Tree Automata and Rewriting

Ralf Treinen

July 23, 2010

What happened at the last episode

- \blacktriangleright Generalization of word automata to trees: Rules $q(f(x_1,...,x_n)) \to f(q_1(x_1),...,q_n(x_n))$
- \triangleright Closure and decision results as for word automata (beware of non-linearity when generalizing from words to trees)
- \triangleright Can even be extended to the case of infinite trees

Relating automata and logic

- A predicate-logic formula $\phi(x_1, \ldots, x_n)$, in a fixed interpretation, denotes a set of n -tuples of values: the solutions of the formula.
- \triangleright A tree automata defines a set of trees.
- \triangleright A tuple of trees can be encoded as one tree (will be explained soon).
- If we find an encoding of values as trees then we can use a tree automaton to represent a set of tuples of values.
- \triangleright Use good closure and decision properties of automata to decide validity of formulas in a given interpretation.

Example: encoding a pair of trees as a tree

Tuple signatures

Given a signature Σ , $n \geq 0$ and $\Box \notin \Sigma$, define $\Sigma_n^{\square} = \{ (f_1, \ldots, f_n) \mid f_i \in \Sigma \cup \{\square\} \} - \{ (\square, \ldots, \square) \}$

 $arity((f_1, \ldots, f_n)) = \max\{arity(f_i) \mid f_i \neq \Box\}$

Convolution of trees

Given $t_1, \ldots, t_n \in \mathcal{T}(\Sigma)$. Define their convolution $t = t_1 \otimes \cdots \otimes t_n \in \mathcal{T}(\Sigma_n^{\square})$ by $O(t) = O(t_1) \cup \ldots \cup O(t_n)$ $\triangleright t(\pi).i = \begin{cases} t_i(\pi) & \text{if } \pi \in O(t_i) \\ \pi & \text{if } \pi \in O(t_i) \end{cases}$ \Box if $\pi \notin O(t_i)$

Automatic Representation

An automatic representation of a relational structure $\mathcal A$ with predicate symbols R_1, \ldots, R_r is given by:

- \blacktriangleright a finite signature Σ
- **E** a regular language $L_{\delta} \subset T(\Sigma)$
- **In** an onto function $\nu: L_{\delta} \to A$
- ► regular languages $L_i \subseteq T(\Sigma_n^{\square})$, $1 \leq i \leq r$, $n = \text{arity}(R_i)$, such that all $x_1, \ldots, x_n \in L_\delta$:

$$
x_1 \otimes \ldots \otimes x_n \in L_i \text{ iff } (\nu(x_1), \ldots, \nu(x_n)) \in R_i^{\mathcal{A}}
$$

A structure is automatic if it has an automatic representation.

Example: Presburger Arithmetic

- \triangleright Presburger Arithmetic: Natural numbers with addition only (no multiplication).
- **Presburger (student of Tarski) 1929: Decidability of** FO-theory by quantifier elimination.
- \triangleright Büchi 1960: Decidability by coding in logic WS1S (will be explained later) which is shown to be automatic.
- ▶ Boudet&Comon 1996: Direct construction of automatic representation.

Automatic Presentation of Presburger Arithmetic

- \triangleright Structure must be purely relational.
- \triangleright Choose set of two predicates: $x_1 = 0$ and $x_1 + x_2 = x_3$.
- \triangleright Choose signature $\Sigma_1 = \{0, 1\}$, $\Sigma_0 = \{\epsilon\}$ (words!). Idea: represent a natural number in binary notation.
- \blacktriangleright Least or most significant bit first? Least significant bit first, since bits must be aligned for the addition operation!
- \triangleright Define an onto function $ν$: $T(Σ)$ \rightarrow N: natural interpretation of binary notation.
- \blacktriangleright $L_{\delta} = 0 + (0 + 1)^{*}1$ (written as regular expression over words)

Automaton for $x_1 = 0$

An even simpler automaton?

We only care for L_{δ} , everything outside L_{δ} is junk!

Automaton for $x_1 + x_2 = x_3$

FO theory of automatic structures

Büchi 1960, Blumensath&Grädel 2000: The first-order theory of any automatic structure is decidable.

