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We study full completeness and syntactical separability of MLL proof nets with the mix

rule. The general method we use consists first in addressing the two questions in the less

restrictive framework of proof structures, and then in adapting the results to proof nets.

At the level of proof structures, we find a semantical characterization of their

interpretations in relational semantics, and we define an observational equivalence which

is proved to be the equivalence induced by cut elimination. Hence, we obtain a

semantical characterization (in coherent spaces) and an observational equivalence for the

proof nets with the mix rule.

1. Introduction

In the proofs-as-programs paradigm a logical proof is a computational process which has

to explicit the information implicit in the cut rules.

Such a process can be described from several points of view. From a syntax, a proof

can be seen as a graph and the cut reduction rules as graph rewriting rules. From a

denotational semantics, a proof can be interpreted as a function invariant under cut

reduction. Finally from an observational semantics, a proof can be identified with its

behavior with respect to a set of contexts and values.

Each of these points of view provides an equivalence between proofs. Broadly speaking,

two proofs are syntactically equivalent when they are reducible to the same graph, in a

denotational semantics when associated with the same invariant, observationally when

given the same value for any context they are put in.

The question of comparing such points of view and their induced equivalences is a

crucial one in modern logic.

When comparing a syntax to a denotational semantics we (mainly) deal with two ques-

tions: injectivity (or faithfullness) and surjectivity (or full completeness). A denotational
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semantics is injective for a syntax if it interprets with different objects syntactically

non-equivalent proofs. The question of injectivity has been addressed in linear logic by

Tortora de Falco in (Tortora de Falco, 2003). On the other side a semantics is fully

complete for a syntax when it is possible to characterize those objects which are inter-

pretations of proofs. The first full completeness result in linear logic is due to Abramsky

and Jagadeesan in (Abramsky and Jagadeesan, 1994).

When comparing a syntax to an observational semantics we deal with the so-called

separation problem. A syntax enjoys separation with respect to an observational seman-

tics if for any two syntactically non-equivalent proofs there exists a context where they

behave differently. At the beginning, separation was stated in pure λ-calculus by Morris

in (Morris, 1968) as a corollary of Böhm theorem (Böhm, 1968): if t, t′ are two distinct

βη-normal terms, then there exists a context C [ ] s.t. C [t] is normalizable but C [t′]

isn’t. Later on, this kind of question has been studied by Statman for the simply typed

λ-calculus in (Statman, 1983). In a more proof-theoretical framework, separation is a

key property of Girard’s ludics (Girard, 2001). Some works on separation has been done

also in linear logic. The first one is (Mascari and Pedicini, 1994), in the framework of

pure proof nets, while in the typed case there is a work by Matsuoka (Matsuoka, 2005),

dealing with the separation of the implicational multiplicative linear logic fragment.

In the present paper we study all these questions in a simple case: the multiplica-

tive fragment of linear logic (MLL). Our syntactical objects will be the proof nets, the

denotational semantics will be relational and coherent semantics, and we define two ob-

servational equivalences between MLL proofs.

The set of proof nets is a subset of a wider set of graphs: the set of proof structures.

More precisely, the proof nets are those proof structures which correspond to correct

proofs. The very importance of proof structures is that cut reduction is directly defined

on them, so we can speak of proof structures reducing to the same graph, as well as of

denotational interpretations or observational behaviors of proof structures.

Our general method is to compare syntax, denotational and observational semantics

at first at the level of proof structures, with less constraints, and later on to adapt the

results to proof nets.

In Section 2 we recall the definition of proof structures and in Section 3 the definition

of relational semantics. The main result of Section 3 is the semantical characterization of

those sets which are interpretations of proof structures (Theorem 3.3). In Section 6 from

this result and from a theorem by Retoré ((Retoré, 1997), here Theorem 6.2) we deduce

an alternative proof (with respect to (Tan, 1997)) of the full completeness of coherent

semantics with respect to the proof nets of MLL with mix (Corollary 6.1).

In Section 4 we introduce an observational equivalence between proof structures (Def-

inition 4.1). The main result of this section is the separation theorem for MLL proof

structures (Theorem 4.1). As corollaries we prove that the defined observational equiva-

lence coincides with the equivalence induced by cut-elimination (Corollary 4.1) and that

such an equivalence is a maximal congruence between proof structures (Corollary 4.2).

In Section 7 we weaken the observational equivalence of Definition 4.1 reducing the ad-

missible contexts (Definition 7.1) and we prove (Proposition 7.1) that concerning this

weaker equivalence the separation of MLL does not hold.
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Fig. 1. Multiplicative links.

For simplicity, we restrict ourselves to the case of a unique pair of atomic formulas X

and X⊥, however, all the results in the present paper still hold in the general case with

slightly more technical definitions.

2. Proof structures

In this section we recall MLL proof structures and MLL cut reduction rules. The for-

mulas of MLL are:

F ::= X | X⊥ | FOF | F ⊗ F

As always we set (AOB)⊥ = A⊥ ⊗ B⊥ and (A ⊗ B)⊥ = A⊥OB⊥. We denote by

capital Greek letters Σ, Π, . . . the sets of formulas. We write A1 � . . . � An−1 � An for

A1 � (. . . � (An−1 � An) . . .), where � is O or ⊗.

Proof structures are oriented graphs (even empty) whose nodes are called links and

whose edges are labeled by formulas of linear logic. When drawing a proof structure

we represent edges oriented up-down so that we may speak of moving downwardly or

upwardly in the graph. Links are defined together with both an arity (the number of

incident edges, called the premises of the link) and a coarity (the number of emergent

edges, called the conclusions of the link). MLL links are the following (see Figure 1):

1 the axiom (ax-link), which has two conclusions labeled by dual atomic formulas, but

no premise;

2 the cut (cut-link), which has two premises labeled by dual formulas but no conclusion;

3 the par (O-link), which has two ordered premises and one conclusion. If the left

premise is labeled by the formula A and the right premise is labeled by the formula

B, then the conclusion is labeled by the formula AOB;

4 the tensor (⊗-link), which has two ordered premises and one conclusion. If the left

premise is labeled by the formula A and the right premise is labeled by the formula

B, then the conclusion is labeled by the formula A ⊗ B.

