Proof search in intuitionistic sequent calculus and admissible rules

Paul Rozière

Equipe PPS, CNRS UMR 7126 Université Paris Diderot–Paris 7

Workshop on Admissible Rules and Unification Utrecht University May 26-28, 2011

KOD KOD KED KED E VAN

Foreword

- \triangleright The work presented here is an old work I made for my thesis and achieved in 1992 (my thesis and a partial translation are on my web page <http://www.pps.jussieu.fr/~roziere/admiss>)
- Results have since been obtained but by other means, but the approach I followed was purely proof theoretic, so could emphasize other aspects, and could be extended not exactly to the same cases

KORK ERKER ADAM ADA

Summary

In intuitionistic propositional calculus, connections between

\n- Admissibility = closure under a rule.
\n- The rule
$$
A_1, \ldots, A_n / C
$$
 is admissible, written $A_1, \ldots, A_n \vdash C$, iff
\n

for every substitution *s* on propositional variables:

if
$$
\vdash s(A_1), \ldots, \vdash s(A_n)
$$
 then $\vdash s(C)$.

 \triangleright Backward derivability = search of possible proofs.

Admissibility = derivability + backward derivability

Emphasizes the role of the restriction on right contraction, in existence of admissible but not derivable rules.

Sequent calculus without cuts

Because the lack of contraction rule in the right part: Every rule, but (\rightarrow) and (\vee) , has a reversible formulation.

Two basic examples of admissible rules

$$
(s(\alpha) = A, s(\beta) = B, s(\gamma) = C, s(\delta) = D)
$$
\n
$$
\begin{array}{ccc}\nA \rightarrow B \vdash A & A \rightarrow B, B \vdash C \lor D & A \rightarrow B \vdash C & A \rightarrow B \vdash D \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
(\alpha \rightarrow \beta) \rightarrow (\gamma \lor \delta) \vdash ((\alpha \rightarrow \beta) \rightarrow \alpha) \lor ((\alpha \rightarrow \beta) \rightarrow \gamma) \lor ((\alpha \rightarrow \beta) \rightarrow \delta) \\
\text{redundancy} & \text{CVD} \rightarrow B \vdash C \lor D & \text{CVD} \rightarrow B \vdash C & \text{CVD} \rightarrow B \vdash D \\
\hline\n\end{array}
$$

((*γ*∨*δ*) → *β*) → (*γ*∨*δ*)|∼ [((*γ*∨*δ*) → *β*) → *γ*]∨[((*γ*∨*δ*) → *β*) → *δ*]

Backward derivation = formalization of this procedure.

KID K@ K R B K R R B K DA C

The backward consequence relation

$$
S^{\rightarrow} \vdash_{back} (S_{1,1}^{\rightarrow} \land ... \land S_{1,n}^{\rightarrow}) \lor ... \lor (S_{p,1}^{\rightarrow} \land ... \land S_{p,n}^{\rightarrow})
$$

$$
((A_1,...,A_k \vdash C)^{\rightarrow} = A_1,...,A_k \rightarrow C = A_1 \rightarrow ... \rightarrow A_k \rightarrow C)
$$

We have to stop when a sequent contains a variable

 $(\Gamma \vdash \alpha)$ ⁻ = $\Gamma \rightarrow \alpha$ right simple sequents / formulas $(\alpha, \Gamma \vdash C)^{\rightarrow} = \alpha, \Gamma \rightarrow C$ left simple sequents / formulas

