Tree Automata and Rewriting

Ralf Treinen

July 23, 2010

What happened at the last episode

- Generalization of word automata to trees: Rules $q(f(x_1,...,x_n)) \rightarrow f(q_1(x_1),...,q_n(x_n))$
- Closure and decision results as for word automata (beware of non-linearity when generalizing from words to trees)
- Can even be extended to the case of infinite trees

Relating automata and logic

- ► A predicate-logic formula φ(x₁,...,x_n), in a fixed interpretation, denotes a set of *n*-tuples of values: the solutions of the formula.
- A tree automata defines a set of trees.
- A tuple of trees can be encoded as one tree (will be explained soon).
- If we find an encoding of values as trees then we can use a tree automaton to represent a set of tuples of values.
- Use good closure and decision properties of automata to decide validity of formulas in a given interpretation.

Example: encoding a pair of trees as a tree

Tuple signatures

Given a signature Σ , $n \ge 0$ and $\Box \notin \Sigma$, define $\Sigma_n^{\Box} = \{(f_1, \ldots, f_n) \mid f_i \in \Sigma \cup \{\Box\}\} - \{(\Box, \ldots, \Box)\}$

 $arity((f_1,\ldots,f_n)) = \max\{arity(f_i) \mid f_i \neq \Box\}$

Convolution of trees

Given $t_1, \ldots, t_n \in T(\Sigma)$. Define their convolution $t = t_1 \otimes \cdots \otimes t_n \in T(\Sigma_n^{\Box})$ by $\bullet \quad O(t) = O(t_1) \cup \ldots \cup O(t_n)$ $\bullet \quad t(\pi).i = \begin{cases} t_i(\pi) & \text{if } \pi \in O(t_i) \\ \Box & \text{if } \pi \notin O(t_i) \end{cases}$

Automatic Representation

An automatic representation of a relational structure A with predicate symbols R_1, \ldots, R_r is given by:

- a finite signature Σ
- a regular language $L_{\delta} \subseteq T(\Sigma)$
- ▶ an onto function $\nu: L_{\delta} \rightarrow \mathcal{A}$
- regular languages L_i ⊆ T(Σ[□]_n), 1 ≤ i ≤ r, n = arity(R_i), such that all x₁,..., x_n ∈ L_δ:

$$x_1 \otimes \ldots \otimes x_n \in L_i$$
 iff $(\nu(x_1), \ldots, \nu(x_n)) \in R_i^A$

A structure is automatic if it has an automatic representation.

Example: Presburger Arithmetic

- Presburger Arithmetic: Natural numbers with addition only (no multiplication).
- Presburger (student of Tarski) 1929: Decidability of FO-theory by quantifier elimination.
- Büchi 1960: Decidability by coding in logic WS1S (will be explained later) which is shown to be automatic.
- Boudet&Comon 1996: Direct construction of automatic representation.

Automatic Presentation of Presburger Arithmetic

- Structure must be purely relational.
- Choose set of two predicates: $x_1 = 0$ and $x_1 + x_2 = x_3$.
- Choose signature Σ₁ = {0,1}, Σ₀ = {ε} (words!). Idea: represent a natural number in binary notation.
- Least or most significant bit first? Least significant bit first, since bits must be aligned for the addition operation!
- Define an onto function ν : T(Σ) → N: natural interpretation of binary notation.
- $L_{\delta} = 0 + (0+1)^*1$ (written as regular expression over words)

Automaton for $x_1 = 0$

An even simpler automaton?

We only care for L_{δ} , everything outside L_{δ} is junk!

Automaton for $x_1 + x_2 = x_3$

FO theory of automatic structures

Büchi 1960, Blumensath&Grädel 2000:

The first-order theory of any automatic structure is decidable.

Proof: construct inductively, for any formula $\phi(x_1, \ldots, x_n)$ an automaton A_{ϕ} such that for all $x_1, \ldots, x_n \in L_{\delta}$:

$$x_1 \otimes \ldots \otimes x_n \in L_{\mathcal{A}_{\phi}}$$
 iff $(\nu(x_1), \ldots, \nu(x_n)) \in \phi^{\mathcal{A}}$

Inductive Construction of A_{ϕ}

- ▶ Base case: φ(x₁,..., x_n) is a literal R(x₁,..., x_n): Automaton A_φ exists by definition of automatic structures!
- Negation: If A_φ is the automaton for φ(x₁,...,x_n): then one possible automaton for A_{¬φ} is the complement automaton of A_φ which recognizes T(Σⁿ_□) \ L(A_φ). (There may be other automata which differ in the handling of junk.)

