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Foreword

Ï The work presented here is an old work I made for my thesis
and achieved in 1992 (my thesis and a partial translation are
on my web page
http://www.pps.jussieu.fr/~roziere/admiss)

Ï Results have since been obtained but by other means, but
the approach I followed was purely proof theoretic, so could
emphasize other aspects, and could be extended not exactly
to the same cases

http://www.pps.jussieu.fr/~roziere/admiss


Summary

In intuitionistic propositional calculus, connections between

Ï Admissibility = closure under a rule.
The rule A1, . . . , An/C is admissible, written A1, . . . , An ||∼ C,

iff
for every substitution s on propositional variables:

if ` s(A1), . . . ,` s(An) then ` s(C).

Ï Backward derivability = search of possible proofs.

Admissibility = derivability + backward derivability

Emphasizes the role of the restriction on right contraction, in
existence of admissible but not derivable rules.



Sequent calculus without cuts

Γ,α`α
(α variable or ⊥)

Γ,⊥` A

Γ, A → B ` A Γ, B ` C

Γ, A → B ` C

Γ, A ` B

Γ` A → B

Γ, A, B ` C

Γ, A∧B ` C
Γ` A Γ` B

Γ` A∧B

Γ, A ` C Γ, B ` C

Γ, A∨B ` C
Γ` A

Γ` A∨B
Γ` B

Γ` A∨B

Because the lack of contraction rule in the right part:
Every rule, but (→l) and (∨r), has a reversible formulation.



Two basic examples of admissible rules

( s(α)= A, s(β)= B, s(γ)= C, s(δ)= D )

A → B ` A A → B, B ` C∨D A → B ` C A → B ` D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A → B ` C∨D

(α→β)→ (γ∨δ) ||∼ ((α→β)→α)∨ ((α→β)→ γ)∨ ((α→β)→ δ)

redundancy
C∨D → B ` C∨D C∨D → B, B ` C∨D C∨D → B ` C C∨D → B ` D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C∨D → B ` C∨D

((γ∨δ)→β)→ (γ∨δ) ||∼ [((γ∨δ)→β)→ γ]∨ [((γ∨δ)→β)→ δ]

Backward derivation = formalization of this procedure.



The backward consequence relation

redundancy

S1,1 . . . S1,n

...

. . . . . . Sp,1 . . . Sp,n

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S

S→ `back (S→1,1 ∧ . . .∧S→1,n)∨ . . .∨ (S→p,1 ∧ . . .∧S→p,n)

( (A1, . . . , Ak ` C)→ = A1, . . . , Ak → C = A1 → . . . → Ak → C )

We have to stop when a sequent contains a variable

(Γ`α)→ = Γ→α right simple sequents / formulas

(α,Γ` C)→ = α,Γ→ C left simple sequents / formulas

All simple sequents in a backward derivation are leaves



Completeness

Ï The rule A/C is obtained by backward and forward
derivation, written A `b,f C, when it is obtained by a (finite)
sequence of backward derivations and usual derivation

`b,f= (`back +`)∗

Ï Soundness
A `b,f C =⇒ A ||∼ C

Ï Completeness
A ||∼ C =⇒ A `b,f C



Infinite base of rules for admissibilty

As a corollary of completeness, all admissible rules can be
obtained by composing derivable rules and some of the rules
(adn) (Visser rules) :

{αi →βi}1≤i≤n → (γ∨δ) ||∼



n∨
j=1

({αi →βi}1≤i≤n →αj)

∨
({αi →βi}1≤i≤n → γ)
∨
({αi →βi}1≤i≤n → δ)

(adn)

Not completly straightforward because of redundancies.



Eliminating “pruning” of redundancies: an example

We have seen

((γ∨δ)→β)→ (γ∨δ) ||∼ [((γ∨δ)→β)→ γ]∨ [((γ∨δ)→β)→ δ] .

It can be reduce by (γ∨δ)→β≡ (γ→β)∧ (δ→β) to

(γ→β),(δ→β)→ (γ∨δ) ||∼


[(γ→β),(δ→β)→ γ]
∨
[(γ→β),(δ→β)→ δ]

instance of (ad2)

The only rule leading to possible redundancies is (→l).
This rule can be rewritten in order to avoid it.



Eliminating “pruning” of redundancies

Γ, A → B ` A Γ, B ` C

Γ, A → B ` C

can be replaced by:

Γ, E → B, F → B ` C

Γ,(E∨B)→ B ` C

Γ, E → F → B ` A

Γ,(E∧F)→ B ` C

Γ, E, F → B ` F Γ, B ` C

Γ,(E → F)→ B ` C

Γ,α, B ` C

Γ,α,α→ B ` C

(old trick that apparently go back to Vorob’ev (1958))

For admissibility we use only the 3 first and keep instance of usual
left rule for A atomic.



Completeness proof (sketch)

The skeleton is an usual one:

Ï Forward and backward derivation plays the syntactic part;

Ï Substitutions play the semantic part.

Two steps :

Ï Construct all saturated sets containing a given set of
formulas;

Ï Associate to each saturated set a particular substitution.

We have to deal with finite sets of formulas, in order to construct
substitutions. Then we need :

Ï Restriction of saturation to a convenient finite set of formulas
(corresponding to sequent of subformulas);

As all is finite we can :

Ï Construct a sufficient but finite collection of saturated sets
containing a given finite set of formulas.



Extending subformulas for saturation

We define saturation on formulas obtained from sequents of
subformulas (sequent that appears in a backward derivation of
the original formula).

Ï F→(Γ) : formulas A1, . . . , An → C

where A1, . . . , An are distinct negative subformulas of Γ
C is a positive subformula of Γ

Ï F→,∧,∨(Γ) : disjunctions of distinct conjunctions of distinct
formulas in F→(A) ;

Proposition.

