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Université Paris Diderot
UFR Informatique
Laboratoire Preuves, Programmes et Systèmes
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Logic and Automata

Introduction

What happened at the last episode

I Generalization of word automata to trees:
Rules q(f (x1, . . . , xn))→ f (q1(x1), . . . , qn(xn))

I Closure and decision results as for word automata (beware of
non-linearity when generalizing from words to trees)

I Can even be extended to the case of infinite trees
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Relating automata and logic

I A predicate-logic formula φ(x1, . . . , xn), in a fixed
interpretation, denotes a set of n-tuples of values: the
solutions of the formula.

I A tree automata defines a set of trees.

I A tuple of trees can be encoded as one tree (will be explained
soon).

I If we find an encoding of values as trees then we can use a
tree automaton to represent a set of tuples of values.

I Use good closure and decision properties of automata to
decide validity of formulas in a given interpretation.
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Example: encoding a pair of trees as a tree

f

g

a

⊗ g

b c

= [f,g]

[g,b]

[a,2]

[2,c]
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Tuple signatures

Given a signature Σ, n ≥ 0 and 2 6∈ Σ,
define Σ2

n = {(f1, . . . , fn) | fi ∈ Σ ∪ {2}} −{(2, . . . ,2)}

arity((f1, . . . , fn)) = max{arity(fi ) | fi 6= 2}
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Convolution of trees

Given t1, . . . , tn ∈ T (Σ).
Define their convolution t = t1 ⊗ · · · ⊗ tn ∈ T (Σ2

n ) by

I O(t) = O(t1) ∪ . . . ∪ O(tn)

I t(π).i =

{
ti (π) if π ∈ O(ti )
2 if π 6∈ O(ti )
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Automatic Representation

An automatic representation of a relational structure A with
predicate symbols R1, . . . ,Rr is given by:

I a finite signature Σ

I a regular language Lδ ⊆ T (Σ)

I an onto function ν : Lδ → A
I regular languages Li ⊆ T (Σ2

n ), 1 ≤ i ≤ r , n = arity(Ri ), such
that all x1, . . . , xn ∈ Lδ:

x1 ⊗ . . .⊗ xn ∈ Li iff (ν(x1), . . . , ν(xn)) ∈ RAi

A structure is automatic if it has an automatic representation.
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Example: Presburger Arithmetic

I Presburger Arithmetic: Natural numbers with addition only
(no multiplication).

I Presburger (student of Tarski) 1929: Decidability of
FO-theory by quantifier elimination.

I Büchi 1960: Decidability by coding in logic WS1S (will be
explained later) which is shown to be automatic.

I Boudet&Comon 1996: Direct construction of automatic
representation.
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Automatic Presentation of Presburger Arithmetic

I Structure must be purely relational.

I Choose set of two predicates: x1 = 0 and x1 + x2 = x3.

I Choose signature Σ1 = {0, 1}, Σ0 = {ε} (words!). Idea:
represent a natural number in binary notation.

I Least or most significant bit first? Least significant bit first,
since bits must be aligned for the addition operation!

I Define an onto function ν : T (Σ)→ N: natural interpretation
of binary notation.

I Lδ = 0 + (0 + 1)∗1 (written as regular expression over words)
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Automaton for x1 = 0

q0start q1
0

An even simpler automaton?

q0start 0

We only care for Lδ, everything outside Lδ is junk!
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Automaton for x1 + x2 = x3

q0start q1
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FO theory of automatic structures

Büchi 1960, Blumensath&Grädel 2000:

The first-order theory of any automatic structure is
decidable.

Proof: construct inductively, for any formula φ(x1, . . . , xn) an
automaton Aφ such that for all x1, . . . , xn ∈ Lδ :

x1 ⊗ . . .⊗ xn ∈ LAφ
iff (ν(x1), . . . , ν(xn)) ∈ φA



Tree Automata and Rewriting

Logic and Automata

Automatic Structures

Inductive Construction of Aφ

I Base case: φ(x1, . . . , xn) is a literal R(x1, . . . , xn):
Automaton Aφ exists by definition of automatic structures!

I Negation: If Aφ is the automaton for φ(x1, . . . , xn):
then one possible automaton for A¬φ is the complement
automaton of Aφ which recognizes T (Σn

2) \ L(Aφ).
(There may be other automata which differ in the handling of
junk.)
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Inductive Construction in case of ∃

I Let Aφ be an automaton for φ(x1, . . . , xn+1).

I Language recognized by A∃xn+1φ ?

I One “forgets” simply the i + 1-th component in the symbol
(projection).

