
Tree Automata and Rewriting

Tree Automata and Rewriting

Ralf Treinen

Université Paris Diderot
UFR Informatique
Laboratoire Preuves, Programmes et Systèmes

treinen@pps.jussieu.fr

July 23, 2010

treinen@pps.jussieu.fr


Tree Automata and Rewriting

Tree Automata

What are Tree Automata?

Definition Tree Automaton

A tree automaton (TA) is a tuple A = (Σ,Q,Qa,∆) where

I Σ: finite signature;

I Q ‖ Σ1: set of states, a finite set of unary symbols;

I Qa ⊆ Q: set of accepting states;

I ∆: finite set of transition rules, rewrite rules of the form

f (q1(x1), . . . , qn(xn))→ q(f (x1, . . . , xn))

where f ∈ Σn, q, q1, . . . , qn ∈ Q, x1, . . . , xn different variables.



Tree Automata and Rewriting

Tree Automata

What are Tree Automata?

Languages defined by a TA

Given a TA A = (Σ,Q,Qa,∆):

I The language of trees accepted in state q (q ∈ Q) is
LA,q = {t ∈ T (Σ) | t →∗ q(t)}.

I A accepts a tree t ∈ T (Σ) if t →∗ q(t) for some q ∈ Qa.

I The language recognized by A L(A) is the set of all Σ-trees
accepted by A.

I A language L ⊆ T (Σ) is recognizable if L = L(A) for some
tree-automaton A.



Tree Automata and Rewriting

Tree Automata

What are Tree Automata?

Example

Σ0{a}, Σ1 = {g}, Σ2 = {f }.

a → qa(a) f (qa(x1), qa(x2)) → qf (f (x1, x2))

f

a a

→ f

qa

a

a

→ f

qa

a

qa

a

→ qf

f

a a



Tree Automata and Rewriting

Tree Automata

What are Tree Automata?

Remarks

I States “move” from the leaves to the root.
This is also called a bottom-up automaton.

I Rules for constants (a→ q(a)) initiate the process, they
replace the notion of “initial states”.

I The automaton may be non-deterministic:
Two different rules with the same left-hand side.

I The automaton may be incomplete:
No rule for some left-hand side.



Tree Automata and Rewriting

Tree Automata

What are Tree Automata?

Abbreviated Notation

Simplified notation (often used in examples):

I States are constants (instead of unary symbols)

I Rules: f (q1, . . . , qn)→ q

I Tree t is accepted when t →∗ q ∈ Qa

I This would give raise to the same notion of recognizability

I . . . however, this no longer the case for certain extensions of
TA (see Lecture 3).

We use this notation only as abbreviation (one does not mention
that the system keeps track of the part of the tree already treated).



Tree Automata and Rewriting

Tree Automata

What are Tree Automata?

Example in abbreviated notation

a → q0 f (q0, q0) → q0 f (q0, q1) → q1

g(q0, q0) → q1 f (q1, q0) → q1

What is the language recognized in q1 by this automaton? The set
of trees containing exactly one g .

f

f

a a

g

a a

f

f

q0 q0

g

q0 q0

f

q0 q1

q1



Tree Automata and Rewriting

Tree Automata

What are Tree Automata?

Example in abbreviated notation (cntd.)

a → q0 f (q0, q0) → q0 f (q0, q1) → q1

g(q0, q0) → q1 f (q1, q0) → q1

Example of a blocking execution. This is tree is not accepted in q1.

f

g

a a

g

a a

f

g

q0 q0

g

q0 q0

f

q1 q1



Tree Automata and Rewriting

Tree Automata

Expressivity of Tree Automata

Relation to Word Automata

Any finite word automaton can be seen as a tree automaton:

I Alphabet Γ yields a (monadic) signature Σ with

Σ1 = Γ,Σ0 = {ε}

I Recognizable word languages ⇔ Recognizable tree languages
over monadic signatures with exactly one constant:

word abc ⇔ a

b

c

ε



Tree Automata and Rewriting

Tree Automata

Expressivity of Tree Automata

As with word automata:

I Every automaton can be transformed into an equivalent
deterministic automaton (potential explosion of state space!);

Convenient but unessential extensions:

I ε-transitions : q1(x)→ q2(x), can be eliminated by
computing ε-closure of states;

I “Big step” transitions: t → q (in abbreviated notation),
where t is a linear Σ ∪ Q-term. Can be eliminated by
introducing intermediate states.



