Examen du 8 juin 2004 : Corrigé

(durée: 3 heures)

Exercice 1. i. $\forall x \ \neg x < x$;

- ii. $\forall x \forall y \forall z (x < y \Rightarrow y < z \Rightarrow x < z)$;
- iii. $\forall x \forall y (x < y \lor x = y \lor y < x)$;
- iv. $\forall x \ x < s \ x$;
- **v.** $\forall x \forall z (x < z \Rightarrow s \ x \leqslant z)$;
- $\mathbf{vi.} \quad \forall x \exists y \ x = s \ y.$
- 1. L'ensemble des entiers relatifs \mathbb{Z} muni de l'ordre et du successeur usuel : $a \mapsto a+1$ est un modèle de T. L'ensemble \mathbb{Q} des rationnels muni de l'ordre usuel est totalement ordonné, on ne peut définir de fonction successeur, par exemple si on interprète s par : $a \mapsto a+1$, on n'obtient évidemment pas un modèle de T.

2.

$$\forall x \forall y (x < y \Rightarrow s \, x < s \, y)$$

Soient x et y tels que x < y. D'après $\mathbf{v} s x \leq y$, d'après \mathbf{iv} et par transitivité s x < s y.

3.

$$\forall x \exists x' (x' < x \land \forall z (z < x \Rightarrow z \leqslant x')) \tag{vi'}$$

Soit x quelconque. D'après \mathbf{vi} , il existe x' tel que s x' = x. On a bien d'après \mathbf{iv} , x' < s x' = x. Soit z quelconque tel que z < x. Par totalité on a x' < z ou $z \le x'$. On ne peut avoir x' < z, car sinon par \mathbf{v} on aurait x = s $x' \le z$, et par transitivité z < z ce qui contredit \mathbf{i} . Donc $z \le x'$.

- **4.** Soit T_0 la théorie dans le langage \mathcal{L} qui contient les axiomes \mathbf{i} à \mathbf{v} de T, soit T' la théorie T_0 plus la propriété (vi') de la question précédente, soit T'' la théorie T_0 plus l'axiome $\forall x \exists y \ y < x$.
 - a. La structure $(\mathbb{N}, <^{\mathbb{N}}, s^{\mathbb{N}})$ où $<^{\mathbb{N}}$ et $s^{\mathbb{N}}$ sont l'ordre et le successeur usuels vérifie les axiomes d'ordre total, les propriétés **iv** et **v**, donc T_0 mais pas la propriété **vi**, puisque 0 n'est pas un successeur. Les théories T et T_0 ne sont donc pas équivalentes.
 - **b.** On a vu (question 3) que la théorie T a pour conséquence la théorie T'. Réciproquement supposons (vi'), soit x quelconque et x' tel que

$$x' < x$$
 (1) et $\forall z (z < x \Rightarrow z \leqslant x')$ (2)

On a alors $s x' \leq x$ (car x' < x (1) et **v**). Supposons s x' < x, on a alors d'après (2), $s x' \leq x'$ ce qui contredit l'axiome **iv** (et l'antisymétrie). On a donc bien s x' = x. La théorie T' a pour conséquence la théorie T.

c. On considère la structure $\mathcal{M} = (M, <^{\mathcal{M}}, s^{\mathcal{M}})$ d'ensemble de base $M = \{0\} \times \mathbb{Z} \cup \{1\} \times \mathbb{N}$. On définit

$$(a,b) <^{\mathcal{M}} (c,d) \equiv_d \begin{cases} a < c \\ \text{ou} \\ a = c \text{ et } b < d \end{cases}$$
 $s^{\mathcal{M}}(a,b) = (a,b+1)$

Cette structure définit un ordre total (ordre lexicographique). La fonction s définit bien un successeur pour l'ordre : (a,b) < (a,b+1), et si (a,b) < (c,d), alors soit a < c et donc (a,b+1) < (c,d), soit a = c et b < d et donc $(a,b+1) \le (c,d)$. On a bien $\forall x \exists y \ y < x$: pour (0,b), on a (0,b-1) < (0,b), pour (1,b) on a (0,0) < (1,b). C'est donc un modèle de T''. Mais (0,0) n'est pas un successeur donc ce n'est pas un modèle de T. Les théories T et T'' ne sont pas équivalentes.

