
The Problem Our Approach Conclusion

Towards the Formal Verification of Maintainer
Scripts

Ralf Treinen

IRIF, Université Paris-Diderot

July 8, 2016

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Plan

1 The Problem

2 Our Approach

3 Conclusion

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Disclaimer

This talk is about work that just begun

There are no results or tools yet!

This is a collaborative research project over 4-5 years.

Today I will just tell you about what we intend to do.

There will hopefully be results to present at future debconfs.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Maintainer Scripts

A .deb package contains two sets of files:

1 a set of files to install on the system when the
package is installed,

2 and a set of files that provide additional metadata
about the package or which are executed when the
package is installed or removed. [. . .] Among those
files are the package maintainer scripts [. . .]

(Debian Policy, introduction to ch. 3)

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Maintainer Scripts

Roughly:

preinst executed before the package is unpacked

postinst executed after the package is unpacked

prerm executed before the package is removed

postrm executed after the package is removed

(Debian Policy ch. 6.1)

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Formal Verification

Attempts to construct a formal proof of correctness.

Needs a formalization of program execution, and a precise
statement of what the program is supposed to do, like

Whenever I am in a state satisfying a given pre-condition
. . . and I execute a given program,
. . . then I get a state satisfying a given post-condition.

This is not testing: it yields a guarantee (in the formal model)
of correctness, for any initial state.

There still is a connection to testing, see later.

In our case, required properties of scripts are more involved.
Let’s first look at an example.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

How it all started

Debian Bug report #431131

cmigrep: broken emacsen-install script

Package: cmigrep

Version: 1.3-1

Severity: critical

cmigrep’s emacsen-install script is overzealous; it

inappropriately attempts to compile all .el files in

/usr/share/emacs/site-lisp [...]

and compounds the problem by removing

/usr/share/$FLAVOR/site-lisp/*.el, which may contain

files belonging to other packages (for instance,

auctex’s tex-site.el).
Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Why scripts are involved here

Elisp code

Debian has decided to always byte-compile Emacs-Lisp (elisp)
code that is installed by packages.

There are several emacs packages available in debian.

Different emacsen have different byte-code format.

Solution in Debian

It was decided to not deploy compiled elisp for all emacsen,
but rather to deploy elisp source code, and to compile it
during package installation.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

What the scripts are supposed to do

In the postinst script

For every emacs flavor available:

compile elisp source for flavor

place resulting byte-code in
/usr/share/flavour /site-lisp/

This script is also executed when a new emacs flavour gets installed

In the prerm script

For every emacs flavor available:

remove installed files in /usr/share/flavour /site-lisp/

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

A fatal change in the package

Initially, the package did something like

postinst

D=/u s r / s h a r e /${FLAVOUR}/ s i t e − l i s p /${PACKAGE}
mkdir −p ${D}
c r e a t e e l c f i l e s i n ${D}

prerm

D=/u s r / s h a r e /${FLAVOUR}/ s i t e − l i s p /${PACKAGE}
rm ${D}/∗ . e l c
r m d i r ${D}

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

A fatal change in the package

Then, the maintainer decided to get rid of the private directory:

postinst

D=/u s r / s h a r e /${FLAVOUR}/ s i t e − l i s p
mkdir −p ${D}
c r e a t e e l c f i l e s i n ${D}

prerm

D=/u s r / s h a r e /${FLAVOUR}/ s i t e − l i s p
rm ${D}/∗ . e l c

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

What we can learn from this example

The maintainer did a really stupid mistake /

Testing in a minimal environment will not reveal the mistake,
only testing with an already populated .../site-lisp does.

One would like to know that package installation/removal
does not do something bad, whatever the initial configuration.

Finding stupid mistakes in a huge corpus of maintainer scripts:
we need automatic tools.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Infrastructure shared between packages

What is at the root of this problem:

We can not assume that each package acts only on a private
part of the file system.

Infrastructure has to be shared between packages.

It may be necessary that different packages create and modify
files in the same directory, or even modify the same
configuration file.

Example: TEX, emacs, . . .

Without resource sharing, everything would be much simpler.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Disclaimer, again

Verifying automatically all maintainer scripts is an impossible
task! Basically for two reasons:

The execution model is very rich (both the language in which
scripts are written, and the state of the machine that is to be
modified by the scripts)
Correctness of programs written in a Turing-complete
programming language, for any non-trivial notion of
correctness, is undecidable.

We will have to simplify and approximate.

Difficulty different to EDOS/Mancoosi projects, where the
main challenge was scale.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Maintainer Scripts

Policy does not require them to be scripts (bash.preinst is
an ELF executable!), but they almost always are.

csh and tcsh are discouraged (policy 10.4)

The vast majority are written in Posix shell, with some
embellishments mandated by policy 10.4:

echo -n

test, when built-in, must support -a and -o

local scopes
arguments to kill and trap

We only look at Posix(+debian)-shell scripts

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Our restricted view of maintainer scripts

Typically small programs

That means that we view them as describing a transformation
of one file system tree into another (and which depends on
various parameters, like current working directory, uid, gid,
umask, environment)

This already is an abstraction:

the filesystem is not really tree (symbolic and hard links)
we ignore anything else a script may be doing

Policy 10.4 mandates strict semantics (set -e).