Tree Automata and Rewriting

Tree Automata

Expressivity of Tree Automata

Elimination of big-step transitions

f (g(q1, q2), h(q3))→ q4

Eliminate by introducing auxiliary states:

g(q1, q2) → p1

h(q3) → p2

f (p1, p2) → q4

with p1, p2 fresh state symbols.



Tree Automata and Rewriting

Tree Automata

Expressivity of Tree Automata

Example big-step transition

For any left-linear rewrite rule l → r the set of reducible terms is
recognizable.
The automaton consists of three parts:

I Recognize any term in state q∗.

I Rule l ′ → qm, where l ′ is l with all variables replaced by q∗.

I Rules to propagate qm to the root, qm is the only accepting
state.



Tree Automata and Rewriting

Tree Automata

Expressivity of Tree Automata

More on recognizing reducible terms

I Why is it essential that the rewrite rule is left-linear ?

I Tree automata only “see” the states in which direct subterms
are recognized, not the subterms themselves.

I The set of instances of f (x , x) is not recognizable.

I This is formalized in the pumping lemma for tree automata
which generalizes the classical pumping lemma for word
automata by using tree contexts.

I In general: Beware of non-linearity when trying to generalize
from words to tree!



Tree Automata and Rewriting

Tree Automata

Alternative Definitions

TA as top-down state machines

A top-down tree automaton (TA) is defined like a bottom-up tree
automaton, except that

I additionally, QI ⊆ Q: finite set of initial states;

I Transition rules are now of the form

q(f (x1, . . . , xn))→ f (q1(x1), . . . , qn(xn))

where f ∈ Σn, q, q1, . . . , qn ∈ Q, x1, . . . , xn different variables.

Tree t is accepted if q(t)→∗ t for some q ∈ QI .



Tree Automata and Rewriting

Tree Automata

Alternative Definitions

Bottom-up versus Top-down Tree Automata

I Both automata models are equivalent in power.

I This is analogous to the fact that recognizable word languages
are closed under mirroring, but there is a subtlety:

I Deterministic top-down automata are less expressive than
general top-down, or bottom-up automata!

I Example: {f (a, a), f (b, b)} is not recognized by a
deterministic top-down TA, since a top-down automaton has
to guess whether the leaves will be as or bs.



Tree Automata and Rewriting

Tree Automata

Alternative Definitions

TA as Horn clauses

I An automaton clause is a definite Horn clause of the form

Q(f (x1, . . . , xn))← Q1(x1), . . . ,Qn(xn).

where Q,Q1, . . . ,Qn are unary predicate symbols, x1, . . . , xn

different variables, f ∈ Σn.

I Tree automaton: set of automata clauses plus a set of
accepting predicates. Semantics: minimal fixed point.

I Yields again an equivalent model.

I Horn clauses convenient for several extensions.



Tree Automata and Rewriting

Tree Automata

Closure and Decision Properties

Closure under Boolean Operations

The class of recognizable tree languages is effectively closed under

I Union: union of state-disjoint copies automata.

I Complementation: make TA deterministic, invert accepting
status of states.

I Intersection: Consequence of the above.

Application: For any left-linear term rewrite system, the set of
normal forms is recognizable.



Tree Automata and Rewriting

Tree Automata

Closure and Decision Properties

Tree homomorphisms

I Tree homomorphism: associates to each f ∈ Σn a term over
tf ∈ T (Σ, {x1, . . . , xn}).

