Mathematical Structures in Computer

Science
http://journals.cambridge.ora/MSC

Additional services for Mathematical Structures in
Computer Science:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Ticket Entailment is decidable

VINCENT PADOVANI

Mathematical Structures in Computer Science / Volume 23 / Issue 03 / June 2013, pp 568 - 607
DOI: 10.1017/S0960129512000412, Published online: 09 July 2012

Link to this article: http://journals.cambridge.org/abstract_S0960129512000412

How to cite this article:
VINCENT PADOVANI (2013). Ticket Entailment is decidable. Mathematical Structures in Computer
Science, 23, pp 568-607 doi:10.1017/S0960129512000412

Request Permissions : Click here

CAMBRIDGE JOURNALS

Downloaded from http://journals.cambridge.org/MSC, IP address: 81.194.27.158 on 25 Apr 2013

Math. Struct. in Comp. Science (2013), vol. 23, pp. 568-607. (© Cambridge University Press 2012
doi:10.1017/S0960129512000412 First published online 9 July 2012

Ticket Entailment is decidable

VINCENT PADOVANI

Equipe Preuves, Programmes et Systémes,
Université Paris VII — Denis Diderot,
Case 7014,

75205 PARIS Cedex 13, France

Email: padovani@pps.jussieu.fr

Received 19 June 2010; revised 6 March 2012

We prove the decidability of the logic T-, of Ticket Entailment. This issue was first raised by
Anderson and Belnap within the framework of relevance logic, and is equivalent to the
question of the decidability of type inhabitation in simply typed combinatory logic with the
partial basis BB'IW. We solve the equivalent problem of type inhabitation for the restriction
of simply typed lambda calculus to hereditarily right-maximal terms.

1. Introduction

The partial bases built using the atomic combinators B, B, C, I, K, W of combinatory logic
are well known for being closely connected with propositional logic. The types of their
combinators form the axioms of implicational logic systems that have been studied now
for well over 70 years (Trigg et al. 1994). The partial basis BB'IW corresponds, through
the types of its combinators, to the system T_, of Ticket Entailment, which was introduced
and motivated in Anderson and Belnap (1975) and Anderson et al. (1990). The system
T_, consists of modus ponens and four axiom schemes that range over the following types
for each atomic combinator:

—B:(x—=y) > (¢ —x0)—(d—w)

— B 1 (p-)= ((x—w) > (p—y)

—l:¢p—¢

— W= (@—=>0)— (-9

The type inhabitation problem for BB'IW is the problem of deciding for a given type
whether there exists within this basis a combinator of this type. This problem is equivalent
to the problem of deciding whether a given formula can be derived in T_,.

Surprisingly, the question of the decidability of T-, has remained unsolved since it was
raised in Anderson and Belnap (1975), though the problem has been thoroughly explored
within the framework of relevance logic with proofs of decidability and undecidability for
several related systems. For instance, the system R_, of Relevant Implication (which
corresponds to the basis BCIW) and the system E_, of Entailment (Anderson and
Belnap 1975) are both decidable (Kripke 1959), whereas the extensions R, E, T of
R, E_,, T, to a larger set of connectives (—, A, V) are undecidable (Urquhart 1984).

In 2004, a partial decidability result for the type inhabitation problem was proposed
in Broda et al. (2004) for a restricted class of formulas — the class of 1-unary formulas in

Ticket Entailment is decidable 569

locally compact #-shadows

" inhabitants of ¢ .
,,,,,,,,,,,,,,,,,, e COIPACT
compact h .- ¢-shadows ..
inhabitants of ¢

ey

._-.-A‘...",'
minimal
inhabitants of ¢

inhabitants of ¢

finite, and
computable from ¢

Fig. 1. The principle of our proof of the decidability of type inhabitation for HRM-terms.

which every maximal negative subformula has arity at most 1. Broda, Dams, Finger and
Silva e Silva’s approach is based on a translation of the problem into a type inhabitation
problem for the hereditary right-maximal (HRM) terms of lambda calculus (Trigg et al.
1994; Bunder 1996; Broda et al. 2004). The closed HRM-terms form the closure under
p-reduction of all translations of BB'IW-terms, so the type inhabitation problem within
the basis BB'IW is equivalent to the type inhabitation problem for HRM-terms.

In this paper we use the same approach as used by Broda, Dams, Finger and Silva
e Silva, and prove that the type inhabitation problem for HRM-terms is decidable, and
thus conclude that the logic T_, is decidable.

1.1. Organisation of the paper

In Section 2, we recall the definition of hereditarily right-maximal terms and the
equivalence between the decidability of type inhabitation for BB'IW and the decidability
of type inhabitation for HRM-terms. The principle of our proof is shown in Figure 1.

In Sections 3 and 4, we provide for each formula ¢ a partial characterisation of the
inhabitants of ¢ in normal form and of minimal size. We show that all of these inhabitants
belong to two larger sets of terms, viz. the set of compact and locally compact inhabitants
of ¢.

In Section 5, we show how to associate with each locally compact inhabitant M of a
formula ¢, a labelled tree with the same tree structure as M — we call this tree the shadow
of M. We then define for shadows the analogue of compactness for terms, and prove that
the shadow of a compact term is itself compact.

 In the course of the publication of this article we heard of work in progress by Katalin Bimbo and Michael
Dunn towards a solution that seems to be based on a different approach.

V. Padovani 570

Finally, in Section 6, we prove that for each formula ¢ the set of all compact shadows
of inhabitants of ¢ is a finite set (hence the set of compact inhabitants of ¢ is also a finite
set), and then prove that this set is effectively computable from ¢. The proof appeals
to the Higman and Kruskal Theorems — more precisely, to Mellies’ Axiomatic Kruskal
Theorem.

The decidability of the type inhabitation problem for HRM-terms and the decidability
of T_, follow from a final key result: given an arbitrary formula ¢, this formula is
inhabited if and only if there exists a compact shadow with the same tree structure as
an inhabitant of ¢, and our key lemma proves that the existence of such a shadow is
decidable.

1.2. Preliminaries

Section 2 assumes some familiarity with pure and simply typed lambda calculus and
the usual notions of a-conversion, f-reduction and f-normal form (Barendregt 1984;
Krivine 1993). These last three notions are not essential to our discussion, as we later
focus exclusively on a particular set of simply typed terms in f-normal form. We shall
now briefly recall the definitions and results used in Section 2.

The set of terms of pure lambda calculus (A-terms) is defined inductively as follows:

— Every variable x is a A-term.
— If M is a A-term and x is a variable, then (AxM) is a A-term.
— If M, N are A-terms, then (MN) is a A-term.

The terms given by the second and third rules are called abstractions and applications,
respectively. The parentheses surrounding applications and abstractions are often omitted
if no ambiguity arises. We write

)»xl...xn.MNl...Np

to abbreviate

(Ax1(... (Axa((MNy) ...)Np)) ...)).
For instance, Axy.x(xy)z stands for (Ax(1y((x(xy))z))).
The bound variables of M are all x such that /x occurs in M. A variable x is free in M
if and only if any of the following holds:

— M = x.
— M =Jy.N, y# x and x is free in N.
— M = NP and x is free in N or free in P.

A closed term is a term with no free variables. The raw substitution of N for x in M,
written M{x < N), is the term obtained by substituting N for every free occurrence of
x in M (that is, every occurrence of x that is not in the scope of a Ax). We require this
substitution to avoid variable capture (for all y free in N, no free occurrence of x in M
is in the scope of a Ay):

— If y = x, then y(x « N) is equal to N, otherwise it is equal to y.
— (Ax.M){x « N) = Ax.M.

Ticket Entailment is decidable 571

— If y # x and y is free in N, then (1y.M){x < N) is undefined.
— If y # x, y is not free in N and M(x < N) = M’, then (Ay.M)(x « N) = y.M'.
— If Mi(x « N) = M| and M(x « N) = M}, then (M;My)(x «— N) = (M{M}).

a-conversion is defined as the least binary relation =, such that:

— X=X
— If M =, M, y is not free in M’ and M'(x « y) = M", then (Ax.M) =, (1y.M").
— If My =, M{ and M, =, M}, then (M| M) =, (M{M}).

For instance, Ax.y =, Az.y #, Ay.y. It is a common practice to consider A-terms up to
a-conversion, but we will not do this in our exposition.
p-reduction is the least binary relation f satisfying:

— If M =, (Jx.N)P and N{(x « P) = N’, then MfiN'.
— If MBM’, then (Ax.M)B(/x.M’'), (MN)B(M'N) and (NM)B(NM").

In the first rule, x is not necessarily free in N, so we may have N = N’ — in particular,
free variables may disappear in the process of reduction.

We write f* for the reflexive and transitive closure of . A term M is in f-normal
form, or is f-normal, if there is no M’ such that MEM’. A term M is normalising if there
is a normal N, which is called the normal form of M, such that MS*N. It is strongly
normalising if there is no infinite sequence M = My M fM,;...

It is well known that f-conversion enjoys the Church—Rosser property: if M*N and
MPB*N’, then there exist two a-convertible P, P’ such that Nf*P and N'S*P’. As a
consequence, if a term is normalising, its normal form is unique up to a-conversion.

The judgment ‘assuming x, ..., x, are of types yy,...y,, the term M has type ¢’, written
{x1 91,0, X0 u} B M @ ¢, where y,..., p,, ¢ are formulas of propositional calculus
and xi,...,X, are distinct variables, is defined by:

— I'kx:ypforeach x :p €T.
— ITU{x:¢}FM:yp thenT FAx.M : ¢ — .
— IfT'FM:p->pand ' N : ¢, then ' (MN) :p

The simply typable terms are all M for which there exist I', ¢ such that I' = M : ¢. Note
that " contains all variables free in M. The following properties are well known:

— Strong normalisation: If ' M : ¢, then M is strongly normalising.
— Subject reduction: If ' M : ¢ and MN, then ' F N : ¢.

2. From BB'IW to simply typed lambda calculus

The aim of this section is to provide a precise characterisation of simply typable terms
that are typable with inhabited types in BB'IW so as to transform the problem of type
inhabitation in BB/IW into a type inhabitation problem in lambda calculus. The types of
atomic combinators in BB'IW are also types for their respective counterparts Afgx.f(gx),
Afgx.g(fx), Ax.x, Ahx.hxx in lambda calculus, so to each inhabited type ¢ in BB'IW, there
corresponds at least one closed A-term of type ¢. Moreover, subject reduction and strong
normalisation (see above) also ensure the existence of a closed normal A-term of type ¢.

V. Padovani 572

What we lack is a criterion to distinguish amongst all typed normal forms those that are
reducts of translations of combinators within BB'IW.

The material and results of this section are not new (Bunder 1996; Broda et al. 2004),
and the contents of Sections 2.3 and 2.4, apart from Lemma 2.10, may be skipped entirely
to go immediately to the study of stable parts and blueprints in Section 3.

The definition of hereditarily right-maximal terms is an adaptation of the definition
given in Bunder (1996). The proof of Lemma 2.6 (subject reduction for HRM-terms) is
similar to the proof of Property 2.4 on page 375 of Broda et al. (2004). The right-to-left
implication of Lemma 2.10 can be deduced from Property 2.20 on page 390 of Broda
et al. (2004), though our proof method seems to be simpler.

