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Abstract. We consider the probabilistic untyped lambda-calculus and
prove a stronger form of the adequacy property for probabilistic coher-
ence spaces (PCoh), showing how the denotation of a term statistically
distributes over the denotations of its head-normal forms.
We use this result to state a precise correspondence between PCoh and
a notion of probabilistic Nakajima trees, recently introduced by Leventis
in order to prove a separation theorem. As a consequence, we get full
abstraction for PCoh. This latter result has already been mentioned as a
corollary of Clairambault and Paquet’s full abstraction theorem for prob-
abilistic concurrent games. Our approach allows to prove the property
directly, without the need of a third model.
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1 Introduction

Full abstraction for the maximal consistent sensible λ-theory H? [1] is a crucial
property for a model of the untyped λ-calculus, stating that two terms M,N have
the same denotation in the model iff for every context C[ ] the head-reduction
sequences of C[M ] and C[N ] either both terminate or both diverge. The first
such result was obtained for Scott’s model D∞ by Hyland [10] and Wadsworth
[15]. More recently, Manzonetto developed a general technique for achieving
full abstraction for a large class of models, decomposing it into the adequacy
property and a notion of well-stratification [13]. An adequacy property states
that the semantics of a λ-term is different from the bottom element iff its head-
reduction terminates. Well-stratification is more technical, basically it means
that the semantics of a λ-term can be stratified into different levels, expressing in
the model the nesting of the head-normal forms defining the interaction between
a λ-term and a context.

Our paper reconsiders these results in the setting of the probabilistic untyped
λ-calculus Λ+. The language extends the untyped λ-calculus with a barycentric
sum constructor allowing for terms like M +p N , with p ∈ [0, 1], reducing to
M with probability p and to N with probability 1 − p. In recent years there
has been a renewed interest in Λ+ as a core language for (untyped) discrete



2 T. Leventis et M. Pagani

probabilistic functional programming. In particular, Leventis proves in [12] a
separation property for Λ+ based on a probabilistic version of Nakajima trees,
the latter describing a nesting of sub-probability distributions of infinitary η-long
head-normal forms (see Section 5 and the examples in Figure 2).

We consider the semantics of Λ+ given by the probabilistic coherence space D
defined by Danos and Ehrhard in [5] and proved to be adequate in [6]. We show
that the denotation JMK in D of a Λ+ term M enjoys a kind of stratification
property (Theorem 1, called here strong adequacy) and we use this property
to prove that JMK is a faithful description of the probabilistic Nakajima tree
of M (Corollary 1). As a consequence of this result and the previously men-
tioned separation theorem, we achieve full abstraction for D (Theorem 2), thus
reconstructing in this setting Manzonetto’s reasoning for classical λ-calculus.

Very recently, and independently from this work, Clairambault and Paquet
also prove full abstraction for D [2]. Their proof uses a game semantics model
representing in an abstract way the probabilistic Nakajima trees and a faithful
functor from this game semantics to the weighted relational semantics of [11].
The latter provides a model having the same equational theory over Λ+ as the
probabilistic coherence space D, so full abstraction for D follows immediately.
By the way, let us emphasise that all results in our paper can be transferred
as they are to the weighted relational semantics of [11]. We decided however
to consider the probabilistic coherence space model in order to highlight the
correspondence between the definition of D (Equation (11)) and the definition
of the logical relation (Equation (13)) which is the key ingredient in the proof
of our notion of stratification.

Let us give some more intuitions on this latter notion, which has an interest in
its own. The model D is defined as the limit of a chain of probabilistic coherence
spaces (D`)`∈N approximating more and more the denotation of Λ+ terms. The
adequacy property proven in [6] states that the probability of a term M to
converge to a head-normal form is given by the mass of the semantics JMK
restricted to the subspace D2 [6, Theorem 22]. The natural question is then
to understand which kind of operational meaning carries the rest of the mass
of JMK, i.e. the points of order greater than 2. Our Theorem 1 answers this
question, showing that the semantics JMK distributes over the semantics of its
head-normal forms according to the operational semantics of Λ+. By iterating
this reasoning one gets a stratification of JMK into a nesting of (η-expanded)
head-normal forms which is the key ingredient linking JMK and the probabilistic
Nakajima trees (Corollary 1).

The fact that our proof of full abstraction is based on the notion of strong
adequacy makes very plausible that the proof can be adapted to a more general
class of models than only probabilistic coherence spaces and weighted seman-
tics. In particular, we would like to stress that we did not use the property of
analyticity of term denotations, which is instead at the core of the proof of full
abstraction for probabilistic PCF-like languages ([7, 8]).

Notational convention. We write N for the set of natural numbers and R≥0 for
the set of non-negative real numbers. Given any set X we write Mf(X) for the
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set of finite multisets of X: an element m ∈ Mf(X) is a function X → N
such that the support of m Supp (m) = {x ∈ X | m(x) > 0} is finite. We write
[x1, . . . , xn] for the multiset m such that m(x) = number of indices i s.t. x = xi,
so [] is the empty multiset and ] the disjoint union. The Kronecker delta over
a set X is defined for x, y ∈ X by: δx,y = 1 if x = y, and δx,y = 0 otherwise.

2 The probabilistic language Λ+

We recall the call-by-name untyped probabilistic λ-calculus, following [6]. The
set Λ+ of terms over a set V of variables is defined inductively by:

M,N ∈ Λ+ ::= x | λx.M |MN |M +p N, (1)

where x ranges over V and p ranges over [0, 1]. Note that we consider probabilities
over the whole interval [0, 1] but our proofs still hold if we restrict them to ratio-
nal numbers. We use the λ-calculus terminology and notations as in [1]: terms are
considered modulo α-equivalence, i.e. variable renaming; we write FV(M) for the
set of free variables of a term M . For any finite list of variables Γ = x1, . . . , xn we
write Λ+

Γ for the set of terms M ∈ Λ+ such that FV(M) ⊆ {x1, . . . , xn}. Given
two terms M,N ∈ Λ+ and x ∈ V we write M{N/x} for the term obtained by
substituting N for the free occurrences of x in M , subject to the usual proviso
of renaming bound variables of M to avoid capture of free variables in N .