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

What makes our task easier

No recursive functions

Exit codes: we only care about whether = 0 or > 0

Loops are mostly used in a restricted way (for loops, or
while read loops)

We ignore concurrency, and consider a sequential execution
model (justified by the big dpkg lock)

We will ignore access time stamps (justified by relatime

mount option)

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Working with shell scripts

We wrote a shell script parser which allows us to do some
statistical analysis about what is used and what is not.

Shell is not the most convenient language when you want to
do an analysis of scripts, and this concerns both syntax and
semantics.

We are currently defining a DSL (called colis), with the design
goals of

having a sane semantics (in particular, being statically typed)
allowing for representing a large portion of our maintainer
scripts

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Properties of scripts

When launched on a “reasonable” filesystem, execute without
error.

Maintain an invariant on the filesystem (e.g., FHS
compliance)

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Relations between Scripts

Script r is the right-inverse of script i :

i ◦ r = id

For instance : removing a package immediately after its
installation always restores the original state.
(when purging, otherwise except configuration and log files)

More precisely:, for any filesystem f :

f |>preinst|>(unpack)|>postinst|>prerm|>(removal)|>postrm = f

. . . except for log and configuration files, unless when purging.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Do we need a more general property?

∀s ∈ S : i ◦ s ◦ r = s

For instance : installing a package, then doing some action s,
then removing the package is the same as doing s alone. For
instance, s might be installing or removing some other
packages.

Commutation of scripts?

s1 ◦ s2 = s2 ◦ s1

This would mean that is safe to reorder scripts.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Idempotency

Debian policy (section 6.2) requires maintainer scripts to be
idempotent.

Mathematically, i is idempotent when

i ◦ i = i

The sense in Debian is much larger:

If the first call failed, or aborted half way through for
some reason, the second call should merely do the
things that were left undone the first time, if any,
and exit with a success status if everything is OK.

What does that mean precisely?

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

A few words of software verification

This is an almost impossible task!

Verification problems are typically undecidable (like the
halting problem).

However:

We can simplify the problem and look at approximations
Our use case yields some simplifying assumptions (e.g., on
loops)

A failed proof attempt often can be used to extract interesting
test cases.

We should not be discouraged by theoretical undecidability!

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

First approach to verification

Use a specialized computational model which can be analyzed
by formal methods.

Typically this either means that one looses information
(approximation of the problem), or that this method applies
only in specific cases.

One well known example : model checking

In our case we will use tree transducers, which have been
studied for instance in the context of transformations of XML
trees.

Use case for tree transducers : invocations of find.

Work in progress.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Second approach to verification

Deductive Verification

A deductive verification tools knows about the constructs of
the programming language.

A post-condition is threaded through the program: calculates
the minimal condition at the beginning of the program that
guarantees the post-condition to be true (the weakest
pre-condition)

Finally, one has to verify that the pre-condition (from the
specification) implies the calculated weakest precondition.

This proof obligation is then handed over to a solver for the
specific data domain.

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Examples: Weakest Pre-Conditions

Specification

{x > y}︸ ︷︷ ︸
pre-cond

if x > 0 then x := 2∗x else x := x+1 fi {x > y}︸ ︷︷ ︸
post-cond

Verification

Weakest pre-condition:

(x > 0 ∧ 2 ∗ x > y) ∨ (x ≤ 0 ∧ x + 1 > y)

Proof obligation:

(x > y)⇒
(

(x > 0 ∧ 2 ∗ x > y) ∨ (x ≤ 0 ∧ x + 1 > y)
)

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Existing tools

Recent verification platforms know about programming
constructs like polymorphic types, functions and procedures,
exceptions handling, modules, . . .

Example: why3 (in debian)

Recently, specialized solvers for logics of data domains have
become very strong (the SMT-revolution)

Examples: alt-ergo, cvc3, z3 (all in debian)

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

Global View of CoLiS

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

The Problem Our Approach Conclusion

The CoLiS Project

Correctness of Linux Scripts

Project funded by Agence Nationale de Recherche

October 2015 – September 2019 or later

http://colis.irif.univ-paris-diderot.fr/

3 academic partner sites :

IRIF, University Paris-Diderot
INRIA Lille (team Links)
INRIA Saclay (team Toccata)

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

http://colis.irif.univ-paris-diderot.fr/

The Problem Our Approach Conclusion

What I would like to hear from you

What are you stories about faulty maintainer scripts ?

What properties of maintainer scripts do you find useful to
check ?

Maintainer scripts — good or evil ?

Ralf Treinen IRIF, Université Paris-Diderot

Towards the Formal Verification of Maintainer Scripts

	The Problem
	Our Approach
	Conclusion

