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Abstract—Linear Logic is based on the analogy between
algebraic linearity (i.e. commutation with sums and with
products with scalars) and the computer science linearityi(e.
calling inputs only once). Keeping on this analogy, Ehrhard
and Regnier introduced Differential Linear Logic (DILL) —
an extension of Multiplicative Exponential Linear Logic with
differential constructions. In this setting, promotion (the logical
exponentiation) can be approximated by a sum of promotion-
free proofs of DILL, via Taylor expansion.

We present a constructive way to revert Taylor expansion.
Precisely, we definemerging reduction — a rewriting system
which merges a finite sum of DLL proofs into a proof with
promotion whenever the sum is an approximation of the Taylor
expansion of this proof. We prove that this algorithm is soul,
complete and can be run in non-deterministic polynomial tine.

Keywords-Linear Logic, Differential interaction nets, Deno-
tational semantics, Rewriting systems.

INTRODUCTION

In the 80’s, Girard [1] introduced linear logic (LL) — a
refinement of intuitionistic and classical logics. One jgart
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Interpreting formulee of LL as vector spaces is not
straightforward, because exponentials generate infirite d
mensional spaces. For this reason, the vector spaces must
be endowed with a topology yielding a suitable notion of
converging sum. In [3], [4] the fundamental intuition of
LL becomes concrete. In these models, programs that use
their arguments exactly once are interpreted as continuous
linear functions and programs that can call their arguments
infinitely often are analytic functions. Moreover, anatyti
functions can be approximated by polynomials throligi-
lor expansion5]. This approach is enabled by the presence
of a derivative operator. A natural question then arises:
what is the meaning of such a derivative from the logical
viewpoint? Ehrhard and Regnier answer to this question by
introducing thedifferential linear logic(DILL, [6]), and its
functional fragment: thelifferential A-calculus[7].

In LL, only the promotion rule introduces tHeanodality.
Operationally, the promotion creates inputs that can be
called an unbounded number of times. InLD three more
rules handle thé modality (codereliction cocontractionand
coweakeninpthat are the duals of the LL rules dealing with

larity of LL is to be equipped with a pair of dual modalities the ? modality dereliction contractionandweakening In

(the exponentials! and ?) which give a logical status to particular, codereliction expresses in the syntax the sema
the operations of erasing and copying data. The idea is thaical derivative: it releases inputs of typd that must be
linear proofs (i.e. proofs without exponentials) corraspho called exactly once, so that executing a progrnon a
to programs which call their arguments exactly once, whilst'coderelicted” inputz amounts to calculate the best linear
exponential proofs call their arguments at will. The studyapproximation of f on z. Notice that this imposes non-
of LL contributed to unveil the logical nature of resource deterministic choices — if is made of several subroutines
consumption and initiated a foundational comprehension ogéach of them demanding for a copy of then there are
resource-related runtime properties of programs. different executions off on z, depending on which sub-
Linear logic makes an extensive use of jargon borrowedoutine is fed with the unique available copy of Thus we
from vector spaces and analysis: linear, dual, exponentiahave a formal sum, where each term represents a possibility.
etc. Indeed, at the very start of LL, there was the fundamenthis sum has a canonical mathematical interpretation — it
tal intuition that programs should be modeled as analyticorresponds to the sum obtained by computing the derivative
functions and approximated by polynomials, representingf a non-linear function.
bounded (although possibly non-linear) computationssThi  As expected, the Taylor expansion can be imported in the
idea can be realized if one succeeds in interpreting a type ayntactic realm by iterating differentiation [8]. A proof o
a collectionA of bits of information and a datum of typé  LL can be decomposed into a formal sum of promotion-free
as a vectofi = ), mqa, Where each scalan, "counts”  proofs of DLL. The principle is to decompose a program
the multiplicity of the bita in @ (see [2]). into a sum of purely "differential programs”, all of them
containing only bounded (although possibly non-linealsca

This work has been supported by the french ANR CHOCO to inputs. Understanding the relation between a program



and its Taylor expansion might be the starting point of  bottom: e axiom: weakening:  coweakening:
renewing the logical approach to the quantitative analysjs
of computation started with the inception of LL. X X+ 24A] 1A]