Proof: construct inductively, for any formula $\phi(x_1, \ldots, x_n)$ an automaton A_{ϕ} such that for all $x_1, \ldots, x_n \in L_{\delta}$:

$$
x_1 \otimes \ldots \otimes x_n \in L_{A_{\phi}} \text{ iff } (\nu(x_1), \ldots, \nu(x_n)) \in \phi^A
$$

Inductive Construction of A_{ϕ}

- Base case: $\phi(x_1, \ldots, x_n)$ is a literal $R(x_1, \ldots, x_n)$: Automaton A_{ϕ} exists by definition of automatic structures!
- **I** Negation: If A_{ϕ} is the automaton for $\phi(x_1, \ldots, x_n)$: then one possible automaton for $A_{\neg\phi}$ is the complement automaton of \mathcal{A}_{ϕ} which recognizes $\mathcal{T}(\Sigma_{\Box}^{n}) \setminus \mathcal{L}(\mathcal{A}_{\phi})$. (There may be other automata which differ in the handling of junk.)

Inductive Construction in case of ∃

- **In Let** $A\phi$ be an automaton for $\phi(x_1, \ldots, x_{n+1})$.
- ► Language recognized by $A_{\exists x_{n+1}\phi}$?
- \triangleright One "forgets" simply the $i + 1$ -th component in the symbol (projection).
- Inear tree homomorphism: maps $(f_1, \ldots, f_n, f_{n+1})$ to term $(f_1, \ldots, f_n)(x_1, \ldots, x_i).$
- \triangleright Use simply the fact that recognizable languages are closed under linear tree homomorphisms!

Example Projection

Automaton for $\exists x_1(x_1 + x_2 = x_3)$:

Does this automaton correspond to $x_2 \le x_3$?

Inductive Construction in case of ∧

- If A_1 is the automaton for ϕ_1 and A_2 the automaton for ϕ_2 , then the automaton for $\phi_1 \wedge \phi_2$ must accept $L(A_1) \cap L(A_2)$, right ?
- If A_1 is the automaton for $\phi_1(x_1)$ and A_2 the automaton for $\phi_2(x_2)$, then the automaton for $\phi_1(x_1) \wedge \phi_2(x_2)$ must accept $L(A_1) \cap L(A_2)$, right ?
- \triangleright Of course not in general. We must first assure that both formulas "talk" about the same variables.
- $\blacktriangleright \phi_1$ and ϕ_2 must first be "lifted" to the same set of variables $\{x_1, x_2\}$. Only then one can construct the automaton by intersection.

Cylindrification

- ▶ Here: Given A for *n* variables, cylindrify to A^{\uparrow} by adding a "bogus" $n + 1$ -th variable:
- \triangleright This is exactly the inverse operation of projection, which is described by a tree homomorphism.
- \triangleright One uses the fact that recognizable languages are closed under inverse tree homomorphisms!

Example Cylindrification

Automata for $x_1 = 0$ and $x_2 = 2$ cylindrified to $\{x_1, x_2\}$:

Product of the two automata (intersection of languages):

Finishing up the proof

- \blacktriangleright Automaton for a closed formula ϕ : \mathcal{A}_ϕ over alphabet Σ_0^\Box .
- Alphabet $\Sigma_0^{\square} = ?\emptyset$, since this alphabet contains only tuples with at least one non-blank component!
- ▶ Possible languages over alphabet \emptyset ? : \emptyset and $\{\epsilon\}$!
- $\triangleright \phi$ is true iff A_{ϕ} recognizes $\{\epsilon\}$
- \triangleright ϕ is false iff A_{ϕ} recognizes \emptyset

Exercises on Automatic structures

- 1. Any automatic structure $\mathcal A$ containing the equality relation has an automatic presentation with a one-to-one function ν .
- 2. For any automatic structure, the theory of the first-order logic extended by the quantifier \exists^{∞} is decidable. \exists^{∞} x: there exist infinitely many x such that ...