Exercice 2 (déduction). 1.

$$\vdash_T \forall x \forall y \forall z (x \leq y \Rightarrow y < z \Rightarrow x < z)$$

Par trois introductions du \forall et deux de l'implication, il suffit de montrer

$$x \leqslant y, y < z \vdash_T x < z$$

par élimination de la disjonction à partir de l'axiome de la déduction $x \leq y \vdash x \leq y$, il suffit de montrer

$$x < y, y < z \vdash_T x < z$$
 et $x = y, y < z \vdash_T x < z$

Par transitivité (axiome **ii**, trois éliminations du \forall et deux de l'implications sur les axiomes de la déduction $x < y \vdash x < y$ et $y < z \vdash y < z$, on a bien

$$x < y, y < z \vdash_T x < z$$
.

Par règle de l'égalité de $x = y \vdash x = y$ et $y < z \vdash y < z$ on déduit

$$x = y, y < z \vdash x < z$$
.

2. Pour montrer

$$\vdash_T \forall x \forall y (x < y \Rightarrow s \, x < s \, y)$$

par deux introductions de \forall et une introduction de \Rightarrow , il suffit de montrer

$$x < y \vdash_T s \, x < s \, y \tag{*}$$

On a d'après l'axiome \mathbf{v} par deux éliminations de \forall

$$\vdash_T x < y \Rightarrow s \, x \leqslant y$$

or $x < y \vdash x < y$ (axiome de la déduction) donc :

$$x < y \vdash_T s \, x \leqslant y \tag{1}$$

D'après l'axiome iv et une élimination de \forall :

$$\vdash_T y < sy$$
 (2)

D'après le résultat de la question précédente et par trois élimination de \forall on a :

$$\vdash_T s x \leq y \Rightarrow y < s y \Rightarrow s x < s y$$

d'où par deux éliminations de \Rightarrow avec (1) et (2) on a (*).

Exercice 3 (élimination des quantificateurs).

- 1. **a.** $\forall x \forall y (s \ x \leqslant s \ y \Rightarrow x \leqslant y)$;
 - Soient x et y quelconques tels que s $x \le s$ y. On a d'après \mathbf{iv} x < s y. Par totalité $x \le y$ ou y < x. Si y < x, d'après \mathbf{v} s $y \le x$, ce qui contredit x < s y (anti-symétrie). Donc $x \le y$.
 - **b.** $\forall x \forall y (s \, x = s \, y \Rightarrow x = y).$

Soient x et y quelconques tels que s x = s y. On a alors $s x \leq s y$ et $s y \leq s x$. D'après la question précédente $x \leq y$ et $y \leq x$, et par anti-symétrie x = y.

- **c.** $\forall x \forall y (s \ x < s \ y \Rightarrow x < y)$; Soient x et y quelconques tels que $s \ x < s \ y$. D'après **1.a**, $s \ x \leqslant s \ y$. On a $s \ x \neq s \ y$, or si x = y, $s \ x = s \ y$. Donc $x \neq y$ donc x < y.
- 2. les termes sont de la forme $s^p x$, les formules atomiques de la forme $s^p x = s^q y$ où $p, q \in \mathbb{N}$ et x et y sont deux variables du langage qui peuvent être identiques.
- **3.** Commençons par les égalités. On a $x=y \Leftrightarrow s\,x=s\,y$ (règles de l'égalité pour le sens direct, question **1.b** pour la réciproque). On a donc si $n\geqslant m, \, s^n\,x=s^m\,y \Leftrightarrow s^{n-m}\,x=y$ (récurrence immédiate sur m). De même si $m\geqslant n, \, s^n\,x=s^m\,y \Leftrightarrow x=s^{m-n}\,y$, et donc $s^n\,x=s^m\,y \Leftrightarrow s^{m-n}\,y=x$.