Inductive Construction in case of \exists

- Let $A\phi$ be an automaton for $\phi(x_1, \ldots, x_{n+1})$.
- Language recognized by $A_{\exists x_{n+1}\phi}$?
- One "forgets" simply the *i* + 1-th component in the symbol (projection).
- Linear tree homomorphism: maps $(f_1, \ldots, f_n, f_{n+1})$ to term $(f_1, \ldots, f_n)(x_1, \ldots, x_i)$.
- Use simply the fact that recognizable languages are closed under linear tree homomorphisms!

Example Projection

Automaton for $\exists x_1(x_1 + x_2 = x_3)$:

Does this automaton correspond to $x_2 \le x_3$?

Inductive Construction in case of \wedge

- If A₁ is the automaton for φ₁ and A₂ the automaton for φ₂, then the automaton for φ₁ ∧ φ₂ must accept L(A₁) ∩ L(A₂), right ?
- ▶ If A_1 is the automaton for $\phi_1(x_1)$ and A_2 the automaton for $\phi_2(x_2)$, then the automaton for $\phi_1(x_1) \land \phi_2(x_2)$ must accept $L(A_1) \cap L(A_2)$, right ?
- Of course not in general. We must first assure that both formulas "talk" about the same variables.
- ▶ φ₁ and φ₂ must first be "lifted" to the same set of variables {x₁, x₂}. Only then one can construct the automaton by intersection.

Cylindrification

- ► Here: Given A for n variables, cylindrify to A[↑] by adding a "bogus" n + 1-th variable:
- This is exactly the inverse operation of projection, which is described by a tree homomorphism.
- One uses the fact that recognizable languages are closed under inverse tree homomorphisms!

Example Cylindrification

Automata for $x_1 = 0$ and $x_2 = 2$ cylindrified to $\{x_1, x_2\}$:

Product of the two automata (intersection of languages):

Finishing up the proof

- Automaton for a closed formula $\phi : \mathcal{A}_{\phi}$ over alphabet Σ_0^{\Box} .
- Alphabet Σ[□]₀ = ?Ø, since this alphabet contains only tuples with at least one non-blank component!
- Possible languages over alphabet \emptyset ? : \emptyset and $\{\epsilon\}$!
- ϕ is true iff A_{ϕ} recognizes $\{\epsilon\}$
- ϕ is false iff A_{ϕ} recognizes \emptyset

Exercises on Automatic structures

- 1. Any automatic structure A containing the equality relation has an automatic presentation with a one-to-one function ν .
- For any automatic structure, the theory of the first-order logic extended by the quantifier ∃[∞] is decidable.
 ∃[∞]x: there exist infinitely many x such that ...

Solutions: Blumensath&Grädel 2000 paper

Application 1: Words

- Structure {a, b}*, with relations: x₁ = x₂a, x₁ = x₂b, x₁ = ax₂, x₁ = bx₂
- Automatic presentation: $L_{\delta} = \{a, b\}$ *, $\nu = id$

- Automaton for $x_1 = ax_2$: exercise (easy)!
- FO-theory decidable (but not for $x_1 = x_2x_3!$)

Application 2: Skolem Arithmetic

- ► Structure \mathbb{N}_+ {1, 2, 3, ...}, with relations: $x_1 = x_2, x = c \ (c \in \mathbb{N}), x_1 * x_2 = x_3.$
- Challenge: find a representation that allows to express multiplication by an automaton!
- Enumeration of prime numbers: p_1, p_2, p_3, \ldots
- Represent n as (e_1, \ldots, e_i) where

$$n=p_1^{e_1}*p_2^{e_2}*\ldots*p_i^{e_i}$$

Multiplication translates to addition of exponents!

Tree Automata and Rewriting

Logic and Automata

Applications to specific FO theories

Representation of a number $n = p_1^{e_1} * p_2^{e_2} * p_3^{e_3} * \dots$

Application 2: Skolem Arithmetic

- ► The automaton for x₁ = x₂ = x₃ travels down the *f*-spine, and verifies for each branch addition (see the automaton construction for Presburger Arithmetic)
- Consequence: The FO-theory of Skolem Arithmetic is decidable.
- ▶ Extension by the relation $x_1 = x_2 + 1$ makes the FO-theory undecidable.

Application 3: FO-theory of a monadic RPO

- Monadic signature: only constants and unary function symbols
- RPO: Recursive Path Ordering (it does not matter which one when the signature is monadic)
- The structure contains $x \cdot t$ for all $t \in T(\Sigma)$, and $x_1 \prec x_2$.
- Automatic presentation uses trees to represent strings.
- See Narendran&Rusinowitch, ICCL 2000.

Application 4: multiple equivalence relations

- Structure with universe $T(\Sigma)$
- Multiple congruence relations $=_{E_i}$, for equational theories E_i .
- Relations x = f(y, z) not allowed (otherwise FO-theory undecidable, even when all equational theories ground)
- For which classes of equational theories can the FO-theory of this structure be decidable?