Solutions: Blumensath&Gr¨adel 2000 paper

Application 1: Words

- Structure $\{a, b\}^*$, with relations: $x_1 = x_2a$, $x_1 = x_2b$, $x_1 = ax_2$, $x_1 = bx_2$
- \triangleright Automatic presentation: $L_{\delta} = \{a, b\} *$, $\nu = id$

$$
\blacktriangleright
$$
 Automaton for $x_1 = x_2 a$:

- Automaton for $x_1 = ax_2$: exercise (easy)!
- \blacktriangleright FO-theory decidable (but not for $x_1 = x_2x_3$!)

Application 2: Skolem Arithmetic

- Structure $\mathbb{N}_{+} \{1, 2, 3, \ldots\}$, with relations: $x_1 = x_2, x = c$ ($c \in \mathbb{N}$), $x_1 * x_2 = x_3$.
- \triangleright Challenge: find a representation that allows to express multiplication by an automaton!
- Enumeration of prime numbers: p_1, p_2, p_3, \ldots
- Represent n as (e_1, \ldots, e_i) where

$$
n=p_1^{e_1}*p_2^{e_2}*\ldots*p_i^{e_i}
$$

 \blacktriangleright Multiplication translates to addition of exponents!

[Tree Automata and Rewriting](#page-0-0) Logic and Automata Applications to specific FO theories

Representation of a number $n = p_1^{e_1}$ $p_1^{e_1} * p_2^{e_2}$ $p_2^{e_2} * p_3^{e_3}$ $\frac{e_3}{3} * \ldots$

Application 2: Skolem Arithmetic

- In The automaton for $x_1 = x_2 = x_3$ travels down the f-spine, and verifies for each branch addition (see the automaton construction for Presburger Arithmetic)
- \triangleright Consequence: The FO-theory of Skolem Arithmetic is decidable.
- Extension by the relation $x_1 = x_2 + 1$ makes the FO-theory undecidable.

Application 3: FO-theory of a monadic RPO

- \triangleright Monadic signature: only constants and unary function symbols
- \triangleright RPO: Recursive Path Ordering (it does not matter which one when the signature is monadic)
- \triangleright The structure contains x \cdot t for all $t \in \mathcal{T}(\Sigma)$, and $x_1 \prec x_2$.
- \triangleright Automatic presentation uses trees to represent strings.
- ▶ See Narendran&Rusinowitch, ICCL 2000.

Application 4: multiple equivalence relations

- Structure with universe $T(\Sigma)$
- \blacktriangleright Multiple congruence relations $=$ E_i , for equational theories E_i .
- Relations $x = f(y, z)$ not allowed (otherwise FO-theory undecidable, even when all equational theories ground)
- \triangleright For which classes of equational theories can the FO-theory of this structure be decidable?

Multiple equivalence relations

Problem with decidability proofs by quantifier elimination (simplification procedure by semantic-preserving rewriting):

$$
\frac{\exists x (x =_{E} y \land \phi)}{\phi[y \mapsto x]}
$$

is correct only when $=$ ϵ is congruence w.r.t. all relations in ϕ . This is in general not the case with several equational theories E_1, E_2, E_3, \ldots Quantifier elimination is not modular!

Generalized Tree Transducers (GTT)

- A GTT is given by two tree automata A_1 and A_2 over the same signature Σ , and possibly with shared states.
- ► The GTT (A_1, A_2) recognizes the pair $(t, t') \in \mathcal{T}(\Sigma) \times \mathcal{T}(\Sigma)$ iff there exists a context C , terms $t_i, t'_i \in \mathcal{T}(\Sigma)$, and states q_i for $1 \leq i \leq n$, such that $t = C[t_1, \ldots, t_n]$, $t' = C[t'_1, \ldots, t'_n]$, $t_i \in L(A_1,q_i)$ and $t' \in L(A_2,q_i)$ for all $1 \leq i \leq n$.

