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contained, of the second part of my thesis [Ro 92a]. The translation itself
dates mainly from 1993, so there is no reference to the more recent works on
the subject, and the vocabulary is not updated as it could be.

Abstract

In intuitionistic logic rules can be “valid” (we say admissible) without being
derivable. We show that using intuitionistic sequent calculus in both direct
way and reverse way (what we call “backward derivation”) is complete versus
admissibility. As a direct consequence we obtain a decidable characterisation
of admissibility.
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1 Introduction.

A well-known problem in intuitionistic logic is the existence of valid but not deriv-
able rules. This problem seems to be related with some constructive features of
intuitionism (disjunction and existence property) but appear also in modal logics.
We study here a particular case of this phenomenon, admissible rules in intuitionistic
propositional calculus. G.E.Mints in [Mi 72] give sufficient conditions for admissible
rules to be derivable. H.Friedman in [Fr 75] states the problem of the decidability of
admissibility and V.V. Rybakov solves it using semantical and algebraic methods,
via the Gödel translation of intuitionistic logic into modal logic in [Ry 84, Ry 86].

We proposed here another approach of the problem using Intuitionistic Sequent
Calculus and a particular class of substitutions defined in [Ro 92a, Ro 92b].

We made use of these substitutions in [Ro 92b] to give sufficient conditions for
admissible rules to be derivable (extending results of [Mi 72]). For instance if the
premises of an admissible rule are disjunctions of Harrop formulae then the rule is
derivable.

Here we show that a kind of “backward derivation” in (intuitionistic) sequent
calculus is complete versus to admissibility. The substitutions act as valuations in
usual completeness results. Decidability of admissibility comes as a consequence of
this completeness result, showing the result of Rybakov but in a very different way.

The present article is almost self contained : only well known results are used,
that can be find in all manuals introducing to intuitionistic logic. In particular useful
definitions from [Ro 92b] are repeated here. We slightly modify some terminology
in hope more clarity. We use results from this article but in a very particular case
for which the proof is very easy (and given here).

1.1 Notations.

Greek letters stand for propositional variables. The connectives are ∨,∧,→ and ⊥
is a propositional constant for false. ¬A stands for A → ⊥, > stands for ⊥ → ⊥.
A primitive negation and false defined as ⊥ = A ∧ ¬A lead to the same results.
A→ B → C or A,B,→ C stand for A→ (B → C) .
If Γ = A1, . . . , An is a finite set of formulae, Γ→ C stands for A1, . . . , An,→ C, (C
if Γ = ∅), ∧Γ stands for A1∧ . . .∧An (> if Γ = ∅), A∧Γ stands for A∧A1∧ . . .∧An
(A if Γ = ∅). Though it is ambiguous, it is harmless here since changing the order
of formulae Ai gives intuitionistically equivalents formulae.

We write ` for the intuitionistic deduction relation, A ≡ B stands for A `
B and B ` A.

1.2 First definitions, exposition of the main result.

1.2.1 Admissible rules, derivable rules.

We define here admissible rules for a propositional logic L.

Definition 1.1. The rule:
`L A1 . . . `L An

`L C
,

is said an admissible rule in L and written down:

A1, . . . , An � C,
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iff the set of theorems of L is closed under this rule, or equivalently
iff for every substitution s of propositional formulae for propositional variables:

if `L s(A1), . . . ,`L s(An), then `L s(C).

This rule is said to be a derivable rule in L iff:

A1, . . . , An,`L C.

Note that the notions of admissible and derivable rules we are talking about
donnot depend of a particular set of rules and axioms for L. We could talk also of
admissible rules for a particular set of rules and axioms, but the methods of this
paper would not be relevant in this more general case.

The following proposition is clearly true.

Proposition 1.2. If the logic L is stable under substitution (for instance L is intu-
itionistic or classical logic), then every derivable rule is admissible.

In classical propositional calculus the converse, i.e. every admissible rule is deriv-
able, is provable (by completeness and using substitutions of propositional constants
⊥ and > as valuations). On the other hand there are well-known admissible rules
which are not derivable rules in intuitionistic calculus, for instance:

(α→ β)→ γ ∨ δ � ((α→ β)→ α) ∨ ((α→ β)→ γ) ∨ ((α→ β)→ δ) . (ad1)

(see for a proof section 3.1) and as consequence (take β = ⊥)

¬α→ γ ∨ δ � (¬α→ γ) ∨ (¬α→ δ)

but it is well known that

¬α→ γ ∨ δ 0 (¬α→ γ) ∨ (¬α→ δ) .

and then

(α→ β)→ γ ∨ δ 0 ((α→ β)→ α) ∨ ((α→ β)→ γ) ∨ ((α→ β)→ δ) .

We will suppose in the following that the logic L is stable under substitution.

1.2.2 backward derivation.

An usual way to show that rules are admissible is to use a system of rules com-
plete for the given logic in a backward way i.e. from conclusion to premises (as in
tableaux method), see examples in section 3.1. What we call backward derivation
is a formalisation of this method.

We will use the following notation.
For a sequent S = Σ ` Θ let

−→
S = ∧Σ → ∨Θ, for a set of sequents G =

{S1, . . . , Sp}, let
−→G =

−→
S1 ∧ . . . ∧

−→
Sp (
−→G = > if G = ∅), for a set of sets of sequents

E = {E1, . . . ,En}, let
−→E =

−→E1 ∨ . . . ∨
−→En (

−→E = ⊥ if E = ∅).
In all this paragraph let (R) be a complete system of rules and axioms using

sequents for the given logic L. We suppose that (R) is a Gentzen like sequent
calculus without cuts, that is essentially:

i. All rules of (R) are local (depending on sequents and not on proofs).

ii. All formulae occurring in premises of a rule of (R), either occurs in the conclu-
sion of (R) or are immediate subformulae of the same formula of the conclusion
of (R). In particular the system (R) has subformula property.
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In case of intuitionistic logic, (R) can be any formulation of a Gentzen sequent
calculus without cuts for intuitionistic propositional logic.

A derivation in (R) is a tree all nodes of which correspond to correct rules.
A derivation all leaves of which are axioms is a proof. As usually for proofs we
say a derivation of a sequent for a derivation whose root is this sequent. We had
supposed that all rules are local in particular each complete subtree of a proof is a
proof and then each sequent in a proof is provable. In all this section proofs and
derivations are always in the system (R). A derivation is said redundant if a branch
of this derivation contain two distinct occurrences of the same sequent. Just by
substituting in a proof to a subproof of a given sequent the subproof of the topmost
occurrence of this sequent, it is clear (and well known1) that each provable sequent
has a non redundant proof.

We call now strict derivation a derivation such that a sequent in which occurs
a propositional variable is never the concluding sequent of an occurrence of a rule
in this derivation. For instance a trivial (containing no instance of rules) derivation
is always strict. We call maximal strict derivation a strict derivation all leaves of
which are axioms or are sequents containing a propositional variable.

Lemma 1.3. For any logical substitution s any proof P of the sequent s(S) (if there
is one) “ends” with the substitute of a maximal strict derivation D of the sequent
S (i.e. s(D) is a truncature of P).

Proof. All formulae occuring in P are subformulae of formulae of s(S) (let us say
subformulae of s(S) for short). Some of these subformulae (at less the formulae
themselves) are of the form s(C) where C is a subformula of S.

Take the derivation D′ obtained by truncating P in the following way: cut
all branches before the first sequent (starting from the root) where the rule is
applied to a subformula A of formulae of s(S) of the form A = s(α), α being
any variable. Because what we suppose on (R) (clause (ii) above), all formulae

occuring in sequents of D′ are of the form s(C), where C is a subformula of S

and then D′ = s(D) where D is a derivation of S, a maximal strict derivation by

definition of D′.

Definition 1.4. Let Γ ` ∆ be a sequent. Let E be a finite set of finite sets of sequents,

E = {E1, . . . ,En}

such that each maximal strict derivation D of Γ ` ∆ in (R) either verifies for some
i ∈ {1, . . . , n} that all sequents in E i are leaf sequents of D or is redundant.