Each edge is the conclusion of a unique link and the premise of at most one link.

Edges which are not the premise of any link are the conclusions of the proof structure.

If π is a proof structure with conclusions C1, . . . , Cn, we define the closure of π with

conclusion C1O . . .OCn as the proof structure obtained from π by adding the necessary

O-links below C1, . . . , Cn.

Proof structures are denoted by Greek letters: π, σ, τ, . . ., the edges by initial Latin

letters: a, b, c . . . and the links by middle-position Latin letters: l, m, n, o . . .. We write

a : A if a is an edge labeled by the formula A.



M. Pagani 4

ax ax ax

cut

X XX⊥
X⊥
 β X X⊥

Fig. 2. Axiom cut reduction 1.

Remark that axioms introduce just atomic formulas: this is a common way to avoid

the η-expansion rule (see for example (Tortora de Falco, 2003)).

We recall in the framework of proof structures the notion of congruent equivalence,

defined by Girard in (Girard, 1991):

Definition 2.1. An equivalence ≡ between proof structures is a congruence (or is

congruent) when for all proof structures π1, π2, if π1 ≡ π2 then π1 and π2 have the

same conclusions, and whenever π′
1 and π′

2 have been obtained from π1 and π2 by adding

the same links, π′
1 ≡ π′

2.

The cut-link defines the composition between proof structures: if π and σ are two proof

structures with conclusions respectively Π, A and Σ, A⊥, the composition of π and σ

on A, A⊥, denoted by [π, σ]A,A⊥ , is the proof structure with conclusions Π, Σ obtained

by joining π and σ with a new cut-link with premises A and A⊥. We omit the indexes

A,A⊥ in case it is clear which are the premises of the cut.

A proof structure without cuts is called cut-free. The MLL cut reduction rules

are graph rewriting rules which modify a proof structure π, obtaining a proof structure

π′ with same conclusions as π. We denote the cut reduction relation between π and π′

as π  β π′, recalling the β-reduction of λ-calculus.

Let l be a cut in a proof structure, the premises of l may be labeled either by dual

atomic formulas X and X⊥, or by dual compound formulas AOB and A⊥ ⊗ B⊥. The

cut reduction rule for l is as follows:

— if l has premises labeled by dual atomic formulas X and X⊥, let m be the axiom of

which a conclusion is the premise of l labeled by X and let n be the axiom of which

a conclusion is the premise of l labeled by X⊥. If m 6= n, then l is reduced erasing

l, m, n and the l premises, and later on linking the remained m, n conclusions through

a new axiom link (Figure 2). If m = n, then l is reduced simply erasing l, m and the

l premises (Figure 3);

— if l has premises labeled by dual compound formulas AOB and A⊥ ⊗ B⊥, let m be

the par whose conclusion is the premise of l labeled by AOB and let n be the tensor

whose conclusion is the premise of l labeled by A⊥ ⊗B⊥ (remember that compound

formulas do not label conclusions of axioms). Let a, b (resp. a′, b′) be the left and right

premises of m (resp. of n). Then l is reduced simply erasing l, m, n and l premises,

and later on linking respectively a, a′ and b, b′ by two new cuts (Figure 4).

The reduction in Figure 3 is maybe unusual, indeed it has a dubious logical meaning. Yet

we are not at logic level: we study the reduction rules just as rewriting rules for proof

structures. In Section 5 we will upgrade to proof nets, the links will acquire a logical
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Fig. 4. O/⊗ cut reduction.

meaning as well as the reduction rules. In particular proof nets do not allow “vicious

cuts” as the cut between the two conclusions of an axiom.

The reflexive and transitive closure of  β is denoted by →β . The symmetric closure

of →β is denoted by =β and called β-equivalence.

As it is known, →β enjoys confluence and strong normalization†:

Theorem 2.1 (Confluence). For every proof structure π1, π2 and π3, s.t. π1 →β π2

and π1 →β π3, there is a proof structure π4, s.t. π2 →β π4 and π3 →β π4.

Theorem 2.2 (Strong normalization). For every proof structure π, there is no infinite

sequence of proof structures π0, π1, π2, . . . s.t. π0 = π and πi  β πi+1.

Confluence and strong normalization assure that in each equivalence class of =β there

is one and only one cut-free proof structure. We remark that the only cut-free proof

structure without conclusions is the empty graph, hence all the proof structures without

conclusions are reduced to the empty graph.

It is well-known that the conclusions of a cut-free proof structure determine it up to

the axioms: a cut-free proof structure with conclusions C1, . . . , Cn is the forest of the n

syntax trees of the formulas C1, . . . , Cn and a set of axioms linking in pairs such forest

leaves.

3. Relational semantics

Relational semantics associates with MLL formulas sets and with proof structures rela-

tions, which are invariant under cut reduction.

† Actually in (Girard, 1987), Girard proves that →β is confluent and strong normalizing for proof nets.
We remark that those proofs can be extended straightforwardly to the general case of proof structures.
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Let X be a set, a relational model on X (RelX ) associates with formulas sets, in

the following way:

— X is associated with the atomic formulas X, X⊥;

— if A and B are associated resp. with A and B, then A × B is associated with AOB

and A ⊗ B.

We denote the elements of sets by final Latin letters u, v, x, y, z . . ., and the subsets by

initial Greek letters α, β, . . ..

For each proof structure π, we define the interpretation of π in RelX , denoted by

JπKX , where the index X is omitted if it is clear which set is associated with the atomic

formulas.

In case π has no conclusion, let JπK set as undefined. Otherwise, let c1 : C1, . . . , cn : Cn

be the conclusions of π, JπK is a subset of C1×. . .×Cn, which we define by using the notion

of experiment. The experiments have been introduced by Girard in (Girard, 1987), and

extensively studied in (Tortora de Falco, 2000) by Tortora de Falco.