Ï F→(Γ) and F→,∧,∨(Γ) are finite.

Ï If B ∈F→(Γ), then every formula of F→(B) is equivalent to a
formula of F→(B)∩F→(Γ). Hence :

F→(F→(Γ))/≡ = F→(Γ)/≡ F→,∧,∨(F→(A))/≡ = F→,∧,∨(A)/≡



Saturation property

Definition.

Ï Γ is Θ-saturated :
∀C, D ∈F→,∧,∨(Θ), Γ`b,f C∨D ⇒ Γ` C or Γ` D .

Ï Γ is saturated if and only if Γ is Γ-saturated.

Fact. If Γ⊂F→(Θ) and Γ is Θ-saturated, then Γ is saturated.
Lemma. For every formula A, there exists Γ1, . . . ,Γn saturated such
that

A `b,f (
∧
Γ1)∨ . . .∨ (

∧
Γn)

(
∧
Γ1)∨ . . .∨ (

∧
Γn)` A

In order to show that this notion of saturation is sufficient, the key
point is that :

Γ is a saturated set, iff Γ is projective.



Projective unifier and admissibility

A finite set of formulas Γ is projective if
there exists a projective unifier s for Γ, that is

Ï ∀C ∈ Γ, ` s(C)

Ï ∀α, Γ`α↔ s(α) and then

∀C, Γ` C ↔ s(C) and Γ→ C ≡ Γ→ s(C)

⇓ usual
Disjunction

Property
⇑ equivalent to

the main step of
completness proof

Γ has the disjunction property for admissibility
i.e.

∀C, D, (Γ ||∼ C∨D iff Γ` C or Γ` D)

⇓ (take C = D)

Γ has the same admissible and derivable consequences: ∀C, Γ ||∼ C iff Γ` C



Projective unifier and saturated set

Proposition. The three following propositions are equivalent.

1. Γ is a saturated set.

2. There exists a projective unifier for Γ, or Γ`⊥.

3. Γ has the disjunction property for admissibility.

(3)⇒(1) by soundness of “`b,f ” for “||∼”.
(2)⇒(3) is easy and has been seen
It is then sufficient to prove (1)⇒(2)
We can restrict to set of simple formulas.
The construction of the projective unifier for Γ in two steps

Ï A first substitution “eliminate” left simple formulas α→ G

Ï It is then composed with the suitable substitution for right
simple formulas Γ→α



Simple formulas

unifier formula
A simple example

s(αi)=>, s(βi)=⊥ ∧
iαi ∧∧

i ¬βi

The two key examples
s(αi)= F →αi, i ∈ I F =∧

i∈I
(Γi →αi) right simple formulas

s(αi)=αi ∧F, i ∈ I F =∧
i∈I
(αi → Gi) left simple formulas

The two key examples correspond to homogeneous sets of simple
sequents

Γ`α or Γ,α` C

Note that, by Glivenko Theorem, the case where a formula is not
classically satisfiable is trivial

Γ`c ⊥ iff Γ`⊥ iff Γ ||∼⊥



Construction of the substitution
First step. Because of composition, it is useful, for left simple
formulas to block some later substitutions, with the constant > :

s(α)=α∧A[>/α]
Let A−α = A[>/α], and G =∧Γ.
The substitutions si, σi i ∈ {1, . . . , n} are defined by induction on i

Ï s0 =σ0 = Id,
Ï si+1 = [αi+1 ∧σi(G)−αi+1/αi+1] ; σi = si ◦ · · · ◦ s1 ◦ s0.

If VarΓ = {α1, . . . ,αn}, then σn(G) is equivalent to a set of simple
right formulas.
Idea of the proof : take a maximal backward derivation tree of
σn(G), then choose, by saturation, a derivation with leaf sequents
that are consequences of G.
Difficulty : subformulas of σn(G) are not directly in F→,∧,∨(G).
Second step. As σn(G) is equivalent to a set of right simple
formulas, we can use the substitution still defined :

s(αi)=σn(G)→αi



Subformulas of σn(G)
Substitution verify :

G ` G ↔σi(G) hence G `σi(G)

A subformula B of σn(G) is a variable αi or a substituate of a
subformula B0 of G by σi1,...,il;n for some 1 ≤ i1 < ·· · < il, with:

Ï σi1,...,il;0 =σ0(C)= id

Ï if q+1 6∈ {i1, . . . , il}, then σi1,...,il;q+1 = sq+1 ◦σi1,...,il;q

Ï if q+1 ∈ {i1, . . . , il}, then σi1,...,il;q+1 =σi1,...,il;q[>/αq+1]

Then
αi1 , . . . ,αil ,σi1,...,il;n(G)`σn(G) .

Saturation can be used to find a conjunction of simple sequents Sk

corresponding to a derivation of σn(G), such that :

G ≡∧
k
(S→k )0 `∧

k
S→k `σn(G)



Elimination of left simple formulas

Always using analysis on subformulas in σn(G) we obtained that
under this hypothesis :

G ≡∧
k
(S→k )0 `∧

k
S→k `σn(G)

among Sk ’s, all left simple sequents are consequences of the right
simple sequents.

The problem to solve is that a substitution [α∧A/α] applied to a
right simple sequent Γ`α leads to two sequents (in the backward
derivation) :

Γ`α and Γ` A

The formula A is a σi1,...,il;p(G).

The point is that all these formulas are consequences of G and the
variables αij , but remaining sequents Γ`αij give these variables.



Conclusion

Other consequences

Ï Finitary unification type

Ï Rybakov result on admissibilty

Conclusion

Ï Purely proof theoretic analysis

Ï Non inversible rules play the key role

Ï Proof that we can construct a “good” substitution for a
saturated set is very intricated (but hopefully could be
simplified)


