
A Semantic Measure of the Execution Time in

Linear Logic

D. de Carvalho a,1, M. Pagani b,2, L. Tortora de Falco c

aINRIA Lorraine – LORIA
bLaboratoire PPS & Université Paris 7

cDipartimento di Filosofia – Università Roma Tre

Abstract

We give a semantic account of the execution time (i.e. the number of cut elimination
steps leading to the normal form) of an untyped MELL net. We first prove that: 1) a
net is head-normalizable (i.e. normalizable at depth 0) if and only if its interpretation
in the multiset based relational semantics is not empty and 2) a net is normalizable if
and only if its exhaustive interpretation (a suitable restriction of its interpretation)
is not empty. We then give a semantic measure of execution time: we prove that we
can compute the number of cut elimination steps leading to a cut free normal form
of the net obtained by connecting two cut free nets by means of a cut-link, from the
interpretations of the two cut free nets. These results are inspired by similar ones
obtained by the first author for the untyped lambda-calculus.

Key words: Linear Logic, Denotational Semantics, Computational complexity

1 Introduction

Right from the start, Linear Logic (LL, [Gir87]) appeared as a potential logical
tool to study computational complexity. The logical status given by the expo-
nentials (the new connectives of LL) to the operations of erasing and copying
(corresponding to the structural rules of intuitionistic and classical logic) shed
a new light on the duplication process responsible of the “explosion” of the
size and time during the cut elimination procedure. This is witnessed by the

Email addresses: Daniel.decarvalho@loria.fr (D. de Carvalho),
pagani@uniroma3.it (M. Pagani), tortora@uniroma3.it (L. Tortora de Falco).
1 Partially supported by project NO-CoST (ANR, JC05 43380)
2 Supported by a postdoc fellowship Dip.to Filosofia, Università Roma Tre

Preprint submitted to Elsevier 30 December 2008

contribution given by LL to the wide research area called Implicit Compu-
tational Complexity: a true breakthrough with this respect is Girard’s Light
Linear Logic (LLL, [Gir98]). A careful handling of LL’s exponentials allows
the author to keep enough control on the duplication process, and to prove
that a function f is representable in LLL if and only if f is polytime.
One of the main questions arisen from [Gir98] is the quest of a denotational
semantics suitable for light systems (a semantics of proofs in logical terms, or
more generally a model). Among the main attempts in this direction we can
quote on the one hand [MO00,Bai04], where the structures (games, coherent
spaces) associated with logical formulas 3 are modified so that the principles
valid in LL but not in the chosen light system do not hold in the semantics,
and on the other hand [LTdF06] which deals with a property of the elements
of the structures (the interpretations of proofs) characterizing those elements
which can interpret proofs with bounded complexity.

A different approach to the semantics of bounded time complexity is possible:
the basic idea is to measure by semantic means the execution of any program,
regardless to its computational complexity. The aim is to compare different
computational behaviors and to learn afterwards something on the very na-
ture of bounded time complexity. Following this approach, in [dC07,dC08] one
of the authors of the present paper could compute the execution time of an
untyped λ-term from its interpretation in the Kleisli category of the comonad
associated with the finite multisets functor on the category Rel of sets and
relations. Such an interpretation is the same as the interpretation of the net
translating the λ-term in the multiset based relational model of linear logic.
The execution time is measured here in terms of elementary steps of the so-
called Krivine machine. Also, [dC07,dC08] give a precise relation between an
intersection types system introduced by [CDCV80] and experiments in the
multiset based relational model. Experiments are a tool introduced by Girard
in [Gir87] allowing to compute the interpretation of proofs pointwise. An ex-
periment corresponds to a type derivation and the result of an experiment
corresponds to a type. 4

We apply here this approach to Multiplicative and Exponential Linear Logic
(MELL), and we show how it is possible to compute the number of steps of
cut elimination by semantic means (notice that our measure being the number
of cut elimination steps, here is a first difference with [dC07,dC08] where
Krivine’s machine was used to measure execution time). Linear Logic offers

3 The basic pattern of denotational semantics is to associate with every formula
an object of some category and with every proof of the formula a morphism of this
category called the interpretation of the proof.
4 The intersection types system considered in [dC07,dC08] lacks idempotency and
this fact was crucial in that work. In the present paper, this corresponds to the fact
that we use multisets for interpreting exponentials and not sets as in the set based
coherent semantics. The use of multisets is essential in our work too.

2

a very sharp way to study Gentzen’s cut elimination by representing proofs
as graphs with boxes, called proof-nets [Gir87]. The peculiarity of proof-nets
is to reduce the number of commutative cut elimination steps, which instead
abounded in sequent calculi. If π′ is a proof-net obtained by applying some
steps of cut elimination to π, the main property of any model is that the
interpretation JπK of π is the same as the interpretation Jπ′K of π′, so that
from JπK it is clearly impossible to determine the number of steps leading
from π to π′. Nevertheless, if we consider two cut free proof-nets π1 and π2

connected by means of a cut-link, we can wonder:

(1) is it the case that the thus obtained net can be reduced to a cut free one?
(2) if the answer to the previous question is positive, what is the number of

cut reduction steps leading from the net with cut to a cut free one?

