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We investigate the relationships between the dynamical properties of Boolean networks

and properties of their Jacobian matrices, in particular the existence of local cycles in

the associated interaction graphs. We define the notion of hereditarily bijective maps,

and we use it to strengthen the property of unicity of a fixed point and to provide

simplified proofs and generalizations of theorems relating attractors to the existence of

local cycles, in particular local positive cycles. We then argue that this notion may not

suffice to prove, under a suitable hypothesis such as the existence of a cyclic attractor or

a stronger hypothesis, the existence of local negative cycles. We then consider a class of

Boolean networks called and-or-nets, and for this class, we prove that the hypothesis of

an antipodal attractive cycle implies the existence of a local negative cycle.

1. Introduction

Boolean networks represent the dynamic interaction of components which can take two

values, 0 and 1. Introduced by von Neumann in the context of automata theory (von

Neumann 1966), they have been extensively used to model genetic regulatory networks

in particular, as well as other biological networks, since the early works of the biologists

S. Kauffman and R. Thomas (Kauffman 1969; Thomas 1973). See also (Kauffman 1993)

for a more recent approach to these applications of Boolean networks.

The interest in Boolean networks has been recently renewed by:

(i) the study of relationships between the dynamics and the structure of these networks

along the line developed by (Robert 1995), in particular the result of (Shih and Dong

2005) relating fixed points to cycles in local interaction graphs;

(ii) rules conjectured by R. Thomas and relating positive or negative cycles in the local

interaction graphs to non-unicity of fixed points or sustained oscillation (Thomas

1981; Thomas and Kaufman 2001).

In Section 3, we define the notion of hereditarily bijective maps, and we show that

hereditary bijectivity strengthens the property of unicity of a fixed point. This enables us

to provide, in Section 5, simplified proofs and slight generalizations of theorems relating

attractors to the existence of local cycles, in particular local positive cycles. We then

argue in Section 6 that this notion may not suffice to prove, under a suitable hypothesis
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f1(x) = (x2 + 1)x3

f2(x) = (x3 + 1)x1

f3(x) = (x1 + 1)x2

(0, 1, 1) (1, 1, 1)

(0, 0, 1) (1, 0, 1)

(0, 1, 0) (1, 1, 0)

(0, 0, 0) (1, 0, 0)

Fig. 1. A Boolean map f : B3
→ B

3 and the asynchronous dynamics Γ(f) associated to

it. Consider for instance the point x = (1, 0, 0) in Γ(f): it has two outgoing edges to

x+ e1 = (0, 0, 0) and x+ e2 = (1, 1, 0) because f(x) = (0, 1, 0) = x+ e1 + e2.

such as the existence of a cyclic attractor or under an even stronger hypothesis, the

existence of local negative cycles. We then consider a class of Boolean networks, called

and-or-nets and introduced in (Richard and Ruet 2013), and for this class, we prove that

the hypothesis of an antipodal attractive cycle implies the existence of a local negative

cycle. Most of these results are bounded by explicit counterexamples.

2. Asynchronous Boolean networks

We need some preliminary definitions and notations. B denotes the set {0, 1}. Boolean

sum (+) and product (·) equip B with the structure of the field F2, while disjunction

(α ∨ β = α+ β + αβ) and product equip it with a tropical structure.

Let {e1, . . . , en} be the canonical basis of the vector space Bn, and for each I ⊆

{1, . . . , n}, eI =
∑

i∈I ei. For x, y ∈ B
n, v(x, y) denotes the subset I ⊆ {1, . . . , n} such

that x+y = eI , and the Hamming distance d(x, y) is defined as the cardinality of v(x, y).

Given x ∈ Bn and I ⊆ {1, . . . , n}, the affine subspace x[I] consists in all points y such

that yi = xi for each i /∈ I; subspaces of the form x[I] are called subcubes of Bn. If

y = x+ eI , the subcube x[I] is also denoted by [x, y].

Asynchronous Boolean networks can be equivalently presented in terms of directed

graphs or in terms of Boolean maps. An asynchronous Boolean network can be defined:

— either as a directed graph whose vertex set is Bn and whose edges only relate vertices

which are 1-distant from each other (for any edge from x to y, d(x, y) = 1);

— or as a map from Bn to Bn.

The two presentations indeed carry the same information:

— Given a directed graph γ as above, we may define a map Φ(γ) : Bn → Bn by Φ(γ)(x) =

x+ eI , where {(x, x+ ei), i ∈ I} is the set of edges going from x in γ.

— Conversely, to a map f : Bn → Bn we may associate a directed graph Γ(f) with

vertex set Bn and an edge from x to y when for some i, y = x+ ei and fi(x) 6= xi. In

particular, if there is such an edge, d(x, y) = 1. We shall call Γ(f) the asynchronous

dynamics associated to f . Clearly, Γ and Φ are inverses of each other.

This definition is illustrated in Figure 1. As we shall consider asynchronous Boolean



Local cycles and dynamical properties of Boolean networks 3

networks as dynamical systems, the coordinates i such that fi(x) 6= xi may naturally be

considered as the degrees of freedom of x, and it is worth observing that asynchronous

Boolean networks are nondeterministic, in the sense that, in general, points have several

degrees of freedom. Note that the number of degrees of freedom of x is the out-degree of

x in Γ(f).

