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Abstract—Linear Logic is based on the analogy between
algebraic linearity (i.e. commutation with sums and with
products with scalars) and the computer science linearity (i.e.
calling inputs only once). Keeping on this analogy, Ehrhard
and Regnier introduced Differential Linear Logic (D I LL) —
an extension of Multiplicative Exponential Linear Logic with
differential constructions. In this setting, promotion (the logical
exponentiation) can be approximated by a sum of promotion-
free proofs of DI LL, via Taylor expansion.

We present a constructive way to revert Taylor expansion.
Precisely, we definemerging reduction — a rewriting system
which merges a finite sum of DI LL proofs into a proof with
promotion whenever the sum is an approximation of the Taylor
expansion of this proof. We prove that this algorithm is sound,
complete and can be run in non-deterministic polynomial time.

Keywords-Linear Logic, Differential interaction nets, Deno-
tational semantics, Rewriting systems.

INTRODUCTION

In the 80’s, Girard [1] introduced linear logic (LL) — a
refinement of intuitionistic and classical logics. One particu-
larity of LL is to be equipped with a pair of dual modalities
(the exponentials! and ?) which give a logical status to
the operations of erasing and copying data. The idea is that
linear proofs (i.e. proofs without exponentials) correspond
to programs which call their arguments exactly once, whilst
exponential proofs call their arguments at will. The study
of LL contributed to unveil the logical nature of resource
consumption and initiated a foundational comprehension of
resource-related runtime properties of programs.

Linear logic makes an extensive use of jargon borrowed
from vector spaces and analysis: linear, dual, exponential,
etc. Indeed, at the very start of LL, there was the fundamen-
tal intuition that programs should be modeled as analytic
functions and approximated by polynomials, representing
bounded (although possibly non-linear) computations. This
idea can be realized if one succeeds in interpreting a type as
a collectionA of bits of information and a datum of typeA
as a vector~a =

∑

a∈A maa, where each scalarma ”counts”
the multiplicity of the bita in ~a (see [2]).

This work has been supported by the french ANR CHOCO

Interpreting formulæ of LL as vector spaces is not
straightforward, because exponentials generate infinite di-
mensional spaces. For this reason, the vector spaces must
be endowed with a topology yielding a suitable notion of
converging sum. In [3], [4] the fundamental intuition of
LL becomes concrete. In these models, programs that use
their arguments exactly once are interpreted as continuous
linear functions and programs that can call their arguments
infinitely often are analytic functions. Moreover, analytic
functions can be approximated by polynomials throughTay-
lor expansion[5]. This approach is enabled by the presence
of a derivative operator. A natural question then arises:
what is the meaning of such a derivative from the logical
viewpoint? Ehrhard and Regnier answer to this question by
introducing thedifferential linear logic(DILL, [6]), and its
functional fragment: thedifferential λ-calculus[7].

In LL, only the promotion rule introduces the! modality.
Operationally, the promotion creates inputs that can be
called an unbounded number of times. In DILL three more
rules handle the! modality (codereliction, cocontractionand
coweakening) that are the duals of the LL rules dealing with
the ? modality (dereliction, contractionandweakening). In
particular, codereliction expresses in the syntax the seman-
tical derivative: it releases inputs of type!A that must be
called exactly once, so that executing a programf on a
”coderelicted” inputx amounts to calculate the best linear
approximation off on x. Notice that this imposes non-
deterministic choices — iff is made of several subroutines
each of them demanding for a copy ofx, then there are
different executions off on x, depending on which sub-
routine is fed with the unique available copy ofx. Thus we
have a formal sum, where each term represents a possibility.
This sum has a canonical mathematical interpretation — it
corresponds to the sum obtained by computing the derivative
of a non-linear function.

As expected, the Taylor expansion can be imported in the
syntactic realm by iterating differentiation [8]. A proof of
LL can be decomposed into a formal sum of promotion-free
proofs of DILL. The principle is to decompose a program
into a sum of purely ”differential programs”, all of them
containing only bounded (although possibly non-linear) calls
to inputs. Understanding the relation between a program



and its Taylor expansion might be the starting point of
renewing the logical approach to the quantitative analysis
of computation started with the inception of LL.

A program and its Taylor expansion are say equivalent,
for at each argument, their evaluations give the same result.
Since the information contained in the Taylor expansion is
quite redundant, we conjecture that we can reconstruct the
original LL net with only finitely many terms appearing in
the Taylor expansion. That is why we propose an algorithm
that build all the LL nets whose Taylor expansions contain
a given finite DILL sum. However, there are DILL proofs
that do not appear in the Taylor expansion of the same LL
proof, they are notcoherent. One may think of the terms
of a DILL sum as parallel threads of a computation, the
sum is coherent whenever these threads can be joined up
into a sequential computation, represented by an LL proof.
Our algorithm takes a finite sum

∑

i αi of DILL proofs
as inputs, runs a rewriting reduction, namely themerging
reductionand returns an LL proofπ or falls in a deadlock.
We prove that this algorithm is complete (Th. 1) and sound
(Th. 2): π is reached if, and only if,

∑

i αi is in the Taylor
expansion ofπ. The algorithm is non deterministic and can
be run in non-deterministic polynomial time (Cor. 4).