2.1. Lambda calculus

Let & be a countably infinite set of variables x, y,z ... together with a one-to-one function
O from Z to IN. For all x,y in Z, we write x < y when 0(x) < O(y). Throughout the
rest of the paper, when we write term, we will always mean a term of lambda calculus
built over these variables. For each term M, we write Free(M) for the strictly increasing
sequence of all free variables of M.

Terms are not identified modulo «-conversion — apart from in Section 2, all terms
considered will be in normal form, and we will even use the Greek letters « and f with a
new meaning at the beginning of Section 3. However, we do adopt the usual convention
according to which two distinct A’s may not bind the same variable in a term, and no
variable can be simultaneously free and bound in the same term.

2.2. Hereditarily right-maximal terms

Definition 2.1. The set of hereditarily right-maximal (HRM) terms is inductively defined
as follows:

(1) Each variable x is HRM.

(2) If M is HRM and x is the greatest free variable of M, then Ax.M is HRM.

(3) If M, N are HRM, and for each free variable x of M there exists a free variable y of
N such that x < y, then (MN) is HRM.

The second rule ensures that all HRM-terms are A;-terms, that is, terms in which every
subterm Ax.M is such that x is free in M. As a consequence, the set of free variables of an
HRM-term is preserved under ff-reduction. As we shall see in Lemma 2.6, right-maximality
can also be preserved at the cost of appropriate bound variable renamings.

In the third rule, if N is closed, then so is M. When M and N are non-closed terms,
the greatest free variable of M is less than or equal to the greatest free variable of N. For
instance, if f < g < x and h < x, then Afgx.f(gx), Afgx.g(fx), Ax.x, Ahx.hxx are HRM,
whereas Ayz.zy is not, no matter whether y <z or y > z.

Definition 2.2. Let Q be a function mapping each variable to a formula in such a way
that Q~'(¢) is an infinite set for each ¢. We extend this function to the set of all strictly
increasing finite sequences of variables by letting Q(x1,...,x,) = (Q(x1),...,Q(x,)).

Ticket Entailment is decidable 573

Definition 2.3. The judgment M : ¢ (in words ‘M has type ¢ with respect to Q’) is defined
by:

— If Q(x) = ¢, then x : ¢.

— If x:y, M :y and Ax.M is HRM, then Ax.M : y — .

— IfM:y—> 1y, N:yand (MN) is HRM, then (MN) : p.

The function Q will remain fixed throughout the exposition. Accordingly, the type of a
term M with respect to Q will be called the type of M without any further reference to
the choice of Q. Note that every typed term is HRM.

Definition 2.4. We write Axr for the set of all typed terms in f-normal form. We say any
closed term M € Anr of type ¢ is an Axp-inhabitant of ¢.

The next lemma is the well-known subformula property of simply typed lambda
calculus:

Lemma 2.5 (subformula property). Let M be a Ang-inhabitant of ¢. The types of the
subterms of M are subformulas of ¢.

2.3. Subject reduction of hereditarily right-maximal terms

Lemma 2.6. If there exists a closed M : ¢, then ¢ is Anp-inhabited.

Proof.

(1) The proof of the fact that for every variable y and for every N : ¢, there exists
N’ =, N such that N’ : ¢ and every bound variable of N’ is strictly greater than y is
left as an exercise.

(2) We prove the following proposition by induction on P. Let P, Q be typed HRM-terms.
Suppose:

— x and Q have the same type,
— If Q is closed and x € Free(P), then x = min(Free(P))
— If Q is not closed, then for all z € Free(P):

— If z < x, then z < max(Free(Q)).

— If x < z, then max(Free(Q)) < z.

— if Q is not closed, then max(Free(Q)) < z for all bound variables z of P.
Then R = P(x « Q) is defined, HRM and have the same type as P. We consider
cases:

— P is a variable:

The proposition is clear in this case
— P =)z.P:

Then Free(P’) = Free(P) - (z). By the induction hypothesis, R = P'{x « Q) is

defined, HRM and have the same type as P’. The variable z is still the greatest
free variable of R” and z is not free in Q, hence R = Az.R’.

V. Padovani 574

— P = (P1P2)I
By the induction hypothesis, R; = P;(x < Q) is defined, HRM and have the same
type as P; for each i € {1,2}. We still need to check that R = (R;R;) is HRM.
Assume x 1s free in P and P; is not closed. There are three sub-cases:
— max(Free(Py)) > x:
Then

max(Free(P;)) = max(Free(R;)) < max(Free(P,)) = max(Free(R)).

— max(Free(Py)) < x:
The term Q cannot be closed, and

max(Free(P;)) = max(Free(R;)) < max(Free(Q)).
We have either

max(Free(P;)) = x
max(Free(R;)) = max(Free(Q))

or

max(Free(P;)) > x

max(Free(P;)) = max(Free(Ry)).

— max(Free(P;)) = x:
There are two subcases:
e max(Free(P;)) > x:
Then max(Free(P;)) = max(Free(R;)). If Q is closed, then Free(P;) = (x)
and R; is closed. Otherwise,

max(Free(R;)) = max(Free(Q)) < max(Free(P,)).

e max(Free(P,)) = x:
If Q is closed, then Free(P;) = Free(P,) = (x) and R;, R, are closed.
Otherwise,

max(Free(R;)) = max(Free(R;) = max(Free(Q)).

(3) Assume N : ¢ and N is not in normal form. We will prove the existence of N’ : ¢
such that NfN' by induction on N.
If N =/Ax.P or N =(N{N;) with N; or N, not in normal form, then the existence of
N’ follows from the induction hypothesis and the fact that f-reduction preserves the
set of free variables of an HRM-term. Otherwise, N = (Ax.P)Q, where for each free
variable z of Ax.P, we have z < x and there exists a free variable y of Q such that
z < y. By (1), there exists P’ =, P such that P’ : ¢ and no bound variable of P’ is
less than or equal to a free variable of Q. The variable x is the greatest free variable
of P’. By (2), the term N’ = P'(x « Q) is well defined, HRM and of the type ¢.
Moreover, NN’

Ticket Entailment is decidable 575

(4) We can now prove the lemma. The term M is a simply typable HRM-term. The
strong normalisation property implies the existence of a normal form N of M. The
term N is still a closed term. Finally, by (1), there exists N’ =, N such that N’ : ¢,
that is, ¢ is Ayg-inhabited. L]

2.4. Equivalence between inhabitation in BB'IW and Ang-inhabitation

In the next three lemmas we write ¢; ... ¢, — p to mean the formula

(1 = C.(Pn = y)...))

if n > 0, and the formula v otherwise. We write Fggw ¢ for the judgment ‘there exists
within the basis BB'IW a combinator of type ¢’.

Lemma 2.7. If Fggw ¢, then ¢ is Ang-inhabited.

Proof. If f < g < x and h < x, then Ax.x, Afgx.f(gx), Afgx.g(fx) and Ahx.hxx are
HRM. For each type ¢ of an atomic combinator, the variables f,g,h,x can be chosen
so that one of these terms has type ¢. The set of all formulas ¢ for which there exists a
closed M of type ¢ is closed under modus ponens. By Lemma 2.6, every such formula is
Angp-inhabited.]

Lemma 2.8. If Fggww x — v, then

Feaiw (P1... 0w = 1) = (1... ¢y — ¥)
for all ¢q,..., ¢,

Proof. The proof is by induction on n using left-applications of B. U]

Lemma 2.9. Suppose (it,...,in), (ji,...,Jjm)s (k1,...,k,) are strictly increasing sequences of
integers, {ki,...,kp} = {its...sins j1seeesjmfs n =001 (n >0, m >0, i < ji). If
(1) Feew @iy ... @i, = (. =),
(2) l_BB'IW CO]'I . CUjm iy £
then Fgpiw Wk, .. W, = .
Proof. The proofis by induction on n+m. The proposition is obviously true if n = m = 0,
so we assume n 4+ m > 0. So m > 0. We consider cases:
— n=0:
Then (ji,..., jm) = (ki,...,kp). We have:
Feew (x = v) = (), = 1) = (@, =) (1)
Feew (), = %) = (), = v), (i)
where (i) is a type for B and (ii) follows from (i), (1) and modus ponens.
If m = 1, then Fggw wj, — y follows from (ii), (2) and modus ponens. Otherwise,

Fegiw @), ... @j, =

follows from (ii), (2) and the induction hypothesis.

V. Padovani 576

—n>0:
We consider two sub-cases:

- m>1andi, < ju1:

Hence:
Feew (1 = v) = (@, = 1) = (v, = V) (iii)
Feew (wi, ... 0, = (1 = v))
- (wil M win - ((wjm - X) - (wjm - q’)))) (iV)
Feew i ..., = (), = 7) = (@), = p)), (v)

where (iii) is a type for B and (iv) follows from (iii) and Lemma 2.8. (v) then
follows from (iv), (1) and modus ponens.
We now have k, = j,, and

{kl, “e ’kpfl} = {117 ey in’jl7 s 7jmfl}-
Since i, < j,—1, we have
FeBiw @k, ... 0k, — (0, — V)

by (v), (2) and the induction hypothesis.

- m=1lor(m>1andi, > j,1):

Hence:
Feew (@), = 1) = (1 = w) = (), = v)) (vi)
Feew (@), ...), =) = (@), ... 0, = (1 = p) = (0, = V))) (vii)
Feew @jy ... @, = (1 = v) = (0, =) (viii)
FeBIw O, e Wp, — (wj, = W), (ix)

where (vi) is a type for B’ and (vii) follows from (vi) and Lemma 2.8. (viii) then
follows from (vii), (2) and modus ponens. Then, writing

{nlz"':nq} = {jlw")jmflail:'"5in}:

(ix) follows from (viii), (1) and the induction hypothesis.

If j, > iy,
(nla e nq’jm) = (kla e nkp)'
Otherwise,
jm =iy
Ng = in

Ticket Entailment is decidable 577

and
Feew Wk, ... 0k, = (@, = (0, = P)) (x)
Fesw (wi, = (wi, =) = (i, =) (x1)
Feew (%, ... 0k, = (@i, = (@i, = p)))
= (@, - 0k, = (w3, > p)) (xid)
Feew ok, ... 0k, = (@i, = ¥), (xiii)

where (x) is just (ix), and (xi) is a type for W. Then (xii) follows from (xi) and
Lemma 2.8, and (xiii) follows from (x), (xii) and modus ponens.
Finally, (xiii) is just Fegiw @, ... @k, — .]

Lemma 2.10. For every formula ¢, we have Fgg\w ¢ if and only if ¢ is Anp-inhabited.

Proof. The left to right implication is Lemma 2.7. Using Lemma 2.9 when M is an
application, an immediate induction on M shows that if M : y, Free(M) = (x1,...,Xy)
and X1 :yt,...,Xu : n. then Fegw 7170 — V. U]

3. Stable parts and blueprints
3.1. Introduction

Lemma 2.10 showed that the decidability of type inhabitation for BB'IW is equivalent to
the decidability of Ang-inhabitation. The rest of the paper is devoted to the elaboration
of a decision algorithm for the latter problem.

The problem we shall examine throughout Sections 3 and 4 is that if an inhabitant
is not of minimal size, is there any way to transform it (with the help of grafts and/or
another compression of some sort) into a smaller inhabitant with the same type? This
question is not easy because we are dealing with a lambda calculus restricted with strong
structural constraints (right-maximality). There are, however, simple situations in which
an inhabitant is obviously not of minimal size.

