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Foreword

» The work presented here is an old work | made for my thesis
and achieved in 1992 (my thesis and a partial translation are
on my web page
http://www.pps.jussieu.fr/ "roziere/admiss)

» Results have since been obtained but by other means, but
the approach | followed was purely proof theoretic, so could
emphasize other aspects, and could be extended not exactly
to the same cases


http://www.pps.jussieu.fr/~roziere/admiss

Summary

In intuitionistic propositional calculus, connections between
» Admissibility = closure under a rule.

The rule Aq,...,A,/C is admissible, written Aq,..., A C,
for every substitution s (I)frf1 propositional variables:

if =5s(A1),...,Fs(Ap) then +s(C).
» Backward derivability = search of possible proofs.

Admissibility = derivability + backward derivability

Emphasizes the role of the restriction on right contraction, in
existence of admissible but not derivable rules.



Sequent calculus without cuts

(a variable or 1)

lata ILFA
IA—BFA I'B-C IARB
INA—BEC I'A—B
IAB-C 'A THB
IAABEC IT'~AAB
IAEC I'BEC A I'-B
IAVBEC I'AvB THFHAVB

Because the lack of contraction rule in the right part:
Every rule, but (—/) and (v,), has a reversible formulation.



Two basic examples of admissible rules

(s(a)=A,s(B)=B,s(y)=Cs(6)=D)

A—-B+HA A—BBFCvVD A—-BFC A—BFD

(@a=pB)=(rvé)t((a—p)—a)v((a—p)—=y)v((a—p)—05)

redundancy
evb—B- v b—-b—B P CvD—-BFC CvD—BFD

CvD—BFCvVD

((yvo) = p) = (yvo)b[((yvo) = B) = rIvI((yvo)—p)— ]

Backward derivation = formalization of this procedure.



The backward consequence relation

57 Fback (ST A ASTR) Ve V(S AL AS, )
(A1 AFQ)™ = A A= C = Aj = ... = A —C)

We have to stop when a sequent contains a variable

(TFa)” =T —a right simple sequents / formulas
(a,F [ C)_’ = a,I = C left simple sequents / formulas

All simple sequents in a backward derivation are leaves



Completeness

» The rule A/C is obtained by backward and forward
derivation, written At ¢ C, when it is obtained by a (finite)
sequence of backward derivations and usual derivation

Fo,r= (Foack + )"

» Soundness
AbpsC = ARC

» Completeness
AC = AbpfC



Infinite base of rules for admissibilty

As a corollary of completeness, all admissible rules can be

obtained by composing derivable rules and some of the rules

(adp) (Visser rules) :

n
V (faj — Bitr<i=n — @)

1

—

i — Bit1=izn — (Y v 0) ({aji — Biti<izn — 7)

<

({aj— Bit1<i<n — 5)

Not completly straightforward because of redundancies.

(adp)



Eliminating “pruning” of redundancies: an example

We have seen
((yvé)=B)=(rvé)k((yvé)—B)=rIvI((yvé)—p)—d].
It can be reduce by (yvé)— p=(y—B)A (6 —p) to

[((y—B).(6—B)—7]
(Y—*ﬁ)’(5—’ﬁ)*(yv6)|~{ v
[((y — B),(6 — B) — ]

instance of (ad-)

The only rule leading to possible redundancies is (—/).
This rule can be rewritten in order to avoid it.



Eliminating “pruning” of redundancies

I'A—BFA IB-C
IA—-BFC

can be replaced by:

I,E—BF—BFC I,E—F—BFA
T,(EvB)—B-C T,(EAF)—B-C

IELF—-BFF I''B-C Ia,B-C
I,(E—-F)—BrC ILa,a —B+C

(old trick that apparently go back to Vorob'ev (1958))

For admissibility we use only the 3 first and keep instance of usual
left rule for A atomic.



Completeness proof (sketch)

The skeleton is an usual one:
» Forward and backward derivation plays the syntactic part;
» Substitutions play the semantic part.

Two steps :

» Construct all saturated sets containing a given set of
formulas;

» Associate to each saturated set a particular substitution.

We have to deal with finite sets of formulas, in order to construct
substitutions. Then we need :

» Restriction of saturation to a convenient finite set of formulas
(corresponding to sequent of subformulas);

As all is finite we can :

» Construct a sufficient but finite collection of saturated sets
containing a given finite set of formulas.



Extending subformulas for saturation

We define saturation on formulas obtained from sequents of
subformulas (sequent that appears in a backward derivation of
the original formula).

» () : formulas  Aq,...,Ap—C
where Aj,...,A, are distinct negative subformulas of T’
C is a positive subformula of T’

» FMY(T) : disjunctions of distinct conjunctions of distinct
formulas in &7 (A) ;

Proposition.
» F7(T) and & "Y(T) are finite.

