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| The Logic T_, of ”Ticket Entailment” i

Modus ponens +
(1) (a— «a)
(B) (B—=7)—= (=)= (a—17)))
(B") (a—=p8)=((B—=7) = (a—=17))
(W) (= (= p)) = (a— b))

e References in Relevance Logic

Ackermann 1956 Anderson & Belnap 1975 [1]
Anderson 1960 Riche & Meyer 1999 |2]

e Problem (circa 1960 [1]|2]): is T, decidable?



e Equivalently, in Combinatory Logic + simple types:

| (@ — a) | x > X

B : (B—=7) =2 (a=p)=(a—=7)) Bfgz > [flgz)
B': (a—=8)=>((f—=7) = (a—=7) Bygfz > [f(gz)
W: (a— (a—B)) — (a— B)) Wfifx D> fzx

Problem (eq.): is type inhabitation within BB'IW decidable?

e Digression: this basis (and others) leads to a natural

question — what kind of reasonings does it correspond to?




‘ The Logic 1, — Historical background i

e Ackermann (1956), Anderson and Belnap (~ 1960 - 1975-+).

"A law 1s used as, so to speak, an inference-ticket (a season
ticket) which licences its possessors to move from asserting
factual statements to asserting other factual statements.”

(Ryle 1949) in ”Entailment: The Logic of Relevance
and Necessity, Vol. 1, (Anderson and Belnap 1975)

(does it make sense? hardly without a natural deduction)



e a reasoning in 71, can be seen as occuring through time...

e [ can be deduced from o« — £ and « provided

o — 3 was introduced or proven before c.

I I > tlme

hence «,
and simultaneously, [

e all hypothesis must be used (K is not in the basis).



e abstraction acts as a time-warp: the clock returns
to the time of the last introduced hypothesis (or to 0).

- a=B(1),a@F8(2)

- a— 0 (1) Fa— 5(1)

g ~ (= ) = (a—f) (0)

e the last introduced hypothesis must be the first abstracted.
a— ((a— B) — B) is not a theorem of T, .

e the theorems are all formulas provable at time 0.




| A never-ending quest? '

o "Problem: 1s T, decidable?”

Anderson and Belnap 1975, chapter 7, page 69.

o "Warning: In the 30 years since 1975 the T_, problem and
its combinatory equivalent have been tried by several very
able workers without success.”

TLCA open problems page, problem # 2, 2006.

scary...
but the problem
looks interesting,
so why bother?




‘ Reinventing the wheel, again and again and... i

(2006-2009)

T-translations ~ HRM-terms! (Bunder 1996)

Kripke-like semantics  Routley & Meyer semantics! (1974)

“strange” orderings  Well quasi-orderings!

; | muitiset Higman theorem! (1952)

theorem

> stuck... any

S (]
P generalisation Kruskal theorem! (1960)

to trees?  Mellies theorem! (1998)



e was it a waste of time? no. After

— eleven versions of the proof (5178568 keys pressed),

— 16425 hours of work,

— 821 litres of coftee,

— 6570 hours of chronic insomnia,

1t worked.

e last gaps fixed in late 2009,
paper submitted in June 2010,
accepted in December 2011, published in 2012.

e it’s time to give more details about the proof itself...



| Summary of the proof |

Step 1: translation into a type inhabitation problem

in A_, + structural constraints (Bunder 1996)

Step 2: study of the properties of minimal inhabitants
(difficulty level: hum... not easy)

Step 3: an algorithm for the computation of ”compact” terms

(difficulty level: hurt me plenty)

Step 4: proof of termination

(difficulty level: nightmare!).




Step 1: from BB'IW to A_,

I B B’ 1%
Ae.w Afgr.(f(gx))  Afgzx.(g(fz))  Afz.(fzz)

¢ is provable in 1.,

& ¢ is inhabited by some u within BB'IW

< ¢ is inhabited by the translation of u in A_,.

... fine, but if we are looking for A_,-inhabitants n normal

form, we need a characterisation of all reducts of translations.



[ Hereditarily right-maximal terms (Bunder 1996) ]

(1) no dummy A
(2) M5 closed = M; closed
(3) going from the subterm to the root,

the first A binding a variable of M5

1s below or equal to
the first A binding a variable of M;







e Fix some order on the set of all variables:
To <1< XT9...
every variable is HRM.
e \r.M — x must be the greatest free variable of M.

e (MN) — the greatest free variable of M (if any) must be
less than or equal to the greatest tree variable of V.

The set of HRM terms is closed under reduction:
¢ 1s provable in 1.,
& ¢ 1s inhabited by an HRM term in normal form.

. so, can we decide inhabitation for HRM-terms?”




Our next goal: to compute a minimal
inhabitant of some fixed type o.