Consider a Ang-inhabitant M and two subterms N,P of M such that P is a strict
subterm of N. Suppose:

— N, P are applications with the same type or abstractions with the same type.
— Free(N) =X = (x1,...,Xp).

— Free(P) =Y = (¥ s Vpoees Vs> Vp,)-

— QX) = (x15--+» xn)-

— Q(Y) = (X(l),...,}511,1,...,)(3,...,)(;’”).

x; = xi for each i, j.

In this case M is not of minimal size. Indeed, we can rename the free variables of P
(letting p(y;-) = X;) s0O as to obtain a term P’ with the same size as P and the same type,
and with the same free variables as N. The subterm N of M can be replaced with P’ in
M. The resulting term is a Anp-inhabitant with the same type but of strictly smaller size.

However, this simple property is far from sufficient to characterise the minimal
inhabitants of a formula: there are indeed formulas with inhabitants of abitrary size

V. Padovani 578

in which this situation never occurs. What we need is a more flexible way to reduce the
size of non-minimal inhabitants. In particular, we need a better understanding of the
available freedom of action if we are to rename the free variables of a term — possibly
occurrence by occurrence — and if we want to ensure that right-maximality is preserved.
This section is devoted to the proof of two key lemmas that delimit this freedom:

— In Sections 3.2, 3.3 and 3.3 we show how to build from any term M € Anr a partial
tree labelled with formulas. This partial tree is called the blueprint of M. This blueprint
can be seen as a synthesised version of M that contains all and only the information
required to determine whether a (non-uniform) renaming of the free variables of M
will preserve hereditarily right-maximality.

— In Sections 3.5 and 3.6 we introduce a rewriting relation on blueprints that allows us
to ‘extract’ sequences of formulas from a blueprint.

— In section 3.7 we prove our two key lemmas:

— Lemma 3.15 clarifies the link between the blueprints of M and Ax.M (provided
both are in Ang). This lemma proves, in particular, that the sequence of the types
of the free variables of M (that is, Q(Free(M))) can always be extracted from its
blueprint.

— Lemma 3.16 shows that for every sequence of formulas ¢ that can be extracted
from the blueprint of M, there exists a (non-uniform) renaming of the free variables
of M that will produce a term N with the same type and the same blueprint as M,

and such that Q(Free(N)) = ¢.

As a continuation of our first example, we will examine the consequences of this last
result. Consider again a Ang-inhabitant M and two subterms N, P of M such that P is
a strict subterm of N and N, P are applications with the same type or abstractions with
the same type. Suppose:

— The sequence Q(Free(N)) can be extracted from the blueprint of P.

This situation is a generalisation of the preceding one (in our first example Q(X) could
also be extracted from the blueprint of P — see Definition 3.10). The term M is still not
of minimal size. Indeed, we may use the second key lemma to prove the existence of a
(non-uniform) renaming of the free variables of P that will produce a term P’ with the
same type as P such that Free(P’) = Free(N). The term N can be replaced with P’ in M.

3.2. Partial trees and trees

Definition 3.1. Let (A, <) be the set of all finite sequences over the set IN . of natural
numbers, ordered by prefix ordering. Elements of A are called addresses. We define a
partial tree to be any function 7 whose domain is a set of addresses. For each partial
tree © and for each address a, we let m, denote the partial tree ¢ +— n(a - ¢) of domain
{cla-c e dom(n)}.

Definition 3.2. For all partial trees ©,n’ and for every address a, we use n[a <« '] to
denote the partial tree n” such that n”|, = n’ and n”(b) = n(b) for all b € dom(n) such
that a £ b.

Ticket Entailment is decidable 579

Definition 3.3. A tree domain is a set A = A such that for all a € 4:

— Every prefix of a is in A.

— For every integer i > 0, if a - (i) € 4, then a- (j) € A for each j e {1,...,i—1}.

A tree domain A is finitely branching if and only if for each a € A, there exists an i > 0
such that a - (i) is undefined. We define a tree to be any function whose domain is a tree
domain.

In the rest of this paper, terms will be freely identified with trees. We identify:

— x with the tree mapping ¢ to x;

— /x.M with the tree t mapping ¢ to Ax and such that 7, is the tree of M;

— (M;M,) with the tree t mapping ¢ to @ and such that 7; is the tree of M; for each
ie{l,2}.

3.3. Blueprints

Definition 3.4. Let G be the signature consisting of all formulas and all symbols of the
form @, where ¢ is a formula. Each formula is considered as a symbol of null arity.
Each @ has arity 2.

We define a blueprint to be any finite partial tree « : 4 — & satisfying the condition
that for each a € A4, if a(a) = @, then o)1) and o2y are of non-empty domains. We
define a rooted blueprint to be a blueprint a such that ¢ € dom(«).

For each & = &, we define a &-blueprint to be any blueprint whose image is a subset
of &. We write B(%) for the set of all &-blueprints, and IB,(.¥) for the set of all rooted
& -blueprints.

Definition 3.5. For every blueprint o and every address a, the relative depth of a in o is
the number of b € dom(«) such that b < a. The relative depth of o is defined as O if « has
an empty domain, and the maximal relative depth of an address in « otherwise.

In the rest of this paper, we will use the following notation for blueprints (see Figure 2):

— B denotes the blueprint of the empty domain.
— ¢ abbreviates ¢ +— ¢.
— @g(a1,a2) denotes the (rooted) blueprint o such that

oa(e) = ¢

oy = %1

Y = o
— For any sequence a = (ay,...,a;) of pairwise incomparable addresses, *z(ay,..., o)

denotes the blueprint « of minimal domain such that «), = o; for each i € [1,...,k].

— #(0y,...,0) denotes the blueprint #z(ay,..., o) such that a = ((1),...,(k)).
For each blueprint «, the choice of @, ay,..., o, such that o = *z(ay,...,0) is obviously not
unique. The sequence (g,...,0) may contain an arbitrary number of empty blueprints,

hence the sequence a@ may be of arbitrary length. Also, o can be roooted (if k =1, a; = ¢
and ¢ is rooted) or empty (if k =0 or oy = --- = oy = I). These ambiguities will not

V. Padovani 580

AN - ﬁ
ArB-G D

Fig. 2. The construction of blueprints using the notation of Section 3.3. In the upper diagram, the
blueprints o and f must be non-empty. Although «y,..., o are displayed from left to right, the
sequence (aj,...,ax) need not be lexicographically ordered.

be difficult to deal with, but they will require us to take a few precautions in our proofs
and definitions by induction on blueprints.

3.4. Blueprint of a term

Definition 3.6. For all M € Ang, the stable part of M is the set of all a € dom(M) such
that Free(M|,) = Free(M) and M|, is a variable or an application.

It is easy to check that our conventions (no variable is simultaneously free and bound in
a term) ensure that the stable part of a term does not depend on the choice of variable
names. Since M is in normal form, M has an empty stable part if and only if it is closed.

Definition 3.7. For all M € Ang, we define the blueprint of M to be the function «
mapping each a in the stable part of M to:

— y if M|, is a variable of type v,

— @, if M, is an application of type .

We will use M IF o to denote the judgment ‘M has blueprint o (Figure 3).

If M = (M{M,) € Ang, M @ ¢, My I oy, M, IF oy, then each «; has a non-empty
domain and (M;M>) IF @g4(x1,2) — in other words, the so-called blueprint of M is indeed
a blueprint, provided the blueprints of M; and M, are blueprints. When M = Ax.M|, the
blueprint of M has the form *(«) — the relation between o and the blueprint of M in this
case will be clarified by Lemma 3.15.

Lemma 3.8. For all M € Axr and forall a- b € dom(M):

(1) If Free(M|,;) = Free(M), then Free(M,;) = Free(M,).
(2) If M, IF o and M, I- B, then oy, = f5.

Ticket Entailment is decidable 581

AYo *

|
a / \ o a, .
N | / \

Y1 bo * *

o) Va \@ | N
A A AN A A

T3 1 g @2 b3 @;33 IVIQIB

Fig. 3. An element of Ang with its blueprint (xo < x; < y1, X2 < X3 < Yo < V2, X1 < Yo < 2).

@.B *
Qy E
/N | A, Ds
X — Q —> x> 0s
6 X P 6 X
@]‘1.% '-@B

Fig. 4. Full reductions of @, (y = y,@,(¢ — 1, ¢)) to T B.

Proof. The first part is a consequence of our bound variable convention (see Section 2.1),
since if

Free(M) = X
Free(M,,) =X'UY

where X’ < X and X, Y are disjoint, then every element of Free(M,;) in X is also an
element of X’. Thus if a - b is in the stable part of M, then b is also in the stable part of
M,,.

The second part is equivalent to the first. U]

V. Padovani 582

o | 0

Fig. 5. Principle of blueprint reduction.

3.5. Extraction of the formulas of a blueprint

Definition 3.9. The judgment ‘f is the blueprint obtained by extracting the formula ¢ at
the address a in the blueprint o (written o >4) is defined inductively by:

D¢y Te.
(2) If a4 B, then @, (p, o) >4 *(y, B).
(3) If o [>‘3) ﬁ: then * (ByC1pn Ck)(OC, Viseees A))k) [>Z>-a *(b,cl,..,,ck)(ﬁa JATERE 9%1)'
In (2) we assume, of course, that o and y are non-empty. In (3) we assume b # ¢ in order
to avoid circularity.
For instance (see Figure 4):

— @y = p. Q¢ > 1. 9) >3 = > w5 > 1. D))
>0 * (> p. (T . DB))
>y WD, *(TB.TB)) = DB
— @y~ . @y = 1.0) B3 2w x> 1. TB))
>y DB+ = 1 Dp))
) (DB (DB TB)) = DB
When o> f, the blueprint § can be seen as o in which the formula ¢ at a is erased together
with all @’s in the path to a. At each (@, this path must follow the right-hand branch of @

(see Figure 5). The constraints on the construction of blueprints imply the existence of at
least one such path in every non-empty blueprint, even if it is not the blueprint of a term.

3.6. Sets of extractible sequences

Definition 3.10. For each formula ¢, let >4 be the relation defined by o> f if and only
if there exists a such that o >3 . We write Dl for the transitive closure of 4. For each
o, we write IF («) for the set of all sequences (¢1,..., ¢,) such that o DL e l>$l IB.

The set IF(x) is what we called ‘set of extractible sequences of o in Section 3.1. Note
that F () = {¢}. If o # I, then all elements of IF («) are non-empty sequences. Note
also that each >>-reduction strictly decreases the cardinality of the domain of a blueprint,

Ticket Entailment is decidable 583

| F | | ? |
IFl 2 \Fpl IGYI/GQ GP‘
[F1. G' F? G&? FP GP]

Fig. 6. Shuffling of two sequences. The chunks of F and G need not have the same size — some of
them can be empty. Every contraction of the resulting sequence belongs to ®(F, G). Each
contraction also belongs to ®(F,G) when F, G are non-empty and the last chunk G? of G is
non-empty.

therefore IF () is a finite set for all . We now introduce the notion of a shuffle, which will
allow us to characterise IF (o) according to the structure of o.

Definition 3.11. A contraction of a sequence F is either the sequence F or a sequence
G- (f) - H where G- (f) - (f)- H is a contraction of F.

Definition 3.12. For all finite sequences Fy,..., F,, we define a shuffle of (Fy,...,F,) to be
any sequence F{ -----F}-----F/.---- FP such that F!----- F' = F; for each i. For
each tuple of sets of finite sequences (% 1,...,%,), we write &(% y,...,#,) for the closure
under contraction of the set of shuffles of elements of | x --- X £ ,.