We say that E is obtained by backward derivation from Γ ` ∆ in (R) and we note
(Γ ` ∆) rdL,R E . We say also that a formula E is obtained by backward derivation
from a formula F and we note F rdL,R E, if there exists a sequent S and a finite

set of finite sets of sequents E such that F =
−→
S , E =

−→E , and S rdL,R E .
We note >L,R the transitive closure of the usual deduction relation and the

backward derivation relation between formulae. We call it the relation of outward
and backward derivation.

It is obvious that if F rdL,R G then G ` F .

Lemma 1.5 (soundness). If F > G then F � G.

1Restriction to no redundant derivations gives, together with subformula property, the decid-
ability of provability in intuitionistic propositional calculus.
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Proof. It is sufficient to prove (prop. 1.2) that, if F rdL,R G then F � G. Let S

be a sequent, let E be a finite set of finite sets of formulae such that F =
−→
S and

G =
−→E and S rdL,R E . Let s be a substitution such that s(F ) is provable, and

then the sequent s(S) is provable. A proof P of s(S) ends with the substitute of a
maximal strict derivation D of S. By definition of the relation rdL,R there exists
one set E i, E i ∈ E , such that every sequent of E i occurs in D. Hence every sequent

of s(E i) occurs in the proof P and then is provable. Then s(
−→E ) is provable.

We can know give a more precise version of the completeness result announced
in the introduction.

Theorem 1.6 (completeness). The outward and backward derivation in Gentzen In-
tuitionistic Sequent calculus is complete with respect to admissibility in Intuitionistic
Propositional calculus, i.e. (we omit in this case the subscripts of the relations “rd”
and “>”)

F � G iff F > G .

We can even more prove that, for each formula F there exist a formula F ad such
that :

∀C (F ad � C iff F ad ` C) ; F > F ad and F ad ` F .

As a consequence we obtain the following result that can be stand without
talking of backward derivation, but seems to be new.

Proposition 1.7. For each formula F there exist a formula F ad such that

∀C (F ad � C iff F ` C) ; F � F ad and F ad ` F .

We will derive decidability of the admissibility relation from the effective con-
struction of the formula F ad. Note that the decidability of the outward and back-
ward derivation does not follow trivially from its definition.

What the proof of completeness look like? The skeleton is the usual one : first
for a given saturation property construct all the saturated sets containing a given
set of formulae, then associate to each saturated set a particular substitution (which
play here the semantic part).

But there are two sources of troubles. The first one is that we are able to
construct the useful substitution only for finite set of formulae. That leads us
to use the clumsy definition 4.4 of saturation – the saturation is restricted to a
convenient finite set of formulae that cannot be only subformulae of the original
formulae – instead of the more natural definition 2.3. The second one is that we
want to obtain a finite set of formulae whose conjunction will give the formula F ad

above.

2 Admissibility and derivability.

2.1 Admissible and derivable consequences.

We say that formulae or finite sets of formulae Γ have the same admissible and
derivable consequences, iff Γ� C iff Γ ` C.

For instance set of formulae of the intuitionistic “∧,∨,¬” fragment have the
same admissible and derivable consequences. The same holds for the “∧,→,¬”
fragment, for disjunction of Harrop formulae etc. . . (see [Ro 92a, Ro 92b]).
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We recall the Glivenko theorem, a negated formula is intuitionistically provable
if and only if it is classically provable, and the disjunction property in intuitionistic
logic, ` C ∨ D iff ` C or ` D. (see for instance [Tr 88] for the proofs). From
these two theorems we get the two items of the following lemma.

Lemma 2.1.

i. Γ� ⊥ iff Γ `c ⊥ iff Γ ` ⊥ ;

ii. Γ, B ∨B′ � C iff Γ, B � C and Γ, B′ � C.

Hence the set of formulae which have the same admissible and derivable con-
sequences is closed under disjunctions.

2.2 Some useful substitutions.

We describe here particular substitutions which are useful when dealing with ad-
missibility.

Definition 2.2. If Γ is a finite set of formulae, the substitution s will be said a
Γ-identity iff for every propositional variable α:

Γ ` α↔ s(α) ,

or equivalently:
Γ→ α ≡ Γ→ s(α).

We say that a substitution s is Γ-validating iff for every formula C in Γ the
formula s(C) is provable. A Γ-validating Γ-identity will be said a validating Γ-
identity.

These substitutions will play the semantic part in the completeness proof. We first
define a kind of saturation property for finite sets of formulae, and then a lemma
that relates this to validating Γ-identity.

Definition 2.3. We say that a set of formula Γ has the disjunction property for
admissibility iff for any formulae C and D ,

if Γ� C ∨D then Γ ` C or Γ ` D .

Lemma 2.4. Let Γ be a finite set of formulae.

i. If there exists an validating Γ-identity, then Γ has the disjunction property for
admissibility.

ii. If Γ has the disjunction property for admissibility, then Γ has the same ad-
missible and derivable consequences.

Proof of (i). Let s be the validating Γ-identity which is given by the hypothesis.
We know that:

Γ� C ∨D and ` ∧s(Γ) .

The definition of admissibility and the disjunction property of intuitionistic logic
lead to:

` s(C) or ` s(D) .

Then by weakening we obtain:

` Γ→ s(C) or ` Γ→ s(D) .

Hence the definition of a Γ-identity yields:

` Γ→ C or ` Γ→ D .
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Proof of (ii). Take C = D.

Remark 1. The converse of (i) is true (see proposition 4.8) and is the crucial point
of the proof of completeness for admissibility.
Remark 2. The following property of Γ-identity also relates to admissibility. Let
s be a Γ-identity, then Γ � C iff s(Γ) � s(C) (the proof is straightforward,

see [Ro 92a]).
Remark 3. The disjunction property for admissibility for a given formula obviously
implies the disjunction property for the same formula. But the converse is false, see
for instance ¬α→ (β ∨ γ).

We use the previous lemma in [Ro 92a, Ro 92b] to characterise formulae having
the disjunction property for admissibility or the same admissible and derivable
consequences. We only need two easy particular cases of these results, that are
given now.

Let us call simple Harrop formulae the formulae of the form ∆ → α, where ∆
is any finite set of formulae, and α is a propositional variable. Let us call simple
anti-Harrop formulae the formulae of the form α → ∧∆, where ∆ is any finite set
of formulae, and α is a propositional variable.

Proposition 2.5.

i. Let Γ be a finite set of simple Harrop formulae Γ = {∆i → αi/1 ≤ i ≤ n} ,
where the ∆i are any sets of formulae and the αi propositional variables. Let
s be the substitution such that :

if α is a propositional variable occuring in Γ, then s(α) = Γ→ α , else s(α) = α .

Hence s is a validating Γ-identity, and then Γ has the the disjunction property
for admissibility.

ii. Let Γ be a finite set of simple anti-Harrop formulae Γ = {αi → ∧∆i/1 ≤ i ≤
n} Let s be the substitution such that :

if α is a propositional variable occuring in Γ, then s(α) = α∧Γ , else s(α) = α .

Hence s is a validating Γ-identity, and then Γ has the the disjunction property
for admissibility.

Proof. In both cases the substitution is clearly a Γ-identity. In case (i) we obtain
by intuitionistic equivalences for a formula δ → α ∈ Γ:

s(∆→ α) = s(∆)→ (Γ→ α) ≡ Γ→ (s(∆)→ (Γ→ α)) = Γ→ s(∆→ α)

and as s is a Γ-identity

s(∆→ α) ≡ Γ→ (∆→ α) ≡ > .

In case (ii) we obtain in the same way for a formula α→ ∧∆ ∈ Γ:

s(α→ ∧∆) = (Γ ∧ α)→ s(∧∆) ≡ Γ→ ((Γ→ α)→ s(∧∆) = Γ→ s(α→ ∧∆) ≡ >

Formulae in case (i) are particular cases of Harrop Formulae but note that the above
proof is very simple because the α’s cannot be ⊥.
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3 backward derivation.

3.1 Preliminaries.

See the definition 1.4 of backward derivation : as for proof searching it is clear that
it is easier to handle with a sequent calculus without cuts and with internalised
structural rules (exchange, contraction and weakening) as in figure 1 which is also
very near from a tableaux method. It is also clear that the definition of backward
derivation not deeply depends of this choice: it make no difference if we quotient
formulae by equivalence.