In the sum
∑

i αi, each term may occurs several times,
i.e.

∑

i αi can be expressed as a linear combination of DILL
proofs with scalars inN. Although the scalars are needed
to get the equivalence between an LL proof and its Taylor
expansion, we conjecture that they only depend on the DILL
proofs as it is the case forλ-terms [8]. In particular, with
respect to the results achieved in this paper, scalars play no
role. Hence we do not tackle coefficients issue, and we will
define Taylor expansions as sets of DILL proofs.

The syntax of nets.We represent LL proofs as graphs called
ll-nets(Def. 1). In [1], ll-nets are calledproof structures. The
distinction between proof structures and proof nets (that are
logically correct proof structures) plays no role in this paper:
we will thus omit to speak of any correctness criterion.
Besides, we consider only cut-free ll-nets. We adopt the syn-
tax of [9] with generalized contractions and atomic axioms.
In addition we have coweakenings, needed to define the
informative order (Def. 6) and to state completeness (Th.1).
Concerning DILL, we represent its proofs aspolynets, which
are sets ofsimple nets(Def.2).

Outline. Section I defines the Taylor expansion of ll-nets
into polynets (Def.5). In Section II, we definelabelings
(Def.7), an equivalent but more local way to deal with boxes.
We present our rewriting system, the terms, calledmerging
triples (Def.14), and the reduction over them, calledmerging
reduction(Def.13). We prove that the merging reduction is
non-deterministically polynomial (Cor. 4), complete (Th.1)
and sound (Th. 2) with respect to the Taylor expansion.
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Figure 1: inductive definition of cut-free ll-nets.

I. TAYLOR EXPANSION: FROM LL-NETS TO POLYNETS

We consider formulæ of propositional multiplicative ex-
ponential linear logic (MELL), generated by the grammar:

A, B := X | X⊥ | 1 | A ⊗ B | ⊥ | A`B | !A | ?A ,

whereX , X⊥ range over an enumerable set of propositional
variables. The linear negation is involutive, i.e.A⊥⊥ = A,
and defined through De Morgan laws1⊥ = ⊥, (A⊗B)⊥ =
A⊥ `B⊥ and (!A)⊥ = ?A⊥.

Definition 1. The cut-free linear logic nets,ll-nets1 for
short, are inductively defined by the constructions drawn on
Figures 1(a), 1(b) and 1(c), supposing thatπ′ andπ′′ are cut-
free ll-nets. They are finite hypergraphs made of (i) nodes
labeled by MELL formulæ and calledports; (ii) directed
hyperedges labeled by MELL connectives, depicted as tri-
angles and namedcells; (iii) directed hyperedges crossing
ports labeled by a same exponential formula and named
structural wires ; (iv) undirected edges calledsimple wires,
they cross two ports labeled by the same formula or (only
in the axiom case) labeled by dual formulæ.

A cell/structural wirec has a unique target, named the
principal port of c, the sources, if any, are called the
auxiliary ports of c. We adopt the convention of depicting
the directed hyperedges with a top-down orientation.

A port of an ll-netπ is free whenever it is not crossed
by any cell. We require thatπ is given together with an
interface (pi : Ai)i≤n enumerating its free ports with their
types. The interfaces(pi : Ai)i≤n and (qi : Bi)i≤m are
paired whenevern = m andAi = Bi.

1This definition is kept informal. We refer to [6], [10] for precisions.
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Figure 2: exponential constructions of cut-free simple nets.

(Co)weakenings (Fig. 1(a)) are unary structural wires. In
the contraction case (Fig. 1(c)),π′ is a cut-free ll-net with
at least two free portsp, q of type ?A; to obtain the drawn
ll-net, we equalp, q with a unique free portr : ?A and
merge the two (hyper)edges sharingr. In the promotion case,
the ll-net π′ is put into abox; this box is a cell labeled
by a cut-free ll-net: itscontents. Notice that given the box
interface(p0 : !A, q1 : ?B1, . . . , qn : ?Bn), the interface of
its contents is(p′0 : A, q′1 : ?B1, . . . , q

′
n : ?Bn) where the

principal portsp0 and p′0 and the auxiliary portsqi and q′i
match. We require moreover that:
(∗) any free portq′i : ?Bi of the contents of a box does not

belong to a structural wire.2

A cell/wire c is of depth 0 in an ll-netπ, if c is a (hyper)edge
of π view as a hypergraph;c is of depthd+1 in π, if there is
a boxb of depth0 in π andc is of depthd in the contents of
b. The depth ofπ is the maximal depth of the cell/wires in
π. The set of boxes of depth0 of π is denoted bybox0(π)
and the set of boxes at any depth bybox(π). We define
similarly the setcell(π) of cells at any depth ofπ. Finally,
we denotec ∈ π if c ∈ cell(π).