Example 1. Some terms useful in giving examples: the duplicator δ = λx.xx,
the Turing fixed point combinator Θ = (λxy.y(xxy))(λxy.y(xxy)) and Ω = δδ.

A context C[ ] is a term containing a single occurrence of a distinguished
variable denoted [ ] and called hole. A head-context is of the form E[ ] =
λx1 . . . xn.[ ]M1 . . .Mk, for n, k ≥ 0 andMi ∈ Λ+. GivenM ∈ Λ+, we write C[M ]
for the term obtained by replacing M for the hole in C[ ] possibly with capture
of free variables. The operational semantics is given by a Markov chain over
Λ+, mixing together the standard head-reduction of untyped λ-calculus with the
probabilistic choice +p. Precisely, this system is given by the transition matrix
Red in Equation (2). It is well known that any Λ+-term M can be uniquely
decomposed into E[R] for E[ ] a head-context and R either a β-redex, or a
+p-redex (for some p ∈ [0, 1]) or a variable in V. This gives the following cases:

RedE[R],N ::=



1 if R = (λx.M ′)M ′′ and N = E[M ′{M ′′/x}]
p if R = M ′ +pM

′′,M ′ 6= M ′′ and N = E[M ′]

1− p if R = M ′ +pM
′′,M ′ 6= M ′′ and N = E[M ′′]

1 if R = M ′ +pM
′ and N = E[M ′]

1 if R ∈ V and N = E[R]

0 otherwise

(2)

This matrix is stochastic, i.e. for any termM ,
∑
N RedM,N = 1. A head-normal

form is a term of the form E[y], with y ∈ V called its head-variable. We write
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HNF for the set of all head-normal forms. Following [6, 5], we consider the head-
normal forms as absorbing states of the process. Hence the n-th power Redn of
the matrix Red describes the process of performing exactly n steps: RednM,N is
the probability that after n process steps M will reach state N .

Example 2. Let L = (x +p y), we have RedδL,LL = 1, and RednδL,xL = p,
RednδL,yL = 1− p for all n ≥ 2. In fact both xL and yL are head-normal forms,
so absorbing states. The term Ω β-reduces to itself, so RednΩ,Ω = 1 for any n,
giving an example of absorbing state which is not a head-normal form.

The Turing fixed point combinator needs two β-steps to unfold its argument,
so, for any term M , Red2

ΘM,M(ΘM) = 1. In the case M is a probabilistic function

like M = λf.(f +p y), we get Red4n
ΘM,ΘM = pn and Red4n

ΘM,y = 1 − pn, for

any n. In the case M = λf.(yf +p y), we get: Red
4(n+1)
ΘM,yn(ΘM) = pn+1 and

Red
4(n+1)
ΘM,yn(y) = (1−p)pn, where yn(...) denotes the n-fold application y(. . . y(...)).

Notice that for h ∈ HNF and M ∈ Λ+, the sequence
(
RednM,h

)
n∈N is mono-

tone increasing and bounded by 1, so it converges. We define its limit by:

∀M ∈ Λ+,∀h ∈ HNF, Red∞M,h ::= sup
n∈N

(
RednM,h

)
∈ [0, 1]. (3)

This quantity gives the total probability of M to reduce to the head-normal form
h in any number (possibly infinitely many) of finite reduction sequences.

Example 3. Recall the terms in Example 2. We have Red∞δL,xL = p and Red∞δL,yL =
1 − p. For any h ∈ HNF and n ∈ N we have RednΩ,h = 0 so Red∞Ω,h = 0. The
quantity Red∞Θ(λf.(f+py)),y is the first example of limit, being equal to 1 whereas
RednΘ(λf.(f+py)),y < 1 for all n ∈ N. Operationally this means that the term
Θ(λf.(f +p y)) reduces to y with probability 1 but the length of these reduc-
tions is not bounded. Finally, Red∞Θ(λf.(yf+py)),yn(y) = (1−p)pn, this means that
Θ(λf.(yf +p y)) converges with probability 1 but it can reach infinitely many
different head-normal forms.

Given M,N ∈ Λ+, we say that M is contextually equivalent to N if, and
only if, ∀C[ ],

∑
h∈HNF Red∞C[M ],h =

∑
h∈HNF Red∞C[N ],h.

An important property in the following is extensionality, meaning invari-
ance under η-equivalence. The η-equivalence is the smallest congruence such
that, for any M ∈ Λ+ and x /∈ FV(M) we have M =η λx.Mx. Notice that the
contextual equivalence is extensional (see [1] for the classical λ-calculus).

3 Probabilistic Coherence Spaces

Girard introduced probabilistic coherence spaces (PCS) as a “quantitative refine-
ment” of coherence spaces [9]. Danos and Ehrhard considered then the category
Pcoh of linear and Scott-continuous functions between PCS as a model of linear
logic and the cartesian closed category Pcoh! of entire functions between PCS as
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the Kleisli category associated with the comonad of Pcoh modelling the expo-
nential modality [5]. They proved also that Pcoh! provides an adequate model
of probabilistic PCF and the reflexive object D which is our object of study.

The two categories Pcoh and Pcoh! have been then studied in various pa-
pers. In particular, Pcoh! is proved to be fully abstract for the call-by-name
probabilistic PCF [7]. This result has been also extended to richer languages,
e.g. call-by-push-value probabilistic PCF [8]. The untyped model D is proven
adequate for Λ+ [6]. This paper is the continuation of the latter result, showing
full abstraction for D as a consequence of a stronger form of adequacy.

We briefly recall here the cartesian closed category Pcoh! and the reflexive
object D. Because of space we omit to consider the linear logic model Pcoh,
from which Pcoh! is derived. We refer the reader to [5, 6] for more details.