The main point of the paper is to show that it is possible to answer both these
questions by only referring to Jπ1K and Jπ2K

5 .

The first question makes sense only in an untyped framework (in the typed
case, cut elimination is strongly normalizing, see [Gir87]), and indeed Subsec-
tion 2.1 is devoted to define an untyped version of Girard’s proof-nets, based
on previous works, mainly [Dan90,Reg92,LTdF06,PTdF09]. Terui [Ter02] also
introduced a calculus corresponding to an untyped and intuitionistic version
of proof-nets of Light Affine Logic and [dC05] addressed the problem of char-
acterizing the (head-)normalizable nets in this restricted setting. We shift here
from the intuitionistic to the classical framework. Let us mention here that to
improve readability we chose to state and prove our results for proof-nets (i.e.
logically correct proof-structures), but correctness (in our framework Defini-
tion 3) is rarely used (see also the concluding remarks, Section 6). The cut
elimination procedure we define is similar to λ-calculus β-reduction, in the
sense that the exponential step (the step (!/?) of Definition 6) is more similar
to a step of β-reduction than it usually is. This is essential to prove our results
(see the discussion on Fig. 5).

We consider in the paper two reduction strategies: head reduction and strat-
ified reduction. The first one consists in reducing the cuts at depth 0 and
stop. The second one consists in reducing a cut only when there exists no
cut with (strictly) smaller depth. These reduction strategies extend the head
(resp. leftmost) reduction of λ-calculus.

We mention the recent papers [Lag06] and [LL08], where the complexity of lin-
ear logic cut elimination is analysed by means of context and game semantics.
It is very likely that our approach and those of [Lag06], [LL08] are closely re-

5 The questions (and the answers) are more general than it seems: every proof-net
with cuts is the reduct of some proof-net obtained by cutting two cut free proof-nets
(Proposition 34).

3

lated. A fine analysis of this relation should help to clarify the correspondences
between relational and game semantics.

Section 2 is devoted to define our version of proof-net (Subsection 2.1) and
the model allowing to measure the number of cut elimination steps (Subsec-
tion 2.2). In Section 3, we show how experiments provide a counter for head
and stratified reduction steps (Lemmas 17, 20). In Section 4 we answer ques-
tion (1), and in Section 5 we answer question (2).

Let us conclude with a little remark. In [TdF03], the question of injectivity
for the relational and coherent semantics of LL is addressed: is it the case
that for π1 and π2 cut free, from Jπ1K = Jπ2K one can deduce π1 = π2? It is
conjectured that relational semantics is injective for MELL, and there is still
no answer to this question. Given π1 and π2, we don’t know how to compute
the normal form of the net obtained by connecting π1 and π2 by means of a
cut-link from Jπ1K and Jπ2K. The present paper shows that from Jπ1K and Jπ2K
we can at least compute the number of cut elimination steps leading to the
normal form.

2 Preliminaries

We introduce the syntax and the model for which we prove our results: the
untyped nets and their interpretation in the category Rel of sets and relations.

2.1 Untyped nets

After their introduction by Girard in [Gir87], proof-nets have been extensively
studied and used as a proof-theoretical tool for several purposes. All this work
led to many improvements of the original notion introduced by Girard.
We use here an untyped version of Girard’s proof-nets. Danos and Regnier
[Dan90,Reg92] introduced and studied “pure proof-nets” that is the exact
notion of proof-net corresponding to pure λ-calculus. There has been no real
need for a different notion of untyped proof-net until Girard’s work on Light
Linear Logic [Gir98]: Terui [Ter02] introduces a “light” untyped λ-calculus
enjoying strong normalization in polynomial time and encoding all polytime
functions. This calculus clearly corresponds to an untyped and intuitionistic
version of proof-nets. In the same spirit, an untyped notion of proof-net (called
net) is introduced in [LTdF06] in order to encode polytime computations: the
novelty here is the shift from the intuitionistic to the classical framework (see
also [PTdF09]). This yields clashes, that is cuts which cannot be reduced (see
Def. 5 and Fig. 2).

4

?

♭

= ?♭ ♭
· · ·

!
♭ = !