Let b, b′ ∈ box(π) and πb, πb′ be the contents of resp.b
andb′. Remark thatcell(πb) andcell(πb′ ) are disjoint or one
is included in the other. This means that⊇ is a tree-order
over {cell(πb) ; b ∈ box(π)}, i.e. whenevercell(πb) and
cell(πb′) have a sup, then they are comparable.

As mentioned in the Introduction, boxes represent data
that can be called infinitely often during the execution of
a program. In DILL new rules (cocontraction and codere-
liction) deal with !-formulæ but keep bounded the number
of calls to the data. This allows to represent non-linear
programs assimple netswhere boxes are replaced by
(co)contractions which explicitly give the number of calls
to their contents.

Definition 2. The cut-free simple nets are inductively
defined by the constructions depicted on Fig. 1(a) and 1(b)
and by the exponential constructions of Fig. 2. The cocon-
traction case is defined analogously to the contraction case.
A polynet is a finite set of simple nets with paired interfaces.

Except for boxes and depth which have no meaning in
the context of simple nets, we use the vocabulary of ll-nets.
The wordnet will refer equally to ll-nets or simple nets.

2This condition is needed to have a canonical representationof ll-nets.
It can be equivalently stated as: everyq′i is connected by a simple wire to
a dereliction or to an auxiliary port of another box.

cod(p, α) := · · ·

!
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(a) codereliction of a port
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· · ·

!A1

α

· · ·

?B1
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· · ·

?Bn

(b) product of two nets

Figure 3: codereliction and product of simple nets.

The Taylor expansion decomposes an ll-netπ into a set
T (π) of simple nets; each simple net inT (π) represents
an ”instance” ofπ where every box has been replaced by
a finite number of copies of its contents. Before giving
the definition ofT (π) (Def. 5), we introduce substitution
(Def. 3), cod(p, α) and product (Def. 4, Fig. 3).

Definition 3. Let α, β and γ be three nets (possibly with
non-atomic axioms) such thatβ andγ have paired interfaces
(pi : Ai) and(qi : Ai). If β is asubnetof α, denotedβ ⊆ α,
then thesubstitution α[γ/β] is the net obtained fromα by
replacingβ with γ. So,qi replacespi and the wires sharing
qi are merged.3

Definition 4. Let p be a free port of a simple netα. We
denote ascod(p, α) the simple net obtained fromα by
adding a codereliction with auxiliary portp (Fig. 3(a)).

Let α and α′ be two simple nets with paired interfaces
resp.(p : !A1, q1 : ?B1, . . . , qn : ?Bn) and (p′ : !A1, q

′
1 :

?B1, . . . , q
′
n : ?Bn). The product α · α′ is the simple

net resulting from the cocontraction ofp and p′ and the
contractions ofqi andq′i (Fig. 3(b)).

The product of simple nets is commutative, associa-
tive and its neutral element is the net only made of
(co)weakenings, that we denote!0.

Definition 5. The Taylor expansion4 of an ll-netπ is the
set of simple netsT (π) defined by induction on the depth of
π (Fig. 4(b)). We distinguish two cases according to whether
π is a boxb, or a generic ll-net:

T (b) :=







k∏

j=1

cod(pj , γj) ;

with k ∈ N, γj ∈
T (ρ), ρ the contents of
b andpj the free port of
γj corresponding to the
principal port ofb.







,

T (π) :=

{

π[βr/br]r≤s ;
with box0(π) = {br}r≤s,
andβr ∈ T (br)

}

.

With the notations of the above definition, notice!0 ∈
T (b), sincek = 0 yields the empty product.

3Although intuitively clear, the operation of merging wiresshould be
handled with care because loops and cuts can be produced. We refer to
[10] for a formal definition. Indeed, throughout this paper we will deal
only with substitutions yielding cut-free and loop-free nets.

4Notice that the Taylor expansion defined by Ehrhard and Regnier [8]
was given in terms of sums. As written in the Introduction, wewill deal
only with the supports of these sums.



bs

· · ·

α

· · ·

b1

· · ·· · ·

(a) π

· · ·

α

· · ·

!

· · ·

!

· · ·

· · ·

· · ·

!

· · ·

!

· · ·

· · ·γ1,1 γ1,k1
γs,1 γs,ks

· · · · · ·

(b) α ∈ T (π)

· · ·

! · · ·

l(ρs)

! · · ·

l(ρ1)

· · ·

α

(c) l(π)

Figure 4: (a) an ll-netπ s.t.box0(π) = {br}r≤s; (b) the generic shape of a simple netα ∈ T (π); (c) the linearizationl(π).