A word should be said here about the reason for considering such asynchronous Boolean

dynamics in this paper, rather than, e.g., the iteration of a map from Bn to itself (which

we might call a synchronous dynamics). A motivation arises from applications to genetic

networks, in which n genes interact through (activatory and inhibitory) regulatory pro-

cesses. Such a dynamical system, whose states are n-tuples of concentrations in regulatory

products, is governed by differential equations with very strong threshold effects (sig-

moids), which are often conveniently approximated by piecewise-linear equations. These

piecewise-linear equations may in turn be discretized: an x ∈ B
n then represents a tuple

of discretized concentrations, where, in case each gene has a unique threshold, xi = 1

when the concentration in the regulatory product i is above a threshold, 0 otherwise.

Through this discretization, all points in a region of Rn
+ delimited by the n hyperplanes

defined by thresholds are mapped to the same x ∈ Bn. Call this region the region of x.

Now, the choice of focussing on the asynchronous dynamics (where a unique regulatory

product i is updated at a time) follows from the fact that trajectories in the original

differential or piecewise-linear equation almost surely (in the sense of measure theory)

cross one threshold-hyperplane at a time. The successors of x in Γ(f) correspond to the

hyperplanes crossed by trajectories starting in the region of x.

2.1. Dynamics

Let f : Bn → Bn. A trajectory is a path in Γ(f). An attractor is a terminal strongly

connected component of Γ(f). An attractor which is not a singleton (i.e., which does not

consist in a fixed point) is called a cyclic attractor. Since Γ(f) must have some attractor,

it has a cyclic attractor if f has no fixed point. Attractive cycles, i.e., cyclic trajectories

θ such that for each point x ∈ θ, d(x, f(x)) = 1, are examples of cyclic attractors.

Observe that attractive cycles are deterministic, since any point in θ has a unique degree

of freedom.

Definition (First return). Given an attractive cycle θ and points x, y on θ, the set

of points on the trajectory from x to y in θ, x and y excluded, is denoted by θ(x, y). If

x 6= y, f(x) + x = f(y) + y and for any z ∈ θ(x, y), f(x) + x 6= f(z) + z, y is called the

first return of x.

Observe that, by definition of an attractive cycle θ, for each point x on θ, there exist an

odd number of points y on θ such that y 6= x and f(x)+x = f(y)+y, hence at least one.

A special class of attractive cycles, called antipodal attractive cycles and defined below,

will be considered in Section 6.2.
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Definition (Antipodal attractive cycle). An attractive cycle θ is said to be antipodal

when θ is of the form {x0, x1, . . . , xk−1, y0, y1, . . . , yk−1} and for any i ∈ {0, . . . , k − 1},

yi is the first return of xi.

f has a cyclic attractor if and only if it is not weakly terminating (i.e., for some x ∈ Bn, all

trajectories leaving x are infinite). A stronger form of weak termination may be defined

as follows.

Definition (Direct trajectories and termination). Given f : Bn → Bn, a path from

x ∈ Bn to y ∈ Bn in Γ(f) is called a direct trajectory when its length is minimal, i.e.,

equals d(x, y). And Γ(f) is said to be directly terminating when for any point x ∈ B
n

there exists a direct trajectory from x to some fixed point.

For any subcube κ, let πκ : Bn → κ be the projection onto κ, defined as follows: if

κ = x[I],

(πκ(y))i =

{

yi if i ∈ I

xi otherwise.

Let also ικ : κ → Bn be the inclusion map. It is then immediate that πκ ◦ ικ is the

identity. For any f : Bn → Bn, let

f↾κ= πκ ◦ f ◦ ικ : κ→ κ

The asynchronous dynamics Γ(f↾κ ) is easily shown to be the subgraph of Γ(f) induced

by vertices in κ, a characterization which may be taken as an alternative, more intuitive,

definition of f↾κ.

Lemma 2.1. If f has at least two attractors, then for some subcube κ, f↾κ has at least

two fixed points.

Proof. Indeed, let A and B be any two attractors of Γ(f) and (a, b) ∈ A × B be any

pair such that d(a, b) is minimal: then a and b are fixed points of f↾[a,b].

2.2. Translations

The group B
n acts on the set of maps from B

n to itself by translation: if x ∈ B
n and

f : Bn → Bn, f + x is the map y 7→ f(y) + x. Since d(f + x) = df , the orbits under

translation are exactly the equivalence classes of maps for the equivalence relation given

by: f ∼ g if and only if df = dg.

Lemma 2.2.

(i) If f + id is bijective, then f has a unique fixed point.

(ii) Under the action by translation, an orbit of maps from Bn to itself contains a map

with no fixed point if and only if it contains a map with at least two fixed points.

Proof. The first claim is immediate, as f + id takes the value 0 exactly once.

For the second claim, it suffices to observe that if f has no fixed point, f + id is a non

bijective map from a finite set to itself, hence it is not injective: therefore, for some z,
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there exist distinct points x, y such that (f + id)(x) = (f + id)(y) = z, and f + z has two

fixed points. On the other hand, if f has two fixed points, f + id is not bijective, hence

not surjective and does not take some value z: then f + z has no fixed point.