· · ·
♭♭ ?♭ ♭

· · ·

= ?
♭ ♭
· · ·

?
♭ ♭
· · ·

· · ·

Fig. 1. Some conventions to picture an arbitrary number of nodes/edges

By following [Reg92,DR95], we choose here a version of nets where ?-links have
n ≥ 0 premises (these links are often represented by a tree of contractions and
weakenings). We also have a ♭-node which is our way to represent dereliction.
These choices allow a strict correspondence between the number of steps of
the cut elimination of a net and its interpretation in Rel (see Theorem 38).
We will end the subsection with a brief discussion on these choices.

Definition 1 (Ground-structure) A ground-structure, or g-structure for
short, is a finite (possibly empty) labelled directed acyclic graph whose nodes
(also called links) are defined together with an arity and a coarity, i.e. a given
number of incident edges called the premises of the node and a given number
of emergent edges called the conclusions of the node. The valid nodes are:

ax cut ⊗ ` 1 ⊥ !

· · ·
♭ ♭

♭

♭

♭ ♭· · ·

?

An edge can have or not a ♭ label: an edge with no label (resp. with a ♭ label)
is called logical (resp. structural). The ♭-nodes have a logical premise and a
structural conclusion, the ?-nodes have k ≥ 0 structural premises and one
logical conclusion, the !-nodes have no premise, exactly one logical conclusion,
also called main conclusion of the node, and k ≥ 0 structural conclusions,
called auxiliary conclusions of the node. Premises and conclusions of the nodes
ax, cut, ⊗, `, 1, ⊥ are logical edges. We allow edges with a source but no
target, they are called conclusions of the g-structure; we consider that a g-
structure is given with an order (c1, . . . , cn) of its conclusions.
We denote by !(α) the set of !-links of a g-structure α.

When drawing a g-structure we order its conclusions from left to right. Also
we represent edges oriented top-down so that we speak of moving upwardly or
downwardly in the graph, and of nodes or edges “above” or “under” a given
node/edge. In the sequel we will not write explicitly the orientation of the
edges. In order to give more concise pictures, when not misleading, we may
represent an arbitrary number of ♭-edges (possibly zero) as a ♭-edge with a
diagonal stroke drawn across (see Fig 1). In the same spirit, a ?-link with a
diagonal stroke drawn across its conclusion represents an arbitrary number
of ?-links, possibly zero (see Fig 1). Given any set X, we denote by X the
set of finite sequences of elements of X, and by x a generic element of X.
For example, a sequence (c1, . . . , cn) of conclusions of a g-structure α may be
denoted simply by c.

5

Definition 2 (Untyped ♭-structure) An untyped ♭-structure, or simply ♭-
structure, π of depth 0 is a g-structure without !-nodes; in this case, we set
ground(π) = π. An untyped ♭-structure π of depth d + 1 is a g-structure
α, denoted by ground(π), with a function that assigns to every !-link o of α
with no + 1 conclusions a ♭-structure πo of depth at most d, called the box of
o, with no structural conclusions, also called auxiliary conclusions of πo, and
exactly one logical conclusion, called the main conclusion of πo, and a bijection
from the set of the no structural conclusions of the link o to the set of the no

structural conclusions of the ♭-structure πo. Moreover α has at least one !-link
with a box of depth d.
We say that ground(π) is the g-structure of depth 0 of π; a g-structure of
depth d + 1 in π is a g-structure of depth d of the box associated by π with a
!-node of ground(π). A link l of depth d of π is a link of a g-structure of depth
d of π; we denote by depth(l) the depth d of l. We refer more generally to a
link/g-structure of π meaning a link/g-structure of some depth of π.

In order to make visual the correspondence between a conclusion of a !-link
and the associated conclusion of the box of that !-link, we represent the two
edges by a single line crossing the border of the box (for example see Fig. 3).

In the next definition we introduce the untyped nets by means of switching
acyclicity. This is a standard notion of correctness which characterizes the
structures sequentializable in a calculus extended with the mix rule [DR89].

Definition 3 (Untyped nets) A switching of a g-structure α is an undi-
rected subgraph of α obtained by forgetting the orientation of α’s edges, by
deleting one of the two premises of each `-node, and for every ?-node l with
n ≥ 1 premises, by erasing all but one premises of l.
An untyped ♭-net, ♭-net for short, is a ♭-structure π s.t. every switching of
every g-structure of π is an acyclic graph. An untyped net, net for short, is a
♭-net with no structural conclusion.

Notice that with every structural edge b of a net is associated exactly one
♭-node (above it) and one ?-node (below it): we will refer to these nodes as
the ♭-node/?-node associated with b. Observe that the ♭-node and the ?-node
associated with a given edge might have a different depth.

Concerning the presence of empty nets, notice that the empty net does exist
and it has no conclusion. Its presence is required by the cut elimination pro-
cedure (Def. 6): the elimination of a cut between a 1-link and a ⊥-link yields
the empty graph, and similarly for a cut between a !-link with no auxiliary
conclusion and a 0-ary ?-link. On the other hand, notice also that with a !-link
o of a net, it is never possible to associate the empty net: o has at least one
conclusion and this has also to be the case for the net associated with o.