. . . a) basic cut-free nets.
A program and its Taylor expansion are say equivalent, @

for at each argument, their evaluations give the same result par: tensor: dereliction mix:
Since the information contained in the Taylor expansion is [~ ./~ ': T o

quite redundant, we conjecture that we can reconstruct the ~1|" g5 - - ‘, R
original LL net with only finitely many terms appearing in * ? o W_ !
the Taylor expansion. That is why we propose an algorithm A% B A®B

that build all the LL nets whose Taylor expansions contain

. . (b) linear constructions of cut-free Il-nets
a given finite DLL sum. However, there are IDL proofs

that do not appear in the Taylor expansion of the same L[L contraction: promotion:

proof, they are notoherent One may think of the terms - :

of a DILL sum as parallel threads of a computation, the U

sum is coherent whenever these threads can be joined |up v

into a sequential computation, represented by an LL proqgf. 7A 1A 7By 7By,

Our algorithm takes a finite surh_; o; of DILL proofs (c) exponential constructions of cut-free ll-nets

as inputs, runs a rewriting reduction, namely therging

reductionand returns an LL proof or falls in a deadlock. Figure 1: inductive definition of cut-free ll-nets.
We prove that this algorithm is complete (Th. 1) and sound

(Th. 2): 7 is reached if, and only ify ", «; is in the Taylor

expansion ofr. The algorithm is non deterministic and can |- TAYLOR EXPANSION: FROM LL-NETS TO POLYNETS
be run in non-deterministic polynomial time (Cor. 4). We consider formulae of propositional multiplicative ex-

In the sumy", as, each term may occurs several times ponential linear logic (MELL), generated by the grammar:
3 L 1

i.e.), a; can be expressed as a linear combination dflD AB=X|X"|1|A®B|L|ARB|!A|?4,
proofs with scalars ilN. Although the scalars are needed

to get the equivalence between an LL proof and its TaylowhereX, X range over an enumerable set of propositional
expansion, we conjecture that they only depend on thd.D  variables. The linear negation is involutive, i4-+ = A,
proofs as it is the case fox-terms [8]. In particular, with and defined through De Morgan laws$ = 1, (A® B)* =
respect to the results achieved in this paper, scalars glay nd+ 2 B+ and (14)+ = 74+,

role. Hence we do not tackle coefficients issue, and we wil

define Taylor expansions as sets ofLD proofs |Definition 1. The cut-free linear logic netdl-nets® for

short, are inductively defined by the constructions drawn on

The syntax of netsWe represent LL proofs as graphs called Figures 1(a), 1(b) and 1(c), supposing thaindz" are cut-
l-nets (Def. 1). In [1], ll-nets are callegroof structuresThe  free Il-nets. They are finite hypergraphs made of (i) nodes
distinction between proof structures and proof nets (that a labeled by MELL formulee and calleforts; (ii) directed
logically correct proof structures) plays no role in thippa  hyperedges labeled by MELL connectives, depicted as tri-
we will thus omit to speak of any correctness criterion.@ngles and namedells (iii) directed hyperedges crossing
Besides, we consider only cut-free Il-nets. We adopt the synPOrts labeled by a same exponential formula and named
tax of [9] with generalized contractions and atomic axioms Structural wires; (iv) undirected edges callesimple wires

In addition we have coweakenings, needed to define thiéey cross two ports labeled by the same formula or (only
informative order (Def. 6) and to state completeness (Th.1)in the axiom case) labeled by dual formulee.

Concerning DLL, we represent its proofs g®lynetswhich A cell/structural wirec has a unique target, named the

are sets osimple netgDef.2). principal port of ¢, the sources, if any, are called the
auxiliary ports of ¢. We adopt the convention of depicting

Outline. Section | defines the Taylor expansion of Il-netsthe directed hyperedges with a top-down orientation.

into polynets (Def.5). In Section Il, we defin@belings A port of an ll-netr is free whenever it is not crossed

(Def.7), an equivalent but more local way to deal with boxespy any cell. We require that is given together with an

We present our rewriting system, the terms, calieerging interface (p; : A;);<,, enumerating its free ports with their

triples (Def.14), and the reduction over them, calteérging  types. The interface$p; : A;)i<, and (¢; : Bi)i<n are

reduction(Def.13). We prove that the merging reduction is paired whenevem = m and A; = B;.

non-deterministically polynomial (Cor. 4), complete (Tb).

and sound (Th. 2) with respect to the Taylor expansion. IThis definition is kept informal. We refer to [6], [10] for pisions.
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Figure 2: exponential constructions of cut-free simple net

Figure 3: codereliction and product of simple nets.