All simple sequents in a backward derivation are leaves

Completeness

 \blacktriangleright The rule *A*/*C* is obtained by backward and forward derivation, written $A \vdash_{b,f} C$, when it is obtained by a (finite) sequence of backward derivations and usual derivation

$$
\vdash_{b,f}=(\vdash_{back}+\vdash)^{*}
$$

 \blacktriangleright Soundness

$$
A\vdash_{b,f} C\;\implies\; A\vdash C
$$

 \triangleright Completeness

$$
A \vdash C \implies A \vdash_{b,f} C
$$

KORK ERKER ADAM ADA

Infinite base of rules for admissibilty

As a corollary of completeness, all admissible rules can be obtained by composing derivable rules and some of the rules (*adn*) (Visser rules) :

$$
\{\alpha_i \to \beta_i\}_{1 \le i \le n} \to (\gamma \vee \delta) \vdash \begin{cases} \n\bigvee_{j=1}^n (\{\alpha_i \to \beta_i\}_{1 \le i \le n} \to \alpha_j) \\
\vee \\
(\{\alpha_i \to \beta_i\}_{1 \le i \le n} \to \gamma) \\
\vee \\
(\{\alpha_i \to \beta_i\}_{1 \le i \le n} \to \delta)\n\end{cases} \tag{ad_n}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Not completly straightforward because of redundancies.

Eliminating "pruning" of redundancies: an example

We have seen

$$
((\gamma \vee \delta) \to \beta) \to (\gamma \vee \delta) \vdash [((\gamma \vee \delta) \to \beta) \to \gamma] \vee [((\gamma \vee \delta) \to \beta) \to \delta].
$$

It can be reduce by $(\gamma \vee \delta) \rightarrow \beta \equiv (\gamma \rightarrow \beta) \wedge (\delta \rightarrow \beta)$ to

$$
(\gamma \to \beta), (\delta \to \beta) \to (\gamma \lor \delta) \vdash \begin{cases} [(\gamma \to \beta), (\delta \to \beta) \to \gamma] \\ \lor \\ [(\gamma \to \beta), (\delta \to \beta) \to \delta] \end{cases}
$$

instance of (*ad*₂)

KID K@ KKEX KEX E 1090

The only rule leading to possible redundancies is (\rightarrow) . This rule can be rewritten in order to avoid it.

Eliminating "pruning" of redundancies

 $\Gamma, A \rightarrow B \vdash A$ $\Gamma, B \vdash C$ $\Gamma, A \rightarrow B \vdash C$ can be replaced by: $\Gamma, E \rightarrow B, F \rightarrow B \vdash C$ Γ , $(E \vee B) \rightarrow B \vdash C$ $\Gamma, E \rightarrow F \rightarrow B \vdash A$ Γ , $(E \wedge F) \rightarrow B \vdash C$ $\Gamma, E, F \to B \vdash F$ $\Gamma, B \vdash C$ Γ , $(E \rightarrow F) \rightarrow B \vdash C$ Γ, α , β \vdash C $\Gamma, \alpha, \alpha \rightarrow B \vdash C$

(old trick that apparently go back to Vorob'ev (1958))

For admissibility we use only the 3 first and keep instance of usual left rule for *A* atomic.

KORKAR KERKER E VOOR

Completeness proof (sketch)

The skeleton is an usual one:

- \triangleright Forward and backward derivation plays the syntactic part;
- \triangleright Substitutions play the semantic part.

Two steps :

- \triangleright Construct all saturated sets containing a given set of formulas;
- \triangleright Associate to each saturated set a particular substitution.

We have to deal with finite sets of formulas, in order to construct substitutions. Then we need :

 \triangleright Restriction of saturation to a convenient finite set of formulas (corresponding to sequent of subformulas);

As all is finite we can :

 \triangleright Construct a sufficient but finite collection of saturated sets containing a given finite set of formulas.

KORK ERKER ADAM ADA

Extending subformulas for saturation

We define saturation on formulas obtained from sequents of subformulas (sequent that appears in a backward derivation of the original formula).

- $\blacktriangleright \mathscr{F}^{-}(\Gamma)$: formulas $A_1, \ldots, A_n \to C$ where *A*1,...,*Aⁿ* are distinct negative subformulas of Γ *C* is a positive subformula of Γ
- ► $\mathscr{F}^{\to,\wedge,\vee}(\Gamma)$: disjunctions of distinct conjunctions of distinct formulas in $\mathscr{F}^{-}(A)$;

Proposition.