Definition 4 (Size of nets) The size s (α) of a g-structure α is the number

6

of logical edges of α. The size s (π) of a ♭-structure π is defined by induction
on the depth of π, as follows: s (π) = s (ground(π)) +

∑
o∈!(ground(π)) s(πo).

cut

⊥ ⊥

cut

!⊥

Fig. 2. Two clashes

Since we are in an untyped framework, nets may
contain “pathological” cuts (see examples in Fig. 2)
which are not reducible. These cuts are called
clashes and their presence is in contrast with what
happens in λ-calculus, where the simpler grammar

of terms avoids clashes also in an untyped framework.

Definition 5 (Clash) The two edges premises of a cut-link are dual when:

• they are conclusions of resp. a ⊗-node and of a `-node, or
• they are conclusions of resp. a 1-node and of a ⊥-node, or
• they are conclusions of resp. a !-node and of a ?-node.

A cut-link is a clash, when the premises of the cut-node are not dual edges
and none of the two is the conclusion of an ax-link.

Definition 6 (Cut elimination) The cut elimination is defined as in [DR95].
To eliminate a cut t in a net π means in general to transform π into a net 6

t(π) by substituting a specific subgraph β of π with a subgraph β ′ having the
same pending edges (i.e. edges with no target or no source) as β. The sub-
graphs β and β ′ depend on the cut t and are described in Fig. 3.
We will also refer to t(π) as a one step reduct of π, and to the transformations
associated with the different types of cut-link as the reduction steps. We write
π π′, when π′ is the result of one reduction step.
A head-cut is a cut of depth 0 in π; a stratified cut t is a cut such that for ev-
ery cut (including clashes) t′ of π we have depth(t) ≤ depth(t′). A head (resp.
stratified) reduction step is a step reducing a head-cut (resp. stratified cut);
we write π h π′ (resp. π s π′), when π′ is the result of one head (resp.
stratified) reduction step.
We denote by ∗ (resp. ∗

h and ∗
s) the reflexive and transitive closure of

 (resp. h and s). A net π is head-normalizable (resp. normalizable) if
there exists a head-cut free (resp. cut free) net π0 such that π ∗ π0.
A reduction sequence R from π to π′ is a sequence (possibly empty in case
π = π′) of reduction steps π π1 . . . πn = π′. The integer n is the
length of the reduction sequence. A reduction sequence R is a head reduction
(resp. a stratified reduction) when every step of R is a head (resp. a stratified)
reduction step.

Notice that cut elimination cannot be applied to clashes, and this means that
there are nets to which no cut elimination step can be applied, even if they
are not cut free (consider for example the nets of Fig. 2).
Notice also that cut elimination is defined on nets and not on general ♭-nets.

6 The fact that t(π) is indeed a net should be checked, see [Reg92].

7

(ax) :
cut

ax

b ca t
 c

(⊗/`) :
cut

t

⊗ `
f g h i

a b

cut

cutf i
g h

(1/⊥) : cut ba
t

1 ⊥
 empty graph

(!/?) :

?

cut
ba

t

♭

♭

♭

♭

♭

!

πo

o

?

♭
♭

!

♭

♭

!

· ·
·

!

w
α

· · ·
♭♭

b′
k

· · ·
♭

c1

β1

!

♭

· · ·

!

· · · · ·
·

b′1

· ·
·

vk♭

ck

βk

!

♭

· ·
·

v1

♭

♭

!
♭

cut♭
πo

♭

♭

♭

?

!

· ·
·

c1

β1

!

!

· · · · ·
·

· · ·

!

· · ·

· ·
·

βk

πo

cut

ck

♭

!♭
♭

♭

· ·
·

· · ·

α′

Fig. 3. Cut elimination for nets. In the (!/?) case what happens is that the !-link o
dispatches k copies of πo (k ≥ 0 being the arity of the ?-node w premise of the cut)
inside the !-boxes (if any) containing the ♭-nodes associated with the premises of w;
notice also that the reduction duplicates k times the premises of ?-nodes which are
associated with the auxiliary conclusions of o.

This is because we want to leave unchanged the number of conclusions of
a net: this is true only for the logical conclusions, the structural ones may be
changed by the (!/?)-steps. In the sequel, however, we need to speak of the
cut elimination of a box πo (which is a ♭-net) associated with a !-link o: in
that case we mean the cut elimination of the net obtained by adding to πo the
?-links of π associated with the structural conclusions of πo.

Definition 7 (Ancestor, residue) Let π π′. When an edge d (resp. a

node l) of π′ comes from a (unique) edge
←−
d (resp. node

←−
l) of π, we say that

←−
d (resp.

←−
l) is the ancestor of d (resp. l) in π and that d (resp. l) is a residue

of
←−
d (resp.