Probabilistic coherence spaces and entire functions. A probabilistic coherence
space, or PCS for short, is a pair X = (|X | ,P(X )) where |X | is a countable
set called the web of X and P(X ) is a subset of the semi-module (R≥0)|X | such

that the following three conditions hold: (i) closedness: P(X )
⊥⊥

= P(X ), where,
given a set P ⊆ (R≥0)|X |, the dual of P is defined as P⊥ ::= {y ∈ (R≥0)|X | |
∀x ∈ P

∑
a∈|X| xaya ≤ 1}; (ii) boundedness: ∀a ∈ |X |, ∃µ > 0, ∀x ∈ P(X ),

xa ≤ µ; (iii) completeness: ∀a ∈ |X |, ∃x ∈ P(X ), xa > 0.
Given x, y ∈ P(X ), we write x ≤ y for the order defined pointwise, i.e. for

every a ∈ |X |, xa ≤ ya. The closedness condition is equivalent to require that
P(X ) is convex and Scott-closed, as stated below.

Proposition 1 (e.g. [4]). Given an index set I and a subset P ⊂ (R≥0)I which
is bounded and complete, we have P = P⊥⊥ iff the following two conditions hold:
(i) P is convex, i.e. for every x, y ∈ P and λ ∈ [0, 1], λx+ (1− λ)y ∈ P ; (ii) P
is Scott-closed, i.e. for every x ≤ y ∈ P , x ∈ P and for every increasing chain
{xi}i∈N ⊆ P , supi xi ∈ P .

A data-type is denoted by a PCS X and its data by vectors in P(X ): convexity
allows for probabilistic superposition and Scott-closedness for recursion.

Example 4. A simple example of PCS is U = (|U| ,P(U)) with |U| a singleton set

and P(U) = [0, 1]. Notice P(U)
⊥

= P(U). This PCS gives the flat interpretation
of the unit type in a typed language. The boolean type is denoted by the two
dimensional PCS B ::= ({t, f}, {(ρt, ρf) | ρt + ρf ≤ 1}). Notice that P(B) can
be seen as the set of the probabilistic sub-distributions of the boolean values.

As soon as one consider functional types, the intuitive notion of (discrete)
sub-probabilistic distribution is lost. In particular, the reflexive object D defined
below is an example of an infinite dimensional PCS where scalars arbitrarily big
may appear in P(D). One can think of PCS’s as a generalisation of the notion
of discrete sub-probabilistic distributions allowing a cartesian closed category.

An entire function from X to Y is a matrix f ∈ R≥0Mf(|X |)×|Y| such that
for any x ∈ P(X ), the image f(x) under f belongs to P(Y), where f(x) is

f(x) ::=

( ∑
m∈Mf(|X |)

fm,bx
m

)
b∈|Y|

where xm ::=
∏

a∈Supp(m)

xm(a)
a (4)
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Notice that the condition f(x) ∈ P(Y) requires that the possibly infinite sum in
the previous equation must converge. Recently, Crubillé proves that the entire
maps can be characterised independently from their matrix representation as
the absolutely monotonic and Scott-continuous maps between PCS’s, see [3].

The cartesian closed category. The Kleisli category Pcoh! has PCS’s as objects
and entire maps as morphisms. Given f ∈ Pcoh!(X ,Y) and g ∈ Pcoh!(Y,Z),
the composition g ◦ f is the usual functional composition, whose matrix can
be explicitly given by, for m ∈Mf(|X |) , c ∈ |Z|:

(g ◦f)m,c ::=
∑

p∈Mf(|Y|)

gp,cf
(m,p) where f (m,[b1,...,bn]) ::=

∑
(m1,...,mn)
s.t. m=

⊎
mi

n∏
i=1

fmi,bi (5)

The boundedness condition over Z and the completeness condition over X ensure
that the possibly infinite sum over p ∈ Mf(|Y|) in Equation (5) converges. The
identity is the matrix idXm,a = δ[a],a, where δ is the Kronecker delta.

The cartesian product of any countable family (Xi)i∈I of PCS’s is:∣∣∏
i∈I Xi

∣∣ ::=
⋃
i∈I{i} × |Xi| ,

P
(∏

i∈I Xi
)

::= {x ∈ (R≥0)|
∏
i∈I Xi| | ∀i ∈ I, πi(x) ∈ P(Xi)},

(6)

where πi(x) is the vector in (R≥0)|Xi| denoting the i-th component of x, i.e.
πi(x)a ::= x(i,a). This means that P

(∏
i∈I Xi

)
can be seen as the set-theoretical

product
∏
i∈I P(Xi), by mapping x ∈ P

(∏
i∈I Xi

)
to the sequence (πi(x))i∈I .

The j-th projection prj ∈ Pcoh!(
∏
i∈I Xi,Xj) is defined by prjm,b ::= δm,[(j,b)].

If all components of a product are equal to a PCS X we can use the exponential
notation X I . Binary products can be written as X ×Y. In the following, we will
often denote the finite multisets inMf

(∣∣∏
i∈I Xi

∣∣) as I-families of finite multisets
almost everywhere empty, using the set-theoretical isomorphism:3

Mf

(∣∣∣∣∣∏
i∈I
Xi

∣∣∣∣∣
)

' {m ∈
∏
i∈I
Mf(|Xi|) | Supp (m) finite}. (7)

For example, the multi-set [(0, a), (0, a′), (1, b)] ∈ Mf(|X × Y|) will be denoted
as the pair ([a, a′], [b]), or the multiset [(2, a), (4, a′), (4, a′′)] ∈ Mf

(∣∣∏
n∈N Xn

∣∣)
as the almost everywhere empty sequence ([], [], [a], [], [a′, a′′], [], . . . ).

The object of morphisms from X to Y is Pcoh!(X ,Y) itself, i.e.:

|X ⇒ Y| ::=Mf(|X |)× |Y| , P(X ⇒ Y) ::= Pcoh!(X ,Y). (8)

The proof that P(X ⇒ Y) so defined enjoys the closedness, completeness and
boundedness conditions of the definition of a PCS is not trivial and it is argued

3 In fact, this isomorphism corresponds, for I finite, to the fundamental exponential
isomorphism !(A&B) ' !A⊗ !B of linear logic.
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by the fact that Pcoh! is the Kleisli category associated with the exponential
comonad of the linear logic model Pcoh mentioned in the introduction.