Not every polynet is the Taylor expansion of an ll-net.
Indeed, simple nets appearing in the Taylor expansion of
an ll-netπ are ”coherent”: their structure reflects the boxes
of π. In Figures 5(c) and 5(d), we present an example of
two incoherent simple netsβi ∈ T (πi), i = 1, 2. However,
π1 and π2 have the same linearization which is intuitively
obtained by forgetting the contour line of boxes. More
formally, the linearization l(π) (Fig. 4(c)) of an ll-netπ
is inductively defined byl(π) := π[cod(pr, l(ρr))/br]r≤s,
wherebox(π) = {br}r≤s, ρr is the contents ofbr andpr is
the principal free port ofl(ρr).

In the sequell(π) will play an important role, since it
describes the structure ofπ except from the boxes contour
line. Indeed, it is a simple net ofT (π), obtained by taking
exactly one copy of every box ofπ.
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(d) β2 ∈ T (π2)\T (π1)

Figure 5: π1 andπ2 with same linearization.

Since the empty product!0 is an ll-net, we can introduce
an informative order on ll-nets, useful in the sequel:

Definition 6. We say that an ll-netπ′ is less informative
than an ll-netπ and we writeπ′ ≪ π, whenever there are
boxes(br)r≤s in box(π) such thatπ′ = π[!0/br]r≤s.

It is easy to check that≪ is an order. Intuitively,π′ is the
result of erasing some subroutines ofπ. In general a finite
subset ofT (π) does not have enough information to build
π and we will rather buildπ′ ≪ π (see Th. 1). However,

π′ ≪ π ⇒ T (π′) ⊆ T (π). (1)

II. REVERSINGTAYLOR EXPANSION

In this section we present the merging reduction: our
algorithm reversing the Taylor expansion. Given a finite
polynet, theinitial state (Def. 12, Fig. 8(b)) is obtained by
plugging the simple nets intocounters(Def. 10, Fig. 8(a)).
Then these counters explore the simple nets, merge equal
cells and draw boxes when it is possible. If the algorithm
succeeds, then the result is an ll-net. On Fig. 9, we give the
elementary reduction steps (ers) of the merging reduction.

A. An example.

Before going into more details, let us run our algorithm
on an example. The rewriting is depicted step by step on
Fig. 6. We draw in boldface the redex which is about to be
reduced. The run we follow is successful and its result is
the ll-net depicted on Fig. 5(a).
Initial state. Consider the polynet{α1, α2}, where (pi :
?1, qi : ?!⊥) is the interface ofαi. The algorithm starts
from the initial state depicted on Fig. 6(a). Two counters
connectα1 andα2, one for?1 and one for?!⊥. There are
two tokensl1 and l2 inside the counters and analphabet
{A} containing anaddressA = {l1, l2} which is the set of
tokens inside the counters (Def. 9).
First step. The only possibility is to apply a stepcontr to
the right counter, settingn1 = 2, n2 = 3 and som = 2
(see Fig. 9 for the notation). Indeed we need to choose how
to distribute the three auxiliary ports of the contraction of
α2. It is a non-deterministic step of the merging algorithm:
different choices may lead to non-confluent reductions. In
this example, apart from the reduction we will pursue, one
choiceleads tothe ll-net of Fig. 5(b), and the other onesfail,
i.e. lead to nets with counters that are not further reducible.
Step 2. The derelictions of the redex are merged into a
unique dereliction labelled with the addressA (recall that
it is the set of the tokensl1, l2 in the merging counter).

Step 3. The next redex is reduced by the “crucial” ers
!p
−→.

This step has “created” a box by adding three new tokens
l1
1, l

1
2, l

2
2 and a new addressB = {l1

1, l
1
2, l

2
2}. The new

tokens are associated with the coderelictions in the redex and
they extend the old ones in a sense made precise in Def. 9:
specifically l1

1 (resp. l1
2, l

2
2) extendsl1 (resp. l2). The

addressB represents a box associated with the codereliction
labeled byB and resulting from the merging of the three
coderelictions. The new address opens the possibility of
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Figure 6: an example of reduction.

applying the ers
?p
−→ to the two counters inactive until now.

Step 4. While
!p
−→ creates a box adding a new address,

and enters it via the principal port, a
?p
−→ enters a box

already created using an address available in the alphabet

(hereB) and via an auxiliary port. Notice also that a
?p
−→

can “consume” contractions (here, the counter increases
the number of its auxiliary ports) but it does not merge
derelictions since they can belong to other boxes.
Step 5. The address stored in a counter after a number of
?p
−→ ers must be put down on a cell by a

one
−−→.

Step 6. Two counters meet and they share exactly the same
address. Thus they can be eliminated by a

ax
−→ step.

Step7. The
?p
−→ enters in the boxB, consuming contraction.