I Linear tree homomorphism: maps (f1, . . . , fn, fn+1) to term
(f1, . . . , fn)(x1, . . . , xi ).

I Use simply the fact that recognizable languages are closed
under linear tree homomorphisms!
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Example Projection

Automaton for ∃x1(x1 + x2 = x3):

q0start q1
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Does this automaton correspond to x2 ≤ x3?
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Inductive Construction in case of ∧

I If A1 is the automaton for φ1 and A2 the automaton for φ2,
then the automaton for φ1 ∧ φ2 must accept L(A1) ∩ L(A2),
right ?

I If A1 is the automaton for φ1(x1) and A2 the automaton for
φ2(x2), then the automaton for φ1(x1) ∧ φ2(x2) must accept
L(A1) ∩ L(A2), right ?

I Of course not in general. We must first assure that both
formulas “talk” about the same variables.

I φ1 and φ2 must first be “lifted” to the same set of variables
{x1, x2}. Only then one can construct the automaton by
intersection.
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Cylindrification

I Here: Given A for n variables, cylindrify to A↑ by adding a
“bogus” n + 1-th variable:

I This is exactly the inverse operation of projection, which is
described by a tree homomorphism.

I One uses the fact that recognizable languages are closed
under inverse tree homomorphisms!
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Example Cylindrification

Automata for x1 = 0 and x2 = 2 cylindrified to {x1, x2}:

a b
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Product of the two automata (intersection of languages):

a ∧ c b ∧ d b ∧ e

0
0

2
1
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Finishing up the proof

I Automaton for a closed formula φ : Aφ over alphabet Σ2
0 .

I Alphabet Σ2
0 = ?∅, since this alphabet contains only tuples

with at least one non-blank component!

I Possible languages over alphabet ∅ ? : ∅ and {ε} !

I φ is true iff Aφ recognizes {ε}
I φ is false iff Aφ recognizes ∅
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Exercises on Automatic structures

1. Any automatic structure A containing the equality relation
has an automatic presentation with a one-to-one function ν.

2. For any automatic structure, the theory of the first-order logic
extended by the quantifier ∃∞ is decidable.
∃∞x : there exist infinitely many x such that . . .

Solutions: Blumensath&Grädel 2000 paper
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Application 1: Words

I Structure {a, b}∗, with relations:
x1 = x2a, x1 = x2b, x1 = ax2, x1 = bx2

I Automatic presentation: Lδ = {a, b}∗, ν = id
I Automaton for x1 = x2a:

start

a
2

a
a
,

b
b

I Automaton for x1 = ax2: exercise (easy)!

I FO-theory decidable (but not for x1 = x2x3!)
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Application 2: Skolem Arithmetic

I Structure N+{1, 2, 3, . . .}, with relations:
x1 = x2, x = c (c ∈ N), x1 ∗ x2 = x3.

I Challenge: find a representation that allows to express
multiplication by an automaton!

I Enumeration of prime numbers: p1, p2, p3, . . .

I Represent n as (e1, . . . , ei ) where

n = pe1
1 ∗ pe2

2 ∗ . . . ∗ pei
i

I Multiplication translates to addition of exponents!
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Representation of a number n = pe1

1 ∗ pe2

2 ∗ pe3

3 ∗ . . .

f

· · ·
0 ·
· · 1
· · ·

e1 in binary →

f

· · ·
0 ·
· · 1
· · ·

e2 in binary →

f

· · ·
0 ·
· · 1
· · ·

e3 in binary →

ε
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Application 2: Skolem Arithmetic

I The automaton for x1 = x2 = x3 travels down the f -spine,
and verifies for each branch addition (see the automaton
construction for Presburger Arithmetic)

I Consequence: The FO-theory of Skolem Arithmetic is
decidable.

I Extension by the relation x1 = x2 + 1 makes the FO-theory
undecidable.
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Application 3: FO-theory of a monadic RPO

I Monadic signature: only constants and unary function symbols

I RPO: Recursive Path Ordering (it does not matter which one
when the signature is monadic)

I The structure contains x · t for all t ∈ T (Σ), and x1 ≺ x2.

I Automatic presentation uses trees to represent strings.

I See Narendran&Rusinowitch, ICCL 2000.
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Application 4: multiple equivalence relations

I Structure with universe T (Σ)

I Multiple congruence relations =Ei
, for equational theories Ei .