- ► $\mathscr{F}^{-}(\Gamma)$ and $\mathscr{F}^{-,\wedge,\vee}(\Gamma)$ are finite.
- \triangleright If *B* ∈ $\mathscr{F}^{-}(\Gamma)$, then every formula of $\mathscr{F}^{-}(B)$ is equivalent to a formula of $\mathscr{F}^{-1}(B) \cap \mathscr{F}^{-1}(\Gamma)$. Hence :

$$
\mathscr{F}^{\rightarrow}(\mathscr{F}^{\rightarrow}(\Gamma))/_{_{\equiv}} = \mathscr{F}^{\rightarrow}(\Gamma)/_{_{\equiv}} \mathscr{F}^{\rightarrow,\wedge,\vee}(\mathscr{F}^{\rightarrow}(A))/_{_{\equiv}} = \mathscr{F}^{\rightarrow,\wedge,\vee}(A)/_{_{\equiv}}
$$

KID K@ KKEX KEX E 1090

Saturation property

Definition.

 \blacktriangleright Γ is Θ -saturated : $\forall C, D \in \mathscr{F}^{\rightarrow,\wedge,\vee}(\Theta), \ \Gamma \vdash_{b,f} C \vee D \ \Rightarrow \ \Gamma \vdash C \text{ or } \Gamma \vdash D$.

 $\blacktriangleright \Gamma$ is saturated if and only if Γ is Γ -saturated.

Fact. If $\Gamma \subset \mathcal{F}^{-}(\Theta)$ and Γ is Θ -saturated, then Γ is saturated. **Lemma.** For every formula *A*, there exists $\Gamma_1, \ldots, \Gamma_n$ saturated such that

$$
A \vdash_{b,f} (\bigwedge \Gamma_1) \vee \ldots \vee (\bigwedge \Gamma_n)
$$

$$
(\bigwedge \Gamma_1) \vee \ldots \vee (\bigwedge \Gamma_n) \vdash A
$$

In order to show that this notion of saturation is sufficient, the key point is that :

Γ is a saturated set, iff $Γ$ is projective.

KORKAR KERKER E VOOR

Projective unifier and admissibility

KOD KARD KED KED BE YOUR

Projective unifier and saturated set

Proposition. The three following propositions are equivalent.

- 1. Γ is a saturated set.
- 2. There exists a projective unifier for Γ , or $\Gamma \vdash \bot$.
- 3. Γ has the disjunction property for admissibility.

[\(3\)](#page-14-0)⇒[\(1\)](#page-14-1) by soundness of " $\vdash_{b,f}$ " for " \vdash ".

 $(2) \Rightarrow (3)$ $(2) \Rightarrow (3)$ $(2) \Rightarrow (3)$ is easy and has been seen

It is then sufficient to prove $(1) \Rightarrow (2)$ $(1) \Rightarrow (2)$ $(1) \Rightarrow (2)$

We can restrict to set of simple formulas.

The construction of the projective unifier for Γ in two steps

- A first substitution "eliminate" left simple formulas $\alpha \rightarrow G$
- It is then composed with the suitable substitution for right simple formulas Γ → *α*

Simple formulas

The two key examples correspond to homogeneous sets of simple sequents

$$
\Gamma \vdash \alpha \text{ or } \Gamma, \alpha \vdash \mathsf{C}
$$

Note that, by Glivenko Theorem, the case where a formula is not classically satisfiable is trivial

$$
\Gamma \vdash_c \bot \text{ iff } \Gamma \vdash \bot \text{ iff } \Gamma \not \vdash \bot
$$

Construction of the substitution

First step. Because of composition, it is useful, for left simple formulas to block some later substitutions, with the constant \top :

$$
s(\alpha) = \alpha \wedge A[\top/\alpha]
$$

Let $A^{-\alpha} = A[\top/\alpha]$, and $G = \wedge \Gamma$.