(Co)weakenings (Fig. 1(a)) are unary structural wires. In
the contraction case (Fig. 1(c))! is a cut-free ll-net with The Taylor expansion decomposes an ll-neinto a set
at least two free ports, ¢ of type ?A; to obtain the drawn 7 () of simple nets; each simple net i(r) represents
ll-net, we equalp, ¢ with a unique free port : 74 and an "instance” ofr where every box has been replaced by
merge the two (hyper)edges Sharmgn the promotion case, a finite number of COpieS of its contents. Before glVIng
the Il-net«’ is put into abox; this box is a cell labeled the definition of 7 (m) (Def. 5), we introduce substitution

by a cut-free Il-net: itzcontents Notice that given the box (Def. 3), cod(p, a) and product (Def. 4, Fig. 3).

interface(po : 14, q1 : ?B1,...,qn : 7By), the interface of  pefinition 3. Let o, § and~ be three nets (possibly with
its contents is(py : A,q1 : ?Bi,...,q, : 7B,) where the 41 atomic axioms) such thatand~ have paired interfaces
principal portSpo_ andp{ and the auxiliary portg; and g, (pi : A;) and(q; : A,). If 3 is asubnetof o, denoteds C a,
match. We require moreover that: then thesubstitution a[v/f] is the net obtained from by
(x) any free porty; : 7B; of the contents of a box does not replacingg with ~. So, ¢, replaceg; and the wires sharing
belong to a structural wiré. ¢; are merged.
A cell/wire cis of depth 0 in an ll-netr, if ¢ is a (hyper)edge
of m view as a hypergrapla;is of depthd+1 in r, if there is
a boxb of depth0 in = andc is of depthd in the contents of
b. The depth ofr is the maximal depth of the cell/wires in
m. The set of boxes of depth of = is denoted byboxg ()
and the set of boxes at any depth byx(7). We define
similarly the setcell(r) of cells at any depth ofr. Finally,
we denotec € 7 if ¢ € cell(n).

Definition 4. Let p be a free port of a simple net. We
denote ascod(p,«) the simple net obtained from by
adding a codereliction with auxiliary pogt (Fig. 3(a)).

Let o and o’ be two simple nets with paired interfaces
resp.(p : 'A1,q1 : "B1,...,qn : ?By) and (p’ : 141, 4] :
?Bi,...,q, : 7B,). The product « - o is the simple
net resulting from the cocontraction @f and p’ and the
contractions ofy; andgq, (Fig. 3(b)).

Let b,b" € box(r) andm,, 7,y be the contents of resp.
andbd’. Remark thatell(7;,) andcell(m, ) are disjoint or one
is included in the other. This means thatis atree-order
over {cell(m,) ; b € box(n)}, i.e. wheneverell(r;,) and
cell(my, ) have a sup, then they are comparable. Definition 5. The Taylor expansiorf of an Il-netr is the

As mentioned in the Introduction, boxes represent dataet of simple netd (r) defined by induction on the depth of

that can be called infinitely often during the execution of r (Fig. 4(b)). We distinguish two cases according to whether
a program. In DLL new rules (cocontraction and codere- r is a boxb, or a generic ll-net:

liction) deal with !-formulae but keep bounded the number
of calls to the data. This allows to represent non-linear

The product of simple nets is commutative, associa-
tive and its neutral element is the net only made of
(co)weakenings, that we dendt@

with £ € N, v, €

. k T (p), p the contents o
programs assimple netswhere boxes are replaced by 7(p) .= HCOd(pj,'Yj)§ b andp; the free port of) ,
(co)contractions which explicitly give the number of calls =1 ' 7; corresponding to th
to their contents. principal port ofb.

Definition 2. The cut-freesimple nets are inductively Tr) = Cwith boxo(m) = {by}r<s,
defined by the constructions depicted on Fig. 1(a) and 1(b) (m) == {”[ﬁT/bT]TSS "andg,. € 7(b,) B } :
and by the exponential constructions of Fig. 2. The cocon- _ e .
traction case is defined analogously to the contraction.case With the notations of the above definition, notitte
A polynetis a finite set of simple nets with paired interfaces. Z (b), sincek = 0 yields the empty product.
Except for boxes and depth which have no meaning in o _ _ _

. Although intuitively clear, the operation of merging wirehould be

the context of S|mple nets, we use the VocabUIary of II'netshandled with care because loops and cuts can be producedeféfeto

The wordnet will refer equally to ll-nets or simple nets. [10] for a formal definition. Indeed, throughout this papee will deal
only with substitutions yielding cut-free and loop-freetsie
2This condition is needed to have a canonical representatidhnets. “Notice that the Taylor expansion defined by Ehrhard and Red8i
It can be equivalently stated as: evegyis connected by a simple wire to  was given in terms of sums. As written in the Introduction, wié deal
a dereliction or to an auxiliary port of another box. only with the supports of these sums.
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Figure 4: (a) an ll-netr s.t.boxo(m) = {b.},<s; (b) the generic shape of a simple ret 7 (r); (c) the linearizatiorl ().