Lemma 2.3. The set of maps f : Bn → Bn such that for each subcube κ, f↾κ has a

unique fixed point, is closed under translation.

Proof. Let Fn be the set of maps f : Bn → Bn such that for each subcube κ, f↾κ
has a unique fixed point. Since the group of translations is generated by translations by

basis vectors ei, to prove the Lemma, it suffices to prove, by induction on n, that for any

f ∈ Fn and i ∈ {1, . . . , n}, f + ei ∈ Fn.

— For n = 1, the maps with a unique fixed point are the constant maps, and constant

maps are closed under translation.

— If n > 1, let f ∈ Fn, i ∈ {1, . . . , n} and g = f + ei. Let κ0 and κ1 be the (n −

1)-dimentional subcubes defined respectively by xi = 0 and xi = 1. By induction

hypothesis, g↾κ0
has a unique fixed point x and g↾κ1

has a unique fixed point y. On

the other hand, since B
n = κ0 ∪ κ1, f has a unique fixed point, which needs to be

either x or y, say it is x. Then f(y) = y + ei and g(y) = y. Moreover, f(x) = x,

hence g(x) 6= x, and we may conclude that y is the unique fixed point of g, hence

that g ∈ Fn.

However, it is worth observing that the set of maps which have a unique fixed point is

not closed under translation: the map f : B2 → B2 given by f(x) = (x1x2+x2+1, x1x2+

x2 + 1) has a unique fixed point (1, 1), but f + e1 has no fixed point and f + e2 has 2

fixed points.

3. Hereditarily bijective maps

In Section 5, we shall prove in particular that the theorem of (Shih and Dong 2005) on

the existence and unicity of fixed points can be reviewed in terms of hereditarily bijective

maps.

Definition (Hereditarily bijective and hereditarily ufp maps). A map f : Bn →

Bn is called hereditarily bijective (resp. hereditarily ufp) when for any subcube κ, f↾κ is

bijective (resp. has a unique fixed point).

Hereditarily bijective maps may be intuitively characterized as follows. Call a pair (x, y) ∈

Bn × Bn a mirror pair of f : Bn → Bn when (f + id)↾[x,y] (x) = (f + id)↾[x,y] (y), i.e.,

when x and y have the same degrees of freedom for the projected map f↾[x,y].

Proposition 3.1. For any f : Bn → B
n, f + id is hereditarily bijective if and only if f

has no mirror pair.

Proof. If f has a mirror pair (x, y), then (f +id)↾[x,y] is clearly not bijective and f +id

is not hereditarily bijective.

Conversely, if f + id is not hereditarily bijective, (f + id)↾κ (x) = (f + id)↾κ (y) for
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some subcube κ and x, y ∈ κ, hence (f + id)↾[x,y] (x) = (f + id)↾[x,y] (y) and (x, y) is a

mirror pair of f .

Theorem 3.1. For any f : Bn → Bn, f + id is hereditarily bijective if and only if f is

hereditarily ufp.

Proof. If for each subcube κ, (f + id)↾κ is bijective, the fact that all the f↾κ have a

unique fixed point follows from Lemma 2.2.

On the other hand, in order to prove that for any n > 1 and any f : Bn → Bn, if f is

hereditarily ufp, then f + id is hereditarily bijective, it suffices to prove that for any n

and f , if f↾κ has a unique fixed point for each subcube κ, then f + id is bijective: this

is because the hypothesis is closed under restriction. Assume this is wrong, so that there

exists some f : Bn → Bn such that f + id is not bijective while f↾κ has a unique fixed

point for each subcube κ. Since f+id is not bijective, the preimage (f +id)−1(z) of some

z is not a singleton, hence (f + z + id)−1(0) is not a singleton and f + z does not have a

unique fixed point. But by Lemma 2.3, this contradicts the hypothesis on f , because f

and f + z are in the same orbit under translation.

Corollary 3.1. If f + id is hereditarily bijective, then Γ(f) has a unique attractor, this

attractor is a fixed point and Γ(f) is directly terminating (in particular, it is weakly

terminating).

Proof. Under the hypothesis of the Corollary, by Theorem 3.1, for each subcube κ,

f↾κ has a unique fixed point. Lemma 2.1 then ensures that this fixed point is the only

attractor of Γ(f). Let now x be the unique fixed point of f and let Y be the set of points

y ∈ Bn such that Γ(f) has no direct trajectory from y to x. Assume for a contradiction

that Γ(f) is not directly terminating. This implies Y 6= ∅ and we may choose y ∈ Y

such that d(x, y) is minimal: then x and y are fixed points for f↾[x,y], and since y 6= x, it

follows from Lemma 2.2 that (f + id)↾[x,y] is not bijective.

The converse is obviously wrong, i.e., direct termination does not imply hereditary bijec-

tivity: f(x1, x2) = (0, x1x2) is a counterexample. Moreover, under the hypothesis of the

Corollary, Γ(f) need not be strongly terminating, i.e., noetherian: the map f : B3 → B3

defined in Figure 1 is such that f + id is hereditarily bijective, but Γ(f) has a (non-

attractive) cycle (1, 0, 0) → (1, 1, 0) → (0, 1, 0) → (0, 1, 1) → (0, 0, 1) → (1, 0, 1) →

(1, 0, 0).