The evaluation EvX ,Y ∈ Pcoh!((X ⇒ Y) × X ,Y) and the curryfication
CurX ,Z,Y(v) ∈ Pcoh!(Z,X ⇒ Y) of a morphism v ∈ Pcoh!(X × Z,Y) are:

EvX ,Y(m,p),a ::= δm,[(p,a)], CurX ,Z,Y(v)m,(p,a) ::= v(p,m),a. (9)

The reflexive object D. We set X ⊆ Y whenever |X | ⊆ |Y| and P(X ) =

{v||X | s.t. v ∈ P(Y)}, where v||X | is the vector in R|X |≥0 obtained by restrict-

ing v ∈ R|Y|≥0 to the indexes in |X | ⊆ |Y|. This defines a complete order over

PCS’s. The model D of Λ+ is then given by the least fix-point of the Scott-
continuous functor X 7→ XN ⇒ U (where U is the one-dimensional PCS defined
in Example 4). We do not detail here its definition, but we give explicitly the
chain D0 = (∅,0), D`+1 = DN

` ⇒ U whose (co)limit is the least fix-point D of
X 7→ XN ⇒ U by the Knaster-Tarski theorem. We refer to [5, Sect. 2] for details.

The webs of these spaces are given by:

|D0| ::= ∅, |D`+1| ::=Mf(|D`|)(ω) , |D| ::=
⋃
`∈N
|D`| (10)

where Mf(|D`|)(ω) denotes the set of infinite sequences of multisets of |D`| that
are almost everywhere empty (notice we are using the isomorphism mentioned in
Eq. (7)). The set |D1| is the singleton containing the infinite sequence ([],[],[]. . . )
of empty multisets, which we denote by ?. Given a multiset m ∈ Mf(|D`|) and
a sequence d ∈Mf(|D`+1|), we denote by m :: d the element of |D`+1| having at
first position m and then all the multisets of d shifted by one position. Notice
that any element of |D`+1| can be written as m1 :: . . .mn :: ? for an n sufficiently
large and m1, . . . ,mn ∈Mf(|D`|). In particular, [] :: ? = ?.4

The sets of vectors P(D`) and P(D) completing the definition of a PCS are:

P(D0) ::= 0

P(D`+1) ::=

v ∈ (R≥0)|D`+1| s.t.

∀n ∈ N,∀u1, . . . , un ∈ P(D`)∑
m1,...,mn∈
Mf(|D`|)

vm1::...mn::?u
m1
1 . . . umnn ≤ 1


P(D) ::=

{
v ∈ (R≥0)|D| s.t. ∀` ∈ N, v||D`| ∈ P(D`)

}
(11)

The above definition of P(D`+1) is actually equivalent to the standard one in-
ferred from the definition of the countable product DN, which would require to
apply v to a countable family (ui)i∈N of vectors in P(D`). The two definitions are
equivalent because of the continuity of the scalar multiplication and the sum.

It happens that any solution of X = XN ⇒ U gives also a solution (although
not minimal) to X = X ⇒ X and hence a reflexive object of Pcoh!. The

4 The elements of |D| can be seen as intersection types generated from the constant
?, the :: operation being the arrow and multisets non-idempotent intersections.
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JxKΓm,d =

{
1 mx = [d] and ∀y ∈ Γ \ x,my = [],

0 otherwise
,

Jλx.MKΓm,m::d = JMKx,Γ(m,m),d,

JMNKΓm,d =
∑

m∈Mf(|D|)

∑
(m1,m2) s.t.

∀x∈Γ,mx=m1x]m2x

JMKΓm1,m::d(JNKΓ )m2,m,

JM +p NKΓm,d = pJMKΓm,d + (1− p)JNKΓm,d.

Fig. 1. Explicit definition of the denotation of a term in Λ+
Γ as a matrix in P

(
DΓ ⇒ D

)
.

Recall Equation (5) for the notation (JNKΓ )m2,m.

isomorphism pair λ ∈ Pcoh!(D ⇒ D,D) and app ∈ Pcoh!(D,D ⇒ D) is given
by, for any p ∈Mf(|D ⇒ D|), m, q ∈Mf(|D|), and d ∈ |D|,

λp,m::d ::= δp,[(m,d)], appq,(m,d) ::= δq,[m::d]. (12)

It is easy to check that app ◦ λ = idD⇒D and λ ◦ app = idD, so (D, λ, app) yields
an extensional model of untyped λ-calculus, i.e. JMK = JNK whenever M =η N .

Interpretation of the Terms of Λ+. Given a termM and a list Γ of pairwise differ-
ent variables containing FV(M), the interpretation of M is a morphism JMKΓ ∈
Pcoh!(DΓ ,D), i.e. a matrix in RMf(|DΓ |)×|D|

≥0 = RMf(|D|)Γ×|D|
≥0 . The definition of

JMKΓ is the standard one determined by the cartesian closed structure of Pcoh!

and the reflexive object (D, λ, app): JxKΓ is the x-th projection of the prod-
uct DΓ , Jλx.MKΓ = λ ◦ Cur

(
JMKx,Γ

)
and JMNKΓ = Ev ◦ 〈app ◦ JMKΓ , JNKΓ 〉,

where 〈 , 〉 is the cartesian product of two morphisms. Figure 1 makes explicit
the coefficients of the matrix JMKΓ by structural induction on M . The only non-
standard operation is the barycentric sum JM +p NK which is still a morphism
of Pcoh! by the convexity of P

(
DΓ ⇒ D

)
(Proposition 1).

Proposition 2 (Soundness, [5, 6]). For every term M ∈ Λ+ and sequence
Γ ⊇ FV(M): JMKΓ =

∑
N∈Λ+ RedM,N JNKΓ .

4 Strong Adequacy

In this section we state and prove Theorem 1, enhancing the Pcoh! adequacy
property given in [6]. This latter explains the computational meaning of the mass
of JMK restricted to D2 ⊆ D, while our generalisation considers the whole JMK,
showing that it encodes the way the operational semantics dispatches the mass
into the denotation of the head-normal forms. As in [6], the proof of Theorem 1
adapts a method introduced by Pitts [14], consisting in building a recursively
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specified relation of formal approximation C (Proposition 3) which satisfies the
same recursive equation as D. However, our generalisation requires a subtler
definition of C with respect to [6]. In particular, we must consider open terms
in order to prove Lemma 7.