Definition 3.13. Given two non-empty finite sequences Fy, F», we derfine a right-shuffle of
(F1, F») to be any sequence F| - F} ----- F/ - F} such that F! -...F’ = F; for each i and
F§ = ¢. For each pair of sets of non-empty finite sequences (% 1, % ,), we write ©(Z 1, % »)
for the closure under contraction of the set of right-shuffles of elements % x % .

The principle of (right-)shuffling is shown in Figure 6. The following properties follow
from our definitions, and will be used without further reference:

(1) If « = Fm, then F(a) = {¢}.

(2) If o = ¢, then F(x) = {(¢)}.

(3) If o0 = *z(ay, . .., o), then IF (o) = ®(F (1), ..., F (o).

(4) If o = @g(ot1, 22), then F (o) = ©(F (1), IF (a2)).

3.7. Abstraction versus extraction

Lemma 3.14. Suppose {ai,...,a,} = {b1,...,b,}, and:
a

P O{DZI ...|>ZP ﬂ

N OCDZI Dspﬂ/

Then f = f'.
Proof. The proof is by an easy induction on . |
Recall that for every strictly increasing sequence of variables X = (xi,...,X,), we write

Q(X) for the sequence of the types of xi,...,x,. We will now clarify the link between the
blueprint o of a term M and the blueprint of Ax.M.

V. Padovani 584

M:¢ o

AYA

{a| M, =2:x}={ao,...,ap}

/

)\.L]\/f x—= ¢ x(a)

AN

Fig. 7. How the blueprint of M evolves into the blueprint of Ax.M

In particular, the next lemma shows that if M,Ax.M € Ayg, then M and Ax.M have
blueprints o and f if and only if there exist ao, ..., a, such that

{ao,...,ap} = {a|M, = x}
ocD;" ...Dzv o
B =)
(see Figure 7).

Lemma 3.15. Suppose M € Anp has blueprint o, with Free(M) = (xi,...,x,) and
Q(x1,...,xn) = (x1,...,n). Foreach i € [0,...,n]:
— Let o; be the restriction of « to dom(x) N {a|Free(M) = {x1,...,X;}}.
— Let f; be the blueprint of Ax;1q...x,.M.
Then:
(1) For each i € [0,...,n], we have dom(f;) = {1""! - a|a € dom(x;)} and Bijyn-i = .
(2) For each i €]0,...,n]:
(a) There exist aj,...,a), such that

{ab-a,} = {al M = xi}

and

gf) a,
oDy Byt g

Ticket Entailment is decidable 585

(b) If
{bo,.... by} = {a| Mj, = x;}

b
X

o >0 Dif o,
then of = o;_;.
(3) (x5 xn) € IF(a0).

Proof. Property (1) follows immediately from the definition of a blueprint. Since o, =
and o9 = I, Property (3) follows from Property (2a). Property (2b) follows from Property
(2a) and Lemma 3.14. To prove (2a), we first introduce the following notation.

For each N € Ang, we let py be the least partial function satisfying the following

conditions:

— For every blueprint y, we have py(e,y) = y.
— For every finite sequence of variables Y and for every blueprint y, if

pn(Y.7) =0
{b‘N\b = y} = {b())"'abm}
and
b b
5 I>ZO DX 5’,
then py((y) - Y,y) =9"
By Lemma 3.14, if
{b‘N\b :)’} = {b()a'--abm} = {C0>--->Cm}
and
b bm !
5 l>)(0 . I>Z 6
o0 > §,
then ¢’ = 0", so py is indeed a function. For each finite sequence of variables Y’ and
for each blueprint y, we let uy(Y’,7) be the restriction of y to dom(y) N {b|Free(N)
cY'}.
We shall prove by induction on M that for all pairs (X, X’) such that Free(M) = X - X',
we have py (X, o) = py(X',a). In particular, for all i > 0, we have

%ot = pm((X1, .0, Xio1),)
= pm((Xi ..., Xp),)
= pum((xi), pm((Xig1 - ., Xn),)
= pum((xi), v ((x1 -, Xi), 1))
= pum((xi), %),
so (2a) holds.

The case X' = ¢ is immediate, so we will assume that X’ is a non-empty suffix of
Free(M) and consider cases:

V. Padovani 586

— M is equal to a variable:
This case follows immediately from the definitions.
— M = (M1M2), M1 I+ Y1 and M2 I+ V2
There exist X1, X5, X, X} such that:
XiuXo =X
Xjux,=X
Free(M;) = X; - X; foreach j € {1,2}.
We have o = @,,(y1,y2) where v is the type of M, and

v (X, o) = *(uag, (X1, 71), v, (X2, 92)).

By the induction hypothesis,
pg, (X3, 9i) = pog, (X, 74)

for each i. The sequence X' is non-empty, so the final elements of X’ and X/ are equal.
Assume X' = X" - (x) and X} = X7 - (x). If x is not the final element of X],

pm(X',0) = par(X" - (x), @ (71,72))
= pm(X1 U X3, (1, pary (%), 72)))
= *(par, (X1, 71)s Pan, (X5, pary ((X), 72)))
= *(pa, (X1, 71)s pan, (X5 - (%), 72))
= #(pa, (X1, 71), P11 (X2, 72)).

Otherwise, X| = X7 - (x) and we have

pm(X') = pm(X', @y (11, 72))
= pm(XT U X3, #(pr, (%), 1), o, ((x),72)))
= #(pu, (X7, par, (%), 71)), pan (X5, o, (%), 72)))
= *#(par, (X7 (%), 70), Py (X5 - (x),72))
= *(pa, (X1, 71), Py (X3, 72)).

In either case

pM(Xla O() = *(le(Xi,VILPMZ(Xé,yZ))
= *(pm, (X1, 71), o, (X2, 72))
= pm(X,).
— M = /lx.Ml, M1 s V1
By the induction hypothesis,

i, (X, 71) = par (X7 (), 71)
= pu, (X', pr, ((%),71))
= pum, (X, (X - X', 1))
= pu, (X', 01)).

Ticket Entailment is decidable 587

Free(M) = (21 : X1,--+,Tn : Xn)

A/I:(ﬁl}—(xQ\
Xl,...,xn)EF(a)
A
.
N </>|MQ_/

Free(N) :(Y1 Wiy Ym ¢ Wm)

wm) eF(a)

Fig. 8. A non-uniform renaming of the variables of M, based on an alternate extraction of the
formulas of its blueprint.

Moreover,
L, (X, 1) = g, (X, e, (X - X7, 91)) = o, (X 0ypy)-
Therefore,
oy (X, 21)) = oo, (X5 o)),
SO

#Ml(Xaa):pM1(X/7a)‘]

Thus the full sequence of the types of the free variables of M can be extracted from
its blueprint. The next lemma shows that, conversely, for each sequence 7 in IF («), there
exists a term N with the same domain and blueprint, that has the same type as M, and
such that the sequence of types of the free variables of N is equal to ¥ — see Figure 8.

Lemma 3.16. Let M € Anr be a term with blueprint o. Suppose

bm pm bl bl
U D L D Dl OB
Then for every strictly increasing sequence of variables Y = (y,...,) such that Q(Y) =
(w1,...,wmy), there exists N with the same domain and blueprint and with the same type
as M, and such that Free(N) =Y and {b| N, = y;} = {b},..., b} } for each i.

Proof. The proof is by induction on M:

— M is a variable:
This case is obvious.
— M = (Mle)Z
This case follows easily from the induction hypothesis.
— M =Ix.My : ¢ — yp with My IFy:
Let Y = (y1,...,Ym> x). By Lemma 3.15(2a), there exist ay,...,a, such that

{ai,...,ap} = {a| M|, = x}

V. Padovani 588

and

[

YR

Now
pm pm bl bll
o [>u?m e l>af,7: .. l>u?1 e l>wp] QIBa
so each b} has the form (1) - ¢}. Furthermore,

m -m .1 L~'

el el el el e
By the induction hypothesis, there exists N; with the same domain and blueprint and
with the same type as M; such that

Free(N;) =Y’

{a| Ny, = x} = {ao,...,a,}
{¢|N1je = i} ={cps--..c},} for each i.

By Lemma 3.15(2b), we have Ax.N; IF o, so we may take N = Ax.Nj.]

4. Vertical compressions and compact terms

This section provides a partial characterisation of minimal inhabitants. In Section 4.1, we
make a simple observation on the relative depths of their blueprints, together with the
following easy consequence of the subformula property (Lemma 2.5). If M is a minimal
Anr-inhabitant of ¢, then for all addresses a in M the blueprint of M|, has relative depth
at most k X p, where:

— k is the number of 1 in the path from the root to M to a.
— p is the number of subformulas of ¢.

We say any Ang-inhabitant satisfying this condition is locally compact. In Section 4.2
we introduce the notion of a wvertical compression of a blueprint. A (strict) vertical
compression of f is obtained by taking any address b in f# and then grafting f, at any
address a < b such that f(a) = f(b). The vertical compressions of f§ are all blueprints
obtained by applying this transformation to § zero or more times. The key property of
these compressions is (see Figure 9):

— If M has blueprint and « is a vertical compression of f, the compression of into
o can be mimicked by a compression of M into an HRM-term in the following sense.
Assuming « = fi{a < fp] (the base case), the term Q = M[a < M] is not in general
an HRM-term. However, there exists an HRM-term M’ with the same domain as Q
and with the same type as M. Moreover, M’ and M are applications with the same
type or abstractions with the same type.

We again consider a Ang-inhabitant M and two addresses a,b such that a < b, and M|,
and M), are applications with the same type or abstractions with the same type. Suppose:

— there exists a vertical compression o’ of the blueprint of M, such that the sequence
Q(Free(M),)) can be extracted from o’.

Ticket Entailment is decidable 589

M': ¢ o B M: ¢

Fig. 9. How the compression of terms is able to follow the compression of blueprints.

| Hl
Qy

This situation is a generalisation of the last example in Section 3.1 (in which o’ was equal
to the blueprint of My, which is thereby a trivial compression of this blueprint). The term
M is not minimal. Indeed, the key property above implies the existence of a term N of
blueprint o’ whose size is not greater than the size of M;, and such that N, My,, M|, are
applications with the same type, or abstractions with the same type. By Lemma 3.16, there
exists a term P with the same type and domain as N such that Free(P) = Free(M|,). The
graft of P at a yields an inhabitant of strictly smaller size.

We will say all inhabitants in which the preceding situation does not occur are compact.
All inhabitants of minimal size are of course compact. As we shall see in Section 6, we
will not need a sharper characterisation of minimal inhabitants. For every formula ¢,
the set of compact inhabitants of ¢ is actually a finite set, and our decision method will
consist of the exhaustive computation of their domains.

4.1. Depths of the blueprints of minimal inhabitants

Definition 4.1. Two terms M, M’ € Anr are of the same kind if and only if they are both
variables or both applications, or both abstractions, and if they have the same type.

Definition 4.2. For all formulas ¢, we write Sub(¢) for the set of all subformulas of ¢.

Definition 4.3. Let M € Anp. Let a be any address in M. Let (ai,...,a,) be the
strictly increasing sequence of all prefixes of a. Let (4xy,...,Ax;) be the subsequence of
(M(ay),...,M(a,,)) consisting of all labels of the form Ax. We write A(M, a) for (xi,...,xk).