Not every polynet is the Taylor expansion of an llI-net. Il. REVERSING TAYLOR EXPANSION
Indeed, simple nets appearing in the Taylor expansion of
an ll-net are "coherent”: their structure reflects the boxes
of 7. In Figures 5(c) and 5(d), we present an example O€

two incoherent simple net@ € 7.(7”).’ = 1.’2' _que\_/(_er, plugging the simple nets intoounters(Def. 10, Fig. 8(a)).

T a_nd m have the same I|near|zatlon which is intuitively pen these counters explore the simple nets, merge equal
obtained by _forge_ttlng the contour line of boxes. More .o and draw boxes when it is possible. If the algorithm
formally, the linearization i(w) (Fig. 4(c)) of an ll-netr succeeds, then the result is an ll-net. On Fig. 9, we give the

is inductively defined byl(w) := w[cod(p,, I(pr))/br]r<s, | ¢ ducti t fth , ducti
Wherebox() = {by}r<s, pr IS the contents of, andp, is elementary reduction steper§) of the merging reduction.

the principal free port of(p;). A. An example.

In the sequell(w) will play an important role, since it
describes the structure af except from the boxes contour
line. Indeed, it is a simple net &f (), obtained by taking
exactly one copy of every box of.

In this section we present the merging reduction: our
Igorithm reversing the Taylor expansion. Given a finite
olynet, theinitial state (Def. 12, Fig. 8(b)) is obtained by

Before going into more details, let us run our algorithm
on an example. The rewriting is depicted step by step on
Fig. 6. We draw in boldface the redex which is about to be
reduced. The run we follow is successful and its result is
the ll-net depicted on Fig. 5(a).

Initial state. Consider the polyne{ay, as}, where (p; :
?1,q; : 1) is the interface ofa;. The algorithm starts
from the initial state depicted on Fig. 6(a). Two counters
connecta; and as, one for?1 and one for?! L. There are
two tokensl; and 1 inside the counters and aiphabet
{A} containing anaddressA = {11,112} which is the set of
tokens inside the counters (Def. 9).

First step. The only possibility is to apply a stegontr to

the right counter, settingy; = 2,n, = 3 and som = 2
(see Fig. 9 for the notation). Indeed we need to choose how
to distribute the three auxiliary ports of the contractidn o
as. It is a non-deterministic step of the merging algorithm:
(©) pr € T(m)\T (72) (d) B2 € T(m2)\T (1) different choices may lead to non-confluent reductions. In

this example, apart from the reduction we will pursue, one
choiceleads tothe Il-net of Fig. 5(b), and the other onfesdl,

) . ) i.e. lead to nets with counters that are not further redecibl
Since the empty produdd is an ll-net, we can introduce gtep 2. The derelictions of the redex are merged into a

an informative order on ll-nets, useful in the sequel: unique dereliction labelled with the addresg(recall that

Definition 6. We say that an ll-net”’ is less informative It IS the set of the tokens,, 1, in the merging counter).
than an Il-netr and we writer’ < 7, whenever there are Step 3. The next redex is reduced by the “crucial” efs.
boxes(b,),<s in box(w) such thatr’ = 7[10/b,],<s. This step has “created” a box by adding three new tokens
_ B _ o 11,114,132 and a new addresB = {1},11,13}. The new
Itis easy to check thak is an order. Intuitivelyr” is the  {okens are associated with the coderelictions in the redéx a
result of erasing some subroutinesmfin general a finite they extend the old ones in a sense made precise in Def. 9:
subset ofT(?r) does not. have enough information to build specifically 11 (resp. 13,12) extends1; (resp.1s). The
7 and we will rather buildr’ < 7 (see Th. 1). However,  aqdress represents a box associated with the codereliction
, , labeled byB and resulting from the merging of the three
™ <7 =T(r') CT(m). (1) coderelictions. The new address opens the possibility of

Figure 5: m; and e with same linearization.
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Figure 6: an example of reduction.

applying the ers’® to the two counters inactive until now. labeled withB.
Step 4. While P, creates a box adding a new addressStep 8. Remark that one port of the counter is wired

. 'p
and enters it via the principal port, & enters a box 10 @ 1C?W?e}kegulng.2 2The—> _creates four more to-
already created using an address available in the alphabkgns 1,7,15",15",15" associated with the coweaken-

(hereB) and via an auxiliary port. Notice also that &> 'n%/ c?dereléctllons of the red(_el_);]. A n(;:-wkaddres?mgrlr:s thl((aj
can “consume” contractions (here, the counter increasedc’ O NEW OKENS appears. 1hese tokens extend Ih€ old ones