Note also that axioms are restricted to atomics formulae. Definition of maxi-
mal strict derivation is then simpler. We only need to suppose that maximal strict
derivations are strict derivations all leaves of which containing a propositional vari-
able, because in this case every derivations of an axiom contains only axioms.

Axioms Γ, α ` α Γ,⊥ ` A
(α is a variable or ⊥)

rules left right

→
Γ, A→ B ` A Γ, B,A → B ` C

Γ, A→ B ` C
Γ, A ` B

Γ ` A→ B

∧
Γ, A,B,A ∧ B ` C

Γ, A ∧B ` C
Γ ` A Γ ` B

Γ ` A ∧B

∨
Γ, A,A ∨ B ` C Γ, B,A ∨ B ` C

Γ, A ∨B ` C
Γ ` A

Γ ` A ∨B
Γ ` B

Γ ` A ∨B

Note. the sequent calculus with the same rules but omitting the above bold scripted formulas is

also complete. the only necessary contraction is on the left premise of the rule (→l). using the

version above will simplify some proofs later.

Figure 1: sequent calculus without cuts

let us show the example of section 1.2.1. take s(α) = A, s(β) = B, s(Γ) =
C, s(δ) = D . in calculus of fig 1, if the sequent (A → B) ` (C ∨ D) is provable
then the last step of its proof use of one of the 3 sets of premises below.

A→ B ` A A→ B,B ` C ∨D A→ B ` C A→ B ` D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A→ B ` C ∨D

we deduce that

(α→ β)→ (γ∨δ)� [((α→ β)→ α)∧(β → (γ∨δ))]∨((α→ β)→ γ)∨((α→ β)→ δ)

and then

(α→ β)→ γ ∨ δ � ((α→ β)→ α) ∨ ((α→ β)→ γ) ∨ ((α→ β)→ δ) . (ad1)

note that (α→ β)→ (γ ∨ δ) ` β → (γ ∨ δ).
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What is different from proof searching in this method? As we work on substitute
of formulae we can say nothing about possible proof of a sequent which contain a
propositional variable because the proof can use a rule on the principal connective
of the substitute of this formula. for instance in the example above, we can say
nothing more: all the sequent in the premises contains a propositional variable.

Let us see another example: take A = C ∨D in the example above. we cannot
prove the sequent (C ∨ D) → B ` C ∨ D with a rule (→l) without redundancies.
then we have only two way for proving this sequent in the system of fig 1 :

(C ∨D)→ B ` C (C ∨D)→ B ` D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(C ∨D)→ B ` C ∨D

and then

((γ ∨ δ)→ β)→ (γ ∨ δ)� [((γ ∨ δ)→ β)→ γ] ∨ [((γ ∨ δ)→ β)→ δ] . (ad′1)

To deal with backward derivation we need a structure on the class of these
particular sets of derivations used in the definition 1.4.

3.2 Describing all possible derivations.

We introduce another kind of sequents: pointed sequents which are sequents where
one and only one formula is distinguished by one point, two points only if this
formula is a right disjunction. The pointed formula will be the main formula of the
rule whose conclusion is the given sequent. See the figure 2: when seeing the rules
bottom up, only one rule can be applied to a given sequent, the disjunctive rule to
an ordinary sequent, a conjunctive rule to a pointed sequent.

Let S be a sequent. Let us call tree of possible derivations of S the only maximal
tree constructed bottom up by the rules of the figure 2.

Note that each branch of this tree that is not infinite either ends with a sequent
with a pointed atom (variable or ⊥), or ends with the ∅, considered as the empty
set of premisses of the rule ⊥l (we recall that the only constant is ⊥).

It is clear that a subtree of the tree of all possible derivations of a given sequent
whose all conjunctive nodes are complete and all disjunctive nodes have only one
son can be identified with a derivation in the sequent calculus of figure 1.

In classical predicate calculus, because of contraction rule, it is possible to “con-
tract” such a tree to one particular derivation which enumerate “enough” possible
ways of proving a sequent. In intuitionistic case simplifications are possible, but
real disjunctive choice can not be eliminated because always stay some rules with-
out reversible2 formulation.

In intuitionistic propositional sequent calculus with less than one formula to the
left, only two rules have no reversible formulation: rules (→left) and (∨right) (see
figure 1 or 2). This is clearly strongly related with the lack of contraction rule in
the right part of the sequent. In the two examples of the preceding section 3.1 we
obtain admissible but not derivable rules in a way illustrating this fact.

3.3 backward derivation trees.

Definition 3.1. A backward derivation tree is a finite subtree of the tree of all pos-
sible derivations (defined in the section above) such that

i. all nodes are complete (truncature);

2We will call reversible the rules whose conjunction of premisses is equivalent to the conclusion.
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conjunctive rules.

Rules left right

⊥
∅

Γ,⊥. ` A
Γ ` ⊥
Γ ` ⊥.

→
Γ, (A→ B) ` A Γ, B,A→ B ` C

Γ, (A→ B)
. ` C

Γ, A ` B
Γ ` (A→ B)

.

∧
Γ, A,B,A ∧B ` C

Γ, (A ∧B)
. ` C

Γ ` A Γ ` B
Γ ` (A ∧B)

.

∨
Γ, A,A ∨B ` C Γ, B,A ∨B ` C

Γ, (A ∨B)
. ` C

Γ ` A
Γ ` (A ∨B)

.
Γ ` B

Γ ` (A ∨B)
..

Disjunctive rules (C is not a disjunction).

A
.
1, . . . , An ` C · · · A1, . . . , A

.
i , . . . , An ` C · · · A1, . . . , A

.
n ` C · · · A1, . . . , An ` C

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A1, . . . , An ` C

A
.
1, . . . , An ` E ∨ F · · · A1, . . . , A

.
n ` E ∨ F · · · A1, . . . , An ` (E ∨ F )

.
· · · A1, . . . , An ` (E ∨ F )

..

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A1, . . . , An ` E ∨ F

Figure 2: Rules for building backward derivation trees

ii. every sequent in the backward derivation tree which contains a propositional
variable is a leaf (and then cannot be a pointed sequent);

iii. every pointed sequent in the backward derivation tree is not a leaf, except if
the conjunctive rule whose conclusion is this sequent has one of its premisses
which appear in the tree below (redundancy).

Note that we can compose backward derivation trees (replacing a leaf by a
backward derivation tree of this leaf) to obtain a new backward derivation tree, but
in this composition new redundancies can appear.

Note that the two instances of the “degenerate rule” ⊥r above give trivial re-
dundancies.

In the definition 1.4 the backward derivation associate to a sequent a set of set
of sequent, which is interpreted as a disjunction of conjunction of sequent. The
backward derivation tree associate to its root sequent a similar but more complex
positive boolean formula of sequents in a very direct way. First eliminate all leaf
which are pointed sequent (corresponding to redundancies). Then interpret dis-
junctive nodes as disjunctions and conjunctive nodes as conjunctions and forget the
rules labelling these nodes. We use for these positive boolean formulae of sequent
the set notation: braces of odd rank are interpreted as disjunctions, of even rank as
conjunctions. Note that sets corresponding to conjunctions can be empty in case of
the rule ⊥l, and that sets corresponding to disjunctions can also be empty because
of redundancies. A backward derivation tree give a complete set of possible deriva-
tions just by taking what corresponds to a disjunctive normal form of the boolean
formula associated with it. We call set of sets of sequents associated with a back-
ward derivation tree the disjunctive normal form obtained in the more obvious way
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by distributivity from this positive boolean formula (whose atoms are sequents),
that is by replacing successively in the positive boolean formula any occurrence of
{S1, . . . , Sn} ∪ E where S1, . . . , Sn are sequents, by {S1} ∪ E , . . . , {Sn} ∪ E . The
following lemma is then obvious (see the definition 1.4).

Lemma 3.2. Let E = {E1, . . . ,En} be the set of sets of sequents associated to a
backward derivation tree of root Γ ` C. Then all sequents occuring in E are leaves
of the backward derivation tree and are ordinary not pointed sequents. Furthermore
(Γ ` C) rd E .