Definition 3.1 (Experiment). A RelX experiment e on a proof structure π,

denoted by e : π, is a function associating with every edge a : A of π an element of A, so

that the following conditions are respected:

axiom: if a, b are the conclusions of an ax-link, then e(a) = e(b);

cut: if a, b are the premises of a cut-link, then e(a) = e(b);

multiplicative: if c is the conclusion of a O- or ⊗-link with premises a and b, then

e(c) =< e(a), e(b) >.

Experiments can be viewed as π edges decorations either from axioms to conclusions or

vice-versa from conclusions to axioms: multiplicative condition determines an experiment

either assigning values to the axioms, if cut-condition is satisfied, or assigning values to

the conclusions and to the cuts of π, if axiom-condition is satisfied.

Let π be a proof structure with conclusions c1 : C1, . . . , cn : Cn and e : π be an

experiment, then the result of e is the element < e(c1), . . . , e(cn) > of C1 × . . . × Cn.

The interpretation of π in RelX is the set of the results of all experiments on π:

JπKX = {< e(c1), . . . , e(cn) > | e is a RelX experiment on π}

For each formula C we have on the one hand the proof structures with conclusion C,

on the other hand the subsets of C, being J KX a function from the proof structures to

the subsets of C. It is well known that‡:

Theorem 3.1 (Soundness of J KX ). For every proof structures π, π′, π =β π′ implies

JπKX = Jπ′KX .

Theorem 3.2 (Injectivity of J KX ). If X is infinite, then for every proof structures

π, π′, JπKX = Jπ′KX implies π =β π′.

‡ Actually in (Girard, 1987) (resp. (Tortora de Falco, 2003)) the author proves the semantical soundness
(resp. injectivity) in the more resticted case of proof nets. We remark that those proofs can be extended
straightforwardly to the general case of proof structures.
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The main result of this section is to characterize those subsets of C, called complete

subsets, which are the interpretations of proof structures with conclusion C (Theorem

3.3). In this way, J KX becomes a bijection between the cut-free proof structures with

conclusion C and the complete subsets of C.

To achieve Theorem 3.3 let us start from the proof of the injectivity of J KX . Let π

be a cut-free proof structure with conclusion C, we have already noticed that π can be

presented as a set of axioms linking the leaves of the syntax tree of C. The proof of the

injectivity of J KX mainly uses the fact that there exists u ∈ JπKX which codes all the

pairs of dual leaves linked by an axiom of π. Indeed such an element u is the result of an

injective experiment, defined in (Tortora de Falco, 2000):

Definition 3.2. Let π be a cut-free proof structure and e : π be an experiment. e is

injective when for all formulas A and edges a, a′ labeled by A, e(a) 6= e(a′).

We remark that, if X is infinite, any cut-free proof structure has injective experiments:

simply take an injective assignment of values to the axioms of the proof structure.

The results of injective experiments are the most informative points of C: we define

a pre-order � on the elements of C (Definition 3.3), measuring how much information

on proof structures is coded by an element; as expected, the results of injective experi-

ments are maximal among the (balanced, see Definition 3.4) elements of C. Conversely,

in Lemma 3.1 we prove that all the maximals among the (balanced) elements of A are

results of injective experiments.

In Lemma 3.2, we prove that for every proof structure π, the set JπK has the shape

{v|u � v}, where u is the result of an injective experiment on π. Therefore we define the

complete subsets of C as those subsets of the form {v|u � v}, for a maximal u among

the (balanced) elements of C. In this way we get a characterization for those subsets of

C which are interpretations of proof structures (Theorem 3.3).

An element u of a set C is a sequence of elements of the basic set X and the symbols

<, >. We call the elements of X which are in u the atoms of u. We remark that any

element u in C defines a labeling of the edges of the syntax tree of C, in particular the

atoms of u will label the leaves of such a tree. An occurrence of an atom x in u is a

positive occurrence if it labels a subformula X of C, it is a negative occurrence if

it labels a subformula X⊥ of C.

Having given two elements x, y ∈ X , we define u[y/x] as the element of C obtained

from u by substituting y for each occurrence of x. As always, we extend the definition to

simultaneous substitutions u[y1/x1, . . . , yn/xn].

Definition 3.3. Let C be an MLL formula, C its associated set and u, u′ ∈ C. We write

u � u′ if there is a substitution [y1/x1, . . . , yn/xn] so that u[y1/x1, . . . , yn/xn] = u′. We

set u ≈ u′ if u � u′ and u′ � u.

In general ≈ identifies the results of the experiments different just for a renaming of

the values appointed to the conclusions of the axioms.

The following definition allows to take out from C those elements which cannot be in

the interpretation of a proof structure:
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Definition 3.4. An element u ∈ C is balanced, if for every atom the number of its

positive occurrences in u is equal to the number of its negative occurrences.

The property of being balanced is stable under substitution: if u is a balanced element,

then u[y1/x1, . . . , yn/xn] is balanced for every substitution [y1/x1, . . . , yn/xn].

The pre-order � evaluates how much informative the elements of C are. The results of

injective experiments are balanced and maximal among the balanced elements of C. We

prove the vice-versa in the next lemma:

Lemma 3.1. Let X be an infinite set, C be a set associated with a formula C in RelX . Let

u ∈ C be a balanced element which is maximal among the balanced elements of C. There

is a cut-free closed proof structure πu with conclusion C and an injective experiment

eu : πu such that the result of eu is u.

Proof. From the C tree we get πu up to the axioms. Since u is balanced and maximal

among the balanced elements and X is infinite, each atom x of u has exactly one positive

and one negative occurrence in u, hence each atom x defines a pair of leaves X, X⊥ of

the C tree. We get πu by linking with axioms such pairs.

Clearly u is the result of the injective experiment on πu which takes the value x on

the pair of edges of type X, X⊥ associated with x in u.