...but why is an inhabitant non-minimal?
is there any way to decrease its size?

e Throughout steps 2 and 3, we shall study a fixed situation:
— M, 18 above My, in M : ¢.
— the subterms are of same kind (type, app | abs)

we ask if there is any way to decrease the size of M by
transtorming M), into a term that can be grafted at a.




[ Step 2: the M|,/M, problem ]

oraft

37 N : 1) HRM!

X
unkown 1n 7/\
a top/down —
search '

erafts, local renamings?’. ..
anything else?”



‘ The M /M problem: the most obvious case i

o Free(M,) = (1...2,) = X, increasing sequences

ff bl
o Free(Mp) = (a...2,) = Xy, O R TAHAnEs

o Types(X,) = Types(X;p) = €. sequences of types

No further information is required...
M|b[Xb — Xa] is still HRM...

.. so M cannot be of minimal size.



oraft

...is it sufficient to eventually gain minimality? no, of course!



‘ A more complex transformation of M), i

arbitrary renamings Variants(M),) C HRM
of free occurrences
n
Xp
M b

with elements of
a fresh set Z

o if () =), then M cannot be minimal.



" Varia nts(Mp)



e If we only want to detect the existence of such an IV
in Variants(M|,) what is the amount of information

on My, we need to know?

e next step: to define from M|, a partial tree labelled
with formulas, from which one can extract all type

sequences of the free variables of its variants.

e we call this tree the blueprint ot M.



[ Blueprints — how to predict variants without terms ]

(unkown yet)

local
Xy .
renamings
M, > Variants(M;)
blueprint
-- - of M, --- l-——-——-——-——-—. ———————————— - Typeso Free ---
reduction
rules
Qp g F (o)
partial tree sequences of

(predictable, up to formulas

some equivalence)
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e dom(a) = all d such that Free(N|4) C Free(lV)

and V|4 is a variable or an application.




e for each @ in the path to w, the path goes to the right.

e the reduction erases w and all @ in this path.

o (o) =all (wi,...,wy,) such that a > ... >7

N IF a = F(«a) = Types o Free o Variants(/V)




e example: inner part of
B =Agaz.(f(gz))
B' =g f'a’ (f/(g'a")).

/ \
— @i—*X%w x
¢o—>x ¢

e one blueprint, two sequences...

(@ =X, x =¥, ¢) (x = ¥, 6= X, )

two possible orderings of free occurrences.



Free(N :¢) = (Y1 : X1y-++>Yn : Xn)
\D*(Xl ..... Xn)
Lo
renla(ﬁi;gs f QD\, (wi, ..., Wi )




e Thus, in the M, /M), problem, the following questions

are equivalent:

— 18 there a variant of M, whose free variables

are of type sequence equal to €2,7

— can {), be extracted from the blueprint oy, of My,?

e can we try to extract more information from ay?

yes, we can try to compress My, via its blueprint...



[ How to get even more of a blueprint: compact terms ]

P:ylFr *» Nk ar~ ~N:UYlFa«

e k is always the blueprint of some HRM-term...

e this means that we can also try to extract (), from
compressions (refl + trans) of the blueprint oy, of M.




/\/gm{ é ) local renamings
@F@

Q, € F(k

(1) k& ap

(€2, can be extracted from a compression of «y)



...an inhabitant in which this situation
does not occur will be called compact.

Our next goal: to prove that the set of
compact inhabitants of ¢ is a finite set,

computable as a function of ¢.

e first, we need to design some algorithm... how can we guess
what the blueprints will be without the terms?



Step 3: the search for compact inhabitants

M : @
(hum... well, maybe)

shadow of M
under construction

o tag ~ type, types of free variables, description of a blueprint.

e descriptions must allow the detection of non-compacity.



(1) blueprints can be considered up to an equivalence that
preserves their sets of extractible sequences.

AN - AN

----------------

----------------

~v =~ if their constructions are similar, regardless of
the exact values/order of adresses in the second case.



for each [, blueprints can be considered up to an equivalence
=; which preserves all sequences of length at most .
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again, regardless of the exact values/order of adresses.



=, is enough to check whether a sequence (2 of length at most [
can be extracted from the compressions of a blueprint a.

provided |2 <[,
the existence of x tollows

from the existence of 9.

(4) €, is of length at most [,, where [, is the § of \’s above a...



since [, < [p, this means that we will be able to detect non-

compactness if b is tagged with any blueprint v, =;, a.

shadow of M

Qavwaava

Qbawayb

(), can be extracted
from a compression of 7

(shadows)

(), can be extracted
from a compression of ay

(unknown reality)



(5) moreover, for each adress ¢ in M, the blueprint o, of M|,
is of "depth” at most . X |Sub(¢)|.

M : @
compact

because M is compact,

n <1, x |Sub(¢)]




e Let B(¢,n) be the set of all blueprints labelled with

subformulas of ¢, of depth at most n.