The substitutions *sⁱ* , *σi i* ∈ {1,...,*n*} are defined by induction on *i*

- \blacktriangleright $s_0 = \sigma_0 = Id$,
- \blacktriangleright $s_{i+1} = [\alpha_{i+1} \land \sigma_i(G)^{-\alpha_{i+1}} / \alpha_{i+1}]$; $\sigma_i = s_i \circ \cdots \circ s_1 \circ s_0$.

If $Var_{\Gamma} = \{\alpha_1, \dots, \alpha_n\}$, then $\sigma_n(G)$ is equivalent to a set of simple right formulas.

Idea of the proof : take a maximal backward derivation tree of $\sigma_n(G)$, then choose, by saturation, a derivation with leaf sequents that are consequences of *G*.

Difficulty : subformulas of $\sigma_n(G)$ are not directly in $\mathscr{F}^{\rightarrow,\wedge,\vee}(G)$. **Second step.** As $\sigma_n(G)$ is equivalent to a set of right simple formulas, we can use the substitution still defined :

$$
s(\alpha_i)=\sigma_n(G)\to \alpha_i
$$

Subformulas of *σn*(*G*)

Substitution verify :

$$
G \vdash G \leftrightarrow \sigma_i(G) \text{ hence } G \vdash \sigma_i(G)
$$

A subformula *B* of $\sigma_n(G)$ is a variable α_i or a substituate of a $\mathsf{subformula}\; B^0\; \mathsf{of}\; \mathsf{G} \;\mathsf{by}\; \sigma_{i_1,...,i_l;n} \;\mathsf{for}\; \mathsf{some}\; 1\leq i_1 < \cdots < i_l, \, \mathsf{with}\; \mathsf{S}$

$$
\bullet \ \sigma_{i_1,\ldots,i_l;0}=\sigma_0(C)=id
$$

- ► if *q* + 1 $\not\in$ {*i*₁,...,*i*_l}, then σ _{*i*1,...,*i*_l;*q*+1} = *s*_{*q*+1} ∘ σ _{*i*1},...,*i*_l;*q*</sub>
- \triangleright if *q* + 1 ∈ {*i*₁,...,*i*_l}, then *σ*_{*i*1,...,*i*_l;*q*+1} = *σ*_{*i*1,...,*i*_l;*q*[⊤/*α*_{*q*+1}]}

Then

$$
\alpha_{i_1},\ldots,\alpha_{i_l},\sigma_{i_1,\ldots,i_l;n}(G)\vdash \sigma_n(G)\,.
$$

Saturation can be used to find a conjunction of simple sequents *S^k* corresponding to a derivation of $\sigma_n(G)$, such that :

$$
G \equiv \bigwedge_k (S_k^{\rightarrow})^0 \vdash \bigwedge_k S_k^{\rightarrow} \vdash \sigma_n(G)
$$

KORKAR KERKER E VOOR

Elimination of left simple formulas

Always using analysis on subformulas in *σn*(*G*) we obtained that under this hypothesis :

$$
G \equiv \bigwedge_k (S_k^\rightarrow)^0 \vdash \bigwedge_k S_k^\rightarrow \vdash \sigma_n(G)
$$

among *S^k* 's, all left simple sequents are consequences of the right simple sequents.

The problem to solve is that a substitution $\left[\alpha \wedge A/\alpha\right]$ applied to a right simple sequent $\Gamma \vdash \alpha$ leads to two sequents (in the backward derivation) :

 $\Gamma \vdash \alpha$ and $\Gamma \vdash A$

The formula A is a $\sigma_{i_1,...,i_l;p}(G).$

The point is that all these formulas are consequences of *G* and the variables α_{i_j} , but remaining sequents $\Gamma \vdash \alpha_{i_j}$ give these variables.

Conclusion

Other consequences

- \blacktriangleright Finitary unification type
- \triangleright Rybakov result on admissibilty

Conclusion

- \blacktriangleright Purely proof theoretic analysis
- \triangleright Non inversible rules play the key role
- \triangleright Proof that we can construct a "good" substitution for a saturated set is very intricated (but hopefully could be simplified)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q