Note that when constructing the disjunctive normal form, we can obtain an empty
disjunction ∅, corresponding intuitively to absurd. We can also obtain a disjunc-
tion that contains at least one empty conjunction {∅,E1, . . . ,En} , corresponding
intuitively to a tautology.

Let us call now a maximal backward derivation tree a backward derivation tree
such that all leaves are either pointed sequents, or contain a propositional variable.

Lemma 3.3. Every sequent has a maximal backward derivation tree without redun-
dancies.

Proof. We know that all formulae appearing in a backward derivation tree are sub-
formulae of this sequent and that a sequent has a finite number of subformulae.
Then a sequent has a finite number of backward derivation trees without redundan-
cies. One of these is maximal.

4 Completeness.

This section is devoted to the proof of the completeness result. We first need to
define a saturation property on a finite set of formulae. We define this set in the
next paragraph.

4.1 Extensions of the notion of subformula.

In sequent calculus without cut and hence in a backward derivation tree, every for-
mula is a subformula of a formula of the root sequent but more over with respect
to the sign: we have to handle with sequent whose left formulae are negative sub-
formulae of the root sequent, whose right formulae are positive subformulae of the
root sequent.

Definition 4.1. The set of the subsequents of a formula A, noted S(A), is the set
of sequents whose left part contains only negative subformulae of A and whose right
part contains only positive subformulae of A.

The set of extended subformulae of A, noted F→(A),is the set of formulae
associated with subsequents of A.

The set F→,∧,∨(A), is obtained by taking disjunctions of distinct conjunctions
of distinct extended subformulae of A (in other words a finite representation of
the closure by disjunction and conjunction of F→(A) quotiented by the equivalence
relation “ ≡ ”).

These definitions are extended to finite sets of formulae by union.

The empty disjunction gives ⊥ ∈ F→,∧,∨(A), and the empty conjunction gives

> ∈ F→,∧,∨(A).
It is well known that the closure by “→” connective of a finite set of formulae

quotiented by intuitionistic equivalence is infinite. That is the reason why we need
such a definition.
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Lemma 4.2.

i. The sets S(A) (subsequents of A), F→(A) (extended subformulae of A), and

F→,∧,∨(A) are finite.

ii. If B ∈ F→(A), then every formula of F→(B) is equivalent to a formula of
F→(B) ∩F→(A). Hence :

F→(F→(Γ))/≡ = F→(Γ)/≡ ; F→,∧,∨(F→(Γ))/≡ = F→,∧,∨(Γ)/≡ .

Proof of (i). The formula A has finite sets of positive and negative subformulae.
Hence the set of all subset of negative formulae of A is finite, and then the set S(A)
of all subsequents of A is finite (recall that we choose for left-hand side of a sequent
a finite set of formulae). The set F→(A) of extended subformulae of A is then finite

and by definition F→,∧,∨(A) is also finite.

Proof of (ii). Let be B = A1, . . . , An → C, where A1, . . . , An are negative subfor-
mulae of A, and C a positive subformula of A. The negative subformulae of B are
exactly the positive subformulae of A1, . . . , An and the negative subformulae of C,
and then in all cases are negative subformulae of A. The positive subformulae of B
are the negative subformulae of A1, . . . , An, the positive ones of C and the formulae
:

Ai, . . . , An → C with i ∈ {1, . . . , n} .

let S be a subsequent of B. Its left part contains only negative subformulae of
A. If the right formula of S id a subformula of A, then S is a subsequent of A.
Else the right formula of S is one of the formulae Ai, . . . , An,→ C, let S = Γ `
Ai, . . . , An,→ C. In this case the formula associated to S is the same as the one
associated to the subsequent of A, Γ, Ai, . . . , An,` C.

The following lemma is a variant of subformula property for sequent calculus.

Lemma 4.3. Every sequent occurring in a backward derivation of ` A is a subse-
quent of A. Hence, if A rd B , then B is in the closure by conjunction and disjunc-
tion of F→(A), and then there exists B′ such that B′ ≡ B and B′ ∈ F→,∧,∨(A) .

Proof. Straightforward induction on the height of the backward derivation.

4.2 Saturation.

Definition 4.4. Let Θ be a set of formulae. We say that a set of formulae Γ is
Θ-saturated if and only if for all formulae C and D in F→,∧,∨(Θ) :

if Γ > C ∨D, then Γ ` C or Γ ` D .

We say that Γ is saturated if and only if Γ is Γ-saturated.

Lemma 4.5. Let Γ be a subset of F→(Θ). If Γ is Θ-saturated, then Γ is saturated.

Proof. From the lemma 4.2 (ii) every formula of F→,∧,∨(Γ), is equivalent to a

formula of F→,∧,∨(Θ).

Lemma 4.6. For every formula A, there exists a formula A such that A rd A,
and A is a disjunction of conjunctions of simple Harrop and anti-Harrop extended
subformulae of A, or ⊥ or >.
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Proof. Take a maximal backward derivation of ` A (see lemma 3.3). Let E be
the set of set of sequents associated to this backward derivation tree, such that
(` A) > E (see lemma 3.2). If S ∈ E , S is a leaf of the backward derivation tree and
S is not a pointed sequent. Because the tree is maximal S contains a propositional
variable and in this case

−→
S is a simple Harrop or anti-Harrop formula, and an

extended subformula of A (see lemma 4.3). See the definition 1.4 of the backward

derivation relation: we obtained A rd
−→E , where

−→E is a disjunction of conjunction
of simple Harrop and anti-Harrop extended subformulae of A (including empty
disjunctions and conjunctions). We can obtain a disjunction containing at least
one empty conjunction. In that case A is provable and we take A = >. We can
also obtain an empty disjunction. In this last case, A � ⊥ and then A ≡ ⊥ (see

lemma 2.1. i). We can naturally take A = ⊥. In other cases A =
−→E .

we deduce the following lemma.

Lemma 4.7. Every saturated set of formulae Γ is equivalent to a saturated set Γ′ of
simple Harrop and anti-Harrop extended subformulae of Γ, or is contradictory, or
is equivalent to a tautology. If Γ is finite, then Γ′ is finite.

Proof. We can eliminate from Γ all provable formulae. If one of the formula of Γ is
contradictory, then Γ itself is contradictory. In other cases, we know by lemma 4.6
that for each formula F in Γ there exists F a disjunction of conjunction of simple
Harrop and anti-Harrop extended subformulae of Γ, such that F rd F . By definition
of saturation, one of these conjunctions, call it ∧∆F , is a consequence of F . Then
F ≡ ∧∆F . The set Γ′ =

⋃
F∈Γ ∆F is equivalent to Γ and then Γ-saturated. But it

is a subset of F→(Γ) and then, by lemma 4.5 a saturated set. By construction, if
Γ is finite, then Γ′ is finite.

We can now restrict ourself to saturated sets of simple Harrop and anti-Harrop
formulae. It is clear that, for a finite set of formulae Γ, if ∧Γ has the disjunction
property for admissibility, then Γ is saturated. Finite sets of simple Harrop formulae
and finite sets of simple anti-Harrop formulae are then saturated (see lemma 2.5).
But this result is in general false for finite set of both simple Harrop and simple
anti-Harrop formulae. See for instance:

¬α→ δ, δ → β ∨ γ > (¬α→ β) ∨ (¬α→ γ) ;

¬α→ δ, δ → β ∨ γ 0 (¬α→ β) ∨ (¬α→ γ) .

Proposition 4.8. Let Γ be any finite set of formulae. The three following propositions
are equivalent.

i. Γ is a saturated set.

ii. There exists a validating Γ-identity, or Γ ` ⊥.

iii. Γ has the disjunction property for admissibility.

(iii)⇒(i) is trivial. (ii)⇒(iii) is shown in lemme 2.4. It is then sufficient to prove
that (i)⇒(ii) The example above show that it cannot be a trivial consequence of
lemma 4.7. It is in fact the crucial point of the completeness proof, and will be
proved in the next section.
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4.3 Construction of a validating Γ-identity for a saturated
set.