On the other hand, the fact f + id is bijective (a weaker hypothesis) does not suf-

fice to conclude that Γ(f) is directly terminating, not even weakly terminating: for in-

stance, f : B2 → B
2 defined by f(x1, x2) = (x1 + x2, x1 + x2) has a cyclic attractor

{(1, 1), (1, 0), (0, 1)}.

Since Γ(f) must have some attractor, it has at least one fixed point or a cyclic attractor,

and the following is an immediate consequence of the above corollary.

Corollary 3.2. If f has no fixed point or Γ(f) has a cyclic attractor, then f + id is not

hereditarily bijective.
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4. Derivatives of Boolean maps

4.1. Preliminaries on Boolean matrices

The determinant det(M) of an n× n matrix M with entries in B, which may be defined

by det(M) =
∑

σ∈Sn

∏n
i=1Mσ(i),i, satisfies the usual properties of commutation with

product (the product of matrices being defined with + and ·) and characterization of

invertibility: M is invertible if and only if det(M) = 1. The identity matrix is denoted

by I .

If N is an nilpotent matrix, then I + N is invertible, with inverse
∑

i>0N
i. The

converse is obviously wrong because for instance, both M and I +M may be invertible,

already in dimension 2.

The graph associated to the n× n matrix M with entries in B is the simple directed

graph with vertex set {1, . . . , n} whose adjacency matrix is the transpose of M : it has

an edge from i to j if and only if Mj,i = 1. Recall that a cycle in a graph is a non-empty

subgraph of the form k1 → k2 → · · · → kp → k1 such that k1, . . . , kp are all different: the

cycles we shall consider are all elementary. Recall also that a loop is a cycle such that

p = 1.

All the graphs considered in the article are directed and simple.

Lemma 4.1. If the graph associated to M has no cycle, then M is nilpotent.

Proof. For any k > 0, the graph Gk associated to Mk has an edge from i to j if and

only if the number of paths of length k from i to j in G1 is odd, hence Gk has no cycle.

Let Ik be the set of vertices of Gk which are not the target of any edge. For each i ∈ Ik,

the ith row of Mk is zero, and by hypothesis, I1 6= ∅. In case Mk 6= 0, the acyclic graph

Gk has a vertex i /∈ Ik, whose incoming edges all have their source in Ik. Then, the

set of zero rows in Mk+1 is larger, i.e., Ik is a strict subset of Ik+1. This proves that

In = {1, . . . , n}, i.e., Mn = 0.

The converse is wrong: the 2 × 2 matrix whose four entries all equal 1 is nilpotent of

order 2, while its associated graph has three cycles.

4.2. Derivatives

The definition of the discrete derivative of Boolean maps has been introduced in several

occasions (Rudeanu 1974; Kim 1982) and developed in (Robert 1995).

Given ϕ : Bn → B and i ∈ {1, . . . , n}, the discrete ith partial derivative ∂ϕ/∂xi =

∂iϕ : Bn → B maps each x ∈ Bn to

∂iϕ(x) = ϕ(x) + ϕ(x+ ei).

Higher order derivatives ∂kϕ/∂xi1 · · · ∂xik = ∂Iϕ : Bn → B can be defined, for each

I = {i1, . . . , ik} ⊆ {1, . . . , n}, by

∂Iϕ(x) =
∑

J⊆I

ϕ(x+ eJ),
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in such a way that ∂∅ϕ = ϕ, ∂i = ∂{i} and

∂I∂J = ∂J∂I =

{

∂I∪J if I ∩ J = ∅

0 otherwise.

The second case follows from the observation that ∂i∂i = 0. For a map f : Bn → Bm, its

derivative df maps each x ∈ Bn to the discrete Jacobian matrix J(f)(x), which is the

m× n matrix with entries J(f)(x)i,j = ∂jfi(x).

It is immediate that the operator d is linear: d(f + g) = df + dg for parallel maps

f, g : Bn → Bm. However, d is not functorial, contradicting a claim of (Bazsó 2000): for

a simple counterexample to the chain rule, take f : B2 → B2 to be the map f(x1, x2) =

(x1, x1x2) and g : B2 → B to be the product; then g ◦ f = g and

J(f)(x) =

(

1 0

x2 x1

)

J(g)(f(x)) = (x1x2, x1)

so that J(g)(f(x))·J(f)(x) = (0, x1), while J(g◦f)(x) = J(g)(x) = (x2, x1). A simple

computation shows that the chain rule holds in case g is affine, i.e., when J(g)(x) is

independent of x.

Discrete derivatives satisfy the Taylor formula

ϕ(x+ y) =
∑

I⊆v(x,y)

∂Iϕ(x)

and a variant of Leibniz rule

∂i(ϕψ) + ∂iϕ∂iψ = ϕ∂iψ + ψ∂iϕ.

The following local inverse theorem holds: if f : Bn → Bn and x ∈ Bn are such

that J(f)(x) is invertible, then the restriction of f to the unit ball B(x, 1), defined by

d(x, y) 6 1, is injective. This is simply because if f(x) = f(x+ ei), the i
th column ∂if(x)

of J(f)(x) is 0, and if f(x + ei) = f(x + ej), ∂if(x) = ∂jf(x) and J(f)(x) has two

identical columns. But since f is only locally injective and need not restrict to a bijection

from B(x, 1) to B(f(x), 1), no simple implicit function theorem holds.