Lemma 3.2. Let X be an infinite set and π be a closed cut-free proof structure with

conclusion C. There is a balanced element u in JπKX maximal among the balanced

elements of C. Moreover for any such balanced and maximal u, JπKX = {v|u � v}.

Proof. Since X is infinite, there are injective experiments on π. Let e : π be an injective

experiment, and u its result. Clearly u is balanced and maximal among the balanced

elements of C. Now, take any such u.

Let a1, . . . , an be the conclusions of type X of the axioms of π. Let e′ : π be an

experiment and v its result. Clearly v = u[e′(a1)/e(a1), . . . , e
′(an)/e(an)], therefore u � v.

Conversely, let v ∈ C be so that u � v, then there is a substitution [y1/e(a1), . . . , yn/e(an)],

so that v = u[y1/e(a1),. . . ,yn/e(an)]. Let e′ be the experiment so that e′(a1) = y1, . . . ,

e′(an) = yn, clearly e′ has v as result.

Definition 3.5. A subset α ⊂ C is complete if there is a balanced element u ∈ α which

is maximal among the balanced elements of C and

α = {v|u � v}

Theorem 3.3. Let X be an infinite set. Let C be an MLL formula and C its inter-

pretation in RelX . A subset of C is the interpretation of a closed proof structure with

conclusion C if and only if it is complete.

Proof. Let α be a complete set of C. By its definition there is a balanced element u ∈ α

which is maximal among the balanced elements of C and α = {v|u � v}. By Lemma 3.1

there is a proof structure πu and an injective experiment eu : πu so that the result of eu

is u. By Lemma 3.2, JπuK = α.
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Fig. 5. Observational values f and Ω.

Conversely, let π be a closed proof structure with conclusion C. By Lemma 3.2, JπK is

complete.

4. Observational equivalence of proof structures

In Definition 4.1 we introduce an observational equivalence ∼B between proof structures.

The main result of this section is Theorem 4.1 by which follows that =β and ∼B are the

same equivalence (Corollary 4.1) and that such an equivalence is a maximal congruence

(Corollary 4.2).

We choose as observational values the only two cut-free proof structures with conclusion

(X⊥⊗X⊥)O(XOX) (Figure 5). We denote the formula (X⊥⊗X⊥)O(XOX) by B, and

the two cut-free proof structures with conclusion B resp. by f and Ω.

A proper axiom with conclusions C1, . . . ,Cn is a link without premises but with

n conclusions labeled respectively by C1, . . . , Cn. A context of type C1, . . . ,Cn is a

proof structure with conclusion B where proper axioms with conclusions C1, . . . , Cn can

occur. We denote a context by C [ ].

Let π be a proof structure with conclusions C1, . . . , Cn and let C [ ] be a context of the

same type. By C [π] we denote the proof structure with conclusion B obtained from C [ ]

substituting π for each occurrence of the proper axiom.

Definition 4.1. Let π1, π2 be proof structures with conclusions C1, . . . , Cn. We say that

π1 and π2 are observationally equal (denoted by π1 ∼B π2) if for all contexts C [ ] of

type C1, . . . , Cn, C [π1] =β C [π2].

Clearly ∼B is a congruence. By Theorem 4.1 we prove that ∼B and =β are indeed the

same equivalence (Corollary 4.1):

Theorem 4.1 (Separation of MLL). Let π1 and π2 be two closed proof structures

with conclusion C. If π1 6=β π2, then there is a proof structure σ with conclusion C⊥,B,

such that [σ, π1] →β f and [σ, π2] →β Ω.

Proof. Let π1, π2 be two different cut-free proof structures with conclusion C. Let
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1, . . . , 2n be an enumeration of the leaves of the syntax tree of C, so that the odd

numbers enumerate the leaves labeled by X and the even numbers those labeled by X⊥.

We have already noticed that π1, π2 can be presented as bijections from the odd to the

even numbers of {1, . . . , 2n}. Since π1 6= π2, there is an odd number o ≤ 2n such that

π1(o) = e and π2(o) = e′ for e 6= e′.

We define the proof structure σ with conclusions C⊥,B, such that [π1, σ] →β f and

[π1, σ] →β Ω. The forest of the syntax trees of C⊥,B has 2n+4 leaves. The enumeration

given above of the leaves of the syntax tree of C induces an enumeration 1, . . . , 2n, 2n +

1, . . . , 2n + 4 of the leaves of the forest, so that:

— the odd (resp. even) numbers in {1, . . . , 2n} enumerate the leaves labeled by X⊥

(resp. X) above C⊥;

— the odd (resp. even) numbers in {2n + 1, . . . , 2n + 4} enumerate the leaves labeled by

X (resp. X⊥) above B.

In particular we remark that e, e′ are now associated with leaves labeled by X above

C⊥ and o with a leaf labeled by X⊥ above C⊥, finally 2n + 1 and 2n + 3 (resp. 2n + 2

and 2n + 4) are the two leaves labeled by X (resp. X⊥) above B.

σ is any bijection between the leaves labeled by X and those labeled by X⊥, so that

σ(o) = 2n + 1, σ(e) = 2n + 2 and σ(e′) = 2n + 4. Clearly we have that [σ, π1] →β f and

[σ, π2] →β Ω.

Corollary 4.1 (Equality of ∼B and =β). Let π1 and π2 be two proof structures with

same conclusions, π1 ∼B π2 iff π1 =β π2.

Proof. Let π1 and π2 be two proof structures with same conclusions, we may suppose

π1, π2 closed, since both ∼B and =β are congruences. By the confluence of =β, if π1 =β π2

then π1 ∼B π2, the converse holds by Theorem 4.1.

Corollary 4.2 (Maximality of =β). Let ≡ be a congruence which contains =β, then

either ≡ is equal to =β or ≡ collapses.

Proof. Let ≡ be a congruence containing =β and let us suppose that there are two

distinct proof structures π1, π2 such that π1 ≡ π2 but π1 6=β π2. We prove τ1 ≡ τ2, for

every proof structure τ1, τ2 with same conclusions.