The ers
one
−−→ merges the derelictions into one dereliction

labeled withB.
Step 8. Remark that one port of the counter is wired

to a coweakening. The
!p
−→ creates four more to-

kens l
1,1
1 , l1,1

2 , l2,1
2 , l2,2

2 associated with the coweaken-
ing/coderelictions of the redex. A new addressC which is the
set of new tokens appears. These tokens extend the old ones
as hinted by the indices. The tokenl1,1

2 , associated with the
coweakening in the redex, is stored in a special basket that
will be kept until the counter is erased (Def. 10).
Last step. The resulting net is alabeling (Def. 7). It has
neither counter nor cocontraction and every cell is labelled
by an address. It represents the ll-net drawn in Fig. 5(a).

In order to be as local as possible, our reduction cannot
use boxes as they require to define their “frames” all in one



· · ·

p1 : A1 pn : An

γ
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Figure 7: decomposition of a simple net.

go. Thus, we reconstruct the linearizationl(π) of an ll-net
π and we represent the boxes by labeling the cells ofl(π)
with addresses. A total labeling encodes exactly the boxes of
π (Prop. 1). During the execution of the merging algorithm,
the partial labeling is extended step by step up to a total
function. The frames of the boxes ofπ are recovered from
the addresses labeling the cells ofl(π).

B. Labeling

In our example the box associated with the codereliction
labeled byB contains the cells labeled byB and every cell
above. Notice that the set of addresses is endowed with an
order:A ⊑ B ⊑ C, which means that the boxB contains
the boxC. Not every labeling is a correct boxing, we give
conditions (Def. 7) on labelings sufficient to ensure the
equivalence with ll-nets (Prop. 1).

Any cut-free simple netα has acanonical decomposition
into a subnetγ made of axioms and pairwise disjoint trees
(βi)i≤n made of cells and wires (Fig. 7). The leaves ofβi

can be units (⊥ or 1), (co)weakenings, or axioms inγ. We
set a ≤α b whenevera, b belong to the same tree anda
is an ancestor ofb. If α has more than one conclusion then
there are several minimals with respect to≤α. We introduce
a conclusion cell⊥α set to be the minimum of≤α.

Definition 7. Let N be an infinite set ofnames, let α
be a cut-free simple net without cocontraction. We denote
coder(α) the set of codereliction cells ofα. Let L : {⊥α}∪
cell(α) → N be a total function s.t.:

• L is injective oncoder(α) ∪ {⊥α};
• the codomainL(α) of L is L(coder(α) ∪ {⊥α}).

Let us define⊑◦
α,L as theL image of≤α onto L(α), that

is:

∀n, m ∈ L(α), n ⊑◦
α,L m ⇐⇒ ∃ c ≤α d,

{
n = L(c)
m = L(d).

Let us denote⊑α,L the transitive closure of⊑◦
α,L. The pair

(α, L) is called alabeling whenever
(i) ⊑α,L is a tree-order with minimumL(⊥α);
(ii) if c has a predecessorc′, then eitherL(c′) = L(c) and

c is not a codereliction, orL(c) is the son ofL(c′) and
c is a codereliction, or finallyc is a dereliction;

(iii) given two portsp, q connected by an axiom, ifp is an
auxiliary port of a cellc s.t. L(c) 6= L(⊥α), thenq is
the auxiliary port of a cellc′ s.t. L(c′) = L(c).

From the order induced by the labeling, one can recover
the contents of the box associated with a codereliction. Then

a labeling and a box match if the contents of their boxes
coincide.

Definition 8. Let (α, L) be a labeling. With any coderelic-
tion b of α, we associate the labelingcont(α, L, b) corre-
sponding to its contents. It is defined by the simple net

{c ∈ α |L(b) ⊑α,L L(c), c 6= b},

and the labelingLcont(⊥) = L(b) andLcont(c) = L(c).
We say that a labeling(α, L) is equivalent to an ll-netπ

and we write(α, L) ≡ π for short, wheneverα = l(π) and

∀b ∈ box(π) with contentsρ, cont(α, L, b) ≡ ρ. (2)

Proposition 1. A labeling is equivalent to a unique cut-free
ll-net and vice versa (up to a renaming).

Proof: For any labeling one proves that there is a unique
equivalent ll-net by induction on the size of the simple net of
the labeling. The converse is proven by building a labeling
candidate on the linearization: the order⊑ reflects the tree-
order of boxes, the labeling properties (Def 7) follow.

Recall the labeling of Fig. 6. The set of names isN =
{A, B, C} and we haveA ⊑ B ⊑ C, which encodes the
nesting of the boxes of the ll-net of Fig. 5(a).

C. Reduction

The most delicate task of merging reduction is to re-
construct a correct nesting of boxing, i.e. the order⊑ of
Def.7. This reconstruction is made step by step, using the
set theoretical inclusion of tokens, and the induced orderE

on addresses (Def.9): at the end of the process we will have
E=⊑ and consequently an ll-net.