The approximation relation. Let us introduce some convenient notation, extend-
ing the definition of λ-abstraction and application to general morphisms.

Definition 1. Given v ∈ P
(
Dx,Γ ⇒ D

)
, let Λ(v) be the vector λ ◦ Cur(v) ∈

P
(
DΓ ⇒ D

)
. Given v, u ∈ P

(
DΓ ⇒ D

)
let v@u be the vector Ev ◦ 〈app ◦ v, u〉 ∈

P
(
DΓ ⇒ D

)
. Finally, given a finite sequence u1, . . . , un ∈ P

(
DΓ ⇒ D

)
, for n ∈

N, we denote by v@u1 . . . un the vector (v@u1) @ . . . un.

Lemma 1. The map v 7→ Λ(v) is linear, i.e. for any vectors v, v′ and scalars
p, p′ ∈ [0, 1] such that p + p′ ≤ 1, we have Λ(pv + p′v′) = pΛ(v) + p′Λ(v′), and
Scott-continuous, i.e. for any countable increasing chain (vn)n∈N, Λ(supn(vn)) =
supn(Λ(vn)). The map (v, u1, . . . , un) 7→ v@u1 . . . un is Scott-continuous on all
of its arguments but linear only on its first argument v.

Proof. Scott-continuity is because the scalar multiplication and the sum are
Scott-continuous. The linearity is because the matrices app, λ are associated with
linear maps (namely, they have non-zero coefficients only on singleton multisets,
see (12)) as well as the left-most component of Ev, see (9). ut

For any Γ ⊆ ∆ there exists the projection pr : P(D)
∆ → P(D)

Γ
. Then,

given a matrix v ∈ P
(
DΓ ⇒ D

)
we denote by v↑∆∈ P

(
D∆ ⇒ D

)
the matrix

corresponding to the pre-composition of the morphism associated with v with
pr. This can be explicitly defined by, for m ∈ Mf(|D|)∆, d ∈ |D|,

(
v↑∆

)
m,d

=

v(mx)x∈Γ ,d if ∀y ∈ ∆ \ Γ,my = [], and
(
v↑∆

)
m,d

= 0 otherwise.

We define an operation φ acting on the relationsR ⊆
⋃
Γ

(
P
(
DΓ ⇒ D

)
× Λ+

Γ

)
.

Each component φΓ (R) ⊆
(
P
(
DΓ ⇒ D

))
× Λ+

Γ is given by:

(v,M) ∈ φΓ (R) iff ∀∆ ⊇ Γ,∀n ∈ N,∀u1, . . . , un ∈ P
(
D∆ ⇒ D

)
∀N1, . . . , Nn ∈ Λ+

∆, s.t. (ui, Ni) ∈ R for all i ≤ n,
v↑∆ @u1 . . . un ≤

∑
h∈HNF∆

Red∞M N1 ... Nn,hJhK
∆.

(13)

The above definition is similar to Eq. (11), giving D`+1 from D`. In the following
we look for a fixed-point of φ (Prop. 3). Its quest is not simple because φ is not
monotone. We derive then from φ a monotone operator ψ on a larger space, and
we compute its fixed-point by using Tarski’s Theorem (Lemma 3).

Given (R+, R−) ∈ P
(⋃

Γ

(
P
(
DΓ ⇒ D

)
× Λ+

Γ

))2
, we define ψ(R+, R−) =

(φ(R−), φ(R+)). Given two such pairs (R+
1 , R

−
1 ), (R+

2 , R
−
2 ), we define (R+

1 , R
−
1 ) v

(R+
2 , R

−
2 ) iff R+

1 ⊆ R
+
2 and R−1 ⊇ R

−
2 .

Lemma 2. The relation v is an order relation giving a complete lattice on

P
(⋃

Γ

(
P
(
DΓ ⇒ D

)
× Λ+

Γ

))2
.
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Thanks to the previous lemma, we set (C+,C−) as the glb of the set {(R+, R−) |
ψ(R+, R−) v (R+, R−)} of the pre-fixed points of ψ.

Lemma 3. ψ(C+,C−) = (C+,C−), so C+ = φ(C−) and C− = φ(C+).

Proof. One can check that ψ is monotone increasing wrt v, so the result follows
from Tarski’s Theorem on fixed points. ut

Lemma 4. For any R ⊆
⋃
Γ

(
P
(
DΓ ⇒ D

)
× Λ+

Γ

)
and M ∈ Λ+

Γ , the set {v ∈
P
(
DΓ ⇒ D

)
| (v,M) ∈ φΓ (R)} contains 0, is downward closed and chain closed.

Proof. Consequence of the fact that the application v@u1 . . . un and the lifting
v↑∆ are Scott-continuous (Lemma 1). Also, v↑∆ is linear as well as v@u1 . . . un
on its left argument v (always Lemma 1), so 0↑∆ @u1 . . . un = 0. ut

Proposition 3. We have C+ = C−. From now on we denote it simply by C.
We note CΓ its component on

(
P
(
DΓ ⇒ D

))
× Λ+

Γ .

Proof. First (C−,C+) is a (pre-)fixed point of ψ so (C+,C−) v (C−,C+), i.e.
C+ ⊆ C−. To prove the converse, we reason by induction on |D|. For v ∈
P
(
DΓ ⇒ D

)
and ` ∈ N, we note v|` its restriction to

∣∣DΓ ⇒ D`∣∣, i.e.: (v|`)m,d =
vm,d if d ∈ |D`|, and (v|`)m,d = 0 otherwise. Notice that v|` is a morphism

P
(
DΓ ⇒ D

)
, since v|` ≤ v ∈ P

(
DΓ ⇒ D

)
. We prove by induction on ` that:

∀v ∈ P
(
DΓ ⇒ D

)
,∀M ∈ Λ+

Γ , (v,M) ∈ C− implies (v|`,M) ∈ C+.