Since ≡ is a congruence we can suppose π1 and π2 to be closed with same conclusion C.

Since π1 6=β π2, by Theorem 4.1 there is a proof structure σ with conclusions C⊥,B, such

that [π1, σ] →β f and [π2, σ] →β Ω. By the congruence of ≡, we deduce [π1, σ] ≡ [π2, σ],

hence f ≡ Ω.

Let τ1, τ2 be two distinct proof structures with same conclusions, we prove that τ1 ≡ τ2.

Since ≡ is a congruent extension of =β, we can suppose τ1, τ2 to be cut-free and with

only one conclusion D. Let 1, . . . , 2n be an enumeration of the leaves of the syntax tree

of D, so that the odd numbers enumerate the leaves labeled by X and the even numbers

the ones labeled by X⊥. Since D has at least two distinct cut-free proof structures (i.e.

τ1, τ2), D has at least two occurrences of X and two of X⊥, i.e. n ≥ 2.

We have already seen that τ1, τ2 can be presented as bijections from the odd to the

even numbers of {1, . . . , 2n}. Since τ1 6= τ2, there is an odd number o ≤ 2n such that



Proofs, Denotational Semantics and Observational Equivalences in MLL 11

τ1(o) 6= τ2(o), let us choose o minimal and let τ1(o) = e, τ2(o) = e′ and τ−1

2 (e) = o′. By

minimality of o, o < o′.

Now, we define a proof structure σ with conclusions D⊥, D,B⊥. The forest of the syntax

trees of such conclusions has 2n + 2n + 4 leaves. The above enumeration of the leaves of

the syntax tree of D induces an enumeration 1, . . . , 2n, 2n + 1, . . . , 4n, 4n + 1, . . . , 4n + 4

of the forest leaves, so that:

— the odd (resp. even) numbers in {1, . . . , 2n} enumerate the leaves labeled by X⊥

(resp. X) above D⊥;

— the odd (resp. even) numbers in {2n + 1, . . . , 4n} enumerate the leaves labeled by X

(resp. X⊥) above D;

— the odd (resp. even) numbers in {4n+1, . . . , 4n+4} enumerate the leaves labeled by

X⊥ (resp. X) of the tree of B⊥.

In particular we remark that e and e′ are associated with leaves labeled by X above

D⊥, while 2n + e and 2n + e′ are associated with leaves labeled by X⊥ above D, and

finally 4n+1 and 4n+3 (resp. 4n+2 and 4n+4) are the two leaves labeled by X (resp.

X⊥) above B.

We set σ(e) = 4n + 2, σ(e′) = 4n + 4, σ(2n + e) = 4n + 1, σ(2n + e′) = 4n + 3, and for

all the others i ≤ 2n, σ(i) = 2n + i.

The peculiarity of σ is that the action of [σ,f] is the identity, while the action of

[σ, Ω] is the flip of e and e′. More precisely, for any proof structure π with conclusion D,

[[σ,f], π] →β π, while [[σ, Ω], π] →β π′, where π′ is obtained from π by flipping e and e′.

Moreover, by the congruence of ≡ and the fact that f ≡ Ω, we have [σ,f] ≡ [σ, Ω].

Now, by induction on 2n − o we prove that τ1 ≡ τ2:

— if 2n − o = 1, then o = 2n − 1 and o′ = 2n and τ1(o
′) = e′. As we have remarked,

[[σ,f], τ1] →β τ1 and [[σ, Ω], τ1] →β τ2. Since [σ,f] ≡ [σ, Ω], we get τ1 ≡ τ2;

— if 2n − o > 1. As we have remarked, [[σ,f], τ1] →β τ1 and [[σ, Ω], τ1] →β τ3, where

τ3 is obtained from τ1 by flipping e and e′. In particular τ3(e
′) = o, so that τ2 and

τ3 at most differ on an o′′ > o, thus, by induction hypothesis τ3 ≡ τ2. Therefore,

τ1 ≡ [[σ,f], τ1] ≡ [[σ, Ω], τ1] ≡ τ3 ≡ τ2.

Relational semantics defines a congruence ≡Rel between proof structures, what means

π1 ≡Rel π2 if for all X , Jπ1KX = Jπ2KX . By the soundness of the relational semantics

we know that =β ⊆ ≡Rel. Now, by Corollary 4.2 we get the converse ≡Rel ⊆ =β , i.e.

a proof of the injectivity of the relational semantics, alternative to that in (Tortora de

Falco, 2003).

5. Proof nets

It is well known that MLL sequent calculus is defined by the following rules (Girard,

1987):
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ax

` X, X⊥
` Γ, A ` ∆, A⊥

cut
` Γ, ∆

` Γ, A, B
O

` Γ, AOB

` Γ, A ` ∆, B
⊗

` Γ, ∆, A ⊗ B

which can be enlarged with the mix rule:

` Γ ` ∆
mix

` Γ, ∆

In this paper we refer to the sequent calculus enlarged with the mix rule.

The MLL sequent calculus proofs can be translated into proof structures: there is a

function, called desequentialization, which associates with a sequent proof P a proof

structure (P )•. (P )• is defined by induction on P (see (Girard, 1987)):

— if P is an axiom with conclusions X, X⊥, then (P )• is an axiom link with conclusions

X, X⊥;

— if P ends in a O-rule, having as premise the subproof P ′, then (P )• is obtained by

adding to (P ′)• the O-link corresponding to the O-rule;

— if P ends in a ⊗-rule (resp. cut-rule), with premises the subproofs P ′ and P ′′, then

(P )• is obtained by connecting (P ′)• and (P ′′)• by means of the ⊗-link (resp. cut-link)

corresponding to the ⊗-rule (resp. cut-rule);

— if P ends in a mix-rule, with premises the subproofs P ′ and P ′′, then (P )• is obtained

by taking the disjoint union of (P ′)• and (P ′′)•.