On a une situation analogue pour les inégalités : d'après les résultats de la question $\mathbf 2$ de l'exercice 1 et d'après $\mathbf 1.c$, $x < y \Leftrightarrow s\, x < s\, y$. Donc si $n \geqslant m$, $s^n\, x < s^m\, y \Leftrightarrow s^{n-m}\, x < y$ (récurrence immédiate sur m) et si $m \geqslant n$, $s^n\, x < s^m\, y \Leftrightarrow x < s^{m-n}\, y$ (récurrence immédiate sur n).

On a bien montré que toute formule atomique est de l'une des trois formes suivantes :

$$s^p x = y \quad (p \in \mathbb{N})$$

 $s^p x < y \quad (p \in \mathbb{N}) \quad x, y \text{ non nécessairement distinctes}$
 $x < s^p y \quad (p \in \mathbb{N})$

4. Une égalité utilisant une seule variable est équivalente à une formule de la forme $s^p x = x$, formule démontrable si p = 0, de négation démontrable si p > 0 car alors $\vdash_T x < s^p x$ (récurrence immédiate sur $p \in \mathbb{N}^*$) et par irreflexivité $\vdash_T \neg x = s^p x$.

Une inégalité utilisant une seule variable est de la forme $s^p x < x$ ou $x < s^p x$.

Dans le premier cas on peut démontrer $\vdash_T x \leqslant s^p x$ pour $p \in \mathbb{N}$, donc (anti-symétrie, irréflexivité) $\vdash_T \neg s^p x < x$.

Dans le second cas, si p=0 on a $\vdash_T \neg x < x$ (irreflexivité), et si p>0, comme on l'a déjà vu, $\vdash_T x < s^p x$.

- **5.** D'après la question précédente $\alpha \equiv_T \bot$ ou $\alpha \equiv_T \top$. Dans le premier cas $(\alpha \land A) \equiv_T \bot$ donc $\exists x (\alpha \land A) \equiv_T \bot$. Dans le second cas $(\alpha \land A) \equiv_T A$ donc $\exists x (\alpha \land A) \equiv_T \exists x A$.
- **6.** On a $\exists x(s^p y = x \land A) \equiv \exists x(s^p y = x \land A[(s^p y/x]) \equiv A[(s^p y/x] \ (A[(s^p y/x] \text{ ne contient pas } x).$
- 7. D'après les propriétés montrées à l'exercice 1, question 2, et celles montrées en 1.b et 1.c, on a :

$$\vdash_T \forall z \forall z' (s z = s z' \Leftrightarrow z = z') \ mbox{et} \ \vdash_T \forall z \forall z' (s z < s z' \Leftrightarrow z < z')$$

d'où l'on déduit par récurrence sur p:

$$s^m v = s^m w \equiv_T s^{m+p} v = s^{m+p} w \text{ mboxet } s^m v < s^m w \equiv_T s^{m+p} v < s^{m+p} w$$
.

On en déduit que l'opération qui passe de A à A^p remplace chaque occurrence de formule atomique de A (sans quantificateurs) par une formule atomique équivalente. On a donc $A \equiv_T A^p$.

On a donc (propriétés de l'égalité), $\exists x(s^p x = y \land A) \equiv_T \exists x(s^p x = y \land A^p[y/s^p x]) \equiv A^p[y/s^p x]$ ($A^p[(s^p y/x] \text{ ne contient pas } x)$.

- 8. L'ordre est total sans plus grand élément (axiome iv) donc $\vdash_T \exists x \bigwedge_{i=1}^n s^{p_i} x_i < x$, et sans plus petit élément (question 3 de l'exercice 1) donc $\vdash_T \exists x \bigwedge_{i=1}^n x < s^{p_i} x_i$.
- 9. Soit x tel que $\bigwedge_{j=1}^{m} x < s^{p_j} y_j$ et $\bigwedge_{i=1}^{n} s^{p_i} x_i < x$. On a donc d'après l'axiome $\mathbf{v} \bigwedge_{i=1}^{n} s^{p_i+1} x_i \leq x$ et donc par transitivité $\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m} s^{p_i+1} x_i < s^{p_j} y_j$.