For ` = 0 we have v|0 = 0 so by Lemma 4 (v|0,M) ∈ C+ = φ(C−). At level
` + 1 we want to prove (v|`+1,M) ∈ C+ = φ(C−). Let ∆ ⊇ Γ , u1, . . . , un ∈
P
(
D∆ ⇒ D

)
, N1, . . . , Nn ∈ Λ+

∆ such that for all i ≤ n, (ui, Ni) ∈ C−. By induc-
tion hypothesis we have ((ui)|`, Ni) ∈ C+ for all i ≤ n. Besides by hypothesis
(v,M) ∈ C− = φ(C+) and we have v|`+1 ≤ v so Lemma 4 gives (v|`+1,M) ∈
φ(C+). Hence v|`+1↑∆ @ (u1)|` . . . (un)|` ≤

∑
h∈HNF∆

Red∞MN1...Nn,hJhK
∆. We

conclude by observing that v|`+1↑∆ @ (u1)|` . . . (un)|` = v|`+1↑∆ @u1 . . . un.
Now if (v,M) ∈ C− then for all ` ∈ N, (v|`,M) ∈ C+, but we have v =

sup`∈N v|` so Lemma 4 gives (v,M) ∈ C+. ut

The key lemma. Lemma 9 is the so-called key-lemma for the relation C. The
reasoning is standard, except for the proof of Lemma 8 allowing strong adequacy.

Lemma 5. For M ∈ Λ+
x,Γ , N ∈ Λ

+
Γ , (v, (λx.M)N)∈CΓ iff (v,M{N/x})∈CΓ .

Proof. Observe that for all n ∈ N, N1, . . . , Nn ∈ Λ+ and h ∈ HNF we have
Red∞(λx.M)NN1...Nn,h = Red∞M{N/x}N1...Nn,h. ut

Lemma 6. Let (v,M) and (r, L) in CΓ , then (pv + (1− p)r,M +p L) ∈ CΓ .

Proof. Simply observe that for all h ∈ HNF and N1, . . . , Nn ∈ Λ+ we have
Red∞(M+pL)N1...Nn,h = pRed∞MN1...Nn,h + (1− p)Red∞LN1...Nn,h. ut
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Lemma 7. For all x ∈ Γ , (prΓx , x) ∈ CΓ .

Proof. Given any ∆ ⊇ Γ , n ∈ N and (u1, N1), . . . , (un, Nn) ∈ C∆, we have:∑
h∈HNF∆

Red∞xN1...Nn,hJhK
∆ = JxN1 . . . NnK∆ = pr∆x @ JN1K∆ . . . JNnK∆

Besides for all i ≤ n, as (ui, Ni) ∈ C∆ we have ui ≤
∑
h∈HNF∆

Red∞Ni,hJhK
∆ ≤

JNiK∆. The latter inequality is because Proposition 2 implies that for all k ∈ N,∑
h∈HNF∆

RedkNi,hJhK ≤ JNiK. The application @ being increasing in both its

arguments we have prΓx↑∆ @u1 . . . un ≤ pr∆x @ JN1K∆ . . . JNnK∆. ut

Lemma 8. Let (v,M) ∈
(
P
(
DΓ ⇒ D

))
× Λ+

Γ , we have (v,M) ∈ CΓ iff for all
(r, L) ∈ C∆ with ∆ ⊇ Γ , (v↑∆ @ r,ML) ∈ C∆.

Proof. If (v,M) ∈ CΓ = φΓ (C) and (r, L) ∈ C∆ then using the definition of φ
it is easy to check that (v↑∆ @ r,ML) ∈ C∆. Conversely if for all (r, L) ∈ C∆
we have (v↑∆ @ r,ML) ∈ C∆ and we want to prove that (v,M) ∈ φΓ (C) then
the conditions of Equation (13) trivially holds whenever n ≥ 1, so we need to
consider only the case for n = 0.

Suppose that for all (r, L) ∈ C∆, (v↑∆ @ r,ML) ∈ C∆, let us prove that
v ≤

∑
h∈HNFΓ

Red∞M,hJhKΓ . Let x be a fresh variable, according to Lemma 7 we

have (prx,Γx , x) ∈ Cx,Γ so v↑x,Γ @ prx,Γx ≤
∑
h∈HNFx,Γ

Red∞Mx,hJhKx,Γ . Then:

v = Λ(v↑x,Γ @ prx,Γx ) extensionality of D

≤ Λ(
∑

h∈HNFx,Γ

Red∞Mx,hJhK
x,Γ ) monotonicity Λ( ), Lemma 1

=
∑

h∈HNFx,Γ

Red∞Mx,hΛ(JhKx,Γ ) linearity and contin. Λ( ), Lemma 1

=
∑

h∈HNFx,Γ

Red∞Mx,hJλx.hK
Γ def. of Λ( ).

One can check that for h ∈ HNFx,Γ , Red∞Mx,h =
∑
h0∈HNFΓ

Red∞M,h0
Red∞h0x,h

(recall that x is not free in M). If h0 is a head-normal form yP1 . . . Pm then
Red∞h0x,h 6= 0 only if h = yP1 . . . Pmx with x /∈ FV(yP1 . . . Pm) (and Red∞h0x,h =
1). If h0 = λx0.h

′ then Red∞h0x,h 6= 0 only if h = h′{x/x0} (and Red∞h0x,h = 1).

In the first case we have Jλx.hKΓ = Jλx.(h0x)KΓ = Jh0KΓ . In the second case
we have λx.h = h0 modulo α-equivalence and Jλx.hKΓ = Jh0KΓ . Therefore:
v ≤

∑
h0∈HNFΓ

Red∞M,h0
Jh0KΓ . ut

Lemma 9 (Key Lemma). For all M ∈ Λ+
Γ with Γ = {y1, . . . , yn}, for all ∆ ⊇

Γ , for all u1,. . . ,un in P
(
D∆ ⇒ D

)
and N1,. . . ,Nn in Λ+

∆ with (ui, Ni) ∈ C∆,

JMKΓ ◦ (u1, . . . , un)C∆M{N1/y1, . . . , Nn/yn}

Proof. The proof is by induction on M . The abstraction uses Lemma 5 and
Lemma 8, the application uses Lemma 8 and the barycentric sum Lemma 6. ut
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Theorem 1 (Strong adequacy). For all M ∈ Λ+
Γ we have:

JMKΓ =
∑

h∈HNFΓ

Red∞M,hJhK
Γ .