We introduce first some notations. We call id the identical substitution.
For a formula A and a propositional variable α, we call ωα the substitution of

all occurrences of α by >. ωα(A) = A[>/α]. The following equivalences are trivial.

α→ A ≡ α→ ωα(A) ; α ∧A ≡ α ∧ ωα(A)

We will need the following lemma (whose proof is immediate).

Lemma 4.9. For any subformula B′ of ωα(A), there exists a subformula B of A
such that ωα(B) = B′.

In all this section Γ is the same given finite not contradictory set of formulae.
We call G = ∧Γ. Let V ar

Γ
= {α1, . . . , αn} the set of all variables occuring in Γ (or

in G). Note that an arbitrary order on these variables is given by the indexation.
The first (and main) step of our proof is roughly speaking to “eliminate” all the

simple anti-Harrop formulae potentially in Γ (a precise formulation will be given in
lemma 4.19).

We will first introduce some particular substitutions.

4.3.1 The substitutions si and σi.

Definition 4.10. The substitutions si, i ∈ {1, . . . , n} are defined by induction on i
and the σi as σi = si ◦ . . . ◦ s1 ◦ s0.

• s0 = Id ,

• si+1 = [αi+1 ∧ ωαi+1
◦ σi(G)/αi+1].

Some straightforward consequences of the definition:

for i > k , σk(αi) = αi ;
for 0 < i ≤ k , σk(αi) = sk ◦ . . . ◦ si(αi)

= sk ◦ . . . ◦ si+1(αi ∧ ωαi
◦ σi−1(G))

≡ sk ◦ . . . ◦ si(αi ∧ ωαi
◦ σi−1(G)) .

Lemma 4.11. The substitutions si and σi are Γ-identities.

Proof. We proceed by induction on i. The base case, s0 = σ0 = Id, is trivial.
Suppose that si and σi are Γ-identities. From σi is a G-identity we obtain

G ` G↔ σi(G) .

Hence
G ` σi(G) .

But
αi+1 ∧ ωαi+1 ◦ σi(G) ≡ αi+1 ∧ σi(G) ,

and then
G ` (αi+1 ∧ ωαi+1

◦ σi(G))↔ αi+1,

i.e. si+1 is a G-identity.
Elsewhere the stability of the set of Γ-identities by composition is a straightforward
consequence of its definition, and then σi+1 is a G-identity.

Our purpose is now to select a set of simple Harrop formulae that implies σn(Γ)
by studying maximal backward derivations of σ(A), A ∈ Γ. Intending to use the
saturation property we have to study subformulae of such formulae.

14



4.3.2 Subformulae of the σi(A), A ∈ Γ.

There is no hope to obtain subformulae of substitute as substitute of the subformu-
lae:

Lemma 4.12. Let s be any substitution, A any formula. A subformula of s(A) either
has the form s(B) where B is a subformula of A, or is a subformula of s(α) for a
propositional variable α occurring in A.

Proof. Straightforward induction on the complexity of A.

Now we introduce some notations related with the substitutions σi.

Definition 4.13. Let 1 ≤ i1 < . . . < il be a finite increasing sequence of integers.
The substitution σi1,...,il;q is inductively defined on q:

• σi1,...,il;0 = σ0(C) = id;

• if q + 1 6∈ {i1, . . . , il}, then σi1,...,il;q+1 = sq+1 ◦ σi1,...,il;q;

• if q + 1 ∈ {i1, . . . , il}, then σi1,...,il;q+1 = ωαq+1 ◦ σi1,...,il;q.

Remarks. If il > q and ij is the greatest integer less than q or equal between
{i1, . . . , il}, then:

σi1,...,il;q = σi1,...,ij ;q .

It is clear that for any q, σ∅;q = σq.

Lemma 4.14. Let 1 ≤ i1 < . . . < il be any increasing finite sequence of integers,
then :

αi1 , . . . , αil , σi1,...,il;p(G) ` σp(G) .

Proof. By induction on p.
If p = 0, it is obvious by definition of σ0.
Suppose that the property stand for p.

If p+1 ∈ {i1, . . . , il}, then σi1,...,il;p+1(G) = ωαp+1 ◦σi1,...,il;p(G). The induction
hypothesis is αi1 , . . . , αil , σi1,...,il;p(G) ` σp(G), hence

αi1 , . . . , αil , σi1,...,il;p+1(G) ` σp(G) ,

and then
αi1 , . . . , αil , σi1,...,il;p+1(G) ` ωαp+1

◦ σp(G) .

It follows that for any formula C

αi1 , . . . , αil , σi1,...,il;p+1(G) ` sp+1(C)↔ C ,

and then the intended result:

αi1 , . . . , αil , σi1,...,il;p+1(G) ` σp+1(G) .

If p + 1 6∈ {i1, . . . , il}, then σi1,...,il;p+1(G) = sp+1(σi1,...,il;p(G)). The result
follows by applying sp+1 to the induction hypothesis.

We will essentially show in lemma 4.16 that every subformula B of σq(G) either
is a propositional variable αi, i ≤ q, or is of the form B = σi1,...,il;q(B0) for a
subformula B0 in G (clear from lemma 4.12 and lemma 4.9). There is clearly one
canonical choice for each occurrence of subformula in σq(G), and we need to define
this one for consistency reasons, what we do now.
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Definition 4.15. Let B be any occurrence of subformula of σq(G). We call type of
an occurrence B of subformula in σq(G), an increasing sequence of integers i1 <
. . . < il. We call sequence associated with an occurrence B of subformula in σq(G),
a sequence of length q + 1 noted B0, . . . , Bq = B, such that for all 0 ≤ i ≤ q, Bi is
an occurrence of subformula of σi(G). Both are inductively defined by

• If q = 0, the type of any occurrence of subformula is the empty sequence.
The sequence associated with any occurrence of subformula contains only this
subformula itself.

• Suppose that for any occurrence of subformula of σq(G), the associated se-
quence and the type are defined. Let B be an occurrence of subformula in
σq+1(G). By lemma 4.12 three cases are possible (see also lemma 4.9).

i. If B = sq+1(C) for C a subformula of σq(G), then the type of B is the
type of C, the sequence associated with B is the sequence associated with
C extended with B (Bq = C).

ii. If B = ωαq+1
(C) for C a subformula of σq(G), Then the type of B is

the type of C extended with q + 1, the sequence associated with B is the
sequence associated with C extended with B (Bq = C).

iii. B = αq+1, the type is q + 1, the sequence associated with αq+1 is the
constant sequence, αi . . . αi︸ ︷︷ ︸

q+1

.

We extend the notation B0, . . . , Bq to sets of subformulae of σq(G) (with
eventually different types), and to sequents.

A particular case: σq(G) is, as occurrence of subformula of itself, of type empty
and of associated sequence σq(G)0 = G, . . . , σq(G)i = σi(G), . . . , σq(G)q = σq(G).

Note that two distinct occurrences of a same subformula could have different
types and associated sequences.

Lemma 4.16. Every subformula of σq(G) either is a propositional variable αi, i ≤
q, or is obtained from one subformula of G by one of the substitutions σi1,...,il;q.
More precisely, let B be an occurrence of subformula in σq(G) of type i1, . . . , il (an
increasing sequence of integers), of associated sequence B0, . . . , Bq = B.

i. If B is not a variable αi for i ≤ q), then for every j ≤ q,

Bj = σi1,...,il;j(B
0) ,

(in particular B = σi1,...,il;q(B
0)).

ii. If B = αi, i ≤ q, then for every 0 ≤ j ≤ q, Bj = αi.

Proof of (i). By induction on q. For q = 0, B = B0, the associated type is the
empty sequence, then B = σ∅;0(B0).