A proof net is a proof structure associated with a sequent calculus proof. A unique

proof net can be associated with several sequent calculus proofs: it yields an abstract

representation of the sequent proofs modulo inessential commutation of rules (see (Bellin

and de Wiele, 1995)). We highlight that both semantical injectivity and syntactical sep-

arability can be studied in linear logic thanks to such abstractions from inessential com-

mutations.

As it is known, there are many geometrical characterizations of MLL proof nets, called

correctness criteria (for example in (Girard, 1987) or (Danos and Regnier, 1989)). We

recall here the criterion from (Danos and Regnier, 1989).

A correctness graph of a proof structure π is a subgraph of π which is obtained by

erasing one premise for each O-link. A proof structure is correct if all its correctness

graphs are acyclic. Danos and Regnier prove in (Danos and Regnier, 1989) the following

theorem:

Theorem 5.1. A proof structure is correct if and only if it is a proof net.

In Section 6 we recall a result by Retoré ((Retoré, 1997)), providing a semantical

characterization of MLL correctness by means of coherent semantics. Such a result,

together with Theorem 3.3, proves the correspondence between proof nets and complete

cliques (Corollary 6.1).
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6. Coherent semantics

A coherent space X is a couple (|X |, a

`
), where |X | is a set, called the web of X , and

a

`
is a binary relation in |X | which is reflexive and symmetric, called the coherence of

X . A clique of X is a subset of |X | whose elements are pairwise coherent.

We will write x a

`
y [X ] if we want to explicit which coherent space a

`
refers to. We

introduce the following notation, well-known in the framework of coherent spaces:

— x ay, if x a

`
y and x 6= y;

— x `

a
y, if not x ay;

— x `y, if not x a

`
y.

Remark that we may define a coherent space specifying its web and one among its

relations a

`
, `

a
, a, `.

A coherent space is identified with a graph whose vertex set is |X | and whose edges

set is the extension of a

`
.

Let X be a coherent space, a coherent model on X (CohX ) associates with MLL

formulas coherent spaces, defined by induction on the formulas, as follows:

— with X it associates X ;
— with A⊥ it associates A⊥ defined as follows: |A⊥| = |A|, the coherence of A⊥ is the

incoherence of A, i.e. x a

`
y

[

A⊥
]

iff x `

a
y [A];

— with A ⊗ B it associates A ⊗ B defined as follows: |A ⊗ B| = |A| × |B| and < a, b >
a

`
< a′, b′ > [A⊗B] iff a a

`
a′ [A] and b a

`
b′ [B].

Of course, the space AOB is defined by (A⊥ ⊗ B⊥)⊥.

Remark that the web associated with a formula A by CohX is precisely the interpre-

tation of A in Rel|X |.

Let π be a proof structure with conclusions c1 : C1, . . . , cn : Cn, the interpretation

of π in CohX is a subset of |C1O . . .OCn|, denoted by JπKX , where the index X is omitted

in case it is clear which coherent space is associated with X .

JπK is defined exactly in the same way as in relational semantics (see Section 3). We

have the same definitions concerning the experiment e on a proof structure π, its result,

and the interpretation JπK. The relational interpretation of π differs from the coherent

one only in presence of exponentials: if π is an MLL proof structure, JπKRel = JπKCoh.

What we achieve by introducing coherence is that the set JπKX can be or not a clique.

Girard proves in (Girard, 1987) that if π is a proof net then JπKX is a clique (Theorem

6.1). Retoré proves the converse for the cut-free proof nets (Theorem 6.2), hence the

correctness of a cut-free proof structure corresponds to the pairwise coherence of the

results of its experiments:

Theorem 6.1. If π is a proof net then JπKX is a clique.

Theorem 6.2. Let π be a cut-free proof structure and X be a coherent space with at

least x, y, z, such that x ay and x `z. If JπKX is a clique then π is a proof net.

Since the web of a coherent space is a set, we can introduce the pre-order � (Definition

3.3) and the notion of complete subset (Definition 3.5) on webs exactly in the same

way as we did with relational semantics.
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If A is a coherent space, a complete clique of A is a complete subset of |A| which is

a clique, then:

Corollary 6.1. Let X be a coherent space whose web is infinite and with x, y, z, such

that x ay and x `z. Let C be an MLL formula and C its interpretation in CohX .

A subset of C is the interpretation of a closed proof net with conclusion C if and only

if it is a complete clique.

Proof. Let α be a complete clique of C. Since α is complete, by Theorem 3.3, there is

a closed cut free proof structure π with conclusion C such that JπK = α. Since α is a

clique, by Theorem 6.2, π is a proof net.

Conversely, if π is a proof net, by Theorem 6.1 JπK is a clique, and by Theorem 3.3 JπK

is complete.

7. Observational equivalence of proof nets

The observational equivalence ∼B (Definition 4.1) depends on the proof structures behav-

iors within all possible contexts. In this section we would like to restrict the observations

just to the correct contexts.

At first, we remark that the only two proof structures f and Ω with conclusion B

(Figure 5) are correct, therefore we can keep them as observational values. At second,

we extend the correctness criterion to contexts. A correctness graph of a context is a

subgraph obtained by erasing one premise for each O-link. A context is correct if all its

correctness graphs are acyclic.

Definition 7.1. Let π1, π2 be two proof nets with conclusions C1, . . . , Cn. We say that

π1 and π2 are observationally weak equal (π1 ∼w
B

π2) if for all the correct contexts

C [ ] of type C1, . . . , Cn, C [π1] =β C [π2].

Clearly =β ⊆ ∼w
B
. The main result of this section is Proposition 7.1, which states that

=β ∼
w
B
: there are proof nets which are observationally weak equal but not β-equivalent

(hence, neither observationally equal).

Such a result does not clash with Corollary 4.2, stating that =β is a maximal congru-

ence. It means that ∼w
B

is not a congruence when extended to proof structures. Indeed

∼w
B

is defined only between proof nets but not between proof structures in general, there-

fore if π1 and π2 are two observationally weak equal proof nets, and if π′
1 and π′

2 have

been obtained from π1 and π2 by adding the same links, π′
1 �

w
B

π′
2 could happen simply

because π′
1 and π′

2 are not correct.