I Defines a mapping h : T (Σ)→ T (Σ) by

h(f (t1, . . . , tn)) = tf {x1 7→ h(t1), . . . , xn 7→ h(tn)︸ ︷︷ ︸
syntactic replacement

}

I Linear tree homomorphism: all terms tf are linear.



Tree Automata and Rewriting

Tree Automata

Closure and Decision Properties

Examples

Σ1 = {>,⊥}, Σ1 = {¬}, Σ2 = {∧,∨}.
I h1: t∧ = ¬(∨(¬(x1),¬(x2))) eliminates ∧ in a Boolean

expression.

I h2: t¬ = ∧(x1, x1): non-linear!
Set of trees containing only ¬ is recognizable . . .
. . . but its image under h2 is not!

Recognizable languages are not closed under arbitrary tree
homomorphisms.



Tree Automata and Rewriting

Tree Automata

Closure and Decision Properties

Closure under linear tree homomorphisms

Let A recognize L, h a linear tree homomorphism.
Construction of automaton A′ recognizing h(L):

I A′ has the same states and accepting states as A.

I If A has transition f (q1, . . . , qn)→ q
Then A′ has transition tf {x1 7→ q1, . . . , xn 7→ qn} → q.

I This is an automaton with “big steps”, eliminating them
possibly introduces additional state symbols.

I Recognizable sets are closed under linear homomorphisms.



Tree Automata and Rewriting

Tree Automata

Closure and Decision Properties

Closure and inverse tree homomorphisms

Let A recognize L, h an arbitrary tree homomorphism.
Construction of automaton A′ recognizing h−1(L):

I States of A′: states of A plus {q∗}. States are accepting in A;
iff accepting in A.

I All terms are accepted in q∗.

I If tf {x1 7→ q1, . . . , xn 7→ qn} →∗A q
then A′ has transition f (q1, . . . , qn)→ q.
If xi 6∈ V (tf ) this implies qi = q∗!

I Recognizable sets are closed under inverse homomorphisms.



Tree Automata and Rewriting

Tree Automata

Closure and Decision Properties

Decision Results

The following properties are decidable:

I Membership: given A and t, is t ∈ L(A) ? (PTIME)

I Emptiness: given A, is L(A) = ∅ ? (PTIME)

I Finiteness: given A, is L(A) finite ? (PTIME)

I Universality: given A, is L(A) = T (Σ) ?
(EXPTIME complete since Σ is part of input!)

I . . .



Tree Automata and Rewriting

Tree Automata

Automata on Infinite Trees

Infinite Trees

I Investigation of automata on infinite trees motivated by
application to logic (see Lecture 2) starting from the late 60s.

I Groundbreaking work by Michael Rabin (Turing award 1979).
I Infinite Σ-tree τ consists of

I a tree domain Dτ : a prefix-closed set of tree addresses.
I a tree labelling Lτ : Dτ → Σ which is consistent with Σ.

(Definition adapted to term rewriting)



Tree Automata and Rewriting

Tree Automata

Automata on Infinite Trees

Automata on Infinite Trees

I On infinite trees, automata must be top-down.

I This means that automata cannot always be made
deterministic. This is a problem since . . .

I . . . the usual construction of a complement automata uses
determinisation plus inversion of the acceptance condition!

I When does an automata accept an infinite tree anyway?



Tree Automata and Rewriting

Tree Automata

Automata on Infinite Trees

Acceptance condition

Näıve approach to generalize top-down tree automata to infinite
trees:

A tree automaton accepts an infinite tree when it
executes without blocking.

With this näıve definition, the class of recognizable sets would not
be closed under complement!



Tree Automata and Rewriting

Tree Automata

Automata on Infinite Trees

Counterexample with the näıve definition

Signature Σ1 = {a, b} (infinite strings!)

Language L = {t ∈ T (Σ) | b 6∈ t} = {a · · · a · · · }

Automaton recognizing L:

QI = {q}
q(a(x)) → a(q(x))



Tree Automata and Rewriting

Tree Automata

Automata on Infinite Trees

Counterexample with the näıve definition (cntd.)

