pair(x1, x2)) pop clause
Q(x2) ← Q(pair(x1, x2)) pop clause

Tree Automata and Rewriting

Two-Way

Expressivity

I Two-Way automata are as expressive as standard TA (even
when combined with alternation)

I Various formats of alternating two-way automata

I Class H (Nielson&Nielson&Seidl, Goubault): Horn clauses

H ← P1(t1), . . . ,Pn(tn)

where H is either of the form P(x) or P(f (x1, . . . , xn)),
x1, . . . , xn distinct.
All predicate symbols are unary!

Tree Automata and Rewriting

Equational

Definition

Consider terms modulo an equational theory. Two different
definitions:

1. When TA are seen as term rewrite systems, equational axioms
apply to terms containing state symbols. This is the definition
by Hitoshi Ohsaki.

2. When TA are seen as Horn clauses, equational axioms only
apply to “data terms”, but not to state symbols since they are
predicate symbols. This is the definition by
Goubault-Larrecq&Verma.

This makes a difference for axioms like x ⊕ x = 0.
They coincide in case of linear equational theories.

Tree Automata and Rewriting

Equational

Properties

I modulo AC: well behaved (Boolean closure, everything
decidable)

I modulo A: not closed under ∩ or complement. Emptiness
decidable but not universality (hence, also not ≡ or ⊆).

I In general very sensible to change of format of rules that is
innocent in the non-equational case (epsilon rules, alternation,
two-way, . . .).

I See the papers by Ohsaki, and Goubault&Verma.

Tree Automata and Rewriting

Constraints

Definition

I Standard Tree Automaton: rewrite rules

f (q1(x1), . . . , qn(xn))→ q(f (x1, . . . , xn))

where f ∈ Σn, q, q1, . . . , qn ∈ Q, x1, . . . , xn different variables.

I Constrained Tree Automaton: constrained rewrite rules:

f (q1(x1), . . . , qn(xn))→ q(f (x1, . . . , xn)) | c(x1, . . . , xn)

where f ∈ Σn, q, q1, . . . , qn ∈ Q, x1, . . . , xn different variables,
c a constraint with free(c) ⊆ {x1, . . . , xn}.

Tree Automata and Rewriting

Constraints

Reminder: Constraints

I Constraint: 1st-order formula with a fixed interpretation.
Systems of constraints are usually required to be closed under
∧ and ∃.

I Constrained rewrite rule l → r | c where free(c) ⊆ free(l):
rewrites a ground term C [lσ] to C [rσ] if σ |= c .

I Constraint systems most interesting for us: equations and
disequations between terms.

Tree Automata and Rewriting

Constraints

Example: equalities between brothers

I Most basic form: a constraint is a conjunction of equations
between variables.

I Example:

a → q(a)

f (q(x1), q(x2)) → q(f (x1, x2)) | x1 = x2

I Recognizes the set of balanced binary trees, which is a
non-regular set!

I This is the class of tree automata with equality constraints (or
“equality tests”) between brothers.

Tree Automata and Rewriting

Constraints

Properties of TA with equality between brothers

I Closed under union: trivial, since automata non-deterministic

I Closed under intersection: product of two automata, execute
in parallel

I not closed under complement: cannot recognize the set of
binary trees that are not balanced.

I cannot be made deterministic (that would require disequality
constraints)

I Emptiness decidable? see next slides.

Tree Automata and Rewriting

Constraints

Review: Emptiness of standard TA

Compute the set R of reachable states as a fixed point:

R := ∅
while ∃ f (q1, . . . , qn)→ q ∈ ∆ : q1, . . . , qn ∈ R, q 6∈ R
do

R := R ∪ {q}
od
return R ∩ Q a = ∅

Tree Automata and Rewriting

Constraints

Emptiness of TA with = between brothers

I We now need to know, for any set of states q1, . . . , qn,
whether L(q1) ∩ . . . ∩ L(qn) 6= ∅.

I This is needed for rules like

f (q1(x1), q2(x2))→ q(f (x1, x2)) | x1 = x2

since we have to know whether ∃x ∈ L(q1) ∩ L(q2) !

I R is now a set of set of states!

I Simplification : only constants and binary functions

Tree Automata and Rewriting

Constraints

Emptiness of TA with = between brothers

I Initially: R := {{q1, . . . , qn} | a→ q1, . . . a→ qn ∈ ∆}
I Suppose f (p1, q1)→ r1, . . . , f (pn, qn)→ rn ∈ ∆.