Suppose now the result for q and show it for q + 1. Let B be an occurrence of
subformula in σq+1(G), and suppose that B is not a variable αi for i ≤ q+ 1. From
the definition 4.15 above, we deduce that for every j ≤ q, Bj = (Bq)j , and then by
induction hypothesis, if i1, . . . , il is the type of Bq, Bj = σi1,...,il;j(B

0). The type
of B is either i1, . . . , il, or i1, . . . , il, q + 1.
Suppose first that j ≤ q. Bj = σi1,...,il;j(B

0) = σi1,...,il,q+1;j(B
0) (see defini-

tion 4.13), and the expected result follows in both cases.
Suppose now that j = q+1. The occurrence of subformula B in σq+1(G) is obtained
from the subformula Bq in σq(G) by applying sq + 1 (definition 4.15 (i)), or ωαq+1

(definition 4.15 (ii)). In both cases, following definition 4.13,

B = Bq+1 = σi1,...,il,q+1;q+1(B0) .
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Proof of (ii). By induction on q. Trivial for q = 0 because there is no αi such that
i ≤ 0. Straightforward by applying sq+1 or ωq+1 to induction hypothesis for q + 1
and j ≤ q. By definition 4.15 (iii) for j = q + 1.

Some easy but useful properties:

Lemma 4.17.

i. Let B be any occurrence of subformula in σq(G) such that B0 = E′ c F ′ where
c is any connective. Then B = E cF , and for all j < q, Bj = Ej c F j (in
particular E′ = E0 et F ′ = F 0).

ii. Let B be any occurrence of subformula in σq(G) whose type is i1, . . . , il (then
B 6= αi, i1 < . . . < il ≤ q), and such that, for some j, B0 = αj and if j ≤ q,
B 6= αi.

ii1. if j < i1,

B = σi1,...,il;q(αj) = αj ∧ σj,i1,...,il;q(G) ;

ii2. if there exists k, 1 ≤ k < l such that ik < j < ik+1, then

B = σi1,...,il;q(αj) = αj ∧ σj,ik+1,...,il;q(G) ;

ii3. if il < j ≤ q, then

B = σi1,...,il;q(αj) = αj ∧ σj;q(G) .

ii4. If j ∈ {i1, . . . , il}, then

B = σi1,...,il;q(αj) ≡ > .

ii5. If j > q, then
B = σi1,...,il;q(αj) = αj .

iii. Each occurrence of the variable αi in σq(G) such that i ≤ q occurs as the left
son of a subformula

αi ∧ σi1,...,il;q(G) ,

where i = i1 and σi1,...,il;q(G) is effectively of type i1, . . . , il.

Proof of (i). By induction on q, direct consequence of definition 4.15.

Proof of (ii). By induction on q. We know that B = σi1,...,il;q(αj). For q = 0, the
type of B is the empty sequence, we are in case ii5, B = B0 = αj .

Suppose now the result for q. Take B = σi1,...,il;q+1(αj), i1, . . . , il being the
type of B, and then i1 < . . . < il ≤ q + 1 and Bq = σi1,...,il;q(αj) (lemma 4.16). By
definition 4.15 Bq is a subformula of σq(G) and we can apply induction hypothesis.
If j > q + 1, we are in case ii5 for B and Bq. The substitution sq+1 do not act on
αj , the result follows then directly from induction hypothesis on Bq.
If j ≤ q, we are in one of the cases ii1, ii2, ii3 or ii4 for B, and Bq (the same case
for both).

In each case we obtain the result by applying sq+1 or ωαq+1
to induction hy-

pothesis and then by using directly the definition 4.13. Let us see for instance case
q + 1 = il, and j < i1. By induction hypothesis,

σi1,...,il−1;q(αj) = αj ∧ σj,i1,...,il−1;q(G) .
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Hence, following definition 4.13,

σi1,...,il;q+1(αj) = ωαq+1
(αj ∧ σj,i1,...,il;q(G)) = αj ∧ σj,i1,...,il;q+1(G) .

If j = q + 1, then either j = il, and we deduce the result for B (case ii4) from
the induction hypothesis for Bq (case ii5), or j > il, and we deduce the result for
B (case ii3) from the induction hypothesis for Bq (case ii5).

Proof of (iii). By induction on q. The base case q = 0 is obvious, because there is
no variable αi with i ≤ 0.
Suppose now the result for q. If the variable αq+1 occurs in σq+1(G) = sq+1(σq(G)),
it occurs in a subformula sq+1(αq+1), (definition of sq+1). Now:

sq+1(αq+1) = αq+1 ∧ ωαq ◦ σq(G) = αq+1 ∧ σq+1;q+1(G) .

The type of σq(G) as subformula of itself is empty and σq(G)0 = G, then σq+1;q+1(G)
is an occurrence of subformula of σq+1(G) of type q + 1 and σq+1(G)0 = G (4.15
(ii)).

Let us see now variable αi, with i ≤ q. The substitution sq+1 does not act
on these variables. Using induction hypothesis, a variable αi, i ≤ q occuring in
σq+1(G) = sq+1(σq(G)) either occurs in a subformula

sq+1(αi ∧ σi1,...,il;q(G)) = αi ∧ σi1,...,il;q+1(G) ,

or in a subformula

(αi ∧ ωαq+1 ◦ σi1,...,il;q(G)) = αi ∧ σi1,...,il,q+1;q+1(G) .

In both cases i1, . . . , il is the type of σi1,...,il;q(G), in σq(G), and σi1,...,il;q(G)0 = G.
In first case, by definition 4.15 (i), the type of σi1,...,il;q+1(G) is i1, . . . , il, and

σi1,...,il;q+1(G)0 = σi1,...,il;q(G)0 = G .

In second case, by definition 4.15 (ii), the type of σi1,...,il,q+1;q+1(G) is i1, . . . , il, q + 1
and

σi1,...,il,q+1;q+1(G)0 = σi1,...,il;q(G)0 = G .

4.3.3 backward derivation trees of “σp(G)”.

We set the integer p in all this paragraph.
In the following lemma we describe the particular structure of a backward deriva-

tion tree of the sequent ` σp(G).

Lemma 4.18. Let T be a backward derivation tree of ` σp(G) and let C be the
associated set of sets of sequents (then ` σp(G) rd C). Let S be a leaf occurrence of
a sequent in T (S occurs then in C). Let IS be the set of all variables that occur in
the type of the formulae of S, the variables occurring in the left part of S (it there
is one) excepted. Let b(S) be the branch of T from the root sequent to the leaf S.
For each variable αj ∈ IS, there exists two not pointed sequent S′j and Sj,

S′j = Σj ` σi1,...,il;p(G) and Sj = Σj ` αj with 1 ≤ i1 < . . . < il ≤ p et j ∈ {i1, . . . , il} ,

such that:

i. S′j occurs in b(S), as the premise of a rule (∧ right), the other premise of
this rule being Sj. Moreover each sequent of b(S) occurring between the root
and S′j, does not contain any formula of type k1, . . . , km; p such that j ∈
{k1, . . . , km} (in particular, the set of formulae Σj has the same property).
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ii. The left part Σj of the sequent Sj is included in the left part of S. Moreover
for each sequent S we can set an order <S on IS: IS = {αs1 , . . . , αst}, such
that if e <S f , then Σse ⊂ Σsf .

iii. For every set E ,E ∈ C such that S ∈ E , {Sj , j ∈ IS} ⊂ E .

Proof of (i). Let S′j be the first occurrence of a sequent in b(S) (starting from
the root), such that there exists a formula A of type (k1, . . . , km) occurring in S′j ,
verifying j ∈ {k1, . . . , km}. This formula is the the secondary formula of the rule
S′j is a premise of.

LetB
.

be the main formula of the rule S′j is a premise of. Then A is an immediate

subformula of B. If B0 is a compound formula, B0 = (E c F ), by lemma 4.17 (i)),
B = σk1,...,km;p(E c F ), a contradiction because j ∈ {k1, . . . , km} and B occurs in
a sequent under S′j . We can then assume that B0 is an atomic formula. If B0 = ⊥,
B = ⊥, and then A = ⊥ (with same type), which is also a contradiction. We can
then assume that B0 is a variable. See lemma 4.17 (ii): as j does not occur in the
type of B main formula of the rule, but j occurs in the type of A, and A is an
immediate subformula of B, then necessarily B0 = αj , and

B = αj ∧ σk1,...,km;p(G) ; A = σk1,...,km;p(G) .