Proof. The invariance of the interpretation by reduction (Proposition 2) gives
that for all n ∈ N, JMKΓ =

∑
N∈Λ+

Γ
RednM,N JNKΓ ≥

∑
h∈HNFΓ

RednJhKΓ . When

n→∞ we get JMKΓ ≥
∑
h∈HNFΓ

Red∞M,hJhKΓ .

Conversely using Lemma 9 with ∆ = Γ and (ui, Ni) = (πΓyi , yi), which is in

CΓ thanks to Lemma 7, we get (JMKΓ ,M) ∈ CΓ . The definition of C = φ(C)
with ∆ = Γ and n = 0 gives JMKΓ ≤

∑
h∈HNFΓ

Red∞M,hJhKΓ . ut

5 Nakajima Trees and Full Abstraction

We apply our strong adequacy to infer full abstraction (Theorem 2). As men-
tioned in the Introduction, the bridge linking syntax and semantics is given by
the notion of probabilistic Nakajima tree defined by Leventis [12] (here Defini-
tions 2 and 3) in order to prove a separation theorem for Λ+. Lemma 11 shows
that the equality of Nakajima trees implies the denotational equality. The proof
of this lemma uses the strong adequacy property.

Definition 2. The set PT η` of Nakajima trees with depth at most ` ∈ N is
the set of subprobability distributions over value Nakajima trees VT η` . These
sets are defined by mutual recursion as follows:

VT η0 = ∅, VT η`+1 =
{
λx.y T | x ∈ VN, y ∈ V,T ∈ (PT η` )

N
}
,

PT η0 = {⊥}, PT η`+1 =

{
T ∈ [0, 1]VT

η
`+1 |

∑
t∈VT η`+1

T (t) ≤ 1

}
.

The notation ⊥ represents the empty function (i.e. the distribution with empty
support), encoding undefinedness and allowing direct sets of approximants.

Value Nakajima trees represent infinitary η-long head-normal forms: up to
η-equivalence every head-normal form h = λx1 . . . xn.yM1 . . . Mm is equal to
λx1 . . . xn+k.yM1 . . . Mm xn+1 . . . xn+k for any k ∈ N and xn+1,. . . ,xn+k fresh,
and value Nakajima trees are infinitary variants of such η-expansions.

Definition 3. By mutual recursion we associate value trees VT η with head-
normal forms and general trees PT η with general Λ+ terms:

VT η
`+1(λx1 . . . xn.yM1 . . . Mm) =

λx1 . . . xnxn+1 . . . .yPT η
` (M1) . . . PT η

` (Mm) PT η
` (xn+1) . . .

where the xis are pairwise distinct variables and, for i > m, the xi’s are fresh;

PT η
0(M) = ⊥, PT η

`+1(M) = t 7→
∑

h∈(VTη
`+1)

−1(t)

Red∞M,h



Adequacy and Full-Abstraction for Pcoh! 13

Remark 1. In [12], following the definition of deterministic Nakajima trees in [1],
the value tree VT η

`+1(λx1 . . . xn.yM1 . . . Mm) includes explicitly the difference
n−m. This yields a heavier but somewhat more convenient definition, as then
Lemma 10 also holds for ` = 1. In this paper we chose to use the lighter definition.
This choice does not influence the Nakajima tree equality by Lemma 10.

Example 5. Figure 2(a) depicts some examples of value Nakajima trees asso-
ciated with the head-normal form λx1.y(Ωx1)x1. Notice that these trees are
equivalent to the Nakajima trees associated with y(Ωx1) as well as yΩ. In fact,
all these terms are contextually equivalent.

Figure 2(b) shows the Nakajima tree of depth 2 associated with the term
y(u+q v) +p (y′ +p′ Ω). Notice that the two sums +p and +p′ contribute to the
same subprobability distribution, whereas they are kept distinct from the sum
+q on the argument side of an application.

Figure 2(c) gives some examples of the Nakajima trees associated with the
term Θ(λf.(y+py(f)), discussed also in Examples 2 and 3. Notice that the more
the depth ` increases, the more the top-level distribution’s support grows.

It is clear that the family
(
PT η` (M)

)
`∈N converges to a limit, but we do not

need to make it explicit for our purposes, so we avoid defining the topology over⋃
` PT

η
` yielding the convergence of

(
PT η` (M)

)
`∈N.

The next lemma shows that the first levels of a VT η of a head-normal form
h give a lot of information about the shape of h.

Lemma 10. Given two head-normal forms h = λx1 . . . xn.yM1 . . .Mm and h′ =
λx1 . . . xn′ .y

′M ′1 . . .M
′
m′ and any ` ≥ 2, if VT η

` (h) = VT η
` (h′), then y = y′ and

n−m = n′ −m′.

Proof. The fact y = y′ follows immediately from the definition of VT η. Con-
cerning the second equality, one can assume n = n′ by η-expanding one of the
two terms, in fact VT η is invariant under η-expansion. Modulo α-equivalence,
we can then restrict ourselves to consider the case of h = λx1 . . . xn.yM1 . . .Mm

and h′ = λx1 . . . xn.yM
′
1 . . .M

′
m′ .

Suppose, by the sake of contradiction, that m > m′. Then we should have
PT η

`−1(Mm′+1) = PT η
`−1(xn+1), where xn+1 is a fresh variable, in particular

xn+1 /∈ FV(Mm′+1). Since `−1 > 0, we have that PT η
`−1(xn+1)(t) = 1 only if t is

equal to λz1z2 . . . .xn+1PT η
`−2(z1)PT η

`−2(z2) . . . , otherwise PT η
`−1(xn+1)(t) = 0.

So, PT η
`−1(Mm′+1) = PT η

`−1(xn+1) implies that Red∞Mm′+1,h
> 0 for some h

having xn+1 as free variable, which is impossible since xn+1 /∈ FV(Mm′+1). ut

Thanks to the strong adequacy property we can prove that for M ∈ Λ+
Γ each

coefficient of JMKΓ is entirely defined by PT η
` (M) for ` large enough. To do so

we define the following size on |D|, Mf(|D|) and Mf(|D|)Γ × |D|:

– #(?) = 0 for the base element,
– #(m :: d) = #(m) + #(d) for m ∈Mf(|D|) and d ∈ |D|,
– #([d1, . . . , dn]) = n+

∑n
i=1 #(di) for d1, . . . , dn ∈ |D|,
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` = 1

λx1x2 . . . .y

⊥ ⊥ ⊥
. . .