←−
l) in π′. If this is not the case, then d (resp. l) has no ancestor

in π, and we say it is a created edge (resp. node). We indicate, for every type
of cut elimination step of Fig. 3, which edges (resp. links) are created in π′

(meaning that the other edges/nodes of π′ are residues of some π’s edge/node).

8

π = 1♭

⊥

♭

!

?

♭

⊥

cut

1

!

cut

1♭

⊥

♭

!

?

♭

⊥

cut

· · ·

n times︷ ︸︸ ︷

♭

♭♭
t1tn

♭

♭♭
tn−1

∗
h π′ =

!

1cut

1⊥

cut

1⊥

· · ·

2n+1−2 times︷ ︸︸ ︷

∗
s π′′ =

!

1

Fig. 5. Example of the “cost” of cut elimination (n ≥ 1).

We use the notations of Fig. 3:

• (ax): there are no created edges, nor created nodes in π′. Remark that a, b
are erased in π′, so that we consider c in π′ as the residue of c in π;
• (⊗/`): there are no created edges, while the two new cut-links between the

two left (resp. right) premises of the `- and ⊗-links are created nodes;
• (1/⊥): there are no created edges, nor created nodes in π′;
• (!/?): every auxiliary conclusion added to the !-links containing one copy of

πo is a created edge; every cut link between (a copy of) πo’s main conclusion
and ci is a created node. 7

!

cut

♭

ax

!

♭

?

♭

ax

!

♭

?

♭

♭

♭

♭

♭

♭

Fig. 4. Example of a
non-normalizable net.

Examples. It is well-known that there are non-
normalizable untyped nets. A famous example is
the net corresponding to the untyped λ-term
(λx.xx)(λx.xx) (see [Dan90], [Reg92]). We give in
Fig. 4 a slight variant (which is not a λ-term), due
to Mitsu Okada. The reader can check that this net
reduces to itself by one (!/?) step and one (ax) step.

Let us briefly discuss with an example the reason we
choose the syntax of [Reg92,DR95], allowing ?-links
of arity k ≥ 0. Consider the net π in Fig. 5: different
head reductions start from π, depending on which

cut ti (for i ≤ n) we choose to reduce. But every such reduction eventually
reaches the head-cut free net π′. Besides, all head reductions ending in π′

have the same length: they consist of n steps, of type (!/?). Indeed it is a
general property that two head (resp. stratified) reductions of a net leading
to a head-cut (resp. cut) free net always have the same length, as proven in
Corollary 29.
This property is specific of the syntax we have chosen, which gathers in a
unique step (!/?) all the exponential steps of MELL (see [DR95]). In the

7 Notice that every !-link of π′ which contains a copy of πo is considered a residue
of the corresponding !-link of π, even though it has different auxiliary conclusions.
Notice also that the edges/nodes in each copy of πo are considered residues of the
corresponding edges/nodes in πo.

9

original syntax of [Gir87], the (!/?) step splits in (!/?d), (!/?w), (!/?c) and
(!/!). From the point of view of the length of cut elimination, this choice has
some consequences. Recall the (!/?) step as depicted in Fig. 3, assume that the
cut-link t has depth 0, and set d1, . . . , dk as the depths of the ♭-nodes associ-
ated with the k ≥ 0 premises of the ?-node w: the single (!/?) step is simulated
in the syntax of [Gir87] by one (!/?w) step if k = 0, else by k − 1 steps of
type (!/?c),

∑k
i=1 di steps of type (!/!) and k steps of type (!/?d). In particular

the length of this simulation is not constant but it depends on the arity k of
w and on the depths of the ♭-nodes above w. Furthermore, these factors may
be affected by other (!/?) reduction steps, and this yields simulations (by nets
of [Gir87]) with different lengths of a same reduction sequence. For example,
the net π of Fig. 5 can be rewritten into the head-cut free π′ (in the sense
of our Definition 6) by reductions of [Gir87] of different lengths. One of the
shortest reduction is obtained by reducing the cuts t1, . . . , tn in a decreasing
order (w.r.t. the index): reduce tn, the two created (!/!) cuts and then the two
created (!/?d) cuts, after reduce tn−1 and the (!/!), (!/?d) created cuts, then
tn−2 and so forth. This reduction leads to π′ after 5n steps: n of type (!/?c), 2n
of type (!/!), and 2n of type (!/?d). On the other hand, by reducing t1, . . . , tn
in an increasing order, one gets one of the longest head reductions: reduce t1,
the two created (!/!) cuts and the two created (!/?d) cuts, after focus on t2
and notice that the reduction of t1 has created two new ?c nodes above t2
and duplicated two ?d nodes, so that to simulate the (!/?) reduction of t2 we
need to perform 3 (!/?c) steps, 4 (!/!) steps and 4 (!/?d) steps, then for t3 we
need 7 (!/?c) steps, 8 (!/!) steps, and the same number of (!/?d) steps, and
so forth. Eventually, it turns out that the length of this reduction sequence is∑n

i=1((2
i− 1) + 2× 2i) = 3× 2n+1− n− 6, which may be much more than the

length of our reduction π ∗
h π′.