If B
.

would occur in the left part of the sequent S′j is a premise of, then S′j would
be the leaf sequent S and alj would occurs in S, which contradicts αj ∈ IS . We
can then assume that B occurs in the right part of the sequent S′j is a premise of,
which gives straightforwardly the expected result.

Proof of (ii). We define now the following order on IS , αi < αj if and only if S′i
occurs before S′j in b(S) (starting from the root). The result follows now from the
particular formulation of the sequent calculus we gave: see figure 2, for all rules the
left part of the conclusion sequent is a subset of the left part of a premise sequent.

Proof of (iii). For every αj ∈ IS the sequent Sj is a leaf of T (because αj is the
right formula of Sj). By construction of Sj , every derivation described by T and
containing S (and then a branch corresponding to b(S)), contains Sj (following (i)
of the same lemma).

We will suppose later that G is a saturated set. We recall that saturation
property is restricted to F→,∧,∨(G). Formulae associated with set of sets of sequent

contains subformulae in σp(G) are not in F→,∧,∨(G). So we will need the following
lemma.

Lemma 4.19. Let T be a backward derivation tree of ` σp(G) and let C = C1 ∨
. . . ∨ Cd be the associated set of sets of sequents (then ` σp(G) rd C). We define

C0
,C0

1, . . . ,C
0
d as in definition 4.15 above (C0

,C0
1, . . . ,C

0
d are sets of sequent made

up with subformulae of G). Then, for all r ∈ {1, . . . , d} :

G `
−→Cr ↔

−→
C0
r and G `

−→C ↔
−→
C0

.

Proof. The second equivalence is a consequence of the first. We will prove by
induction on q, q ≤ p that :

G `
−→Cqr ↔

−→
C0
r .

It gives the first equivalence for q = p, because for every subformula A of σp(G),
Ap = A (see definition 4.15).
The result holds trivially for q = 0.
Suppose now the result for q < p and let us show it for q + 1. It is sufficient to

prove that G `
−→Cqr ↔

−−−→
Cq+1
r . For a given subformula A of type (i1, . . . , il) occuring

in Cr, we have three possible cases (following 4.15):
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(a) q + 1 6∈ {i1, . . . , il}, then :

Aq+1 = σi1,...,il;q+1(A0) = sq+1(σi1,...,il;q(A
0)) = sq+1(Aq) ,

and then, as sq+1 is a G-identity, G ` Aq ↔ Aq+1.

(b) q + 1 ∈ {i1, . . . , il} and A = αq+1. Then for all i ≤ p, Ai = αq+1;

(c) q + 1 ∈ {i1, . . . , il}, then Aq+1 = wq+1(Aq), and then αq+1 ` Aq+1 ↔ Aq.

Let us call Cq,q+1
r the set of sequents we obtain by substituting Aq+1 to Aq in Cqr

for all formulae A of type i1, . . . , il such that q+ 1 6∈ {i1, . . . , il}. Let us call Sq,q+1

the sequent in Cq,q+1
r obtained from Sq of Cqr. Following (a) above,

G `
−−−−→
Cq,q+1
r ↔

−→Cqr . (∗)

In order to obtain Cqr from Cq,q+1
r we have to replace formulae Aq such that A is

of type i1, . . . , il and q + 1 ∈ {i1, . . . , il}. Every sequent S ∈ Cr falls in one of the
four following cases:

(1) S = Σ ` αq+1 such that Σ does not contain formulae of type k1, . . . , km with
q + 1 ∈ {k1, . . . , km}3. In that case Sq,q+1 = Sq+1.

(2) S do not contain formulae of type k1, . . . , km with q + 1 ∈ {k1, . . . , km} In
that case Sq,q+1 = Sq+1.

(3) S = αq+1, A,∆ ` C. Following (b) and (c) above,
−−−−→
Sq,q+1 ≡

−−−→
Sq+1.

(4) S contains no variable in right or left part, and at least one formula of type
k1, . . . , km with q + 1 ∈ {k1, . . . , km}, that is q + 1 ∈ IS . We can write
S = Σ,∆ ` E, with Σ containing only formulae of type k1, . . . , km with
q+ 1 6∈ {k1, . . . , km}, and ∆ containing only formulae of type k1, . . . , km with
q + 1 ∈ {k1, . . . , km}. Then

Sq,q+1 = Σq+1,∆q ` Eq,q+1 with Eq,q+1 = Eq or Eq,q+1 = Eq+1 .

Because q+1 ∈ IS , by lemma 4.18 (iii) and (ii), there exists a sequent Sq+1 =
Σq+1 ` αq+1 such that Sq+1 ∈ Cr and Σq+1 ⊂ Σ. Following (1) above,

Sq,q+1
q+1 = Sq+1

q+1 = Σq+1
q+1 ` αq + 1 .

Because Σq+1 ⊂ Σ and (c) above, for each subformula A of σp(G):

−−−→
Sq+1
q+1 ,Σ

q+1 ` Aq ↔ Aq+1 .

Applying this to formulae in ∆, and to C if necessary, we obtain:

−−−→
Sq+1
q+1 `

−−−−→
Sq,q+1 ↔

−−−→
Sq+1 and Sq+1 ∈ Cr .

Resuming 4 cases above,(1) necessary before (4), we obtain:

−−−→
Cq+1 ≡

−−−−→
Cq,q+1

Then using (*),

G `
−−−→
Cq+1 ↔

−→Cq

and by induction hypothesis

G `
−−−→
Cq+1 ↔

−→
C0

.
3It is “almost” always the case for a sequent with αq+1 as right formula, but we will note use

this fact
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4.3.4 “Elimination” of anti-Harrop formulae.

We give now two consequences of lemma 4.19. The first one is a kind of extension
of the saturation property to the formulae we deal with.

Lemma 4.20. We suppose that G is saturated. Let T be a backward derivation tree
of (` σp(G)) and let C = C1 ∨ . . .∨Cd be the associated set of sets of sequents, such
that (` σp(G)) rd C. (same notations as in lemma 4.19).

Then, there exists r ∈ {1, . . . , d} such that:

G `
−→Cr ` σp(G) .

Proof. We know, because σp is a G-identity, that G ` σp(G). We know, because
definition of forward and backward relation “>”, that:

σp(G) >
−→C1 ∨ . . . ∨

−→Cd ,

hence :
G >

−→C1 ∨ . . . ∨
−→Cd ,

Using lemma 4.19, we obtain:

G >
−→
C0

1 ∨ . . . ∨
−→
C0
d .

But clearly,
−→
C0 ∈ F→,∧,∨(G). We can then use the definition 4.4 of saturation:

there exists r such that G `
−→
C0
r .

We apply another time lemma 4.19:

there exists r such that G `
−→Cr .

We have
−→Cr ` σp(G) as a consequence of the definition of the relation “rd” (Cr

contains all leaf sequents of a derivation of σp(G)).

The following lemma allows us, in a sense, to “eliminate” anti-harrop formulae,
in case G is saturated. We will use it also to show that we can recursively saturate
G.

Lemma 4.21. Let T be a backward derivation tree of (` σp(G)) and let C = C1 ∨
. . . ∨ Cd be the associated set of sets of sequents, such that (` σp(G)) rd C. (same
notations as in lemma 4.19). We suppose that there exists r ∈ {1, . . . , d} such that:

G `
−→Cr ` σp(G) .

Then every sequent S from Cr with propositional variable in left part (corresponding
to an anti-Harrop formula) is a consequence of the subset Cr,d of Cr with proposi-
tional variable in right part (corresponding to Harrop formulae):

−−→Cr,d ` −→S .

Proof. Let S be a sequent with propositional variable in left part, in T. Because re-
striction on backward derivation tree, S is a leaf of T, and S is a premise of a (∧left)
rule with a principal formula like αi c A or A c αi. Following lemma 4.17(iii)we
know that this formula has the form αi ∧ σi1,...,il;p(G) with i ∈ {i1, . . . , il}. Then
we can write:

S = (αi, σi1,...,il;p(G),∆ ` C) .
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Always following lemma 4.17(iii), this occurrence of σi1,...,il;p(G) is effectively of
type i1, . . . , il, and then σi1,...,il;p(G)0 = G. We can then apply lemma 4.16 (ii):

Sq = (αi, σi1,...,il;q(G),∆q ` Cq) .