Definition 4.4. Let M be a Anp-inhabitant of ¢. We say that M is locally compact if for
all addresses a in M, the blueprint of M|, has relative depth at most [A(M, a)| x |Sub(¢)|.

Lemma 4.5. Let M be a Ang-inhabitant of ¢. If M is not locally compact, then there
exist two addresses b, b’ such that b < b’, My, and M}, are of the same kind and
Free(M,) = Free(M)y). Moreover, M is not a Anxg-inhabitant of ¢ of minimal size.

Proof. For each address a in dom(M), let «, be the blueprint of M|, and let X, =
Free(M,). We assume the existence of an o, with relative depth

n> |A(M,a)| x |Sub(e)|.

V. Padovani 590

n >k x \Sub(¢)|

Fig. 10. Proof of Lemma 4.5.

So there exist by,...,b,+1 € dom(o,) such that by < --- < b, < b,+1. By Lemma 3.8 (1),
we have

Xap, S S Xap, € AM,).

By Lemma 2.5, each ¢, is a subformula of ¢. Hence there exist i, j such that i < j and
(Xa'h,-a d)a-b,-) = (Xa~bja ¢a<bj)s

that is, M., and M., are applications with the same type and with the same free
variables (see Figure 10). Now, let M’ = Mla - b; < M]. The term M’ is a Ang-
inhabitant of ¢ of strictly smaller size.]

4.2. Vertical compression of a blueprint

Definition 4.6. Let {} be the least reflexive and transitive binary relation on blueprints
satisfying the condition that if a,b € dom(f), a < b and f(a) = B(b), then fla < B] 1} f.

Lemma 4.7. Suppose M € Ang, M : ¢, M I and o ¢ B. There exists a term M’ € Anr
of the same kind as M, with blueprint « and such that [dom(M’)| < |dom(M)|.

Proof. It is enough to consider the case of o = f[a <] with a,b € dom(B), a < b
and fB(a) = f(b).
We prove the existence of M’ by induction on the length of a.
—a=g:
In this case M is necessarily an application and fi(¢) = B(b) = @4, so My, is an
application with type ¢, and we can take M’ = M|,

Ticket Entailment is decidable 591

— a#e

We consider cases:
- M= (Mle), M1 I+ ﬁl, M2 IS ﬁz, a = (l) s dg and b = (l) . b,’ﬁ
By the induction hypothesis, there exists M, with blueprint
i = Bilai < Pip,] = Bilai < Bp),

of the same kind as M; and such that dom(M;) < dom(M;). Let j =1 if i = 2,
otherwise, let j = 2. Let (M}, aj) = (M, ;). Let X = (x1,...,x,) be the strictly
increasing sequence of all variables free or bound in M}. Let Y = (yq,...,y,) be a
strictly increasing sequence of variables such that Q(X) = Q(Y) and y; is greater
than or equal to the greatest variable of Mj. Let M} be the term obtained by
replacing each x; by y; in M}. We can take M’ = (M| M}).

- M=2xM,MIFp,x:y,a=(1)a and b= (1) b;:
Since a,b € dom(f}), we also have ay,b; € dom(f;). By the induction hypothesis,
there exists M| of the same kind as M;, with blueprint

a = Bilar < Bip,]
and such that dom(M}) < dom(M;). By Lemma 3.15(2a), there exist yy,co,...,¢p
such that
{co,....cp} = {c| M. = x}
Br>s >
B =*(n).

Since a,b € dom(x), we know a; and ¢; are incomparable addresses for all i. Hence

oy = Bilar < Bip, 1> > yilay < Piyp,] = Bla < ﬁ\h]‘(l) = ;.

By Lemma 3.16, there exists a term M/ with the same type and domain as M|

such that the greatest variable y free in M{ has type y and

{el Mi/|(’ =y} ={c0,---, Cp}.

By Lemma 3.15(2b), we have ly.M{ I «, so we may take M’ = Ay.M]. U]
Definition 4.8. We say a term M € Anr is compact if there are no a,b,o’ such that a < b,
M, and M, are of the same kind, M}, |- a, o' f o and Q(Free(M,,)) € IF (o).

Lemma 4.9.

(1) Every Anp-inhabitant of minimal size is compact.

(2) Every compact Anp-inhabitant of ¢ is locally compact.
Proof. Let M by an arbitrary Ang-inhabitant of ¢.

(1) Assume M is not compact. Let a,b be such that a < b, M|, and M), are of the
same kind, My, IF oy, o o, Free(M,) = X, and Q(X,) € IF () — see Figure 11. By
Lemma 4.7, there exists a term N € Anxg with blueprint o/, of the same kind as M|,
and such that [dom(N)| < |dom(M,)|. By Lemma 3.16, there exists P € Axr with

V. Padovani 592

Fig. 11. Proof of Lemma 4.9, part (1).

blueprint o/, of the same kind as N, such that dom(P) = dom(N) and Free(P) = X,.
The term M[a « P] is then a Ang-inhabitant of ¢ of smaller size.

(2) Suppose M meets the conditions of Lemma 4.5. Let ajy be the blueprint of M,. By
Lemma 3.15(3), we have Q(Free(M;)) = Q(Free(M)y) € IF (). Since the relation f
is reflexive, M is not compact. L]

5. Shadows

So far we have isolated two properties shared by all minimal inhabitants (Lemma 4.9).
We shall now exploit these properties to design a decision method for the inhabitation
problem.

In Sections 5.1 and 5.2 we show how to associate with each locally compact inhabitant
M of a formula ¢, a tree with the same domain as M, which we call the shadow of M.
At each address a, this tree is labelled with a triple of the form (%, 4, ¢4) Where ¢, is the
type of M|,, the sequence %, is Q(Free(M,)), and y, is a ‘transversal compression’ of the
blueprint o, of M, (Definitions 5.1 and 5.2). Recall that 7, € IF () — see Lemma 3.15(3).
The blueprint y, can be viewed as a synthesised version of o, with the same relative depth
but smaller ‘width’, and such that 7, € F(y,) = [F ().

Each tree prefix of the shadow of M belongs to a finite set that is effectively computable
from ¢ and the domain of this prefix. In particular, we can compute all possible values
for its labels, even without full knowledge of M — or even without knowledge of the
existence of M. The key property satisfied by this shadow at every address a is:

— For each y' f} y,, there exists o {} o, such that IF(y') < F(&).

This property is sufficient to detect the non-compactness of M for a pair of addresses
(a,b) simply from the knowledge of %,, ¢4, 75, p» and the arity of the nodes at a and b.

Ticket Entailment is decidable 593

Indeed, we suppose a < b, ¢, = ¢, and the nodes at a and b have the same arity (1 or 2),
and assume:

— There exists y’ {} y» such that 7, € IF(y').

Then M|, and M|, are of the same kind and there exists o { o, such that
Ta = QFree(M),) € F(y') = F(«),

therefore M is not compact.

In Section 5.2, what we call a shadow is merely a tree a — (¥, Y4 o) Of a certain shape,
regardless of whether this tree is the shadow of a term or not. This shadow is compact
if there is no pair (a,b) as above. Of course, the shadow of a compact term is always
compact in this sense.

In Section 6 we will prove that for every formula ¢, the set of shadows of the compact
inhabitants of ¢ is a finite set that is effectively computable from ¢ (hence the same
property holds for the set of compact inhabitants of ¢), and we will deduce from this key
property the decidability of type inhabitation for HRM-terms.

5.1. Blueprint equivalence and transversal compression

Definition 5.1. We let = be the least binary relation on blueprints such that:
() DB =B

(2) ¢ = 0.

(3) If oy = B1, o = B2, then @g(or, 1) = @4 (B1, B2)-

(4)If |a| = |b| = n and o; = f; for each i € [1,...,n], then

*a(o, ., 0) = *5(B1,. .., Bn)-

In (3), we assume oy, a0, i1, f2 are non-empty, and in (4), we assume that the elements
of each sequence @, b are pairwise incomparable addresses. To avoid circularity, we also
assume a # ¢ or b # ¢, and o;, f; # B for at least one i.

To some extent, this equivalence allows us to consider blueprints regardless of the exact
values of addresses. For instance,

w0,y Oy) = *(0g, .o n, 0) = *(0y ..., 01),
also
#(x(on B),7) = *(o, B,7) = *(at, *(B, 7)),

and so on. It is easy to check that « = f§ implies IF («) = IF(f§) — this property will be used
without further reference.

Definition 5.2. For each m € N, we let vn,, be the least binary relation such that:

(1) if V1I=E"""=Ym = VYm+l $ @]Ba then *E(Vl:---:ym) ¥\m *a-(b)(Vla---an,VmH),
(2)if o = #gz(aq, ..., 00), B = #5(B1,..., Bp) and a v, B, then:

(@) @g(0,7) vm @g(B,7),

V. Padovani 594

(C) *E-(c)(“la ceey Oy, V) ¥\m *E.((;)(ﬁla cees ﬂpa V)
We define an m-compression of § to be any o such that o v, 5. The width of f is defined
as the least m € N for which there is no o such that o v, f3.

Again the elements of @- (b), @ (c) and b - (c) must be pairwise incomparable addresses,
and o, f,y must be non-empty. Note that for all non-empty f, we have Jp v f, so the
empty blueprint is the only blueprint of null width. If f has width m > 0, then for all
addresses a, for ff, = *a(y1,...,7x) and for each y; # & B, the sequence (yy,...,yx) contains
no more than m blueprints =-equivalent to y;. For instance, if ¢, 1, y are distinct formulas,
#(, P, P, v, p, x) has width 3, #(w, @, (*(P,), P), @y, (*(, P), ¢)) has width 2, and so on.

Definition 5.3. For each m € N, we write C,, for the reflexive and transitive closure of
the union of = and wv,,. We use Ci** to denote the subset of the relation C,, of all pairs
with a left-hand side of width at most m.

For instance, if ¢, 1y, y are distinct formulas:

DB 5o #(p, 1, d) 5T #(x, b, b, p,) T3 *(, b, b, w, .).

Of course, o T,, f implies o T; f for all j € [1,...,m] and, clearly, « v\, f implies
|[dom(a)| < |dom(p)|, so v, is well founded.

Definition 5.4. For all ¥ = S, alld € N and allm € N :

— We let B(%,d,) be the set of &-blueprints with relative depth at most d.
— We let B(%,d, m) be the set of all blueprints in B(%,d, o0) of width at most m.

Lemma 5.5. For all finite ¥ = S, alld e N and allm € N :

(1) The set B(%,d,m)/= is a finite set.
(2) A selector R (&, d, m) for B(¥,d,m)/= is effectively computable from (&, d, m).

Proof.

(1) Let B,(¥,d,m) be the set of all rooted blueprints in IB(%#,d, m). Assuming that
B.(¥,d,m)/= is a finite set and that a selector R (%,d,m) for B.,(¥,d,m)/= is
effectively computable from (&,d,m), we prove that B(¥,d,m)/= and B.(¥,d +
1,m)/= are finite sets and show how to compute a selector for each set.

Let (aq,...,0,) be an enumeration of R ,(%,d, m), and X, be the set of all functions
from {1,...,k} to {0,...,m}. For each f € IB(¥,d,m), there exist fi,...,0, €
B,(¥,d,m) and b such that § = *3(B1,...,Bn)- We let oy be the function mapping
each i € {1,...,k} to the number of occurrences of an element =-equivalent to o; in
the sequence (fi,...,fs). Clearly, g € X, and, furthermore, for all ' € BB(¥,d, m),
we have f = f’ if and only if g5 = g, so B(¥,d, m) is a finite set.