Definition 9. Let X be an enumerable set called theweb. A
token is a finite set of elements inX . An addressis a finite
set of tokens. We setl, m to range over tokens,A, B to range
over addresses, andA,B to range over sets of addresses.
The set-theoretical inclusion of tokens induces the Smyth
pre-order on addresses:

A E B ⇐⇒ ∀m ∈ B, ∃l ∈ A, l ⊆ m.

It is immediate to prove thatE is a pre-order. However let
us stress thatE is not antisymmetric (considerA = {l, m},
B = {l, m′}, with l ⊂ m, m′), nor tree-like (considerA = {l},
A′ = {m}, B = {l, m}, with l, m disjoint) on the whole set
of addresses. Actually,merging triple (defined below) will
handle sets of addresses on whichE is a tree-order.

Let us recall the example of Fig. 6. The algorithm starts
with two different tokensl1 = {x} andl2 = {y} that are
gathered in the addressA which is the lowest element of
the labeling. Each token corresponds to the lowest element
of one of the simple nets. Step3 introduces three new
tokens l1

1 = {x, c1}, l1
2 = {x, c2} and l2

2 = {x, c3}
where c1, c2, c3 correspond to the coderelictions in bold-
face on 6(c). These tokens are gathered in the address
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l1 lnAw

p1 pnA

(a) counter t such that
L(t) = Aw , L(pi) = li

· · ·

A1 Ak

α1 αn· · ·

· · ·l1Aw
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A1A1 Ak
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(b) initial stateInitAw (αi, li)i≤n

Figure 8: counter and initial state.

B = {l1
1, l

1
2, l

2
2} which is used by Steps4, 5 and 7.

We have A E B. Finally, Step 8 introduces the tokens
l
1,1
1 = {x, c1, d1}, l1,1

2 = {x, c2, w}, l2,1
2 = {x, c3, d2} and

l
2,2
2 = {x, c3, d3} whered1, w, d2, d3 are the coderelictions

and coweakening in boldface on 6(h). The corresponding
addressC = {l1,1

1 , l1,1
2 , l2,1

2 , l2,2
2 } is used in Step9. We

haveB E C.
We are working with two orders on addresses:⊑ andE.

The first encodes the structure of boxes, the second is built
step by step by merging reduction. The reduction is defined
so that the two orders coincide, even if they are defined
differently. Indeed,E looks inside addresses, depending on
the set-theoretical inclusion of the tokens (Def. 9), while⊑
looks at the addresses as simple names labeling the cells of
the net (Def. 7).

Definition 10. A counter is a cellt with one principal port
andn ≥ 1 auxiliary ports. Every port oft is labeled by the
same MELL formula. We consider counters as commutative
cells, i.e. their auxiliary ports are unordered. Moreover,t is
given with a labeling functionλt which maps every auxiliary
port to a token andt itself to an address (Fig. 8(a)). We
also require that for every portsp, q of t, λt(p)andλt(q) are
incomparable tokens and also are incomparable with every
element ofλt(t).

In order to describe the partially labeled nets that appear
during the reduction, we introduce triples.

Definition 11. A triple (α, L,A) is made of
• a simple netα with counters which can be decomposed

into two counter-free simple nets↓α and↑α joined by
counterst1, . . . , tn as follows:

· · ·

· · ·

↓α

↑α

A1
w

t1 tn
· · ·l1

1 l1
k

An
w ln

1 ln
k

· · ·

• a setA of addresses and a functionL from cell(↓
α) ∪ {t1, . . . , tn}, ⊥α included, toA, where for every
countert,
L(t) = λt(t) ∪ {λt(p) | p auxiliary port of t}.

We are interested in reductions beginning on an initial
state made of counters linking given simple nets.

Definition 12. Let (αi)i≤n be a collection of simple nets
with paired interfaces. Let(li)i≤n be tokens andAw be an
address such that the tokens inA = Aw∪{li}i≤n are pairwise
incomparable. Theinitial state associated with(αi)i≤n,
(li)i≤n, andAw is the triple(α, LA,A) where
α = InitAw

(αi, li)i≤n is the simple net with counters
pictured on Fig. 8(b) withLA(t) = A for every countert
and A = {A}. In the sequel, whenAw is empty, we will
often omit the subscript and writeInit(αi, li)i≤n.

Now we have all the ingredients to introduce a reduction
mrg
−−→ on triples as the context closure of the binary relation
mrg described in Fig. 9. In the interaction net paradigm [11],
a redex is made of two cells wired by their principal ports.
On the contrary, a merging redex is made of a counter whose
auxiliary ports are linked to the principal ports of cells of
simple nets. For this reason we represent the auxiliary ports
of a counter as tips of triangles. It is important to notice
that though the counters merge cells locally, the labeling
process is global, whence the set of addresses appearing in
the triples.