When do we add {r1, . . . , rn} to R ?

I If there are no constraints x1 = x2 in these rules:
Condition is {p1, . . . , pn} ∈ R, {q1, . . . , qn} ∈ R

I If there is constraint x1 = x2 in these rules:
Condition is {p1, . . . , pn, q1, . . . , qn} ∈ R

I Finally: ∃P ∈ R : P ∩ Qa 6= ∅ ?

Tree Automata and Rewriting

Constraints

Extension: TA with = and 6= between brothers

I Now closed under ∪, ∩, and complement

I Automata can be made deterministic.

I Emptiness still decidable, but more difficult: we have to count
the number of terms recognized in a state. Why ?

I

f (q(x1), q(x2), q(x3))→ p | x1 6= x1 ∧ x2 6= x3 ∧ x1 6= x3

q is reachable when #L(q) ≥ 3.

Tree Automata and Rewriting

Constraints

Towards a further generalization

TA with comparison between brothers can be written more
compact:

f (q1(x1), q2(x2), q3(x3))→ q(f (x1, x2, x3)) | x1 = x2 ∧ x2 6= x3

could be written shorter

f (q1(x), q(x), q3(x3))→ q(f (x , x)) | x 6= x3

Tree Automata and Rewriting

Constraints

Generalization: TA with deep comparisons

t[q1(x1), . . . , qn(xn)]→ q(t[x1, . . . , xn]) | c

where

I t is a term

I variables x1, . . . , xn not necessarily distinct
this serves to express equality constraints

I c is a conjunction of disequalities

Tree Automata and Rewriting

Constraints

Example with deep comparisons

I Σ0{ε},Σ2 = {f , g}
I Q = Qa = {q}
I

ε → q(ε)

f (f (q(x), q(y)), f (q(y), q(z))) → q(f (f (x , y), f (y , z)))

. . .

I This can be used to recognize grids

I Undecidability of emptiness is the consequence!

Tree Automata and Rewriting

Constraints

Another proof of undecidability

Post Correspondence Problem: {(a, aab), (abb, b)}

f

f

f

⊥ ⊥ ⊥

a

⊥

b

a

a

⊥

b

b

a

a

⊥

b

b

a

a

⊥

PCP solution sequence ((ε, ε), (a, aab), (aabb, aabb))

Tree Automata and Rewriting

Constraints

Another proof of undecidability (cntd.)

Given instance of PCP {(v1,w1), . . . , (vn,wn)}
Automaton that recognizes solution sequences (using big-step
transitions):

f (⊥,⊥,⊥) → q

f (q(f (x , y , z)), vi (y),wi (z)) → q(f (f (x , y , z), vi (y),wi (z)))

q(f (x , y , y)) → qa(f (x , y , y)) | y 6= ⊥

Accepting state qa.
Equality constraints between different “levels”. In the preceding
proof, constraints are only between cousins.

Tree Automata and Rewriting

Constraints

Reduction Automata

I Reduction automata (Caron, Comon, Coquidé, Dauchet,
Jacquemard ’94) may perform an unlimited number of
disequality tests, but only a limited number of equality tests
on each branch of the tree.

I Formally: Q is equipped with an order ≤.
For rules f (q1, . . . , qn)→ q | c one requires ∀i : qi ≤ q.
If c contains an equality constraint then ∀i : qi<q.

I Consequence: on each branch at most #Q − 1 equality
constraints used.

Tree Automata and Rewriting

Constraints

Constraints in Reduction Automata

I Attention: no big-step transitions in the definition of RA (one
needs a fine control which states may occur where).

I In order to use deep equality constraints in absence of big-step
transitions one uses path notation, e.g. 12 = 231.

I Path constraint 12 = 231 is satisfied by f (t1, t2) iff

t1 |2= t2 |31

Tree Automata and Rewriting

Constraints

Example Reduction Automaton

Recognize all terms that contain an instance of f (f (x , y), x)

a → q0 f (q0, q0) → q0

f (q0, q0) → q1 f (q1, q0) → q2 | 11 = 2
f (q0, q2) → q2 f (q2, q0) → q2

Order of states: q0 < q1 < q2

Accepting state: q2

Tree Automata and Rewriting

Constraints

Making the automaton deterministic

I q1: Instances of f (x , y) that do not contain an instance of
f (f (x , y), x):

a → q0

f (q0, q0) → q1 f (q0, q1) → q1

f (q1, q0) → q1 | 11 6= 2 f (q1, q1) → q1 | 11 6= 2

I q2: Innermost instances of f (f (x , y), x):

f (q1, q0) → q2 | 11 = 2 f (q1, q1) → q2 | 11 = 2

I Propagation to the root:

f (qi , qj)→ q2 if i = 2 or j = 2 (5 rules)

Tree Automata and Rewriting

Constraints

Properties of Reduction Automata

I They can be used to check whether a non-linear pattern
matches a tree.