For each 7 € X, let

— 1 (1) 1 (k)
Pr = (0, 0 e Oy, O)

where each oc{ is equal to o;. We have p, € B(¥,d,m) and o(p,) = 1, that is, if
7,7 € ¥4 and 1 # 7/, then p, % pr. Hence we may define R (%, d,m) as {p. |t € Z4}.

Ticket Entailment is decidable 595

Now the finiteness of B, (%, d + 1,m)/= follows immediately from the finiteness of
B(#,d,m) and the fact that if § = @4(f1,2) and ' = @,(p}, ;) are elements
of B,(¥,d + 1,m), then fy,f,, f1,p, are non-empty elements of B(,d,m) and,
furthermore, f = f’ if and only if f; =] and f, = 5. The same property allows
us to define R (<, d + 1,m) as the set of all blueprints of the form @g(y1,y2) where
@g € § and each y; is a non-empty element of R (&, d, m).

(2) The second part of the lemma follows by induction on d, using part (1) and the fact
that B,(#,0,0) is empty (hence B(%,d,0) = { g} for all d) and if m € N, then
B.(<,0,m) is the finite set of all formulas of .&. U]

5.2. Shadow of a term

Definition 5.6. Let ¢ be a formula and ¥y be the union of Sub(¢) (Definition 4.2) and
the set of all @,, such that y € Sub(¢). For each integer k and each formula ¢, we let
R(p, k) =R (S ¢,k x |Sub(¢)l|, k), where R is the function introduced in Lemma 5.5(2).

Definition 5.7. A shadow is a finite tree in which each node has arity at most 2 and
is labelled with a triple of the form (,y,y), where 7 is a sequence of formulas, y is a
blueprint and v is a formula.

We define a ¢-shadow to be any shadow E satisfying the following conditions, where
we assume Z(¢) = (¢, I B, ¢), and for each a € dom(E), we let k, be the number of b < a
such that the node of E at b is unary, and we let (7,, 74, Y4) = E(a):

— 7. 1s a sequence of subformulas of ¢ of length at most k,.
— Ya € R(, ka).

- Za €]F(Va)

— 1, is a subformula of ¢.

Definition 5.8. Let M be a locally compact Anxp-inhabitant of ¢. For each a € dom(M),
let:

— o = QFree(M,));

— o, be the blueprint of M,;

— 74 € R(p,|A(M, a)|) be such that y, Er/]\?XM,a)\ 0gs
— ¢, be the type of M.

We will say the tree Z mapping each a € dom(M) to (¥,.7a> ¢$a) 18 the shadow of M.

Recall that if M is a locally compact Anp-inhabitant of ¢, then for each address a in M,
the blueprint o, of M, has relative depth at most [A(M,a)| x |Sub(¢)|. Every maximal
|A(M, a)|-compression of &, produces a shadow o/, with the same relative depth and of
width at most |A(M, a)|, to which some element of R(¢, |A(M, a)|) is equivalent, thus the
shadow of M is well defined. Note that the choice of y, is not required to be unique
(though it is, since IR is a selector and we can actually prove that y T2 o and)’ Tl o
implies y = y’, but this property is irrelevant to our discussion); we just assume that some
74 18 chosen for each address a in M (see Figure 12).

V. Padovani 596

%(6,0)
05 M :4 0
; S

R(¢, k)

C r};ﬂ ax A CL' k

a ™M, : by - g

Fig. 12. A locally compact inhabitant and its shadow.

It is obvious that the shadow of M satisfies the first, second and fourth conditions
in the definition of ¢-shadows given above — in the next section, we prove that it also
satisfies the third.

5.3. Compact shadows and compact inhabitants

Definition 5.9. A shadow E is compact if and only if there are no a, b such that:

—a<b;

— the nodes of E at a and b have the same arity;
- E((l) = (7(47 Yas IP)a

— E(b) = (Xp» 76> ¥)3

— there exists 7’ { y, such that 7, € IF(y").

This definition shoud be compared with the definition of compactness for a term
(Definition 4.8). With the help of three auxiliary lemmas, we now prove the key lemma
of Section 5: if M is a compact inhabitant — a fortiori locally compact by Lemma 4.9 —
then the shadow of M is a compact ¢-shadow.

Lemma 5.10. If o ff f £; f, then there exists o such that « Ty o f /.

Proof.

(1) An immediate induction on |[dom(f’)| shows that if « = f[a < f;] and g = ', then
there exist a',b" such that @’ < b’ and « = o = p'[d" « p'),]. As a consequence, an
immediate induction on the length of the derivation of o { f shows that the lemma
holds if = f'.

Ticket Entailment is decidable 597

(2) Another induction on |dom(f’)| shows that if o f f§ v~ ', then there exists o’ such
that o vn; o f} f’. The only non-trivial case is

o= *()(o1)
B = *a)(B1) with o ¢ B
ﬁ/ = *(m,az)(ﬁla ﬁZ) with ﬁl = ﬂz,

Since oy { f1 = Pa, by (1) there exists o, such that oy = o, f} 2. Hence

!

o= *(al)(al) ‘C\l *(a],az)((xlaa2) ﬂ *(l/ll,az)(ﬁla ﬁZ) = ﬁ

(3) Using (1) and (2), the lemma follows by induction on the length of an arbitrary
sequence (fo,...,) such that o =, f, = p' and f;_y = B; or fi_1 v B for each
iel,...,n]. U]

Lemma 5.11. If « T, f8, then IF () = IF(B).

Proof. The proof is by induction on |dom(f)|. Since y = y" implies IF(y) = IF(y’) and
|dom(y)| = |dom(y’)], it is enough to consider the case where o is a 1-compression of f.
The case o = #(4,)(or1) and f = *(4, 4,)(2t1, 22) is clear, and the remaining cases follow easily
from the induction hypothesis. U]

Lemma 5.12. If o C,, 5, the set of all elements of IF(f) of length at most m is a subset of
F ().

Proof. The proof is by induction on |dom(f)|. Again, we will only examine the case
o vy B. The proposition is trivially true if m = 0. So we assume m > 0. The only
non-trivial case is

o= *a(y1,- - Vm)

ﬁ = *E(Vla oo Vmo Vm+1)
with y; = y for all i. Let ® = IF(y). For each integer k, let ®X = @(d,,...,d;) where
®; = IF(y) for each i. Let ¢ = (¢1,...,$,) € F(B) be such that p < m. We have to prove
that ¢ € IF (). For each J < {1,...,p}, let (ji,..., j;) be the strictly increasing enumeration

of all elements of J and let f(J) = (¢,,...,$;,). We have ¢ € F(B) = @), so there
exist Ji,...,Jua1 such that

JIU“'UJm-Fl :{15"',1)}’
and f(J;) € IF(y) for each i € {1,...,m+ 1}. For each j € {1,...,p}, let k; be any element
of {1,...,m+ 1} such that j € Ji,. Then J;, U---UJy, = {1,...,p}, so

¢ € @)} {f(Ui,))}) € OV < M = TF (a).

Lemma 5.13. Let M be a locally compact Axp-inhabitant of ¢.

(1) The shadow of M is a ¢-shadow.
(2) If M is compact, this shadow is also compact.

V. Padovani 598

Proof.

(1) For each address a in M, the sequence 7, = Q(Free(M)) is a subsequence of
Q(A(M, a)), so the first part of the lemma follows from the definition of the shadow
of M, Lemma 2.5, Lemma 3.15(3) and Lemma 5.12.

(2) Let E be shadow of M and assume E is not compact. There exist a,b € dom(E) =
dom(M) such that:

— E(a@) = (Xa» Va> W)-

— E(b) = (> 7> w)-

— The nodes at a and b in E have the same arity.
— There exists)’ {} y, such that 7, € IF(y').

We have M,, M|, of the same kind. Let «,, o, be the blueprints of M,, M.
Since v, I;“‘/’\?XM ab)| %> WE have Y’ f} y» C1 op. By Lemma 5.10, there exists o' such that
y' Cy o {} op. By Lemma 5.11, we have ¥, € F(y’) € IF(«'), so M is not compact. L[]

6. Finiteness of the set of compact ¢-shadows

Our final step is to prove that for each formula ¢, the set of all compact ¢-shadows is a
finite set effectively computable from ¢.

In Definition 6.1, we will introduce a final binary relation € on blueprints. The
key lemma of this section (Lemma 6.14) shows that whenever ¥ < & is a finite set
(in particular, when % is the set of all subformulas of ¢ and all @’s tagged with a
subformula of ¢), the relation € is an almost full relation (Bezem et al. 2003) on the set of
all &-blueprints: for every infinite sequence y1,7s,... over B(&), there exists i, j such that
i < j and y; € y;. We will prove this result with the help of Mellies’ Axiomatic Kruskal
Theorem (Melliés 1998). The finiteness of the set of compact ¢-shadows follows from this
key lemma with the help of Konig’s Lemma (Lemma 6.15). The ability to compute these
shadows follows directly from their definition.

By Lemma 5.13, another consequence of this result is the finiteness for each ¢ of the
set of all compact Ang-inhabitants of ¢, although our decision method is based on the
computation of shadows of compact terms rather than a direct computation of those
terms. It is worth mentioning that the proof of Theorem 6.13 is non-constructive and that
it gives no information about the complexity of our proof-search method — this question
might itself become another open problem.

6.1. Almost full relations and Higman’s Theorem

Definition 6.1. We let € be the relation on blueprints defined by o € f if and only if for
all 7 € IF (), there exists y {} § such that 7 € IF ().

Definition 6.2. Let % be an arbitrary set. An almost full relation (AFR) on % is a binary
relation < such that for every infinite sequence (u;);enw over %, there exist i, j such that
i< jandu <uj

Ticket Entailment is decidable 599

The main aim of Section 6 is to prove the final key lemma of the paper, from which we
will easily infer the decidability of Axp-inhabitation: for each finite ¥ < &, the relation
€ is an AFR on B(¥).

Proposition 6.3.

(1) If < and <’ are AFRs on %, then < N <’ is an AFR on %.

(2) Suppose < is an AFR on % and <, is an AFR on 7". Let <4y be the relation
defined by (U, V) <zxy (U, V') if and only if U <4 U’ and V <4 V'. Then <yxy
isan AFR on % x 7.

Proof. Both results appear in Mellies (1998) in Step 4 of the proof of Theorem 1
(page 523), as a corollary of Lemma 4 (page 520). |

Definition 6.4. Let % be a set and < be a binary relation. We write S(%) to denote the
set of all finite sequences over %. The relation g induced by < on S(%) is defined by
(Uy,..., Uy <s (Vi,...,V,) if and only if there exists a strictly monotone function
n:{1,....,n} > {1,...,m} such that U; < V, for each i € {1,...,n}.

Theorem 6.5 (Higman). If < is an AFR on %, then < is an AFR on S(%).
Proof. See Higman (1952), Kruskal (1972) and Mellies (1998). U]

6.2. From rooted to unrooted blueprints

Melliés’ Axiomatic Kruskal Theorem allows us to conclude that a relation is an AFR (a
‘well binary relation’ in Mellies (1998)) if it satisfies a set of five properties or ‘axioms’
(there were six axioms in the original version of the theorem — see Mellies’ remarks at the
end of his proof explaining why five axioms suffice). The details of those axioms will be
given in Section 6.3.