This example also shows that it is not obvious how many steps of a Turing
machine are needed to implement our reduction. We think a precise answer
to this question should generalize in the framework of nets the cost model
developed by Dal Lago and Martini for the call-by-value λ-calculus [LM06].

At last, remark that even if the length of head-normalization in our syntax
may differ considerably from the length of its simulation in the syntax of
[Gir87], the situation might very well be different for stratified normalization.
Indeed in the example of Fig. 5, in order to reach the cut free net π′′ from the
head-cut free net π′ one needs 2n+1 − 2 more stratified steps (of type (1/⊥)),
so that the total length of the normalization 8 π ∗

s π′′ is n + 2n+1 − 2, and,
as the reader can check, the total length of its simulation in [Gir87] may vary
between 5n + 2n+1 − 2 and 4× 2n+1− n− 8: all these functions belong to the
same complexity class (EXP).

8 All stratified reduction sequences leading to a cut free normal form have the same
length (see Corollary 29).

10

2.2 Denotational semantics

We define here the interpretation allowing to measure execution time. Our
aim is to use the multiset based relational model, but notice that we want to
interpret untyped nets. In λ-calculus, the shift from typed to untyped seman-
tics essentially relies on the choice of a suitable object D which is reflexive,
that is such that D → D is a retract of D (via some morphisms). In the
MELL framework we have more constructions than the intuitionistic arrow,
then it is not enough for the object D we look for to enjoy the λ-calculus
notion of reflexivity (it must satisfy more properties). Indeed we define an
object D (Definition 8) in the category Rel of sets and relations in such a
way that not only D⊥, D ⊗ D, D ` D, !D and ?D are retracts of D, but
also that each of these constructs interacts well with the others (via some
morphisms), thus allowing an interpretation of untyped nets invariant under
cut-elimination (Theorem 11).

Let us fix a set A of “atoms”, such that A does not contain any pair nor
any multiset. We also require that ∗ 6∈ A: these conditions on A ensure that
following Definition 8 we obtain an object D that satisfies the equation

D = A⊕ A⊥ ⊕ 1⊕⊥⊕ (D ⊗D)⊕ (D ` D)⊕!D⊕?D,

where the constructs have the usual interpretations: A⊥ = A, ⊗ and ` are
the cartesian product of sets, 1 and ⊥ are the singleton {∗}, ! and ? are the
finite multisets functor, and ⊕ is a disjoint union 9 .

Definition 8 We define Dn by induction on n:

D0 := {+,−} × (A ∪ {∗})

Dn+1 :=D0 ∪ ({+,−} ×Dn ×Dn) ∪ ({+,−} ×Mfin(Dn)) ,

where Mfin(Dn) is the set of finite multisets of elements of Dn.

We set D :=
⋃

n∈N Dn.

We call the depth of an element x ∈ D the least number n ∈ N s.t. x ∈ Dn.

We recall that we denote the set of finite sequences of elements of D by D,
and a generic element of D in boldface: y ∈ D.

Definition 9 Let +⊥ = − and −⊥ = +. We define x⊥ for any x ∈ D, by
induction on depth(x):

9 The previously mentioned conditions guarantee that the following definition of D
gives rise indeed to a disjoint union.

11

ax

x x⊥ cut

x x⊥
1

(+, ∗)

⊥

(−, ∗)

⊗

x y

(+, x, y)

`

x y

(−, x, y)

♭

♭

x

(−, [x])

?

(−,
∑

i≤n
µi)

· · ·

(−, µ1) (−, µn)

♭♭
! [eo

1, . . . , e
o
n]

(+, [x1, . . . , xn])
(−,

∑
i≤n

µi)

πo

♭
(−, µi) xi

♭

Fig. 6. Experiments of ♭-nets, with x, y, xi ∈ D and µi ∈Mfin(D).

• for a ∈ A ∪ {∗}, (p, a)⊥ = (p⊥, a);
• else, (p, x, y)⊥ = (p⊥, x⊥, y⊥), and (p, [x1, . . . , xn])⊥ = (p⊥, [x⊥

1 , . . . , x⊥
n]).

A key feature is that, for every x ∈ D, one has x 6= x⊥, a property used in the
proof of Theorem 21 and also in Definition 19 of exhaustive element.