: ) . 1 . )
the number of its auxiliary ports) but it does not merge®S hinted by the indices. The tokaf', associated with the

derelictions since they can belong to other boxes coweakening in the redex, is stored in a special basket that
Step 5. The address stored in a counter after a number oYV'” be kept until the _counter 1S erasgd (Def. 10).
ome Last step. The resulting net is dabeling (Def. 7). It has

>
’p

— ers must be put down on a cell by-a-. neither counter nor cocontraction and every cell is labelle
Step 6. Two counters meet an_d t-hey shag exactly the SamBy an address. It represents the ll-net drawn in Fig. 5(a).
address. Thus they can be eliminated by-a step.
Step 7. The - enters in the bo®, consuming contraction. In order to be as local as possible, our reduction cannot
The ers=% merges the derelictions into one dereliction use boxes as they require to define their “frames” all in one
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Figure 7: decomposition of a simple net.

go. Thus, we reconstruct the linearizatitir) of an Il-net
m and we represent the boxes by labeling the cell$(of

with addresses. A total labeling encodes exactly the bokes o
« (Prop. 1). During the execution of the merging algorithm,
the partial labeling is extended step by step up to a total
function. The frames of the boxes afare recovered from

the addresses labeling the cellsi¢f).
B. Labeling

In our example the box associated with the codereliction

labeled byB contains the cells labeled B/and every cell

above. Notice that the set of addresses is endowed with

order: A C B C C, which means that the bok contains

the boxC. Not every labeling is a correct boxing, we give
conditions (Def. 7) on labelings sufficient to ensure the

equivalence with Il-nets (Prop. 1).
Any cut-free simple net has acanonical decomposition

a labeling and a box match if the contents of their boxes
coincide.

Definition 8. Let («, £) be a labeling. With any coderelic-
tion b of a, we associate the labelingnt(a, £,b) corre-
sponding to its contents. It is defined by the simple net

{C €« | S(b) La,e £(0)7 c# b}7

and the labelingZconi( L) = £(b) and Leont(c) = £(c).
We say that a labelin¢, £) is equivalentto an ll-netr
and we write(a, £) = = for short, whenevex = () and

Vb € box(m) with contentsp, cont(a, £,0) =p.  (2)

Proposition 1. A labeling is equivalent to a unique cut-free
Il-net and vice versa (up to a renaming).

Proof: For any labeling one proves that there is a unique
equivalent ll-net by induction on the size of the simple rfet o
the labeling. The converse is proven by building a labeling

ndidate on the linearization: the ordemreflects the tree-
order of boxes, the labeling properties (Def 7) follow.m

Recall the labeling of Fig. 6. The set of names\is=
{A,B,C} and we haved C B C C, which encodes the
nesting of the boxes of the ll-net of Fig. 5(a).

into a subnety made of axioms and pairwise disjoint trees C. Reduction

(B:)i<n made of cells and wires (Fig. 7). The leavesbf
can be units ( or 1), (co)weakenings, or axioms in. We
seta <, b wheneverq, b belong to the same tree anrd

is an ancestor ob. If o has more than one conclusion then

there are several minimals with respecttg. We introduce
a conclusion cell L, set to be the minimum of,,.

Definition 7. Let A/ be an infinite set ofhames let o

be a cut-free simple net without cocontraction. We denot

coder(a) the set of codereliction cells @f. Let £: {L,} U
cell(e) — N be a total function s.t.:

e £ is injective oncoder(a) U {L,};

e the codomaing(«) of £ is £(coder(a) U {Lq}).
Let us definegg@ as theg image of<, onto £(«), that
is:
n = £(c)
m = £(d).

Let us denote_, ¢ the transitive closure af? .. The pair
(o, £) is called alabeling whenever '

(i) Ca,c is a tree-order with minimung(L,,);

(i) if ¢ has a predecessef, then eitherg(¢’) = £(c) and
¢ is not a codereliction, o£(c) is the son of¢(¢’) and
¢ is a codereliction, or finally: is a dereliction;

(i) given two portsp, ¢ connected by an axiom, if is an
auxiliary port of a celle s.t. £(c) # £(La), theng is
the auxiliary port of a celt’ s.t. £(¢’) = £(c¢).

Vn,m € £(a), nCy ¢ m <= Jc <4 d, {

The most delicate task of merging reduction is to re-
construct a correct nesting of boxing, i.e. the orderof
Def.7. This reconstruction is made step by step, using the
set theoretical inclusion of tokens, and the induced order
on addresses (Def.9): at the end of the process we will have
<=C and consequently an Il-net.

