News from EDQOS: Finding Outdated Packages

Ralf Treinen

PPS, Université Paris Diderot

:DIDEROT

PARI usnivtunu

Debconf 12, July 14, 2012

mancoosi

Pietro Abate Roberto Di Cosmo Zack

mancoosi

Starting point: Edos-debcheck

Find packages that are not installable
by looking only at package relations (Depends, Conflicts, . ..)

e Use a complete solving algorithm (search through all possible
alternatives)

Edos-{dist,deb,rpm}check: fast implementation based on a
SAT solver.

mancoosi

Let's run distcheck on the Debian sid

|Date |amd64 |armel ‘ia64 |i386 ‘mips ‘mipsel |
FriSep 2 377 574 1321 294 847 202
6:04:122011 |(249) (281) 238) |(289) |(204) |(271)
. . +46/- [+33/- |+18/- (+668/-|+33/-
Diff with next a7 25 0 55 51 +8/7-0
Thu Sep 1 378 266 b 1303 (363 875 893
6:03:52 2011 |(268) |(283) |(231) |(287) |(242) |(284)
e [+8/ [+34- [+27r [+o0s [+37 [+667-
‘ Diff with next |i |_l ‘ﬁ |£ ‘Q ‘Q |
Wed Aug 31 425 614 1358 (418 872 827
6:03:46 2011 |(321) |(340) |(283) |(320) |(24l) |(202) [
. , +28/- |+25/- |+16/-|+28/-|+23/-|+17/-
Diff with next 6 a1 En e En s
Tue Aug 30 423 620 1377 (421 880 845
6:03:39 2011 |(316) |(243) |(301) |(320) |(245) |(216)

mancoosi

Why are there so many not installable packages in sid?

mancoosi

Why are there so many not installable packages in sid?

1 Transient problems that go away when dependencies are built

mancoosi

Why are there so many not installable packages in sid?

1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

mancoosi

Why are there so many not installable packages in sid?

Easy cases
1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

| A\

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p's fault: the packages that p depends on must be fixed.

mancoosi

Why are there so many not installable packages in sid?

Easy cases
1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

| A\

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p's fault: the packages that p depends on must be fixed.

4 p's fault: p has to fix its own dependencies/conflicts in the
metadata of a package.

mancoosi

Why are there so many not installable packages in sid?

Easy cases

1 Transient problems that go away when dependencies are built

2 Packages with Architecture=all that do not have their
dependencies satisfied on all architectures.

| A\

Not so easy cases

Package p depends on a not installable package, or it depends on
packages that conflict, and

3 Not p's fault: the packages that p depends on must be fixed.

4 p's fault: p has to fix its own dependencies/conflicts in the
metadata of a package.

| \

Goal

Distinguish (3) and (4): Who is to blame when a package is not
= iNstallable?

mancoosi

A\

How to be sure when it is p's fault?

When is it the fault of package p in version n that it is not
installable in a repository R?

e if (p, n) is not installable in R, and

mancoosi

How to be sure when it is p's fault?

When is it the fault of package p in version n that it is not
installable in a repository R?

e if (p, n) is not installable in R, and

@ no matter how all the other packages evolve, if package p
stays at version n then it will never be installable.

mancoosi

How to be sure when it is p's fault?

When is it the fault of package p in version n that it is not
installable in a repository R?
e if (p, n) is not installable in R, and

@ no matter how all the other packages evolve, if package p
stays at version n then it will never be installable.

<

A package (p, n) is outdated in a repository R iff (p, n) is not
installable in all possible futures of R.

mancoosi

Example 1: Is (foo,1) installable?

Package: foo

Version: 1

Depends: baz (= 2.5) | bar (= 2.3),
bar (> 2.6) | baz (< 2.3)

Package: bar
Version: 2

Package: baz
Version: 2
Conflicts: bar (< 3)

mancoosi

Example 1: Is (foo,1) outdated?

Package: foo

Version: 1

Depends: baz (= 2.5) | bar (= 2.3),
bar (> 2.6) | baz (< 2.3)

Package: bar
Version: 2

Package: baz
Version: 2
Conflicts: bar (< 3)

mancoosi

Example 2: Is (foo,1) outdated?