Four of those five axioms are relatively easy to check, but the other one is more
problematic. This rather technical section is entirely devoted to the proof of Lemma 6.11,
which will ensure that this final axiom is satisfied. To do this, we want to prove the
following proposition:

Let & be a finite subset of G and %, be a subset of B, ().
Let # = {*Tl(ﬁla-"aﬁn)‘Vi € [1:""n]5ﬁi S gé}
If € is an AFR on %., then € is an AFR on 4.

Recall that B,() stands for the set of all rooted &-blueprints. We want to be able to
extend the property that € is an AFR on a given set of rooted blueprints to the set of all
blueprints that have those rooted blueprints at their minimal addresses.

Higman’s Theorem suffices to show that &g (Definition 6.4) is an AFR on the set of
finite sequences over %,. However, if we consider an infinite sequence (f};)ien over 4 and
transform each f; = *5(Bi,...,p;) where pi,....B, € %, into a(f;) = (B},....B}), the
theorem will only provide two integers i, j and a strictly monotone function # such that
i<jand fi € ﬁz(k) for each k € {1,...,n;}. This is sufficient to ensure that

Bi=ra (Bls- s B) € 5 (Bl i)

V. Padovani 600

but not f; € f; in general.

To bypass this difficulty, we show how for each blueprint f € B(%), we can extract
from the set of all vertical compressions of f a complete set of ‘followers’ of f of minimal
size (Lemma 6.7). This set {oy,...,%,} has the property that for each ¢ € IF(f), there
exists at least one o; such that IF (o;) contains a subsequence of ¢ — but not necessarily ¢
itself. The relative depth of each «; does not depend on the relative depth of f, but only
on &: it is at most Z;:ll"%“" i, where &g is the set of all binary symbols in .%. The lemma
is proved in four steps:

(1) We first observe that the set of all o {} f with relative depth at most Zilj’(/“““i is a

complete set of followers. If we consider the set of all y such that y E** o for at least
one such o, we obtain a (possibly infinite) set closed under = and finite up to =. We
call it the set of % -residuals of .

(2) We prove that the set of ¥-residuals of f is a complete set of followers of f in the
same sense, that is, for each ¢ € IF(f), there exists an #-residual y of B such that
IF (y) contains a subsequence of ¢ (Lemma 6.9).

(3) We prove that if

ﬁ = *E(ﬁla---aﬁn)
ﬁ/ = *E(ﬂia'"5ﬁ:1’ﬁ;+1""5ﬂ;l+k)

are such that f§; €] for each i € [1,...,n], and if, furthermore, f, ' have the same
set of F-residuals, then § € ' (Lemma 6.10).

(4) The final step is the proof of the lemma itself. The set of %-residuals is finite up
to = (Lemma 5.5), so there are only a finite number of possible values for the set of
residuals of each #-blueprint. As a consequence, it is always possible to extract from
an infinite sequence over 4 an infinite sequence of blueprints with the same set of
residuals. The conclusion then follows from the third step and Higman’s Theorem.

Definition 6.6. For every & < S, we write Y@ to denote the set of all binary symbols in
.

Lemma 6.7. Let ¥ be a finite subset of &. For all f§ € B(¥) and all i € [F(f), there
exists o with relative depth at most Zil:l"%‘ i such that o { § and such that IF (o) contains

a subsequence of .

Proof. We define an &-linearisation to be any pair (y,%) such that y € B(%) and
7 € IE(y). We say a starting address for (y,7) is any address b for which there exist ¢,y’
such that 7 DZ v and 7 € ©(F (y'),(¢)). We define the path to b in y to be the maximal
sequence (by,...,by,, b,y1) over dom(y) such that by < -+ < b, < b,y =b.

Given an arbitrary %-linearisation (f8,9), we use induction on |[dom(f)| to prove the
following properties simultaneously:

(1) There exists an #-linearisation (y, %) such that:

(a) 7y B and 7 is a subsequence of .

(b) 7 has relative depth at most 1 + Zzl“‘ i

(2) There exists an .-linearisation (o, ¢) such that:

Ticket Entailment is decidable 601

(@) «f B, ¢ is a subsequence of ip, and if y # ¢, then the last elements of ¢, are
equal.

(b) For each starting address b for (a, ¢) and for (by,...,b,, b,s1) equal to the path to
b in o, the values a(by),...,x(b,) are pairwise distinct.

(c) For all ¢ incomparable with each starting address for (o, ¢), the relative depth of
(o) is at most 1 + ZL’Z{’" i
Note that the conjunction of (2b) and (2c) implies that every address d in « has relative
depth at most
Sal+1+ 2=

Indeed, suppose d has maximal relative depth and not a starting address for (o, ¢). Then d
must be incomparable with each starting address for («, ¢). Let e be the shortest prefix of
d in dom(x) that is incomparable with each starting address for (o, ¢p). The address e has
relative depth at most | ¥ g| in o, since otherwise there would exist in dom(x) an address
f < e with relative depth |¥a| and a starting adress for («, ¢) of the form f - f/, with
relative depth strictly greater than |%,|, which would give a contradiction. Moreover, the
relative depth of d is the sum of the relative depth of e in « and the relative depth of o,.

The case f = I is immediate, and if f = *3(B1,...,Pn), i # j and B, f; # I, the
conclusion follows easily from the induction hypothesis. So we suppose ff = @,,(f1, f2).

(1) Let d be an address of maximal length in ~1(@,,), and let 6 = @,,(51,07) = Bia- By
assumption, ¢ is the only element of 671(@,,). As p € IF(f), there exist

Py € IF(0)
Py € IF(01)
P, € F(02)

such that , is a subsequence ¥ and P, € ©({P;}, {P,}).- By the induction hypothesis,
there exists an (¥ — {@,,})-linearisation (y;,7%,;) satisfying conditions (1a) and (1b)
with respect to (01,7%;), and an (& — {@,, })-linearisation (y,7%,) satisfying conditions
(2a), (2b) and (2c) with respect to (92,%,). Let y = @y (y1,y2). We have y § 6 and
p(e) = o(e) = y(e), so y f f. The blueprint y; has relative depth at most

1+ 2\9’ al— 1 2\
The blueprint y, has relative depth at most
Fal +27p T =20
Therefore, y has relative depth at most
1+ Zl /1 i,
Now 7, is a subsequence of P, with the same final element, so there exists in

©({71}9 {ZZ}) S IF(@[;!(VI»)Q))

a subsequence 7 of ,. Thus (y,7%) satisfies (1a) and (1b) with respect to (8, 9).

V. Padovani 602

(2) As p € IF(p), there exist

pr € F(B1)
p, €F(f2)

such that

P € 0({P1}. {12}).
By the induction hypothesis, there exists an .%-linearisation (ay, ¢,) satisfying condi-
tions (1a) and (1b) with respect to (B1,p,), and an %-linearisation (a,, ¢,) satisfying
conditions (2a), (2b) and (2c) with respect to (52, 9,).
Let ag = @y, (1, 2). We have og f . The final elements of ¢, and 7p, are equal and

©({1}, {$2}) = F ().

Hence, there exists in IF (o) a subsequence ¢, of 7 with the same final element as .
Thus (o, Py) satisfies (2a).

For all ¢ incomparable with each starting address for (o, @), either ¢ = (1) - ¢’ and
¢ € dom(ay), or ¢ = (2) - ¢” and ¢” € dom(ay) is incomparable with each starting
address in o,. As a consequence, the choice of «,a; ensures that (o, @) satisfies (2c).
If (oo,) satisfies (2b), we may take («, ¢) = (oo, Py). Otherwise, some starting address
b for (o, $y) does not satisfy condition (2b). Let (by,...,b,, byr1) be the path to b
in «. We have by = ¢, and for each i > 0, there exists d; such that b; = (2) - d;. The
sequence (dy,...,d,+1) is then a path to d = d,,+1 in o, and d is a starting address for
(02, ¢5). The values ay(da),...,ax(d,) are pairwise distinct, so there must exist i > 1
such that a(b;) = @,,. Since b; is in the path to b, there exists in IF («3)4,) a subsequence
@y of ¢y with the same last element as ¢,. For o) = aole < 4], we have o) 4 f
and ¢, € IF (o)) and the final elements of ¢y, ¢, and P are equal. By the induction
hypothesis, there exists an .%-linearisation («, ¢) satisfying (2a), (2b) and (2c) with
respect to (oc6,$6). The pair (a,¢) also satisfies these conditions with respect to

(B,). O

Definition 6.8. Let ¥ be a finite subset of &. For all f € B(%) and all « {f § with relative
depth at most E}L"(/@‘ i, we define an %-residual of f to be any «g such that oy T o
Note that the set of & -residuals of f is {Fp} if f = . Otherwise, it is an infinite set
—even if § = ¢, the set of residuals of f is the =-equivalence class of f and contains all
blueprints of the form *,(¢p) (recall that = is a subset of C; — see Definition 5.3).

Lemma 6.9. Let & be a finite subset of &. For all f € B(¥) and all § € IF(f3), there
exists an &-residual oy of f such that IF (o) contains a subsequence of .

Proof.

(1) Let y, 0 be arbitrary blueprints. Suppose y vv; d. We prove by induction on J that for
all ¢ € IF (), there exists in IF(y) a subsequence of ¢. In order to deal with the case
3 = @4(31,02), we need to prove a slightly more precise property: for all ¢ € IF(9),
there exists in IF(y) a subsequence ¥ of ¢ such that the final elements of ¢ and P

Ticket Entailment is decidable 603

are equal. The base case is 6 = *(4, 4,)(71,72), 71 = y2 and y = *,4,(y1), and this case is
clear. Other cases follow easily from the induction hypothesis.

(2) We can now prove the lemma. By Lemma 6.7 and the definition of an %-residual,
there exist oy and o such that oy E; a ff f, [F(a) contains a subsequence of 3 and o
is an & -residual. It then follows from (1) that IF (o) contains a subsequence of . []

Lemma 6.10. Let % be a finite subset of &. Suppose:

— B ==aB1,.... pn) € B(Y).

— B = 5Bt B Bugrs-- 5 Brgi) € B(S).

— Bi € p} foreachie {1,...,n}.

— The sets of F-residuals of f and ' are equal.

Then ff € f.

Proof. Let p € IF(f). So there exists for each i € [1,...,n] a sequence P; € IF(f;) such
that ¥ € ®({p,},...,{P,}). By assumption, there exists for each i € [1,...,n] an «; § f
such that p; € IF («;). As a consequence, P € IF (*(ay,...,0,)).

By Lemma 6.9, there exists an %-residual o of such that IF (o) contains a subsequence
¢ of . By assumption, o is also an &-residual of f, so there exist «},..., 0., and b
such that

oo i *E(a/la‘”aa;H—k) ﬂ ﬁ/'

By Lemma 5.11, we have

5 €IF (*E(gll secey OC:H—k))'
Hence, for each i € [1,...,n+ k], there exists in IF («) a subsequence of ¢, which is also a
subsequence of . Let

0= #5001, ey Oy Oy g e s Oy)
Then o ¢t B, ¥ € F(*(a,... %)), and for each j € [1,...,k], there exists in IF(o,, ;) a
subsequence of 1. Hence, ¥ € IF (). |

Lemma 6.11. Let &% be a finite subset of & and %, be a subset of B,(%). Let

B = {*z(P1,.... P)| Vi € [1,...,n], pi € B.}.
If € is an AFR on 4., then € is an AFR on 4.