L̄ = {{t ∈ T (Σ) | b ∈ t}.
Assume A with n states recognizes L̄

A accepts

n︷ ︸︸ ︷
a · · · a ba · · ·

Run of A q0 q1 · · · qn · · ·
∃i 6= j : qi = qj

A accepts a · · · a a · · · a a · · · a · · ·



Tree Automata and Rewriting

Tree Automata

Automata on Infinite Trees

Definition of automata on infinite trees

I Like a top-down automaton in the finite case, plus F a set of
sets of states.

I A run of an automaton on a tree τ : mapping r : Dτ → Q
which is consistent with the transition rules.

I For a path π, In(r | π) is the set of states that occur infinitely
often on path π during run r .

I Run r is accepting when for each path π : In(r | π) ∈ F
I Tree τ is accepted when it admits an accepting run.

I There are some other equivalent definitions (the difference lies
in the form of the acceptance condition).



Tree Automata and Rewriting

Tree Automata

Automata on Infinite Trees

Example

I L̄ = {t ∈ T (Σ) | b ∈ t}.
I States : {q0, q1}
I q0: “No b yet”; q1: “Have seen some b”

I QI = {q0}
I Rules:

q0(a(x)) → a(q0(x)) q1(a(x)) → a(q1(x))
q0(b(x)) → b(q1(x)) q1(b(x)) → b(q1(x))

I F =?{{q1}}



Tree Automata and Rewriting

Tree Automata

Automata on Infinite Trees

Closure properties and Decision problems

The class of recognizable languages of infinite trees is closed under

I Union: very easy with non-determinism

I Intersection: very easy: execute both automata in parallel

I Complement: extremely difficult proof using game theory
(first proof by Michael Rabin 1969)

Emptiness is decidable (Rabin 1969), and NP-complete (Emerson
& Jutla 1988)



Tree Automata and Rewriting

Tree Automata

Summary

From word automata to finite tree automata

I Tree automata are an almost straightforward generalization of
word automata.

I Inessential exception: Word automata are completely
symmetric wrt. inversion of the direction (left/right),
deterministic tree automata are not (bottom up/top down).

I Important exception: In the case of trees one has nonlinear
patterns (f (x , x)) which do not exist in the word case.
Classical tree automata cannot deal with non-linearity,
extending the model to deal with non-linearity is difficult (see
Lecture 3).



Tree Automata and Rewriting

Tree Automata

Summary

From finite to infinite tree automata

I Difficulty when going from the finite to the infinite case: find
the right form of acceptance condition.

I Automata on infinite trees are intrinsically non-deterministic

I Finally one gets the same closure properties (with a lot of
sweat for complementation), and decision results (with
somewhat worse complexity), as for finite trees.



Tree Automata and Rewriting

Tree Automata

Summary

Literature (1)
All about Finite Tree Automata: TATA

Tree
Automata
Techniques and
Applications

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard,
Denis Lugiez, Christof Löding, Sophie Tison, Marc Tommasi.

http://tata.gforge.inria.fr/

http://tata.gforge.inria.fr/


Tree Automata and Rewriting

Tree Automata

Summary

Literature (2)

Automata on Infinite Trees (and Words):
Wolfgang Thomas:

I Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B:
Formal Models and Semantics, pages 133-192. Elsevier
Science Publishers, Amsterdam, 1990.
Recommended as introduction and overview.

I Languages, automata, and logic. In G. Rozenberg and A.
Salomaa, editors, Handbook of Formal Languages, volume III,
pages 389-455. Springer, New York, 1997.
Advanced level, contains a proof of the Rabin
complementation theorem using game theory.


	Tree Automata
	What are Tree Automata?
	Expressivity of Tree Automata
	Alternative Definitions
	Closure and Decision Properties
	Automata on Infinite Trees
	Summary