Remark that in general a context can be quite complex, namely the proper axioms

might be whenever and wherever we want them. Before attacking Proposition 7.1, it is

thus convenient to restrain our observations to the simplest contexts, which are the proof

nets themselves:

Lemma 7.1 (Context lemma). Let π1 and π2 be two proof nets with conclusions

C1, . . . , Cn. Let π∗
1 and π∗

2 be the two closures of π1, π2 with conclusion C1O . . .OCn.
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O

⊗

O

O

⊗

ax

ax ax

O

⊗

O

O

⊗

axax

X

X⊥X X

ax

X

X⊥X X⊥ X⊥XX⊥ X⊥

Fig. 6. Example of proof nets π1, π2 with conclusion ((X ⊗ X)OX)O(X⊥
⊗ X⊥)OX⊥.

Then π1 �
w
B

π2 iff there is a proof net σ with conclusions C⊥
1 ⊗ . . . ⊗ C⊥

n ,B, such that

[π∗
1 , σ] 6=β [π∗

2 , σ].

Proof. The ”if” part is immediate. Conversely, let π1 and π2 be two proof nets with

same conclusions C1, . . . , Cn such that π1 �B π2. We prove that there is a proof net σ

with conclusions C⊥
1 ⊗ . . . ⊗ C⊥

n ,B, such that [π∗
1 , σ] 6=β [π∗

2 , σ].

By Definition 7.1, there is a correct context C [ ] such that C [π1] 6=β C [π2]. We

enumerate by 1, . . . , k the occurrences of the proper axiom in C [ ]. For each i ≤ k, let

σi be the proof net obtained from C [ ] substituting π1 to the occurrences 1, . . . , i of the

proper axiom and π2 to the occurrences i+1, . . . , k. Clearly, σ0 = C [π2] 6=β C [π1] = σk,

hence there is an i such that σi 6=β σi+1. σ is obtained from C [ ] in two steps. At first,

we substitute π1 to the occurrences 1, . . . , i of the proper axiom in C [ ] and π2 to the

occurrences i + 2, . . . , k. At second, we substitute the i + 1-th occurrence of the proper

axiom with the set of the n axioms with conclusions respectively C⊥
1 , C1, . . . , C⊥

n , Cn

and we link the conclusions C⊥
1 , . . . , C⊥

n with tensors, so as to get a unique conclusion

C⊥
1 ⊗ . . . ⊗ C⊥

n .

Clearly σ is correct, moreover [π∗
1 , σ] =β σi 6=β σi+1 =β [π∗

2 , σ].

Now, let us prove that ∼w
B

is a strict extension of =β:

Proposition 7.1. There are proof nets π1, π2 such that π1 6=β π2 and π1 ∼w
B

π2.

Proof. Let C be the formula ((X ⊗X)OX)O(X⊥⊗X⊥)OX⊥, and π1, π2 be any two

different cut-free proof nets with conclusion C (take for example those in Figure 6).

Let us suppose π1 �
w
B

π2 and let us prove the absurdity. By Lemma 7.1 there is a proof

net σ with conclusions C⊥,B, such that [π1, σ] 6=β [π2, σ]. Since f and Ω are the only two

cut-free proof nets with conclusion B, we may suppose [π1, σ] →β f and [π2, σ] →β Ω.

Let X be a coherent space with x, y, z ∈ |X |, such that x ay, x `z and y `z: we will

prove that JσKX is not a clique, hence contradicting Theorem 6.1.

We remark that 〈〈x, z〉 , 〈x, z〉〉 ∈ JfK and 〈〈x, z〉 , 〈z, x〉〉 ∈ JΩK, therefore there are

u ∈ Jπ1K and v ∈ Jπ2K such that 〈u, 〈〈x, z〉 , 〈x, z〉〉〉, 〈v, 〈〈z, x〉 , 〈z, x〉〉〉 ∈ JσK.
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⊗ O

O⊗

O

⊗

⊗

O

ax ax

ax

ax

ax

X⊥X X⊥

X⊥ X⊥

X⊥

X X

X X

Fig. 7. Non-correct proof structure σ with conclusion C⊥,B.

By Theorem 6.1, Jπ1K and Jπ2K are complete cliques, thus for all u′, v′ ∈ |C|, s.t.

u′ � u (resp. v′ � v), u′ ∈ Jπ1K (resp. v′ ∈ Jπ2K). In particular, let w1, . . . , wn be

the atoms different from z and x in u and v. We define u′ = u[x/w1, . . . , x/wn] (resp.

v′ = v[x/w1, . . . , x/wn]). Since u′ � u (resp. v′ � v) , u′ ∈ Jπ1K (resp. v′ ∈ Jπ2K); more-

over, since JσK is a complete clique too and 〈u′, 〈〈x, z〉 , 〈x, z〉〉〉 � 〈u, 〈〈x, z〉 , 〈x, z〉〉〉 (resp.

〈v′, 〈〈x, z〉 , 〈z, x〉〉〉 � 〈v, 〈〈x, z〉 , 〈z, x〉〉〉), we have that 〈u′, 〈〈x, z〉 , 〈x, z〉〉〉, 〈v′, 〈〈x, z〉 , 〈z, x〉〉〉 ∈

JσK.

Now, let us look at the atom a (resp. b) of u′ (resp. v′) corresponding to the bold

occurrence of X in C⊥ = ((X⊥OX⊥) ⊗ X⊥) ⊗ (XOX)⊗X.

If a = x and b = z (or vice-versa, a = z, b = x), then a `b [X ], which implies

u′ `v′
[

C⊥
]

by the definition of the coherent spaces associated with C⊥. Moreover,

〈〈x, z〉 , 〈x, z〉〉 ` 〈〈x, z〉 , 〈z, x〉〉 [B], by the definition of the coherent spaces associated

with B = (X⊥⊗X⊥)O(XOX). Thus, 〈u′, 〈〈x, z〉 , 〈x, z〉〉〉 ` 〈v′, 〈〈x, z〉 , 〈z, x〉〉〉
[

C⊥OB
]

,

i.e. JσK is not a clique.