Package: foo

Version: 1

Depends: baz (= 2.5) | bar (= 2.3),
bar (> 2.6) | baz (< 2.3)

Package: bar
Version: 2.3

Package: baz
Version: 2.5
Conflicts: bar (> 2.6)

mancoosi

What are possible futures of R?

Possible Evolutions of a Repository

@ Packages may be removed.

mancoosi

What are possible futures of R?

Possible Evolutions of a Repository

@ Packages may be removed.

@ Packages can move to newer versions.

mancoosi

What are possible futures of R?

Possible Evolutions of a Repository

@ Packages may be removed.

@ Packages can move to newer versions.

@ Newer versions of packages may change their relations in any
way (crude approximation).

mancoosi

What are possible futures of R?

Possible Evolutions of a Repository

@ Packages may be removed.

@ Packages can move to newer versions.

@ Newer versions of packages may change their relations in any
way (crude approximation).

@ New packages may pop up.

mancoosi

What are possible futures of R?

Possible Evolutions of a Repository

@ Packages may be removed.

@ Packages can move to newer versions.

@ Newer versions of packages may change their relations in any
way (crude approximation).

@ New packages may pop up.

@ ATM: packages evolve independently of each other.

mancoosi

What are possible futures of R?

Possible Evolutions of a Repository

@ Packages may be removed.

@ Packages can move to newer versions.

@ Newer versions of packages may change their relations in any
way (crude approximation).

@ New packages may pop up.

@ ATM: packages evolve independently of each other.

Consequence

There are infinitely many possible futures.

mancoosi

Futures: do we have to care about package removals?

Reasoning

mancoosi

Futures: do we have to care about package removals?

Reasoning

e If (p, n) not installable in any future where we do not have
removed packages,

@ then (p, n) not installable in any future

mancoosi

Futures: do we have to care about package removals?

Reasoning

e If (p, n) not installable in any future where we do not have
removed packages,

@ then (p, n) not installable in any future

@ Since: Package removal from the repository may not make
stuff installable.)

mancoosi

Futures: do we have to care about package removals?

Reasoning

e If (p, n) not installable in any future where we do not have
removed packages,

@ then (p, n) not installable in any future

@ Since: Package removal from the repository may not make
stuff installable.

Consequence
We may ignore package removals from R.

mancoosi

Futures: relations of future versions of packages?

Reasoning
”

mancoosi

Futures: relations of future versions of packages?

Reasoning

@ If (p, n) is not installable in any future where new versions of
packages have no depends/conflicts,

@ then (p, n) is not installable in any future

mancoosi

Futures: relations of future versions of packages?

Reasoning

@ If (p, n) is not installable in any future where new versions of
packages have no depends/conflicts,

@ then (p, n) is not installable in any future

@ Since: Adding dependencies and conflicts cannot make stuff
installable.

mancoosi

Futures: relations of future versions of packages?

Reasoning

@ If (p, n) is not installable in any future where new versions of
packages have no depends/conflicts,

@ then (p, n) is not installable in any future

@ Since: Adding dependencies and conflicts cannot make stuff
installable.

”
Consequence

We may assume that all future versions of packages behave as
nicely as possible: no dependencies, no conflicts.

\

mancoosi

Futures: do we have to care about new packages?

Reasoning
v

mancoosi

Futures: do we have to care about new packages?

Reasoning

@ yes: introducing new packages may make stuff installable,

@ but that may happen only if its name is mentioned in a
dependency of an existing package.

mancoosi

Futures: do we have to care about new packages?

Reasoning

@ yes: introducing new packages may make stuff installable,

@ but that may happen only if its name is mentioned in a
dependency of an existing package.

@ Since: adding packages that noone depends on cannot make
stuff installable.

mancoosi

Futures: do we have to care about new packages?

Reasoning

@ yes: introducing new packages may make stuff installable,
@ but that may happen only if its name is mentioned in a
dependency of an existing package.

@ Since: adding packages that noone depends on cannot make
stuff installable.

Consequence

| A

We only have to consider new packages that are mentioned in
dependencies.

A\

mancoosi

What we have so far

When looking at all possible futures ...