5. Dynamics and structure

5.1. Cycles

A signed directed graph is a directed graph with a sign, + or −, attached to each edge,

and the sign of a cycle is defined to be the product of the signs of its edges.

Given f : Bn → Bn and x ∈ Bn, recall from (Remy, Ruet, and Thieffry 2008) that

G (f)(x), the interaction graph of f at x, is defined to be the signed directed graph with

vertex set {1, . . . , n} and with an edge from j to i when J(f)(x)i,j = 1, with positive

sign when

xj = fi(x),
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and negative sign otherwise. In particular, the transpose of J(f)(x) is the adjacency

matrix of the graph underlying G (f)(x).

The following equivalent definition of G (f)(x) gives the intuition for the positive and

negative signs of edges: G (f)(x) is the signed directed graph with vertex set {1, . . . , n}

and with an positive (resp. negative) edge from j to i when the following map from B to

itself:

α 7→ fi(x0, . . . , xj−1, α, xj+1, . . . , xn)

is the identity (resp. the negation), i.e., when it is strictly increasing (resp. decreasing).

The signed directed graph G (f) has vertex set {1, . . . , n} and a positive (resp. negative)

edge from i to j when for some x ∈ Bn, G (f)(x) has a positive (resp. negative) edge from

i to j. For all x ∈ Bn, G (f)(x) is therefore a subgraph of G (f). In particular, a cycle in

G (f)(x) for some x is called a local cycle of G (f).

The following lemma was proved in (Remy and Ruet 2007).

Lemma 5.1. If f : Bn → Bn, κ = x[I] is a subcube and y ∈ κ, then G (f↾κ )(y) is the

induced subgraph of G (f)(ικ(y)) with vertex set I. (Here, we identify κ with {0, 1}I and

f↾κ with a map from {0, 1}I to itself.)

Theorem 5.1. Let f : Bn → Bn. If f + id is not bijective, then there exist two different

points x, y ∈ Bn such that G (f)(x) and G (f)(y) have a cycle.

Proof. To prove this theorem, first observe that as a non bijective map from a finite set

to itself, f + id is not injective: some point z ∈ Bn has a preimage of cardinality at least

2 under f+id. Consider the partially ordered set Ez of subcubes κ, ordered by inclusion,

such that πκ(z) has a preimage of cardinality at least 2 under (f + id)↾κ. By hypothesis,

Ez 6= ∅. Let κ be a minimal subcube of Ez , and let x, y ∈ κ be distinct points mapped

by (f +id)↾κ to z↾κ. Since κ is minimal in Ez , x and y are antipodes in κ, i.e., κ = [x, y].

Recall that v(x, y) denotes the subset I ⊆ {1, . . . , n} such that x+ y = eI .

— If v(x, y) is a singleton {i}, then y = x + ei and (f + id)i(x) = (f + id)i(y), as a

consequence ∂ifi(x) = fi(x) + fi(x + ei) = ∂ifi(x + ei) = 1, hence G (f)(x) and

G (f)(y) have an edge from i to itself.

— If on the other hand d(x, y) > 2, for any i ∈ v(x, y), let λi be the subcube [x +

ei, y], which is smaller than κ: then (f + id)↾λi
(x + ei) 6= πλi

(z), since otherwise

λi would have two different points x + ei and y mapped by (f + id)↾λi
to πλi

(z),

and λi would belong to Ez, contradicting minimality. Therefore, for any i ∈ v(x, y),

(f + id)↾λi
(x + ei) 6= (f + id)↾λi

(x), hence there exists j ∈ v(x, y), such that j 6= i

and ∂ifj(x) = fj(x) + fj(x + ei) = 1, and G (f)(x) has an edge from i to j. As a

consequence, G (f)(x) has an infinite path, hence a cycle, and by symmetry, so has

G (f)(y).

An alternative proof may be obtained by considering the set of subcubes κ such that

(f + id)↾κ is not bijective.

Theorem 5.1 provides alternative proofs of the following generalizations of results from

(Shih and Dong 2005; Remy, Ruet, and Thieffry 2008; Richard 2010).



Paul Ruet 10

Corollary 5.1. If Γ(f) has a cyclic attractor (in particular if f has no fixed point, or has

an attractive cycle) or has at least two attractors, then there exist two different points

x, y ∈ B
n such that G (f)(x) and G (f)(y) have a cycle.

Proof. If Γ(f) has several attractors or has a cyclic attractor (i.e., is not weakly ter-

minating), then for some subcube κ, (f + id)↾κ is not bijective, according to Corollary

3.1. Then the conclusion follows from Theorem 5.1 and Lemma 5.1.

Corollary 5.2. If G (f) has no local cycle, then f + id is hereditarily bijective.

Corollary 5.3. If G (f) has no local cycle, then f is hereditarily ufp, in particular f has

a unique fixed point.

It is worth mentioning that the converse to, e.g., Corollary 5.2, does not hold: for the map

f : B3 → B3 defined by f(x) = ((x2 +1)x3, (x3 +1)x1, (x1 +1)x2), already considered in

Section 3, G (f)(0) has a cycle, while f + id is hereditarily bijective.