Definition 9. Let X be an enumerable set called theb. A

Qoken is a finite set of elements Y. An addressis a finite

set of tokens. We sdt, m to range over tokeng,, B to range
over addresses, and, B to range over sets of addresses.
The set-theoretical inclusion of tokens induces the Smyth
pre-order on addresses:

A<B << VmeB,d1€A,1Cmn.

It is immediate to prove thatl is a pre-order. However let
us stress thatd is not antisymmetric (consider = {1,m},

B = {1,m’'}, with 1 C m,m’), nor tree-like (considex = {1},
A = {m}, B = {1,m}, with 1, m disjoint) on the whole set
of addresses. Actuallyperging triple (defined below) will
handle sets of addresses on whighs a tree-order.

Let us recall the example of Fig. 6. The algorithm starts
with two different tokensl; = {z} and1, = {y} that are
gathered in the addregswhich is the lowest element of
the labeling. Each token corresponds to the lowest element
of one of the simple nets. Step introduces three new
tokens1} = {z,c1}, 13 = {z,co} and 13 = {w,c3}

From the order induced by the labeling, one can recovewhere ¢, ¢o, c3 correspond to the coderelictions in bold-
the contents of the box associated with a coderelictionnTheface on 6(c). These tokens are gathered in the address



Definition 12. Let (o)<, be a collection of simple nets
with paired interfaces. Lefl;);<, be tokens and,, be an
address such that the tokenstie= A,,U{1;}:<,, are pairwise
incomparable. Thenitial state associated with(c; )<,
(1;)i<n, @and4,, is the triple(a, £4,.4) where

(a) counter ¢t such that (b) initial stateInity,, (s, 1;)i<n o = Inity,, (Of“li)ign IS the simple net with counters
£(t) = A, £(pi) = 1; - pictured on Fig. 8(b) withg,(t) = A for every countert
i _ and A = {A}. In the sequel, when,, is empty, we will
Figure 8: counter and initial state. often omit the subscript and writeit (cv;, 1;);<.

Now we have all the ingredients to introduce a reduction

B = {1!,11,12} which is used by Steps, 5 and 7. % on triples as the context closure of the binary relation
We haveA < B. Finally, Step8 introduces the tokens mrg described in Fig. 9. In the interaction net paradigm [11],
1i’1 = {z,c1,d1}, 15" = {x,c0,w}, 13" = {2,¢3,d2} and  a redex is made of two cells wired by their principal ports.
12"2 = {x, c3,ds} whered,, w, do, d3 are the coderelictions On the contrary, a merging redex is made of a counter whose
and coweakening in boldface on 6(h). The correspondinguxiliary ports are linked to the principal ports of cells of
addressC = {1}’1,1;1,13’1,13’2} is used in Ste. We  simple nets. For this reason we represent the auxiliarysport
haveB < C. of a counter as tips of triangles. It is important to notice

We are working with two orders on addressesand <.  that though the counters merge cells locally, the labeling
The first encodes the structure of boxes, the second is buifirocess is global, whence the set of addresses appearing in
step by step by merging reduction. The reduction is definedhe triples.

so that the two orders coincide, even if they are deﬁneq:)efinition 13. The meraing reduction ™% is the context
differently. Indeed < looks inside addresses, depending on ’ ging . —
closure of theelementary reduction steps ers for short,

th t-th tical inclusi f the tok Def. 9), wiil nr ,
e set-theoretical inclusion of the tokens (Def. 9), wiile ig. Fig. 9. This meangas, £1. Ar) 5 (as, £, Ay) if and

looks at the addresses as simple names labeling the cells ? -
the net (Def. 7) P g only if there are two triplega, £1,41), (af, £5, As) S.t.:

o (o, L, A1) = (ah, £, As) for x an ers amongx,

Definition 10. A counter is a cellt with one principal port zero, one, two, (co)w, contr, Ip, 7p;

andn > 1 auxiliary ports. Every port of is labeled by the_ e o Car andas = arfal/d)];
same MELL formula. We consider counters as commutative | o _ @ | e = £ and for all

. . » . 1= Lileen(a)r £5 = L2|cell(ay) ceEar\
cells, i.e. their auxiliary ports are unordered. Moreoves o), £a(c) = £1(c).
given with a labeling function\, which maps every auxiliary
port to a token and itself to an address (Fig. 8(a)). We nrg _ _
also require that for every portsq of ¢, A (p)andi(q) are ~ SUre of P V}/e /5335 that a re‘:UI?'O/ﬁ sequend? :
incomparable tokens and also are incomparable with ever{ft: £ A)——(a’, £, A’) is successfuif o’ is counter-free.