» If Be & (I), then every formula of &~ (B) is equivalent to a
formula of " (B)n% ' (I). Hence :

F(FTM)). = F-O)). FTVUFT(A)). = FTVA)



Saturation property

Definition.

» T is O-saturated :
vC,De FMY(@), Ty CvD = THCorTHD.

» T is saturated if and only if T is I'-saturated.

Fact. If ' c & 7 (0©) and T is ©-saturated, then T’ is saturated.
Lemma. For every formula A, there exists I'y,...,T'; saturated such
that

Atps (AT1)V...v(ATn)
(AT1)V...v(ATn) A

In order to show that this notion of saturation is sufficient, the key
point is that :

I is a saturated set, iff T is projective.



Projective unifier and admissibility

A finite set of formulas T is projective if
there exists a projective unifier s for T, that is

» VCeT, +5(C)

» Va, ' a < s(a) and then
VC, TFC—s(C)andT - C=T —5(C)

usual equivalent to
U Disjunction ﬂ the main step of
Property completness proof

T has the disjunction property for admissibility
ie.
VC,D, (TkCvD iff TCorI'+D)

U (take C = D)

T has the same admissible and derivable consequences: VC, T'+C iff THC




Projective unifier and saturated set

Proposition. The three following propositions are equivalent.

1. T is a saturated set.
2. There exists a projective unifier for T', or T'+ L.

3. T has the disjunction property for admissibility.
(3)=(1) by soundness of “t, " for “".
(2)=(3) is easy and has been seen
It is then sufficient to prove (1)=(2)
We can restrict to set of simple formulas.
The construction of the projective unifier for I in two steps

» A first substitution “eliminate” left simple formulas ¢ — G

» It is then composed with the suitable substitution for right
simple formulas I' — a



Simple formulas

| unifier | formula \
A simple example
[ s(a)=T,s(B)=L | AainNi~Bi |
The two key examples
s(ai)=F—ajiel | F=/(Ti— a;) | right simple formulas
i€l
s(aj)=ainF, i€l F=A(ai— Gj) | left simple formulas

i€l

The two key examples correspond to homogeneous sets of simple
sequents

I'ra orT,akC

Note that, by Glivenko Theorem, the case where a formula is not
classically satisfiable is trivial

el iff THL ff TRL



Construction of the substitution
First step. Because of composition, it is useful, for left simple
formulas to block some later substitutions, with the constant T :
s(a)=anA[T/a]
Let A=*=A[T/a], and G=AT.
The substitutions s;, gji€{1,...,n} are defined by induction on i
> So=00p= /d,
> sip1 = [ A0i(G)" Y /@] o =Ssj0---081050.
If Varr ={a;,...,an}, then on(G) is equivalent to a set of simple
right formulas.
Idea of the proof : take a maximal backward derivation tree of
0n(G), then choose, by saturation, a derivation with leaf sequents
that are consequences of G.
Difficulty : subformulas of o,(G) are not directly in &V (G).
Second step. As 0,(G) is equivalent to a set of right simple
formulas, we can use the substitution still defined :

s(aj)=0n(G) — a;



Subformulas of o,(G)

Substitution verify :
G+ G- 0(G) hence G 0(G)

A subformula B of o,(G) is a variable a; or a substituate of a
subformula B° of G by oi,,..i:n for some 1 <ijj <--- <ij, with:

> Oy,..i:0 =00(C) =id
» if g+ 1¢{ir,....i% then g, g1 =Sq+1°0i,,.ing
» ifg+1€fir,...,i}, then o, ing+1 = Uh,...,i,;q[-l—/aqﬂ]
Then
@iy i iy, in(G) F on(G) .

Saturation can be used to find a conjunction of simple sequents Sy
corresponding to a derivation of 0,(G), such that :

G= /k\(5;)° = /k\s; Fan(G)



Elimination of left simple formulas

Always using analysis on subformulas in 0,(G) we obtained that
under this hypothesis :

G= /k\(s;)o = /k\s; Fon(G)

among Si’s, all left simple sequents are consequences of the right
simple sequents.

The problem to solve is that a substitution [a AA/a] applied to a
right simple sequent I' - a leads to two sequents (in the backward
derivation) :

'Fa and THA

The formula Ais a g, _.i;p(G).

The point is that all these formulas are consequences of G and the
variables @i, but remaining sequents T' aj give these variables.



Conclusion

Other consequences

» Finitary unification type

» Rybakov result on admissibilty
Conclusion

» Purely proof theoretic analysis

» Non inversible rules play the key role

» Proof that we can construct a “good” substitution for a
saturated set is very intricated (but hopefully could be
simplified)