I They enjoy closure under Boolean operations

I Emptiness is decidable for deterministic reduction automata
(but undecidable for non-deterministic automata)

I Exercice: Show that the following is undecidable: given an
automaton with equality test between brothers, and a
reduction automaton, is the intesection of their recognized
languages empty?

Tree Automata and Rewriting

Constraints

What about cylindrification and projection?

I Cylindrification of reduction automata would amount to
automata with component-wise constraints since no
constraints must be applied on the components added by
cylindrification.

I Emptyness of automata with component-wise constraints is
undecidable even when there is only one application of a
constraint, and that application is at the root of the tree.

Tree Automata and Rewriting

Constraints

Automata with component-wise constraints

ffff

ffff

⊥⊥ff

⊥⊥⊥⊥ ⊥⊥⊥⊥

⊥⊥aa

⊥⊥⊥a

⊥⊥⊥b

⊥⊥⊥⊥

aaaa

⊥aaa

⊥bbb

⊥⊥bb

⊥⊥⊥⊥

PCP solution sequence ((ε, ε), (a, aab), (aabb, aabb))
Automaton, plus tests at the root: 13 = ε1 ∧ 14 = ε2

Tree Automata and Rewriting

Constraints

The theory of reducibility

I Reduction automata have been used to show decidability of
the theory of reducibility (Herbrand, without equality, but
with predicates “t matches x” for fixed t.)

I Reduction automata are not closed under cylindrification, and
furthermore one cannot close them cylindrification and retain
decidability.

I Isn’t there a contradiction?

Tree Automata and Rewriting

Constraints

Reducibility is a Monadic structure

I Monadic structure: only unary predicate symbols.

I If the language is monadic, then any FO formula can be
rewritten into a Boolean combination of formulas of the form

∃x
(

P1(x) ∧ . . . ∧ Pn(x) ∧ ¬Q1(x) . . . ∧ ¬Qm(x)
)

(Löwenheim ’15, Ackermann ’54)

I Consequences: For monadic structures, Boolean closure plus
decidability of emptiness are sufficient! No need for
cylindrification and projection.

Tree Automata and Rewriting

Constraints

A Unified Model of Constrained Automata?

I Automata with tests between brothers and reduction
automata are incomparable in expressivity.

I Is there a Unified Model of constraint automata that
comprises these two classes, has decidable emptiness, and
good closure properties (in particular, ∩)?

I The answer is no, since it is undecidable whether the
intersection of the languages recognized by a reduction
automaton and an automaton with constraints between
brothers is empty!

I Can we still achieve something?

I Candidate: Tree Automata with One Memory
(Comon&Cortier&Mitchell 2001) ?

Tree Automata and Rewriting

Constraints

Is Herbrand Theory Automatic?

I Herbrand: The FO-theory of the structure of finite terms with
unification constraints (x = f (y , z) etc.)

I This theory is known to be decidable (Malc’ev ’71,
Comon&Lescanne ’89, Maher ’88). Proof: quantifier
elimination.

I Is this an automatic structure, for some useful notion of tree
automata that allows to conclude decidability?

I Theory of reducibility: is automatic, but does not allow for
unification constraints.

I Problem: constraint x1 = f (x2, x3) is not recognized by a
standard tree automaton (if decoding function ν is the
identity).

Tree Automata and Rewriting

Constraints

Is Herbrand Theory Automatic? (cntd.)

I Reduction Automata ? Are not closed under projection and
cylindrification /

I The FO-order theory of an RPO has constraints x = f (y),
and there strings are encoded as trees! Trick: strings are
represented in reverse order, so that the constraint is trivially
expressed as an automaton (one just adds an f at the end of
one component).
Can this be used as an encoding trick?

I Problem: the set of meaningful trees Lδ must be recognizable!
For that reason, this has so far only succeeded for one binary
function symbol and infinitely many constants
(Comon&Podelski).

	Extensions
	Alternation
	Two-Way
	Equational
	Constraints