@ we have only a finite set of new package names,

mancoosi

What we have so far

When looking at all possible futures ...

@ we have only a finite set of new package names,

@ we may ignore package removals,

mancoosi

What we have so far

When looking at all possible futures ...

@ we have only a finite set of new package names,
@ we may ignore package removals,

@ we know what new packages look like (for our purpose): no
dependencies, no conflicts

mancoosi

What we have so far

When looking at all possible futures ...

@ we have only a finite set of new package names,
@ we may ignore package removals,

@ we know what new packages look like (for our purpose): no
dependencies, no conflicts

Remaining problem

| A\

Infinitely many future versions of packages, hence infinitely many
future repositories!

mancoosi

How to get finitely many versions

We have package p in version 5.
Other packages have conflicts/dependencies on p :

p(<9), p(# 12)

mancoosi

How to get finitely many versions

We have package p in version 5.
Other packages have conflicts/dependencies on p :

p(<9), p(# 12)

Representative versions

@ It is sufficient to consider all the versions that explicitly
mentioned:

5,9,12

mancoosi

How to get finitely many versions

We have package p in version 5.
Other packages have conflicts/dependencies on p :

p(<9), p(# 12)

Representative versions

@ It is sufficient to consider all the versions that explicitly
mentioned:

5,9,12

@ plus one between two versions, plus one that is greater than all

5,6,9,10,12,13

mancoosi

Further reduction: observational equivalence

In the example:

e Conflicts/dependencies on p :

p(< 9), p(# 12)

e Finitely many versions:

5,6,9,10,12,13

mancoosi

Further reduction: observational equivalence

In the example:

e Conflicts/dependencies on p :

p(< 9), p(# 12)

e Finitely many versions:

5,6,9,10,12,13

Observational Equivalence

10 and 13 behave the same, as do 6 and 9:

5,9,10,12

mancoosi

Are we done, now?

@ We have a finite set (but huge) set F of possible futures.

mancoosi

Are we done, now?

@ We have a finite set (but huge) set F of possible futures.

e With 35.000 packages, two possible versions per package
= 235000 possible futures.

mancoosi

Are we done, now?

In theory, yes

@ We have a finite set (but huge) set F of possible futures.

e With 35.000 packages, two possible versions per package
= 235000 possible futures.

v

@ Put all present and future versions in one big repository U.

A\

mancoosi

Are we done, now?

In theory, yes

@ We have a finite set (but huge) set F of possible futures.

e With 35.000 packages, two possible versions per package
= 235000 possible futures.

@ Put all present and future versions in one big repository U.
@ Size: 2 x 35.000

A\

mancoosi

Are we done, now?

In theory, yes

@ We have a finite set (but huge) set F of possible futures.

e With 35.000 packages, two possible versions per package
= 235000 possible futures.

@ Put all present and future versions in one big repository U.

@ Size: 2 x 35.000

@ U allows precisely the same installations as all the future
repositories together

A\

mancoosi

Are we done, now?

In theory, yes

@ We have a finite set (but huge) set F of possible futures.

e With 35.000 packages, two possible versions per package
= 235000 possible futures.

@ Put all present and future versions in one big repository U.

@ Size: 2 x 35.000

@ U allows precisely the same installations as all the future
repositories together

@ There is one problem with that solution ...

A\

mancoosi

Synchronization

@ Binary packages coming from the same source are
synchronized !

mancoosi

Synchronization

@ Binary packages coming from the same source are
synchronized !

@ When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

mancoosi

Synchronization

@ Binary packages coming from the same source are
synchronized !

@ When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

@ Solution: add (versioned!) provides and conflicts:

mancoosi

Synchronization

@ Binary packages coming from the same source are
synchronized !

@ When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

@ Solution: add (versioned!) provides and conflicts:

e If (p, n) has source s: Add
Provides: src:s (= n)
Conlflicts: src:s (# n)

mancoosi

Synchronization

@ Binary packages coming from the same source are
synchronized !

@ When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

@ Solution: add (versioned!) provides and conflicts:

e If (p, n) has source s: Add
Provides: src:s (= n)
Conlflicts: src:s (# n)

@ We do this only when packages of the same source currently
have “similar” version numbers.

mancoosi

Synchronization

@ Binary packages coming from the same source are
synchronized !