Now, we show how to compute the interpretation of an untyped net directly,
without passing through a sequent calculus. This is done by adapting the no-
tion of experiment to our untyped framework. For a net π with n conclusions,
we define the interpretation of π, denoted by JπK, as a subset of

˙n
i=1 D, that

can be seen as a morphism from 1 to
˙n

i=1 D. We compute JπK by means of
the experiments of π, a notion introduced by Girard in [Gir87] and central in
this paper. We define, by induction on the depth of π, an experiment e of π:

Definition 10 (Experiment) 10 An experiment e of a ♭-net π, denoted by
e : π, is a function which associates with every !-link o of ground(π) a multiset
[eo

1, ..., e
o
k] (k ≥ 0) of experiments of πo, and with every edge a of ground(π) an

element of D, such that if a, b, c are edges of ground(π) the following conditions
hold (see Fig. 6):

• if a, b are the conclusions (resp. the premises) of an ax-link (resp. cut-link),
then e(a) = e(b)⊥;
• if c is the conclusion of a 1-link (resp. ⊥-link), then e(c) = (+, ∗) (resp.

e(c) = (−, ∗));
• if c is the conclusion of a ⊗-link (resp. `-link) with premises a, b, then

e(c) = (+, e(a), e(b)) (resp. e(c) = (−, e(a), e(b)));
• if c is the conclusion of a ♭-link with premise a, then e(c) = (−, [e(a)]);
• if c is the conclusion of a ?-link with premises a1, . . . , an, and for every

i ≤ n, e(ai) = (−, µi), where µi is a finite multiset of elements of D, then
e(c) = (−,

∑
i≤n µi); in particular if c has no premises, then e(c) = (−, []);

• if c is a conclusion of a !-link o of ground(π), let πo be the box of o and
e(o) = [eo

1, . . . , e
o
n]. If c is the logical conclusion of o, let co be the logical

conclusion of πo, then e(c) = (+, [eo
1(c

o), . . . , eo
n(co)]), if c is a structural

conclusion of o, let co be the structural conclusion of πo associated with c,
and for every i ≤ n, let eo

i (c
o) = (−, µi), then e(c) = (−,

∑
i≤n µi).

If c1, . . . , cn are the conclusions of π, then the result of e, denoted by |e|, is

10 Remark that the following definition is slightly different from that used in
[TdF03], namely e is defined only on the edges of ground(π).

12

the element 11 (e(c1), . . . , e(cn)) of
˙n

i=1 D. The interpretation of π is the set
of the results of its experiments:

JπK := {(e(c1), . . . , e(cn)) ; e experiment of π} .

If y = (e(c1), . . . , e(cn)) is the result of an experiment e : π, we denote by yci

the element e(ci), for every i ≤ n. Generally, if d = (ci1 , . . . , cik) is a sequence
of conclusions of π, we note by yd the element (e(ci1), . . . , e(cik)) of D.

Note that the elements of D associated with a structural edge are always of
the shape (−, µ). Remark also that the interpretation of any ♭-net containing a
clash of depth 0 is empty, since there exists no experiment of such a ♭-net. This
is due to the fact that (following Definition 10) an experiment must associate
dual elements with the two premises of a clash, and this is not compatible
with the other conditions of Definition 10.

We will consider some particular experiments: n-experiments (see [TdF03]),
with n ≥ 0 an integer. This notion is defined by induction on the depth of the
♭-net: if depth(π) = 0, then any experiment e : π is an n-experiment; else, an
experiment e : π is an n-experiment if with every !-link o of depth 0 of π, e
associates a multiset [eo

1, . . . , e
o
n] with eo

i : π an n-experiment.

An experiment e of a ♭-net π is uniquely determined by its values on the axiom
conclusions and on the !-links of ground(π). This is due to the conditions
depicted in Fig. 6, which define a top-down propagation of the values of an
experiment. Indeed the sole constraint which may prevent this propagation to
be an experiment is the condition on cuts. Hence if π is head-cut free, then
any choice of values for the axiom conclusions and for the !-links of ground(π)
defines an experiment. If the value given to every !-link with depth 0 of π is
the empty set, we obtain a 0-experiment of π. If π is cut free, one can define
a 1-experiment e of π by induction on depth(π) by assigning to every !-link of
ground(π) a singleton [eo] with eo a 1-experiment of the box πo of o.

Such 0- and 1-experiments will be used in the proofs of Lemma 27 and Propo-
sition 28.

In Fig. 7 we give some examples of experiments: consider the topmost net π
of Fig. 7 and its experiment e, one has |e| = ((−, 2[x, y]), (−, 2[x⊥, y⊥])). The
interpretation of π is:

JπK =
{
((−, [x1, . . . , x4]), (−, [x⊥

1 , . . . , x⊥
4])) ; xi ∈ D, for i ≤ 4

}
.

11 Recall that a g-structure, hence a ♭-net, is given together with an order on its
conclusions, so the sequence (e(c1), . . . , e(cn)) is uniquely determined by e and π.