Proof. Let 2 = B(%,=17°i,1) (see Definition 5.4). For each f§ € 4, let p(f) be the
set of S-residuals of . We have p(f) = #. Moreover, p(f) is closed under = (since = is
a subset of C; — see Definition 5.3), that is, p(f8) is a union of the elements of a subset of
A/=. By Lemma 5.5 (1), the latter is a finite set, so {p(8) | € £} is a finite set.

For each § = #3(f1,...,,) € &, where a is increasing with respect to the lexicographic
ordering of addresses and fi,..., [, € %., let a(f) = (B1,...,B,) — recall that we can take
da=¢n=0if f = Ip, and a = (¢), n = 1 if f is a rooted blueprint. Since {p(f)|f € %}
is a finite set, every infinite sequence over # contains an infinite subsequence of blueprints
with the same set of %-residuals. By assumption, € is an AFR on 4,, so, by Theorem 6.5,
Cs is an AFR on {a(f)|f € 4}.

V. Padovani

604

Thus, for every infinite sequence (f;)ien oOver 4, there exist i,j such that i < j,

o(Bi) Es o(B)), and f; and B; have the same set of residuals. For
a(B) = (Bis---s)
o-(ﬂj) = (ﬂ{a L] ﬁljprk)s
there exists a subsequence (f; ,...,f}) of a(f;) such that
By € Bls---s By € By,
There also exist l,41,...,l,4x and two sequences @ and b such that
ﬁi = *E(ﬁi”ﬂa)
ﬁf = *E(ﬁljl""’Bljn’ﬁljﬁl""’ﬂljwk)'
By Lemma 6.10, we have B; € ;.

6.3. Axiomatic Kruskal Theorem and main key lemma

The following definition is borrowed from Mellies (1998).

Definition 6.12. An abstract decomposition system is an 8-tuple
(T, 2,7, 27, L9, <y, —, 1)

where:

— 7 is a set of terms noted t,u,... equipped with a binary relation <.
— Zis a set of labels noted f,g,... equipped with a binary relation <.
— " is a set of vectors noted T, U,... equipped with a binary relation <,-.

— —is a relation on J x & x ¥, for example, N T.
— Fis a relation on ¥~ x 7, for example, T Ft.

For each such system, we let >, be the binary relation on 7 defined by

b, ue I, TVEL XYV, t 2> Thu

An elementary term t is a term minimal with respect to >4, that is, a term for which there

exists no u such that ¢t >4 u.

Theorem 6.13 (Melliés). Suppose (7,2, 7, <7 L Ly —,) satisfies the following

properties:

Axiom I: There is no infinite chain t{ > t, >4 ...

Axiom II: The relation <z is an AFR on the set of elementary terms.

Axiom III: For all t,u,u/,if t <7 v and ut>4 v/, then t <7 u.

Axiom IV-bis: For all t,u,f,g, T, U, if t i» T and u —> U and f<ggand T <, U,

then t <7 u.

Axiom V: Forall #" < v, for #' ={te€ .7 |3T € W, T Ft}, if <7 is an AFR on #",

then <, is an AFR on #".
If, furthermore, <¢ is an AFR on %, then <5 is an AFR on 7.

Ticket Entailment is decidable 605

Proof. See Melliés (1998)". O
Lemma 6.14. For each finite ¥ < G, the relation € is an AFR on B(%).

Proof. According to Lemma 6.11, it is sufficient to prove that € is an AFR on
B,(¥). Let (7, 2,7, <7,<4,<y,—>,F) be the abstract decomposition system defined
as follows:

— The set 7 is B,(%) — we let o <5 f if and only if there exists an address ¢ such that

% € (Bic) and a(e) = (Bic)(e).

— The set & is the set of all @’s in & — the relation < is the identity relation on this

set.

— The set ¥ is B() x B(¥) — the relation <, is defined by (a1, 0,) <y (f1, f2) if and

only if o € ﬁl and o, € ﬁz.

— The relation — is defined by « ﬂ (B1, B2) if and only if o = @4(B1, f2).

— The relation F is the least relation satisfying the following condition: if V = (uy,a3),

ie{1,2}, B1,.... s € B,(¥) and o; = *5(P1,..., fn), then V I f; for each j € [1,...,n].

Note that the elements of ¥~ are pairs of blueprints that may be rootless. However, if

V + B, the blueprint f is always a rooted blueprint, so the relation + is indeed a subset

of V" x 7.

(A) For all ' = 7, the relation € is an AFR on 7 if and only if <5 is an AFR
on 7. Indeed, consider an arbitrary infinite sequence & over .7 '. This sequence
contains an infinite subsequence («);en such that all a;(¢) are equal. Clearly, o; € o
implies o; <7 ;. Conversely, if o; <7 «;, there exists ¢ such that o; € % and
%i(e) = aj(8) = a(c). So u; € ajy. o, hence o; € a;.

(B) We now check that all axioms of Theorem 6.13 are satisfied:

— It is clear that Axiom I is satisfied.

— The set of elementary terms is the set of all blueprints consisting of single formulas
of &. The relation < is, of course, an AFR on the set of elementary terms, that
is, Axiom II is satisfied.

— Axiom III is immediate.
— If (1, 2) <y~ (B1, B2), then oy € f; and oy € >, hence

@y (o, 02) € @y, (1, B2),
a fortiori

@w(ala O‘Z) if @w(ﬁl, ﬂZ)a
so Axiom IV-bis is satisfied.
— To prove that Axiom V is satisfied, we let #~ < ¥". Then, by definition,

W =1{p €T |ou,00) € W, (o1,0) - B}
f Mellies” result was actually established for a different list of axioms (numbered from I to VI), but Mellies

mentions the possibility of dropping Axiom VI and replacing Axiom IV with Axiom IV-bis in a remark
following his proof of the main theorem.

V. Padovani 606

Assuming <5 is an AFR on #"., we will prove that <, is an AFR on # . By
part (A), the relation € is an AFR on %'~ < B,(%). Let

B = {*2(P1,...,)| Vi € [1,...,n], Bi € W}

By Lemma 6.11, the relation € is an AFR on 4. Moreover, #" < % X %. By
Proposition 6.3 (2), the relation <y is an AFR on # x %, and is thus an AFR
on . L]

Lemma 6.15. For each formula ¢, the set of all compact ¢-shadows is a finite set effectively
computable from ¢.

Proof. For each compact ¢-shadow E and each address a such that a is a leaf in &, we
define a step-continuation at a of Z to be any compact ¢-shadow Z’ such that

dom(Z) < dom(E)U {a - (1),a - (2)}

and 2 and E’ take the same values on dom(E). Let ~» be the relation defined by E ~» &’
if and only if Z' is a step continuation of Z. By Lemma 5.5 and the fact that the set of
subformulas of ¢ is a finite set, for all E, the set of all E such that 2 ~» E is a finite set
effectively computable from Z. Let % be the closure under ~» of {(¢ — (¢, I B, ¢))} The
set of all compact ¢-shadows is clearly equal to this set, so it is enough to prove that
is a finite set. In order to show a contradiction, we assume that € is infinite. By Konig’s
Lemma, there exists an infinite sequence Eg ~» E; ~» ... over 4. The union 2, = U;» E;
is a tree of infinite domain. By Konig’s Lemma again, there exists an infinite chain of
addresses a; < ay < ... such that all a; are nodes of Z,, with the same arity and labelled
with the same subformula of ¢. If i < j and a; and a; are labelled with (%;,y:,y) and
(%i»vj>w), we cannot have y; € y;, since otherwise there would exist a k such that Zj is
not compact. A contradiction then follows from Lemma 6.14.]

7. From the shadows to the light

Theorem 7.1. Ticket Entailment is decidable.

Proof. The following propositions are equivalent:

— The formula ¢ is provable in the logic T_,.

— The formula ¢ is inhabited by a combinator within the basis BB'IW.

— The formula ¢ is Ang-inhabited (Lemma 2.10).

— There exists a compact Ang-inhabitant of ¢ (Lemma 4.9).

— There exists a compact ¢-shadow with the same tree domain as a Axp-inhabitant of
¢ (Lemmas 4.9 and 5.13).

By Lemma 6.15, the set of compact ¢-shadows is effectively computable from ¢. By the
subformula property (Lemma 2.5), for each shadow Z in this set, up to the choice of
bound variables, there are only a finite number of Anp-inhabitant of ¢ with the same
domain as E. Moreover, this set of inhabitants is clearly computable from = and ¢. Hence
the existence of a Ang-inhabitant of ¢ is decidable.]

Ticket Entailment is decidable 607

Acknowledgments

This work could not have been achieved without countless helpful comments and
invaluable support from Pawet Urzyczyn, Paul-André Mellies and Pierre-Louis Curien. I
am also deeply indebted to the anonymous referees for their remarkably careful reading
of the paper.

References

Anderson, A.R. (1960) Entailment shorn of modality. Journal of Symbolic Logic 25 (4) 388.

Anderson, A.R. and Belnap Jr, N.D. (1975) Entailment: The Logic of Relevance and Necessity,
Volume 1, Princeton University Press.

Anderson, A.R., Belnap Jr, N.D. and Dunn, J. M. (1990) Entailment: The Logic of Relevance and
Necessity, Volume 2, Princeton University Press.

Barendregt, H. (1984) The Lambda Calculus: Its Syntax and Semantics (Revised edition), Studies in
Logic and the Foundations of Mathematics 103, North Holland.

Barwise, J. (ed.) (1977) Handbook of Mathematical Logic, Studies in Logic and Foundations of
Mathematics, North-Holland.

Bezem, M., Klop, J. W. and de Vrijer, R. (eds.)’ (2003) Term Rewriting Systems. Cambridge Tracts
in Theoretical Computer Science 55, Cambridge University Press.

Bimbo, K. (2005) Types of I-free hereditary right maximal terms. Journal of Philosophical Logic
34 (5-6) 607-620.

Broda, S., Damas, L., Finger, M. and Silva e Silva, P.S. (2004) The decidability of a fragment of
BB'I W -logic. Theoretical Computer Science 318 (3) 373-408.

Bunder, M. W. (1996) Lambda Terms Definable as Combinators. Theoretical Computer Science
169 (1) 3-21.

Higman, G. (1952) Ordering by divisibility in abstract algebra. Proceedings of the London
Mathematical Society 3 (2) 326-336.

Kripke, S. (1959) The problem of entailment. Journal of Symbolic Logic 24 (4) 324.

Krivine, J.-L. (1993) Lambda-calculus, types and models, Masson.

Kruskal, J. B. (1972) The theory of well-quasi-ordering: A frequently discovered concept. Journal of
Combinatorial Theory, Series A 13 (3) 297-305.

Mellies, P-A. (1998) On a duality between Kruskal and Dershowitz theorems. In: Larsen, K. G,
Skyum, S. and Winskel, G. (eds.) ICALP. Springer-Verlag Lecture Notes in Computer Science 1443
518-529.

Trigg, P., Hindley, J. R. and Bunder, M. W. (1994) Combinatory abstraction using B, B’ and friends.
Theoretical Computer Science 135 (2) 405-422.

Urquhart, A (1984) The undecidability of entailment and relevant implication. Journal of Symbolic
Logic 49 (4) 1059-1073.

T Also known as ‘Terese’.