We denote by =5 the reflexive and transitive clo-

element ofA (). Notice Fig. 9 has three non-deterministic ers
In order to describe the partially labeled nets that appeakcontt;!p; ’p), where one can choose different surjections
during the reduction, we introduce triples. (contr,?p) or addresses !f, ’p). Actually the non-

o ) ) determinism oflp is irrelevant, since different choices &f
Definition 11. A triple (o, £,.A) is made of yield the same labeling, modulo a renaming.

« asimple netx with counters which can be decomposed There are only three cases where a reduction falls into a
into two counter-free simple netgr and T« joined by  deadlock i.e. stops on a triple no further reducible but with

countersty, ..., t, as follows: counters: when two counters are linked by axioms and have
o fa ) different labels; when a counter is linked to one axiom and
TR 4] T & another cell; when there is no possible address to go throu
(2T AV Y th II; when th ble add t th h
e e N e Rl a contraction link for ap-ers.
[ S e O Since we want the reduction to produce a labeling, we

have to restrict the set of triples that we consider. So we
introduce merging triples such that the result of a sucoéssf
reduction (i.e. a counter-free merging triple) is a labglin
Then we prove that the reduction preserves the properties
of the merging triples. Since the initial states are merging

We are interested in reductions beginning on an initialtriples and the counter-free merging triples are labelimgs
state made of counters linking given simple nets. get the wanted result.

» a set.A of addresses and a functiof from cell(|
a)U{t1,...,tn}, L, included, toA, where for every
countert,

L£(t) = M (t) U{(p) | p auxiliary port oft}.



where we choose a number, such thaR < m < min;<y n,,
and a surjectiory; from n; to m, for everyi < k

ny n
—_—— N
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we order the ports of the counter in the redex so that the dirst 0 (resp. lastk — ¢) ports are connected to
coderelictions (resp. coweakenings), this order is justraention to have a smooth indexing; we then choose a family

{y}u {Ig}igqngn_i of pairwise distinct elements of which are fresh ind, and we set), = A, U{1;U{y}}<i<k
andA’ = A, U {17}i<q,j<n,, Wherel! = 1; U {z]}. We say that this ersreatesthe addresd’.
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like in the ers!éa, we order the ports of the counter in the redex so that thedirst0 (resp. lastt — ¢) ports are
connected to derelictions (resp. weakenings); then westhamumberm; < n; and a surjectiory; from n; to m;
for everyi < ¢; we chooseA’ € A successor of the labeling of the counter in the redex4(ihas no successor

then?p cannot be applied), i.e. such that there exists a fafjlyU {Ig}i_gq,jgni of pairwise distinct elements of

i)ﬁ s.talégj :;}w U {1 U{y}}geick anda’ = &’ U{17}i<y j<m., wherel! =1, U {z?}. We say this erentersin
e addresa’.

Figure 9: the elementary reduction steps(ers for short) of merging reduction; the net at left of an ers isrddex, the one

at right is thecontractum of the ers. In the ersontr, 7p, we present a bunch of contractions and wirings as a surgecti
function f from the auxiliary ports to the principal ones.



Definition 14. The triple (o, £,.A) is called amerging  using the address and conclude by context closure; in the

triple if it satisfies general case, we make counter go through the linear part,
(i) for every countert € «, the principal port oft is ~ and stop at the entrance of boxes. We use the one box case
wired to a cellc €a, L, included, andg(c) < £(¢);  and conclude by context closure. ]
moreover, if£(c) # £(t) then every auxiliary port of To prove the soundness theorem, we need a splitting
t is wired to a derelictior: €], or a weakening; lemma which decomposes in initial states (Def. 12).

,(.'_') VA,B € 74’ (A EJQ:E B < AdB) Lemma 5 (Splitting). Let R be a successful reduction
(ii) (lv, £) is @ labeling andX(la) = A. sequence from a merging triplev, £, .A) and s.t. no ers
Notice that the initial state (Def. 12) is a merging triple. of R enters an address labeling a counter of then a
As we wrote aboved is not in general an order; how- can be split: there are suitable sequences), <, i<y, Of
ever, if (a, £,.A4) is a merging triple, then Cond. (ii), (iiiy Simple nets(17),<, i<,, of tokens pairwise incomparable

guarantees thatl is a tree-order omd. and (A,),<, of addresses s.t.
Proposition 2. If (o, £, 4) =% («/, £/, A') and («, £, A) ) . . Y o
is a merging triple, theria’, £, A’) is also a merging triple. Gmt% C li)ls’”j o (Imt% (e, li)zg"ﬁj