@ When considering U: we have to exclude installations that
mix binary packages coming from the same source but
different version.

@ Solution: add (versioned!) provides and conflicts:

e If (p, n) has source s: Add
Provides: src:s (= n)
Conlflicts: src:s (# n)

@ We do this only when packages of the same source currently
have “similar” version numbers.

@ Finally : One single distcheck run on a large repository .

mancoosi

Experiment: sid/main/i386 of 2011/10/06

@ 34444 binary packages

mancoosi

Experiment: sid/main/i386 of 2011/10/06

@ 34444 binary packages
e Not installable: 431 packages

mancoosi

Experiment: sid/main/i386 of 2011/10/06

@ 34444 binary packages
e Not installable: 431 packages
o After adding dummies: 82075 package

mancoosi

Experiment: sid/main/i386 of 2011/10/06

34444 binary packages

Not installable: 431 packages

After adding dummies: 82075 package
Runs 1m41s

mancoosi

Experiment: sid/main/i386 of 2011/10/06

34444 binary packages

Not installable: 431 packages

After adding dummies: 82075 package
Runs 1m41s

Reports 119 outdated packages

mancoosi

What packages do we find?

package: zhone-illume-glue
version: 0-git20090610-7
source: zhone (= 0-git20090610-7)
reasons:
missing:
pkg:
package: zhone-illume-glue
version: 0-git20090610-7
unsat-dependency: python (< 2.7)

mancoosi

Ignoring the python transition

Just add to the repository a dummy package

Package: python
Version: 2.6-1

mancoosi

Example: a very old python dependency

package: salome
version: 5.1.3-9
source: salome (= 5.1.3-9)
reasons:
missing:
pkg:
package: salome
version: 5.1.3-9
unsat-dependency: python (< 2.6)

mancoosi

Example: outdated dependency

package: asterisk-chan-capi
version: 1.1.5-1
source: asterisk-chan-capi (= 1.1.5-1)
reasons:
missing:

pkg:

package: asterisk-chan-capi

version: 1.1.5-1

unsat-dependency: asterisk (< 1:1.8)

mancoosi

Example: needs binNMU

package: nitpic
version: 0.1-12
source: nitpic (= 0.1-12)
missing:
pkg:
package: nitpic
version: 0.1-12
unsat-dependency: binutils (< 2.21.53.20110923)

mancoosi

Example: wrong dependencies

package: cyrus-admin-2.2
version: 2.4.12-1
source: cyrus-imapd-2.4 (= 2.4.12-1)
conflict:
pkgl:
package: cyrus-admin-2.4
version: 2.4.12-1
source: cyrus-imapd-2.4 (= 2.4.12-1)
unsat-conflict: cyrus-admin-2.2
pkg2:
package: cyrus-admin-2.2
version: 2.4.12-1
source: cyrus-imapd-2.4 (= 2.4.12-1)
depchainl:
package: cyrus-admin-2.2
version: 2.4.12-1
depends: cyrus-admin-2.4

mancoosi

EDOS, Mancoosi, Dose

EeE00S

edos

ManNCQOS|

managing software complexity

e EDOS European project: Jan 2004 — Jun 2007

@ Mancoosi European project: Feb 2008 — May 2011
@ New implementation: dose

@ This tool: debian package dose-outdated

@ Also has a much improved debcheck: debian-package
dose-distcheck

mancoosi

What remains to do

@ Better classification of results:
o Cruft (packages no longer built from source)
e Packages that just need a recompilation-NMU
o Packages that are involved in an official transition

mancoosi

What remains to do

@ Better classification of results:

o Cruft (packages no longer built from source)

e Packages that just need a recompilation-NMU

o Packages that are involved in an official transition
@ Improve the analysis itself:

e A more precise model how packages may evolve?

mancoosi

What remains to do

@ Better classification of results:

o Cruft (packages no longer built from source)
e Packages that just need a recompilation-NMU
o Packages that are involved in an official transition

@ Improve the analysis itself:
e A more precise model how packages may evolve?

@ Improve explanations

mancoosi