If a = b, let us suppose a, b = x (the case a, b = z being similar). In this case we con-

sider u′′ = u′ [y/z] and v′′ = v′ [z/x, x/z]. Since 〈u′, 〈〈x, z〉 , 〈x, z〉〉〉 ≈ 〈u′′, 〈〈x, y〉 , 〈x, y〉〉〉

(resp. 〈v′, 〈〈x, z〉 , 〈z, x〉〉〉 ≈ 〈v′′, 〈〈z, x〉 , 〈x, z〉〉〉), we deduce that 〈u′′, 〈〈x, y〉 , 〈x, y〉〉〉,

〈v′′, 〈〈z, x〉 , 〈x, z〉〉〉 ∈ JσK. Since x `z [X ], we infer u′′ `v′′
[

C⊥
]

by the definition of

the coherent spaces associated with C⊥. Moreover, 〈〈x, y〉 , 〈x, y〉〉 ` 〈〈z, x〉 , 〈x, z〉〉 [B],

by the definition of the coherent spaces associated with B. Thus, 〈u′′, 〈〈x, y〉 , 〈x, y〉〉〉 `

〈v′′, 〈〈z, x〉 , 〈x, z〉〉〉
[

C⊥OB
]

, i.e. JσK is not a clique.

We end this section with some remarks on the above proposition.

The failure of the equality between =β and ∼w
B

does not depend on the formula B

chosen as the type for the observational values. Indeed for any formula A we may denote

by ∼w
A the observational weak equivalence defined by looking at the correct contexts with

conclusion A instead of B, getting all the same =β  ∼w
A.

In simple typed λ-calculus we can prove a separation theorem (analogous to Theorem
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4.1) only if we substitute the atom X with more complex formulas (see (Statman, 1983)

and (Joly, 2000)). One might thus think that Proposition 7.1 is due to the fact that we

have not allowed the substitution of the atom X in Definition 7.1. It is not so. Actually

the atom substitution is usefull in presence of exponentials (like in λ-calculus), but it

is useless in a linear framework (like MLL). Indeed the proof of Proposition 7.1 can be

easily extended to the case we allow the substitution of X with more complex MLL

formulas.

The failure of the equality between =β and ∼w
B

is actually due to the lack of garbage

collectors among the correct contexts. Proof structures have garbage collectors (the cyclic

cuts, erased by β-reduction), hence we can prove Theorem 4.1, but the proof nets (which

have to be correct) have not. For example recall the proof nets π1, π2 in Figure 6: π1 and

π2 are separable by the non-correct proof structure in Figure 7, in fact [π1, σ] →β f and

[π2, σ] →β Ω. Remark that during the reductions of [π1, σ] and [π2, σ] we meet cyclic

cuts.

In this framework there is an interesting result by Matsuoka in (Matsuoka, 2005),

dealing with the intuitionistic multiplicative linear logic fragment (which corresponds to

the linear λ-calculus with pairing). The author notices that such a fragment has correct

garbage collectors; from that, he proves a separation theorem.

8. Concluding remarks

We have dealt with different equivalences between MLL proofs: the β-equivalence =β,

the equivalences ≡Rel and ≡Coh respectively induced by the relational and coherent

semantics and the observational equivalences ∼B and ∼w
B
. By well-known inclusions, we

see that =β ⊆ ≡Rel = ≡Coh and =β ⊆ ∼B ⊆ ∼w
B
. Theorem 4.1 and Proposition 7.1

complete our knowledge as follows:

=β = ≡Rel = ≡Coh = ∼B ( ∼w
B

Moreover, Theorem 3.3 (resp. Corollary 6.1) links the cut-free proof structures (resp.

proof nets) with the complete sets (resp. complete cliques) of relational (resp. coherent)

semantics.

We set our analysis in the multiplicative fragment of linear logic, where the proof nets

syntax is simple and clear. Our aim is to extend such analysis to wider fragments of

linear logic. In particular:

MALL. In (Hughes and van Glabbeek, 2003) Hughes and Van Glabbeek introduce a

proof nets syntax for the multiplicative additive linear logic fragment (MALL). Such

a syntax has provided an abstract representation for MALL cut-free proofs modulo

inessential rule commutation, for the first time since the beginning of linear logic in

1986. An open problem is to find semantical notions corresponding to such MALL

cut-free proof nets, as the analogue of the complete cliques for MLL cut-free proof

nets.

In (Blute et al., 2005) Blute, Hamano and Scott actually prove that hypercoherent

semantics provides a semantical notion for the cut-free MALL proof nets introduced



M. Pagani 18

by Girard in (Girard, 1996). Unfortunately, Girard’s proof nets fail to be canonical

with respect to MALL sequent calculus: an host of such cut-free proof nets can cor-

respond to the same cut-free MALL sequent proof. Anyway hypercoherent semantics

might allow a characterization for Hughes and Van Glabbeek’s proof nets too.

MELL. All the above defined equivalences become very complex in the multiplicative

exponential linear logic fragment (MELL). In (Tortora de Falco, 2003) Tortora de

Falco shows several counter-examples to the coherent semantics injectivity concerning

MELL proof nets.

From the observational point of view, in (David and Py, 2001) David and Py show a

counter-example to the separability of λµ-calculus. From such counter-example one

can define, using the translation described in (Laurent, 2003), a pair of cut-free proof

nets of the polarized fragment of MELL which are observationally indistinguishable

(see (Pagani, 2006)). Up to now, the MELL proof nets syntax has been unable

to provide canonical representatives neither for the observational equivalence nor for

the equivalence induced by coherent semantics. The injectivity of relational semantics

concerning MELL proof nets is still an open problem.
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