5.2. Positive cycles

Lemma 5.2. Let f : Bn → Bn and x ∈ Bn. If C is a cycle of G (f)(x) with vertex set

I, then C is positive (resp. negative) when x has an even (resp. odd) out-degree in Γ(f),

i.e., when
∑

i∈I(xi + fi(x)) = 0 (resp. 1). In particular, if x is a fixed point of f and C

is any cycle in G (f)(x), then C is positive.

Proof. The first assertion follows from the fact that C = k1 → · · · → kp → k1 = kp+1

is positive if and only if

p
∑

i=1

(xki
+ fki+1(x)) = 0 =

p
∑

i=1

xki
+

p
∑

i=1

fki
(x) =

p
∑

i=1

(xki
+ fki

(x)).

The above results induce a slight generalization of a result from (Remy, Ruet, and Thieffry

2008; Richard 2010).

Corollary 5.4. If f : Bn → Bn has at least two attractors, then there exist two different

points x, y ∈ Bn such that G (f)(x) and G (f)(y) have a positive cycle.

Proof. By Lemma 2.1, some projection f↾κ has two fixed points. Hence f↾κ +id is

not bijective, and by Theorem 5.1 applied to f↾κ, there exist two points x, y such

that G (f↾κ )(x) and G (f↾κ )(y) have cycles. These cycles are also cycles of G (f)(x) and

G (f)(y) by Lemma 5.1, and are positive by Lemma 5.2.

6. Negative cycles

6.1. Hereditary bijectivity again

Theorem 3.1, and the above results on the existence of cycles and positive cycles, suggest

to look for a proof of existence of local negative cycles in G (f) through (hereditary)

bijectivity of f + id. The following Lemma strengthens this possibility.
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Lemma 6.1. If f + id is bijective, then G (f) has a local positive loop if and only if it

has a local negative loop.

Proof. Recall that a loop is a cycle of length 1. The number of directed edges in Γ(f)

equals

∑

x∈Bn

cardinality

(

{i such that fi(x) 6= xi}

)

=
∑

x∈Bn

d(f(x) + x, 0)

=
∑

x∈Bn

d(x, 0) because f + id is bijective

= n · 2n−1,

which is also the number of (non-directed) edges of the cube Bn. Therefore, if G (f) has

a local positive loop, then some egde of Bn carries no orientation in Γ(f); by the above

equality, some (other) egde of Bn has to carry both orientations in Γ(f), and G (f) has a

local negative loop. The converse implications hold for the same reason.

However, it is not true that if f+id is bijective, even hereditarily bijective, then G (f) has

a local positive cycle if and only if it has a local negative cycle. For a counterexample,

let f : B4 → B4 be defined by

f1(x) = x4(x2 + 1)(x3 + 1)

f2(x) = x1(x3 + 1)(x4 + 1)

f3(x) = x2(x4 + 1)(x1 + 1)

f4(x) = x3(x1 + 1)(x2 + 1);

it is a straightforward computation to check that f + id is hereditarily bijective, but

J(f)(x) =









0 x4(x3 + 1) x4(x2 + 1) (x2 + 1)(x3 + 1)

(x3 + 1)(x4 + 1) 0 x1(x4 + 1) x1(x3 + 1)

x2(x4 + 1) (x4 + 1)(x1 + 1) 0 x2(x1 + 1)

x3(x2 + 1) x3(x1 + 1) (x1 + 1)(x2 + 1) 0









and the only local cycle is the positive cycle 1 → 2 → 3 → 4 → 1 of G (f)(0).

On the other hand, the following Lemma suggests to use the invertibility of some

Jacobian matrix J(f)(x) to exhibit a negative cycle.

Lemma 6.2. If x ∈ Bn has an odd out-degree in Γ(f) (i.e.,
∑n

i=1 xi + fi(x) = 1) and

J(f)(x) is invertible, then G (f) has a local negative cycle.

Proof. J(f)(x) is invertible if and only if

detJ(f)(x) = 1 =
∑

σ∈Sn

n
∏

i=1

J(f)(x)σ(i),i,

therefore
∏n

i=1 J(f)(x)σ(i),i = 1 for at least one permutation σ ∈ Sn (actually an odd

number of permutations). Furthermore, σ is a product of disjoint cycles C1, . . . , Ck, and
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the assumption
∑n

i=1(xi+ fi(x)) = 1 implies that at least one (actually an odd number)

of these cycles is negative.

But Appendix A shows that the invertibility of the Jacobian matrices J(f)(x) is not

related to the bijectivity of f in a simple way, and it is easy to convince oneself that it

is not related to the bijectivity of f + id either.

It is therefore unclear whether hereditary bijectivity can turn out be useful, in general,

for the question of the existence of local negative cycles (under some hypothesis on the

dynamics).

The difficulty of this question is emphasized by the following Theorem, which estab-

lishes that negative cycles, if any, may be localized only away from the cyclic attractor.

Theorem 6.1. The fact that f : Bn → Bn has an attractive cycle C does not imply

that for some x ∈ C, G (f)(x) has a negative cycle.