As a consequence, if a reductiofw, £, .A) =, @ =

(o, &, A") is successful(a/, £) = (] o/, £') is a labeling
and so represents an ll-net(Prop. 1). In this case, we say

that the reductiorieads tor and we write Proof: First we prove that sincé is successful, two
(a, £, A) ek counters of the same connected componerntcohave the

same label. With each labal, we associate the subngt
Proposition 3. The number of ers of any->-reduction made of cells connected to a counter labeledabyrhen,
starting from a merging triple(o, £,.A) is polynomially  two connected auxiliary ports of counters have the same
bounded by the number of ports in label. This allows to decompogginto an initial state. =

The ers of Fig. 9 are local and can be implemented on &heorem 2 (Soundness)Let = be an Il-net, let(c;)i<n
Turing Machine in constant time. Thus Prop. 3 yields: be a family of simple nets with the same interface and let
(1;)i<n = A be a family of pairwise incomparable tokens.

Corollary 4. The runtime of any—--reduction startin ) . . :
Y 9 If there is a successful merging reduction leadingrto

from a merging triple(«, £, A) is polynomial in the number
of ports ina. (Inmit (s, 14)i<n, £a, {A}) = 3)
D. Completeness and soundness then for everyi <n, a; € 7 ().
We prove the completeness and soundness of merging 1e- - poof. The proof is by induction on the exponential
duction. The soundness ensures that the simple nets mergggpth of r. The main idea is to commute the ers in the

mrt]o an II-Inet, are 'E the Taylor exE]ansmn of t_h'§ Il-lnet. reduction leading ter and to gather the ers that enter a box.
The completeness theorem proves the converse: simple Neff ;s 1o the splitting Lemma 5, we get an initial state for

{ai}i<n coming from the Ta_lylor expar}sion. O,f asame ll-net o, o poy Thus, we can apply the induction hypothesis.
7 can be merged. In fact, sindey; };<,, is afinite subset of

7 (7), then some boxes of can remain undefined from the I1l. PERSPECTIVES
merging of{a;}i<,. Formally this means that the merging  The merging reduction could have been presented differ-
yields an ll-net less informative than (Def. 6) ently, gathering all the non-deterministic choices in aykin

initial step and then performing the "deterministic” paft o
the reduction. This amounts to choose a labelihgn the
{upper partfa of an initial state and to transform the merg-
7o < 7 and a successful reduction that leadssta ing reduct!on in a rewriting that checks deterministically
whetherg is correct. However we have preferred the most
(Init (v, 17)i<n, £, {A}) =25 70, local presentation of the reconstruction of the boxes.
A polynet{«; }i<, included in the Taylor expansion of an
ll-net = is uniformin the sense that every; is built from
Proof: The proof is by induction on the exponential the same Il-netr, by taking different numbers of copies
depth ofr; we split the induction step in two casesxifisa  of the boxes inw. Our algorithm yields a combinatorial
box, we choose tokens extending the initial ones and gatheriterion characterizing the polynets ofillL which are
them in an addresB. We apply the induction hypothesis uniform. Ehrhard and Laurent have used the sum constructor

Theorem 1 (Completeness)Let © be an ll-net, and let
{a;}i<n be simple nets i (7). For any family{1;};<, = A
of tokens pairwise incomparable, there exists an ll-ne

where £, is, as usual, the constant function taking value



in DILL to model concurrent computing [12]. Merging
reduction opens a logical approach to a typical problem of

synchronization: when are processes uniform and can be jOiHO]

up?
The informative order of Def. 6 suggests a natural ques-
tion: is the Taylor expansion injective? This amounts to

question whether the converse of the implication (1) of11]

Sect. | holds. Indeed if two ll-nets, =’ are different, then

eithern’ « 7 or m <« «’, hence from the converse of the [12]

implication (1) we would have (') # T (n).

Till now, the first author and Mazza [13] have shown the
equivalence between the injectivity of the Taylor expansio
and the injectivity of the LL relational semantics for cugd
LL nets? which is an open problem first addressed in [14
Our results would allow to deduce the injectivity from the
following confluence property of the merging reduction:

(x) for every cut-free ll-netn’, there are simple nets [14]

(ai)i<n € T(7') s.t. every successful reduction leads
to n’: Init(ai)ign % !
Let us show how(x) yields 7 (n') C 7 (w) = 7’ < =, the
converse of (1). Letr’ andx be ll-nets s.t7 (z') C 7 ().
Assume(x): there are(«; )<, in 7 (7') s.t. every succesful
reduction leads tar’. Since(w;);<, C 7 (), by complete-
ness (Th. 1) there isy < m such thafinit (c; ) i<, —— .
By (x), mp = 7/, son’ < .
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