Example GTT

- In Let $t_1 \rightarrow t_2$ be a linear rewrite rule with $V(t_1) \parallel V(t_2)$.
- \triangleright Tree automaton A_1 : recognizes set of ground instances of t_1 .
- \blacktriangleright Tree automaton A_2 : recognizes set of ground instances of t_2 .
- The GTT (A_1, A_2) recognizes (t, t') iff t transforms to t' in one parallel rewrite step.

Results about GTTs

- \triangleright Any relation defined by a GTT is recognizable (by a tree automaton).
- \triangleright The set of GTT-definable relations is closed under union.
- \triangleright The set of GTT-definable relations is closed under iteration (Kleene star).

Application of GTT: multiple equivalence relations

- \triangleright Let E be a set of linear and variable-disjoint equations (no shared variable on lhs and rhs of an equation).
- \blacktriangleright \leftrightarrow \parallel $E \over E$ is GTT-definable. Idea: one automaton recognizes instances of lhs, the other instances of rhs of axioms.
- \blacktriangleright $=$ ϵ is the reflexive-transitive closure of that relation, hence recognizable.
- **In** This structure is automatic! (with $\nu = id$), FO-theory hence decidable.

Application 5: WS2S

- ▶ Weak Second-Order Theory of 2 Successor Functions
- \blacktriangleright This was the original motivation of Thatcher and Wright to study tree automata
- ▶ Two-sorted structure: words $\{0,1\}^*$, and finite sets of words
- ► Predicates: $x = y \cdot 0$, $x = y \cdot 1$, $x = \epsilon$, $x = y$, $x \in X$.
- \blacktriangleright FO-theory (even first-order) undecidable with predicate $x = y \cdot z$ (Quine 1946)

Automatic Presentation of WS2S

- \triangleright Simplify structure: only one sort of finite sets of words.
- \triangleright Only predicates in the simplified structure: $X \subseteq Y$, $S_0(X, Y)$, $S_1(X, Y)$.
- \blacktriangleright Meaning of $S_0(X, Y)$: exists word w with $X = \{w\}$ and $Y = \{w \cdot 0\}$.
- \blacktriangleright Tree signature is $\Sigma_0 = {\epsilon}$, $\Sigma_2 = {\{0,1\}}$.
- \blacktriangleright Tree t represents the set of paths that lead to a 1-node: $\nu(t)\{\pi \in O(t) \mid t(\pi)=1\}$
- \triangleright One may choose $L_{\delta} = T(\Sigma)$

Automatic presentation of the predicates

- ► $X_1 \subseteq X_2$: check absence of $\frac{1}{|0|}$, $\frac{1}{\epsilon}$ $\frac{1}{\epsilon}$, $\frac{1}{\Box}$ $\frac{1}{\Box}$ in the tree.
- \triangleright $S_0(X_1, X_2)$: Check that tree contains exactly one occurrence of the pattern

and 0, ϵ , \Box everywhere else in both components!

Application 6: S2S

- \triangleright Difference with WS2S: sets may be infinite.
- \triangleright Automatic presentation (with tree automata on infinite trees): exactly as in the finite case.
- \triangleright Consequence: $S2S$ is decidable.
- \triangleright Prefix relation can be expressed: x is prefix of y iff

$$
\forall S(x \in S \land \forall z (x \in S \to x0 \in S \land x1 \in S) \to y \in S)
$$

 \triangleright Almost all extensions of S2S are undecidable, for instance extension by $|x| = |y|$, extension by suffix relation, or changing $x = y \cdot 1$ into $x = 1 \cdot y$.

- \triangleright Automata can be used (in some cases) to model FO-structures.
- \triangleright Crucial properties of automata: emptiness decidable, closure under Boolean operations, but also under projection and cylindrification.
- \triangleright Automata on finite or infinite words or trees can be used.
- \triangleright Yields decidability of the logic $S2S$, probably the "strongest" known decidability result of a FO theory.

Literature

- \blacktriangleright The references of the first lecture
- ▶ Achim Blumensath and Erich Grädel: Automatic Structures. LICS 2000. Systematic Investigation of automatic structures.
- ▶ R.T.: Lecture Notes Constraint Solving and Decision Problems of FO Theories of Concrete Domains, chapter 9. See there for detailed references of individual results.