Definition 13. The merging reduction
mrg
−−→ is the context

closure of theelementary reduction steps, ers for short,
in Fig. 9. This means(α1, L1,A1)

mrg
−−→ (α2, L2,A2) if and

only if there are two triples(α′
1, L

′
1,A1), (α

′
2, L

′
2,A2) s.t.:

• (α′
1, L

′
1,A1)

x
−→ (α′

2, L
′
2,A2) for x an ers amongax,

zero, one, two, (co)w, contr, !p, ?p;
• α′

1 ⊆ α1 andα2 = α1[α
′
2/α′

1];
• L

′
1 = L1|cell(α′

1
), L

′
2 = L2|cell(α′

2
) and for all c ∈ α1 \

α′
1, L2(c) = L1(c).

We denote by
mrg∗
−−−→ the reflexive and transitive clo-

sure of
mrg
−−→. We say that a reduction sequenceR :

(α, L,A)
mrg∗
−−−→(α′, L′,A′) is successfulif α′ is counter-free.

Notice Fig. 9 has three non-deterministic ers
(contr, !p, ?p), where one can choose different surjections
(contr, ?p) or addresses (!p, ?p). Actually the non-
determinism of!p is irrelevant, since different choices ofA′

yield the same labeling, modulo a renaming.
There are only three cases where a reduction falls into a

deadlock, i.e. stops on a triple no further reducible but with
counters: when two counters are linked by axioms and have
different labels; when a counter is linked to one axiom and
another cell; when there is no possible address to go through
a contraction link for a?p-ers.

Since we want the reduction to produce a labeling, we
have to restrict the set of triples that we consider. So we
introduce merging triples such that the result of a successful
reduction (i.e. a counter-free merging triple) is a labeling.
Then we prove that the reduction preserves the properties
of the merging triples. Since the initial states are merging
triples and the counter-free merging triples are labelings, we
get the wanted result.
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like in the ers!p, we order the ports of the counter in the redex so that the firstq ≥ 0 (resp. lastk − q) ports are
connected to derelictions (resp. weakenings); then we choose a numbermi ≤ ni and a surjectionfi from ni to mi

for every i ≤ q; we chooseA′ ∈ A successor of the labeling of the counter in the redex (ifA has no successor
then?p cannot be applied), i.e. such that there exists a family{y} ∪ {xj

i}i≤q,j≤ni
of pairwise distinct elements of

X s.t. A′w = Aw ∪ {li ∪ {y}}q<i≤k andA′ = A′w ∪ {lj
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, wherelj
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i}. We say this ersenters in
the addressA′.

Figure 9: theelementary reduction steps(ers for short) of merging reduction; the net at left of an ers is the redex, the one
at right is thecontractum of the ers. In the erscontr, ?p, we present a bunch of contractions and wirings as a surjective
function f from the auxiliary ports to the principal ones.



Definition 14. The triple (α, L,A) is called a merging
triple if it satisfies

(i) for every countert ∈ α, the principal port oft is
wired to a cellc ∈↓α, ⊥α included, andL(c) E L(t);
moreover, ifL(c) 6= L(t) then every auxiliary port of
t is wired to a derelictionc ∈↑α, or a weakening;

(ii) ∀A, B ∈ A, (A ⊑↓α,L B ⇐⇒ A E B),
(iii) (↓α, L) is a labeling andL(↓α) = A.

Notice that the initial state (Def. 12) is a merging triple.
As we wrote aboveE is not in general an order; how-

ever, if (α, L,A) is a merging triple, then Cond. (ii), (iii)
guarantees thatE is a tree-order onA.

Proposition 2. If (α, L,A)
mrg
−−→ (α′, L′,A′) and (α, L,A)

is a merging triple, then(α′, L′,A′) is also a merging triple.

As a consequence, if a reduction(α, L,A)
mrg∗
−−−→

(α′, L′,A′) is successful,(α′, L′) = (↓α′, L′) is a labeling
and so represents an ll-netπ (Prop. 1). In this case, we say
that the reductionleads toπ and we write

(α, L,A)
mrg∗
−−−→ π.

Proposition 3. The number of ers of any
mrg
−−→-reduction

starting from a merging triple(α, L,A) is polynomially
bounded by the number of ports inα.

The ers of Fig. 9 are local and can be implemented on a
Turing Machine in constant time. Thus Prop. 3 yields:

Corollary 4. The runtime of any
mrg
−−→-reduction starting

from a merging triple(α, L,A) is polynomial in the number
of ports inα.