Multiple equivalence relations

Problem with decidability proofs by quantifier elimination (simplification procedure by semantic-preserving rewriting):

$$\frac{\exists x(x =_E y \land \phi)}{\phi[y \mapsto x]}$$

is correct only when $=_E$ is congruence w.r.t. all relations in ϕ . This is in general not the case with several equational theories E_1, E_2, E_3, \ldots Quantifier elimination is not modular! Applications to specific FO theories

Generalized Tree Transducers (GTT)

- A GTT is given by two tree automata A₁ and A₂ over the same signature Σ, and possibly with shared states.
- ► The GTT (A_1, A_2) recognizes the pair $(t, t') \in T(\Sigma) \times T(\Sigma)$ iff there exists a context *C*, terms $t_i, t'_i \in T(\Sigma)$, and states q_i for $1 \le i \le n$, such that $t = C[t_1, \ldots, t_n]$, $t' = C[t'_1, \ldots, t'_n]$, $t_i \in L(A_1, q_i)$ and $t' \in L(A_2, q_i)$ for all $1 \le i \le n$.

Example GTT

- Let $t_1 \rightarrow t_2$ be a linear rewrite rule with $V(t_1) \parallel V(t_2)$.
- Tree automaton A_1 : recognizes set of ground instances of t_1 .
- Tree automaton A_2 : recognizes set of ground instances of t_2 .
- ► The GTT (A₁, A₂) recognizes (t, t') iff t transforms to t' in one parallel rewrite step.

Applications to specific FO theories

Results about GTTs

- Any relation defined by a GTT is recognizable (by a tree automaton).
- ► The set of GTT-definable relations is closed under union.
- The set of GTT-definable relations is closed under iteration (Kleene star).

Application of GTT: multiple equivalence relations

- Let E be a set of linear and variable-disjoint equations (no shared variable on lhs and rhs of an equation).
- → ↔ ^{||}_E is GTT-definable. Idea: one automaton recognizes instances of lhs, the other instances of rhs of axioms.
- $\blacktriangleright =_E$ is the reflexive-transitive closure of that relation, hence recognizable.
- This structure is automatic! (with ν = id), FO-theory hence decidable.

Application 5: WS2S

- Weak Second-Order Theory of 2 Successor Functions
- This was the original motivation of Thatcher and Wright to study tree automata
- Two-sorted structure: words $\{0,1\}^*$, and finite sets of words
- ▶ Predicates: $x = y \cdot 0$, $x = y \cdot 1$, $x = \epsilon$, x = y, $x \in X$.
- ► FO-theory (even first-order) undecidable with predicate x = y · z (Quine 1946)

Automatic Presentation of WS2S

- Simplify structure: only one sort of finite sets of words.
- Only predicates in the simplified structure: $X \subseteq Y$, $S_0(X, Y)$, $S_1(X, Y)$.
- ▶ Meaning of S₀(X, Y): exists word w with X = {w} and Y = {w ⋅ 0}.
- Tree signature is $\Sigma_0 = \{\epsilon\}$, $\Sigma_2 = \{0, 1\}$.
- Tree *t* represents the set of paths that lead to a 1-node: $\nu(t)\{\pi \in O(t) \mid t(\pi) = 1\}$
- One may choose L_δ = T(Σ)

Automatic presentation of the predicates

- ▶ $X_1 \subseteq X_2$: check absence of $\begin{bmatrix} 1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\\epsilon \end{bmatrix}$, $\begin{bmatrix} 1\\\Box \end{bmatrix}$ in the tree.
- ► S₀(X₁, X₂): Check that tree contains exactly one occurrence of the pattern

and 0, ϵ , \Box everywhere else in both components!

Application 6: S2S

- ► Difference with *WS2S*: sets may be infinite.
- Automatic presentation (with tree automata on infinite trees): exactly as in the finite case.
- Consequence: *S*2*S* is decidable.
- Prefix relation can be expressed: x is prefix of y iff

$$orall S(x \in S \land orall z(x \in S
ightarrow x0 \in S \land x1 \in S)
ightarrow y \in S)$$

Almost all extensions of S2S are undecidable, for instance extension by |x| = |y|, extension by suffix relation, or changing x = y ⋅ 1 into x = 1 ⋅ y.

- Automata can be used (in some cases) to model FO-structures.
- Crucial properties of automata: emptiness decidable, closure under Boolean operations, but also under projection and cylindrification.
- Automata on finite or infinite words or trees can be used.
- Yields decidability of the logic S2S, probably the "strongest" known decidability result of a FO theory.

Literature

- The references of the first lecture
- Achim Blumensath and Erich Grädel: Automatic Structures, LICS 2000. Systematic Investigation of automatic structures.
- R.T.: Lecture Notes Constraint Solving and Decision Problems of FO Theories of Concrete Domains, chapter 9.
 See there for detailed references of individual results.