Proof. Let n > 4 and define f : Bn → Bn by its asynchronous dynamics Γ(f), which

consists in:

— the 2n edges of the antipodal attractive cycle

x0 → x1 → · · · → xn−1 → y0 → y1 → · · · → yn−1 → x0,

where xi = e{1,...,i} and yi = xi + e{1,...,n},

— the 2n− 4 edges

xi + ei−1 → xi and yi + ei−1 → yi

for i ∈ {2, . . . , n− 1}, and the 4 edges

en−1 → x0 = 0, x1 + en → x1, y0 + en−1 → y0, y1 + en → y1.

Then, the above antipodal attractive cycle C is the unique cyclic attractor of f . Fur-

thermore, in G (f)(0), the only edge with source 1 is the edge 1 → 2 and there is no

edge with source 2 other than the positive loop on 2, therefore G (f)(0) has no cycle

passing through 1. Since f(0) = x1 = e1, by Lemma 5.2, this implies that G (f)(x0) has

no negative cycle. Now, for any i ∈ {1, . . . , n− 1},

G (f)(xi) = σ(G (f)(xi−1)),

where the cyclic permutation σ = (1, 2, . . . , n) acts on graphs by permuting vertices.

Besides, G (f)(yi) = G (f)(xi) for any i ∈ {0, . . . , n− 1}. We may therefore conclude that

for any x ∈ C, G (f)(x) has no negative cycle.

6.2. Antipodal attractive cycles and and-or-nets

Despite these constraints, we have been able to prove the existence of a local negative

cycle under the strong hypothesis of an antipodal attractive cycle, and for a special class

of Boolean networks, and-or-nets, introduced in (Richard and Ruet 2013).
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Definition (And-or-net). A map ϕ : Bn → B is called an and-map when it is a product

of literals, i.e., there exist disjoint sets P and N ⊆ {1, . . . , n} such that

ϕ(x) =
∏

i∈P

xi
∏

i∈N

(xi + 1),

with the convention that the empty product is 1. Recall that a map ϕ : Bn → B is said

to be a clause when it is a disjunction of literals, i.e., there exist disjoint sets P and

N ⊆ {1, . . . , n} such that

ϕ(x) =
∨

i∈P

xi ∨
∨

i∈N

(xi + 1),

where ∨ denotes supremum and the empty supremum is 0. In both cases, vertices in P

(resp. in N) are called the positive (resp. negative) inputs of ϕ. A map f : Bn → Bn

is then called an and-or-net when for each i ∈ {1, . . . , n}, fi is either an and-map or a

clause.

Definition (Delocalizing triple). Given an and-or-net f , let V1, V2 be the partition

of {1, . . . , n} such that i ∈ V1 if and only if fi is an and-map. Let C be a cycle of G (f),

and i, j, k ∈ {1, . . . , n}. Then (i, j1, j2) is said to be a delocalizing triple of C when j, k

are distinct vertices of C and (i, s1, j1), (i, s2, j2) are two edges of G (f) that are not in C

and such that

s1 6= s2 if j1, j2 ∈ V1 or j1, j2 ∈ V2,

s1 = s2 in all other cases.

A delocalizing triple (i, j1, j2) of C is said to be internal when i is a vertex of C, external

otherwise.

The following property, proved in (Richard and Ruet 2013), shows that, for and-or-nets,

the absence of delocalizing triples for a given cycle is equivalent to being local.

Proposition 6.1. Let f : Bn → Bn be an and-or-net. Given a cycle C of G (f), C has

no delocalizing triple in G (f) if and only if it is local.

We may now prove that, for and-or-nets, an antipodal attractive cycle implies the exis-

tence of a local negative cycle.

Theorem 6.2. Let f : Bn → Bn be an and-or-net. If Γ(f) has an antipodal attractive

cycle, then G (f) has a local negative cycle.

Proof. Assume Γ(f) has an antipodal attractive cycle

θ = (x0 → x1 → · · · → xp−1 → y0 → y1 → · · · → yp−1 → x0).

We first prove that G (f) has a negative cycle. To this end, observe that for any i ∈

{0, . . . , p−1}, d(xi, f(xi)) = 1, hence f(xi) = xi+eϕ(i) for some map ϕ from {0, . . . , p−1}

to {1, . . . , n}. Similarly, f(yi) = yi+eϕ(i) because, by definition of an antipodal attractive

cycle, yj is the first return of xj for all j. Therefore, G (f)(xi) and G (f)(yi) both have
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ϕ(p− 1)

>>>

>>>

>>>

>>>

>>>

Fig. 2. Proof of Theorem 6.2: the negative elementary cycle C and its assumed (external

or internal) delocalizing triple (i, ϕ(j), ϕ(k)).

an edge from ϕ(i) to ϕ(i+ 1), where indices are modulo p, and

C = (ϕ(0) → ϕ(1) → · · · → ϕ(p− 1) → ϕ(0))

is an elementary cycle of G (f). Since x0
ϕ(0) 6= y0

ϕ(0) and

fϕ(0)(x
0) + x0ϕ(0) = fϕ(0)(y

0) + y0ϕ(0) 6= 0,

either x0ϕ(0) < x1ϕ(0) and y0ϕ(0) > y1ϕ(0), or x
0
ϕ(0) > x1ϕ(0) and y0ϕ(0) < y1ϕ(0). In either

case, the number of direction changes (an increase followed by a decrease, or vice versa)

between x0 and y1 in θ is odd. Consequently, C is a negative elementary cycle of G (f).