D. Completeness and soundness

We prove the completeness and soundness of merging re-
duction. The soundness ensures that the simple nets merged
into an ll-net, are in the Taylor expansion of this ll-net.
The completeness theorem proves the converse: simple nets
{αi}i≤n coming from the Taylor expansion of a same ll-net
π can be merged. In fact, since{αi}i≤n is a finite subset of
T (π), then some boxes ofπ can remain undefined from the
merging of{αi}i≤n. Formally this means that the merging
yields an ll-net less informative thanπ (Def. 6)

Theorem 1 (Completeness). Let π be an ll-net, and let
{αi}i≤n be simple nets inT (π). For any family{li}i≤n = A

of tokens pairwise incomparable, there exists an ll-net
π0 ≪ π and a successful reduction that leads toπ0:

(Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ π0,

whereLA is, as usual, the constant function taking valueA.

Proof: The proof is by induction on the exponential
depth ofπ; we split the induction step in two cases: ifπ is a
box, we choose tokens extending the initial ones and gather
them in an addressB. We apply the induction hypothesis

using the addressB and conclude by context closure; in the
general case, we make counter go through the linear part,
and stop at the entrance of boxes. We use the one box case
and conclude by context closure.

To prove the soundness theorem, we need a splitting
lemma which decomposes↑α in initial states (Def. 12).

Lemma 5 (Splitting). Let R be a successful reduction
sequence from a merging triple(α, L,A) and s.t. no ers
of R enters an address labeling a counter ofα; then α
can be split: there are suitable sequences(αr

i )r≤s, i≤nr
of

simple nets,(lr
i )r≤s, i≤nr

of tokens pairwise incomparable
and (Ar

w)r≤s of addresses s.t.

α = · · ·

↓α
· · ·

· · · InitAn
w
(αs

i , l
s
i )i≤ns

InitA1w(α1
i , l

1
i )i≤n1

· · ·
.

Proof: First we prove that sinceR is successful, two
counters of the same connected component of↑α have the
same label. With each labelA, we associate the subnetβ
made of cells connected to a counter labeled byA. Then,
two connected auxiliary ports of counters have the same
label. This allows to decomposeβ into an initial state.

Theorem 2 (Soundness). Let π be an ll-net, let(αi)i≤n

be a family of simple nets with the same interface and let
(li)i≤n = A be a family of pairwise incomparable tokens.
If there is a successful merging reduction leading toπ:

(Init(αi, li)i≤n, LA, {A})
mrg∗
−−−→ π (3)

then for everyi ≤ n, αi ∈ T (π).

Proof: The proof is by induction on the exponential
depth of π. The main idea is to commute the ers in the
reduction leading toπ and to gather the ers that enter a box.
Thanks to the splitting Lemma 5, we get an initial state for
each box. Thus, we can apply the induction hypothesis.

III. PERSPECTIVES

The merging reduction could have been presented differ-
ently, gathering all the non-deterministic choices in a single
initial step and then performing the ”deterministic” part of
the reduction. This amounts to choose a labelingL on the
upper part↑α of an initial state and to transform the merg-
ing reduction in a rewriting that checks deterministically
whetherL is correct. However we have preferred the most
local presentation of the reconstruction of the boxes.

A polynet{αi}i≤n included in the Taylor expansion of an
ll-net π is uniform in the sense that everyαi is built from
the same ll-netπ, by taking different numbers of copies
of the boxes inπ. Our algorithm yields a combinatorial
criterion characterizing the polynets of DILL which are
uniform. Ehrhard and Laurent have used the sum constructor



in DILL to model concurrent computing [12]. Merging
reduction opens a logical approach to a typical problem of
synchronization: when are processes uniform and can be join
up?

The informative order of Def. 6 suggests a natural ques-
tion: is the Taylor expansion injective? This amounts to
question whether the converse of the implication (1) of
Sect. I holds. Indeed if two ll-netsπ, π′ are different, then
either π′ 6≪ π or π 6≪ π′, hence from the converse of the
implication (1) we would haveT (π′) 6= T (π).

Till now, the first author and Mazza [13] have shown the
equivalence between the injectivity of the Taylor expansion
and the injectivity of the LL relational semantics for cut-free
LL nets,5 which is an open problem first addressed in [14].
Our results would allow to deduce the injectivity from the
following confluence property of the merging reduction:

(∗) for every cut-free ll-netπ′, there are simple nets
(αi)i≤n ∈ T (π′) s.t. every successful reduction leads
to π′: Init(αi)i≤n

mrg∗
−−−→ π′.

Let us show how(∗) yields T (π′) ⊆ T (π) ⇒ π′ ≪ π, the
converse of (1). Letπ′ andπ be ll-nets s.t.T (π′) ⊆ T (π).
Assume(∗): there are(αi)i≤n in T (π′) s.t. every succesful
reduction leads toπ′. Since(αi)i≤n ⊆ T (π), by complete-
ness (Th. 1) there isπ0 ≪ π such thatInit(αi)i≤n

mrg∗
−−−→ π0.

By (∗), π0 = π′, soπ′ ≪ π.
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[10] L. Vaux, “λ-calcul différentiel et logique classique : inter-
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