` = 2

λx1x2 . . . .y

+ +

λz.x1

⊥ ⊥
. . .

1

+

λz.x2

⊥ ⊥
. . .

1

. . .

(a) VT η
` (λx1.y(Ωx1)x1) for some `, also equal to VT η

` (yΩ).

+

λx.y

+

λz.u

⊥ ⊥
. . .

q

λz.v

⊥ ⊥
. . .

1− q
+

λz.x1

⊥ ⊥
. . .

1

. . .

p

λx.y′

+

λz.x1

⊥ ⊥
. . .

1

+

λz.x2

⊥ ⊥
. . .

1

. . .

(1− p)p′

(b) PT η
2(y(u+q v) +p (y′ +p′ Ω)). Notice the layers of distributions.

` = 1

+

λx.y

⊥ ⊥
. . .

1

` = 2

+

λx.y

+

λz.x1

⊥ ⊥
. . .

1

+

λz.x2

⊥ ⊥
. . .

1

. . .

p

λx.y

+

λz.y

⊥ ⊥
. . .

1

+

λz.x1

⊥ ⊥
. . .

1

. . .

1− p

(c) PT η
` (Θ(λf.(y +p y(f))) for some `

Fig. 2. Examples of Nakajima trees. Distributions are represented by barycentric sums,
depicted as + nodes whose outgoing edges are weighted by probabilities.
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– #(m, d) = #(d) +
∑
x∈Γ (#(mx)) for m ∈Mf(|D|)Γ and d ∈ |D|.

Lemma 11. Given ` ∈ N and M,N ∈ Λ+
Γ , if PT η

` (M) = PT η
` (N) then for any

(m, d) ∈Mf(|D|)Γ × |D| with #(m, d) < `, we have JMKΓm,d = JNKΓm,d.

Proof. We do induction on `. If ` ≤ 1, then #(m, d) = 0 implies d = ? and
for every x ∈ Γ , mx = [ ]. In this case we remark that both JMKΓm,d, JNKΓm,d

are null. This in fact can be easily checked by inspecting the rules of Figure 1,
computing the matrix denoting a term by structural induction over the term.

Otherwise, by Theorem 1, we have: JMKΓm,d =
∑
h∈HNFΓ

Red∞M,hJhKΓm,d. This

last sum can be refactored as
∑
t∈VTη

`

∑
h∈(VTη

` )
−1(t) Red∞M,hJhKΓm,d. A similar

reasoning for N gives JNKΓm,d =
∑
t∈VTη

`

∑
h∈(VTη

` )
−1(t) Red∞N,hJhKΓm,d.

Let us fix a t ∈ VT η
` and (m, d) ∈Mf(|D|)Γ × |D| with #(m, d) < `. Let us

prove that:

� for any h, h′ ∈ (VT η
` )−1(t), we have JhKΓm,d = Jh′KΓm,d.

Notice that � implies JMKΓm,d = JNKΓm,d, since the hypothesis PT η
` (M) =

PT η
` (N) gives

∑
h∈(VTη

` )
−1(t) Red∞M,h =

∑
h∈(VTη

` )
−1(t) Red∞N,h, for any t ∈ VT η

` .

Let then h = λx1 . . . xn.yM1 . . .Mk and h′ = λx1 . . . xn′ .y
′M ′1 . . .M

′
k′ . Since

` ≥ 2, VT η
` (h) = VT η

` (h′) implies by Lemma 10 that y = y′ and n−k = n′−k′.
Since D is extensional (see Section 3), by η-expanding one of the two terms, we
can suppose n = n′ and, then, k = k′. Besides if n > 0 let us write d = m :: d′, we
have JhKΓm,d = Jλx2 . . . xn.yM1 . . .MkK

x1,Γ
(m,m),d′ with #((m,m), d′) = #(m, d),

and similarly for Jh′KΓm,d. So, we can reduce to consider the case: h = yM1 . . .Mk

and h′ = yM ′1 . . .M
′
k. If k = 0 the claim � is trivial, otherwise by unfolding the

applications of h using the applicative case in Figure 1, we have that:

JhKΓm,d =
∑

(m0,...,mk)
s.t. m=

⊎
imi

∑
m1,...,mk
∈Mf(|D|)

JyKΓm0,m1::···::mk::d(JM1KΓ )m1,m1 . . . (JMkKΓ )mk,mk

and the same for h′, replacing each Mi with M ′i . Notice that JyKΓm0,m1::···::mk::d 6=
0 implies (m0)y = [m1 :: · · · :: mk :: d], hence #(mi) < #(m0) for any
i ≤ k, thus #(mi,mi) < #(mi) + #(m0) ≤ #(m) ≤ #(m, d) < ` and
#(mi,mi) < ` − 1. Moreover, the hypothesis VT η

` (h) = VT η
` (h′), implies

PT η
`−1(Mi) = PT η

`−1(M ′i) for any i ≤ k, so we conclude by induction hypothesis

on each term in the sums appearing in (JMiKΓ )mi,mi and (JM ′iKΓ )mi,mi . ut
Corollary 1. Let M,N ∈Λ+

Γ , ∀`∈N,PT η
` (M)=PT η

` (N) implies JMKΓ =JNKΓ .

Theorem 2. For any two terms M,N ∈ λ+Γ , the following are equivalent:

1. M and N are contextually equivalent;
2. M and N have the same Nakajima trees;
3. M and N have the same interpretation in D.

Proof. (1) to (2) is given by [12, Theorem 10.1]. From (2) and Corollary 1, we get
(3). Finally, (3) implies (1) by the adequacy of probabilistic coherence spaces,
proven in [6, Corollary 25]. ut
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In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-
12, 2018. pp. 275–284. ACM (2018). https://doi.org/10.1145/3209108.3209198,
http://doi.acm.org/10.1145/3209108.3209198
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