Réciproquement, supposons un modèle de T, et un environnement réalisant

$$\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m} s^{p_i+1} x_i < s^{p_j} y_j .$$

L'ordre étant total il existe un plus grand élément parmi les $s^{p_i} x_i$, soit $s^{p_{i_0}} x_{i_0}$, et un plus petit élément parmi les $s^{p_j} y_j$, soit $s^{p_{j_0}} y_{j_0}$. On a par hypothèse $s^{p_{i_0}+1} x_{i_0} < s^{p_{j_0}} y_{j_0}$. On a donc $s^{p_{i_0}} x_{i_0} < s^{p_{i_0}+1} x_{i_0} < s^{p_{j_0}} y_{j_0}$. Par choix de i_0 et j_0 , on a bien trouvé x, soit $s^{p_{i_0}+1} x_{i_0}$, (x n'est pas l'un des x_i , ni l'un des y_j) tel que $\bigwedge_{j=1}^m x < s^{p_j} y_j$ et $\bigwedge_{i=1}^n s^{p_i} x_i < x$.

10. Montrons par récurrence sur l que pour toute conjonction C de formules atomiques de longueur inférieurer ou égale à l, $\exists x \ C$ équivaut à une formule sans quantificateurs. Par convention la seule conjonction de longueur 0 est \top ("neutre" pour la conjonction).

l=0: On a $\exists x \top \equiv \top$.

- $l \mapsto l+1$ On suppose le résultat pour toute conjonction de longueur inférieure ou égale à l. On sait qu'il existe une conjonction de formules atomiques de la forme décrite en $\bf 3$, équivalente à C et de même longueur que C d'après le résultat de la question $\bf 3$, appelons-la C_0 .
 - Si C_0 contient une formule atomique qui ne contient pas x, soit α , $\exists x \ C_0 \equiv \exists x (\alpha \land C') \equiv \alpha \land \exists x \ C'$, où C' est une conjonction de formules atomiques de longueur l. Le résultat suit par hypothèse de récurrence sur C'.
 - Si C_0 contient une formule atomique qui ne contient que x comme variable libre, alors d'après la question $\mathbf{5}$, soit $\exists x \ C \equiv_T \bot$, soit il existe une formule C' de longueur l telle que $\exists x \ C \equiv_T \exists x \ C'$, et on conclut par hypothèse de récurrence.
 - Si C_0 contient une égalité $s^p y = x$, on a vu à la question **6** que $\exists x \ C_0$ équivaut à une formule sans quantificateurs.
 - Si C_0 contient une égalité $s^p x = y$, on a vu à la question 7 que $\exists x \ C_0$ équivaut à une formule sans quantificateurs.
 - Si aucun des cas précédents n'est réalisé, on peut supposer que C_0 ne contient que des inégalités où x apparait d'un seul côté dans chaque inégalité. On distingue suivant que x apparait toujours à droite, toujours à gauche ou des deux côtés. Dans les deux premiers cas, on a montré à la question $\mathbf{8}$ que $\exists x \ C_0 \equiv \top$. Dans le troisème cas on a montré à la question $\mathbf{9}$ que $\exists x \ C_0$ équivaut à une formule sans quantificateurs.
- 11. On pose $C \equiv \bigvee_{i=1}^{n} C_i$ où chaque C_i est une conjonction de formules atomiques. On sait que \exists et \vee "commutent":

$$\exists x \bigvee_{i=1}^{n} C_i \equiv \bigvee_{i=1}^{n} \exists x \ C_i$$

et on conclut d'après la question précédente appliquée à chacune des $\exists x \ C_i$ que $\exists x \ C$ équivaut à une formule sans quantificateurs.

12. On rappelle que toute formule est équivalente à une formule sous forme prénexe. On montre par récurrence sur le nombre k de quantificateurs d'une forme prénexe de F que F équivaut dans T a une formule sans quantificateurs.

k = 0: F est sans quantificateurs.

$$k \mapsto k+1$$
: Soit $F \equiv \exists xF'$, soit $F \equiv \forall xF'$.

Dans le premier cas on applique l'hypothèse de récurrence à F'. On obtient une formule C sans quantificateur, et d'après la question précédente F équivaut à une formule sans quantificateurs.

Dans le second cas $F \equiv \neg \exists x \neg F'$. On applique l'hypothèse de récurrence à $\neg F'$, et on conclut comme au premier cas.