Lemma. For all ¢, n, [,

e The set B(¢,n)/ =; is a finite set.
e A selector R (¢, n,l) for B(o,n)/ =

is effectively computable from (¢, n, ).

e The values of R are the tags we’re looking for!



| The (naive) algorithm '

Start from the empty shadow, extend it undeterministically

in the following manner:

e tag a with [, unary nodes above a with (24, %4, Vs ), where:

— (), is a sequence over Sub(¢) of length at most [,

— g € Sub(o)
— Y4 € R(p, 1y x |Sub(o)],1,)
— Q4 € F(va)-

o reject a shadow if it’s not compact: a < b,
the nodes at a, b are of the same type/arity,

and {1, can be extracted from a compression of .



This algorithm computes: a lot of garbage;
all shadows of compact inhabitants of ¢...

...will it terminate?

e if the answer is "yes”, the problem is solved:

— launch the algorithm.

— for each computed shadow, check whether
there is an inhabitant with the same domain.

e if the answer is "no”... hum, let’s not think about it.



| Step 4: Proof of termination i

e Consider the following relation:

a € f
<= for each Q2 € F (),

there exists a compression k of 3
such that Q2 € F (k).

(8 is able to emulate o via its compressions.)

e Our goal: to prove that € is a well quasi-ordering over the
set B(¢) (all blueprints labelled with subformulas of ¢)...



e ... i.e. it is impossible to find an infinite sequence

(507617---,67;,...)

without two ¢, 7 such that ¢« < 7 and 38; € ;.

e if our algorithm does not terminate, then (Konig’s lemma, etc.)

it 25 possible to build such a sequence...
...hence if € is a WQO on B(¢), the algorithm terminates.

e the proof uses an axiomatic variant of Kruskal theorem.

it is non-constructive: the resulting complexity is unknown.



| The last key-lemma i

e Mellies’ Axiomatic Kruskal Theorem considers an abstract

decomposition system:

(7T,=2) termst,u... two relations, e.g.
(L, =) labels f,g,... + AN, .
(V,=Xy)  wectors T,U ... TE 4.

e intuitively (and intuitively only):

— t L5 T if the root of ¢ is labelled with f and T is

the collection (sequence, multiset...) of its children.

— T+ w if u belongs to the collection T'.



e Depending on the interpretation of ”terms”, vectors”, ”labels”,

the theorem can be specialized to Kruskal theorem, Higman
theorem, etc....and to the proof that € is a WQO on B(¢).

Theorem (Mellies 1998) If
— <, 18 WQO on L

— five properties or ”axioms” are satisfied.

then < is a WQO on 7.

e just to give you the idea, our (purely ad-hoc) interpretation is:
— T =B.(¢) (all rooted blueprints)
— L = Sub(¢) (labels for @)
- V=DB(¢) xB(¢) (pairs of children of @)



e In our interpretation, four axioms are easy to check. The last
one requires to prove that if € is a WQO on the subset B.(¢)
of rooted blueprints, then it is also a WQO on B(¢).

e This part of the proof is the most esoteric and was the most

painful to prove. Additionally, it requires the following theorem:

PR | :

Upy — ?.]Z'”’ Theorem (Higman 1952) VU, <
: < . If <isa WQO on U,

D then <s is a WQO on S(U).




e the very last lemma is:

r Key-Lemma. For all ¢,
e € isa WQO on B(¢),

e our algorithm terminates,

e the set of compact shadows labelled with subformulas

of ¢ is a finite set, computable as a function of ¢,

and our main result is...



‘ Main result i

(from the shadows to the light)

[ Theorem. Ticket Entailment is decidable. ]

Proof. ¢ is a theorem of T_,.
& ¢ 1s a inhabited in BB'IW
& ¢ 1s a inhabited by an HRM-term
& there exists a compact inhabitant M of ¢

< there exists a compact shadow of same domain as M.

.. and the shadow of M belongs to a finite set, computable as
a function of ¢.




| A never-ending quest? — the lost episode i

December 2011, a few days before Christmas...

I was trying to relax, waiting for the next
(and hopefully the last) reports...

then...




"We show that the implicational fragment of the logic of
ticket entailment is decidable /.../ Riche and Meyer say that:

"Having been around since circa 1960,

this i1s

the most venerable problem in all of relevant logic.”

[...] We learned that a draft paper (Padovani

2010) etc.”

On the decidability of implicational ]

“ntailment

K. Bimb6 and J.M. Dunn, JSL (accepted in 2012)



e The two proofs are now considered as independant.

e By the way, the full citation of Riche and Meyer is:

"We note for the readers logical pleasure that he/she/it may
achieve fame and fortune by solving the decision problem
for T_,. Having been around since circa 1960, this is

the most venerable problem in all of relevant logic.”

”Das ist nicht Mathematik, das ist Theologie”
(footnote) Riche and Meyer, 1999




"We are not sportsmen aiming at record-breaking or something.
We are workers trying to make progress and increase the
global knowledge.”

Pawet Urzyczyn
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