We take the same notations as lemma 4.18: let IS be the set of all indices
occurring in types of formulae in S, but i (in particular i1, . . . , il ∈ IS). For each
αj ∈ IS let Sj = Σj ` αj defined as in lemme 4.18, such that (4.18(iii)), Sj ∈ Cr,
and (4.18 (ii)) left parts Σj are totally ordered by inclusion, and included in the left
part ofS, hence in ∆ (4.18 (i)). In particular, a formula Σj owns a type k1, . . . , km
such that {k1, . . . , km} ⊂ IS .

We proceed (similarly to lemma 4.19) by induction on q where q ≤ p and p
is fixed, showing that :

the sequent Pq = {Σqj → αj , j ∈ Is}, αi, σi1,...,il;q(G),∆q ` Cq is provable .

For q = 0 , in lemme 4.19, we prove that G ` C0→
r , and then S0 = αi, G,∆

0 ` C0

is provable.
Suppose now the result for q < p and let us show it for q + 1 . Recall that all
indices in the types of formulae in (Pq) but i own to IS . We will distinguish three
cases.

First case : q + 1 6∈ IS , and q + 1 6= i.
Applying substitution sq+1 to Pq we obtain Pq+1, which is then provable.

Second case : q + 1 = i (therefore q + 1 6∈ IS and q + 1 ∈ {i1, . . . , il}).
Note that therefore αq+1 occurs left in Pq. We then obtain a provable sequent
by changing in Pq all formulae Aq where type of A is k1, . . . , km; p and
q + 1 ∈ {k1, . . . , km} , by Aq+1 = ωαq+1

(A) . We apply now sq+1 to this sequent.
The formulae Aq+1 = ωαq+1

(A) stay unchanged. The following sequent is then
provable:

{Σq+1
j → αj , j ∈ Is}, αq+1, ωαq+1

◦ σq(G), σi1,...,il;q+1(G),∆q+1 ` Cq+1 . (∗)

Recall that q + 1 ∈ {i1, . . . , il}, and then σi1,...,il;q+1(G) = ωαq+1
◦ σi1,...,il;q(G).

From lemma 4.18, all Σj are subsets of ∆, and then for every j ∈ Is we can
prove:

{Σq+1
j → αj , j ∈ Is}, αq+1, σi1,...,il;q+1(G),∆q+1 ` αj . (∗∗)

Elsewhere from lemma 4.14,

αi1 , . . . , αil , σi1,...,il;q(G) ` σq(G) ,

therefore
αi1 , . . . , αil , ωαq+1

◦ σi1,...,il;q(G) ` ωαq+1
◦ σq(G) ,

i.e.
αi1 , . . . , αil , σi1,...,il;q+1(G) ` ωαq+1

◦ σq(G) .

From definition of IS , {i1, . . . , il} − {q + 1} ⊂ IS , hence from assertion (∗∗) above,

{Σq+1
j → αj , j ∈ Is}, αq+1, σi1,...,il;q+1(G),∆q+1 ` ωαq+1 ◦ σq(G) ,

and then, from assertion (∗) the required result :

{Σq+1
j → αj , j ∈ Is}, αq+1, σi1,...,il;q+1(G),∆q+1 ` Cq+1 .

22



Third case : q + 1 ∈ IS (therefore q + 1 6= i).
From q + 1 ∈ IS we know that Σq+1 → αq+1 occurs left in Pq. We know that
Σq+1 does not contain formulae of type k1, . . . , km; p with q+ 1 ∈ {k1, . . . , km} .
We know also that Σq+1 ⊂ ∆ , and Σq+1 ⊂ Σj for j ∈ IS (lemme 4.18). From
q + 1 ∈ IS , we know that Σq+1 → αq+1 occurs right in Pq.

Provability if Pq is then preserved, by replacing in Σqj and in Sq , formulae Aq ,

with A of type k1, . . . , km; p and q + 1 ∈ {k1, . . . , km} , by Aq+1 = ωαq+1
(Aq)

(this does not modify sequent Σq+1 ` αq+1).

We then apply sq+1 to the sequent we have obtained. After decomposing Σq+1
q+1 →

αq+1 ∧ σq(G)αq+1 in Σq+1
q+1 → αq+1 and Σq+1

q+1 → σq(G)αq+1 :

{Σq+1
j → αj , j ∈ Is},Σq+1

q+1 → σq(G)αq+1 , αi, σi1,...,il;q+1(G),∆q+1 ` Cq+1 .

Lemma 4.18 says that Σj ’s are all included in ∆. We deduce that for all j ∈ Is:

{Σq+1
j → αj , j ∈ Is}, αi, σi1,...,il;q+1(G),∆q+1 ` αj (∗∗)

We know, by definition of IS , that {i1, . . . , il} − {i} ⊂ IS . In the same manner
as in preceding case, we deduce from (∗∗) and lemma 4.14 that :

{Σq+1
j → αj , j ∈ Is}, αq+1, σi1,...,il;q+1(G),∆q+1 ` σq(G)αq+1 ,

and the required result:

{Σq+1
j → αj , j ∈ Is}, αi, σi1,...,il;q+1(G),∆q+1 ` Cq+1 .

4.3.5 Proof of completeness

In order to achieve the proof we use a syntactical equivalent of proposition 1.7.

Lemma 4.22. For each finite set of formula Γ, there exists a finite number of finite
sets of formulas Γ1, . . . ,Γn such that

i. ∧Γ > (∧Γ1) ∨ . . . ∨ (∧Γn) and (∧Γ1) ∨ . . . ∨ (∧Γn) ` F

and for all Γi :

ii. Γi ⊂ F→(Γ) ;

iii. Γi is saturated ;

iv. Γi contains only simple Harrop and anti-Harrop formulas.

Proof. By lemma 4.5 and ii, it is sufficient to show that Γi’s are Γ-saturated to
obtain iii. Lemma 4.7 will then give iv.

In order to get i, ii for Γ-saturated Γi’s, we use iteratively the following step
inside the finite set F→(Γ) (resulting formula is in F→,∧,∨(A), see definition 4.1).

• Suppose that we obtain a finite set of subsets of F→(Γ) satisfying i, such that
no one is the subset of another one, and such that at least one of them, ∆, is
not Γ-saturated.

• Then for some ∆i ⊂ F→(Γ), ∆ >
∨
j(∧∆i). We have

∨
j(∧∆

⋃
∆j) ` ∧Γ.

Replace then ∆ by the sets {∆ ∪∆j}, and keep only maximal sets for subset
relation.

The process will stop as F→(Γ) is finite, the step always produce at least one bigger
∆
⋃

∆j than the original δ, because ∆ is not saturated, and then one of the ∆j ’s
is not consequence (and then not subset) of ∆, and cannot be erased as subset of
another set, otherwise ∆ already be.
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We can the prove proposition 1.7 and as a corollary theorem 1.6. Take Γ = {F}
and F ad =

∨n
i=1(∧Γi) from lemma 4.22. As each Γi is saturated, it has disjunction

property for admissibility by proposition 4.8, and the same admissible and derivable
consequences (lemma 2.4).

Decidability is derived from the construction of F ad given in proof of lemma 4.22,
and decidability of the intuitionistic propositional calculus

5 Consequences

Some other consequences are given in [Ro 92a] (3rd part). The main one is an
axiomatisation of admissibility by composing usual deduction and the infinite set
of admissible rules :

{αi → βi}1≤i≤n → (γ ∨ δ)�



n∨
j=1

({αi → βi}1≤i≤n → αj)

∨
({αi → βi}1≤i≤n → γ)
∨
({αi → βi}1≤i≤n → δ)

(adn)

As it adn+1 can not be obtained with (adi)i<n, it allows to show that there is no
finite axiomatisation of admissibility upon derivability. This last result is already
known from Rybakov [Ry 85].

The result is shown by transformations on formal backward derivations in se-
quent calculus, using ideas already known for proof search in intuitionistic sequent
calculus, and apparently first occuring in [Vo 58].
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[Ro 92a] P. Rozière, Règles admissibles en calcul propositionnel intuitionniste,
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