I Relations x = f (y , z) not allowed (otherwise FO-theory
undecidable, even when all equational theories ground)

I For which classes of equational theories can the FO-theory of
this structure be decidable?
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Multiple equivalence relations

Problem with decidability proofs by quantifier elimination
(simplification procedure by semantic-preserving rewriting):

∃x(x =E y ∧ φ)

φ[y 7→ x ]

is correct only when =E is congruence w.r.t. all relations in φ.
This is in general not the case with several equational theories
E1,E2,E3, . . .. Quantifier elimination is not modular!



Tree Automata and Rewriting

Logic and Automata

Applications to specific FO theories

Generalized Tree Transducers (GTT)

I A GTT is given by two tree automata A1 and A2 over the
same signature Σ, and possibly with shared states.

I The GTT (A1,A2) recognizes the pair (t, t ′) ∈ T (Σ)× T (Σ)
iff there exists a context C , terms ti , t

′
i ∈ T (Σ), and states qi

for 1 ≤ i ≤ n, such that t = C [t1, . . . , tn], t ′ = C [t ′1, . . . , t
′
n],

ti ∈ L(A1, qi ) and t ′ ∈ L(A2, qi ) for all 1 ≤ i ≤ n.



Tree Automata and Rewriting

Logic and Automata

Applications to specific FO theories

Example GTT

I Let t1 → t2 be a linear rewrite rule with V (t1) ‖ V (t2).

I Tree automaton A1: recognizes set of ground instances of t1.

I Tree automaton A2: recognizes set of ground instances of t2.

I The GTT (A1,A2) recognizes (t, t ′) iff t transforms to t ′ in
one parallel rewrite step.
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Results about GTTs

I Any relation defined by a GTT is recognizable (by a tree
automaton).

I The set of GTT-definable relations is closed under union.

I The set of GTT-definable relations is closed under iteration
(Kleene star).
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Application of GTT: multiple equivalence relations

I Let E be a set of linear and variable-disjoint equations (no
shared variable on lhs and rhs of an equation).

I ↔‖E is GTT-definable. Idea: one automaton recognizes
instances of lhs, the other instances of rhs of axioms.

I =E is the reflexive-transitive closure of that relation, hence
recognizable.

I This structure is automatic! (with ν = id), FO-theory hence
decidable.
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Application 5: WS2S

I Weak Second-Order Theory of 2 Successor Functions

I This was the original motivation of Thatcher and Wright to
study tree automata

I Two-sorted structure: words {0, 1}∗, and finite sets of words

I Predicates: x = y · 0, x = y · 1, x = ε, x = y , x ∈ X .

I FO-theory (even first-order) undecidable with predicate
x = y · z (Quine 1946)
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Automatic Presentation of WS2S

I Simplify structure: only one sort of finite sets of words.

I Only predicates in the simplified structure:
X ⊆ Y , S0(X ,Y ), S1(X ,Y ).

I Meaning of S0(X ,Y ):
exists word w with X = {w} and Y = {w · 0}.

I Tree signature is Σ0 = {ε}, Σ2 = {0, 1}.
I Tree t represents the set of paths that lead to a 1-node:
ν(t){π ∈ O(t) | t(π) = 1}

I One may choose Lδ = T (Σ)
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Automatic presentation of the predicates

I X1 ⊆ X2 : check absence of
1
0

,
1
ε
,

1
2 in the tree.

I S0(X1,X2): Check that tree contains exactly one occurrence
of the pattern

1
0

0
1

and 0, ε, 2 everywhere else in both components!
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Application 6: S2S

I Difference with WS2S : sets may be infinite.

I Automatic presentation (with tree automata on infinite trees):
exactly as in the finite case.

I Consequence: S2S is decidable.

I Prefix relation can be expressed: x is prefix of y iff

∀S(x ∈ S ∧ ∀z(x ∈ S → x0 ∈ S ∧ x1 ∈ S)→ y ∈ S)

I Almost all extensions of S2S are undecidable, for instance
extension by |x | = |y |, extension by suffix relation, or
changing x = y · 1 into x = 1 · y .
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Summary

I Automata can be used (in some cases) to model
FO-structures.

I Crucial properties of automata: emptiness decidable, closure
under Boolean operations, but also under projection and
cylindrification.

I Automata on finite or infinite words or trees can be used.

I Yields decidability of the logic S2S , probably the “strongest”
known decidability result of a FO theory.
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Literature

I The references of the first lecture

I Achim Blumensath and Erich Grädel: Automatic Structures,
LICS 2000. Systematic Investigation of automatic structures.

I R.T.: Lecture Notes Constraint Solving and Decision
Problems of FO Theories of Concrete Domains, chapter 9.
See there for detailed references of individual results.
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