Let us now prove that C is local. According to Proposition 6.1, assume for a contra-

diction that C has a delocalizing triple (i, ϕ(j), ϕ(k)), with i ∈ {1, . . . , n} and j, k ∈

{0, . . . , p − 1}. By symmetry of the definition of a delocalizing triple, we may assume

without loss of generality that j < k. See Figure 2.

As ϕ(k), which is, by definition of an attractive cycle, the unique degree of freedom of

xk, is not a degree of freedom of xk−1,

ϕ(k − 1) → ϕ(k)

is an edge of G (f)(xk), and as θ is antipodal, it is an edge of G (f)(yk) as well. For the

same reason,

ϕ(j − 1) → ϕ(j)

is an edge of G (f)(xj) and G (f)(yj). Now, by definition of a delocalizing triple, one of

the two edges

ϕ(j − 1) → ϕ(j) and ϕ(k − 1) → ϕ(k)

of C is not an edge of G (f)(x) for any x ∈ Bn such that xi = 0, and the other edge is

not an edge of G (f)(x) for any x ∈ Bn such that xi = 1. In particular, if ϕ(j− 1) → ϕ(j)

is an edge of G (f)(x) and ϕ(k − 1) → ϕ(k) is an edge of G (f)(y), then xi 6= yi.
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This implies that (xj)i 6= (xk)i. As a consequence, (i, ϕ(j), ϕ(k)) is an internal delo-

calizing triple: i = ϕ(ℓ) for some ℓ ∈ {0, . . . , p − 1}, and moreover, ℓ is either j itself or

on the open trajectory from j to k in C: ℓ ∈ {j} ∪ C(j, k). But then ℓ /∈ {k} ∪ C(k, j),

hence (xk)i = (yj)i, and we have a contradiction with the fact that ϕ(j − 1) → ϕ(j) is

an edge of G (f)(yj).

The hypothesis that θ is antipodal cannot be simply avoided in the above proof: it is

the reason for the symmetric roles played by the trajectories from j to k and from k to

j in C.

The above proof is also obviously very specific to and-or-nets and does not generalize

to arbitrary Boolean networks. However, arbitrary Boolean networks can be encoded

into and-or-nets (with more vertices), by expressing the underlying Boolean maps fi
in conjunctive normal forms for instance. It is therefore possible that a weak notion of

delocalizing triple enables to extend Theorem 6.2 to more general Boolean networks.
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Appendix A. Invertibility and Jabobian matrix

The Jacobian conjecture asserts that if a polynomial complex map f : Cn → Cn has

all its Jacobian matrices invertible, then f is bijective. See (Bass, Connell, and Wright

1982). This Appendix shows that, for Boolean maps f : Bn → Bn, there is no obvious

relationship between the invertibility of the Jacobian matrices J(f)(x) and the bijectiv-

ity of f , an observation which is used in Section 6.1. In particular, the analogue of the

Jacobian conjecture for Boolean maps does not hold.

This is to be contrasted with the theorem of (Shih and Dong 2005), which can be viewed

as a Boolean version of the fixed point conjecture of (Cima, Gasull, and Mañosas 1999)

for maps Cn → Cn (or Rn → Rn), a conjecture equivalent to the Jacobian conjecture, as

it is proved in (Cima, Gasull, and Mañosas 1999).

Theorem A.1. Let f : Bn → B
n.

(i) The fact that f is bijective does not imply that for each x ∈ Bn, J(f)(x) is invertible.

(ii) The fact that f is hereditarily bijective does not imply that for each x ∈ Bn, J(f)(x)

is invertible.

Proof. The first claim is a consequence of the second one. To prove the second claim,

observe that the asynchronous dynamics Γ(f) of the map f : B3 → B3 defined by

f1(x) = x1 + (x2 + 1)x3

f2(x) = x2 + (x3 + 1)x1

f3(x) = x3 + (x1 + 1)x2

consists in two fixed points (0, 0, 0) and (1, 1, 1) and three attractive cycles of length 2.

This shows that the map f is a bijection whose orbits are either fixed points or pairs

{x, x + ei} of points which are 1-distant from each other. Since this property is stable

under projection, f is also hereditarily bijective. However,

J(f)(x) =





1 x3 x2 + 1

x3 + 1 1 x1
x2 x1 + 1 1



 ,

hence J(f)(0), a matrix whose sum of three columns equals 0, is not invertible.
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Theorem A.2. Let f : Bn → Bn.

(i) The fact that for each x ∈ B
n, J(f)(x) is invertible does not imply that f : Bn → B

n

is bijective.

(ii) The fact that for each x ∈ Bn, I + J(f)(x) is nilpotent does not imply that

f : Bn → Bn is bijective.

Proof. The first claim is a consequence of the second one. To prove the second claim,

let f : B3 → B3 be defined by fi(x) = xi + x1x2 + x2x3 + x3x1 for i = 1, 2, 3: then f is

not bijective because f(0, 0, 0) = f(1, 1, 1) = (0, 0, 0), but

I + J(f)(x) =





x2 + x3 x3 + x1 x1 + x2
x2 + x3 x3 + x1 x1 + x2
x2 + x3 x3 + x1 x1 + x2





is nilpotent of order 2.