13

The reader can check that every cut reduct of π (for example the nets π1, π2, π8

of Fig. 7) has the same interpretation as π. Indeed the invariance of JπK under
cut reduction is a key property, stated by the well-known theorem:

Theorem 11 (Soundness) For every π, π′ nets: if π ∗ π′, then JπK = Jπ′K.

PROOF. A straightforward consequence of Lemma 17 (see also [Gir87]). 2

The empty net has no conclusion and it has exactly one experiment: the
function with empty domain. Thus the interpretation of the empty net is not
the empty set, but the singleton of the empty sequence {()}. By Theorem 11,
this means that every net reducing to the empty net is interpreted by {()}.
Clearly there are nets having an empty interpretation, for example take any
net with an head-clash: no experiment meets the cut condition of Fig. 6. More
interesting examples of nets having an empty interpretation are those nets
from which starts an infinite head-reduction sequence (as for example the net
of Fig. 4).

The following definition introduces an equivalence relation ∼ on the experi-
ments of a ♭-net π: intuitively the ∼ equivalence classes are made of experi-
ments associating with a given !-link of π multisets of experiments with the
same cardinality. This relation, as well as the notion of substitution defined
immediately after, will play a role in Subsection 5.2.

Definition 12 We define an equivalence ∼ on the set of experiments of a
♭-net π, by induction on depth(π). Let e, e′ : π, we set e ∼ e′ whenever for
every !-node o of ground(π), there is m ∈ N, such that e(o) = [e1, . . . , em],
e′(o) = [e′1, . . . , e

′
m], and ∀j ≤ m, ej ∼ e′j.

Notice that whenever π has depth 0, we have e ∼ e′ for every e, e′ : π. For
an example with !-links, recall the experiment e : π defined on the topmost
net of Fig. 7: the ∼-equivalence class of e is the set of all experiments of π
which associates a multiset of cardinality 4 with the !-link o and a multiset of
cardinality 2 with the !-link u.

Definition 13 (Substitution) A substitution is a function σ : D → D
induced by a function σA : A → D and defined by induction on the depth of
elements of D, as follows (as usual p ∈ {+,−} and a ∈ A):

σ(p, ∗) := (p, ∗) σ(+, a) := σA(a) σ(−, a) := σA(a)
⊥

σ(p, x, y) := (p, σ(x), σ(y)) σ(p, [x1, . . . , xn]) := (p, [σ(x1), . . . , σ(xn)])

We denote by S the set of substitutions. If y = (x1, . . . , xn) ∈
˙n

i=1 D, we set
σ(y) := (σ(x1), . . . , σ(xn)).

14

A similar notion of substitution plays a crucial role in [Pag07]. An important
property is that the interpretation of a ♭-net is closed by substitution, as the
next lemma shows (the proof is an easy induction on s(π)).

Lemma 14 Let π be a ♭-net. For every e′ : π and σ ∈ S, there is e : π such
that σ(|e′|) = |e| and e ∼ e′.

3 The size of experiments

Experiments can be thought as objects in between syntax and semantics: by
relating them precisely to head and stratified reductions, we make a first step
in finding a semantic measure of execution time. The second (and last) step
is the shift from experiments to their results, and this is precisely the purpose
of Sections 4 and 5. The main result of this section is Lemma 17, called Key-
lemma, which points out that the sizes of the experiments provide a counter
for head and stratified reduction steps.

Definition 15 (Size of experiments) For every ♭-net π, for every e : π,
we define, by induction on depth(π), the size of e, s (e) for short, as follows:

s (e) = s (ground(π)) +
∑

o∈!(ground(π))

∑

eo∈e(o)

s (eo) .

Notice that the part of s (e) which really depends on e is the number of copies
e chooses for the !-links, the rest depends only on the ♭-net π. In particular
we have the following immediate consequence of Definition 12:

Fact 16 Let π be a ♭-net. For every e, e′ : π s.t. e ∼ e′, we have s(e) = s(e′).

Let’s now give an example of size computation: recall the experiment e : π on
the topmost net of Figure 7. We have: s (eo

1) = s (eo
2) = s (eu) = 3 and then

s (e) = 8 + 18 = 26.

In [Gir87] p. 61-70, Girard shows that in the coherent semantics we have a
notion of residue under cut elimination. Namely, he proves that if π π′,
then every experiment e : π has a “residue” −→e : π′ s.t. |e| = |−→e |, as well

as every experiment e′ : π′ has an “ancestor”
←−
e′ : π, s.t. |

←−
e′ | = |e′|. This

fact has as a consequence the invariance of the interpretation JπK under cut
elimination (here Theorem 11). In the following lemma, we refine Girard’s
proof in the framework of Rel, by pointing out that, in case of head-reduction,
not only e and −→e have the same result but also s (−→e) = s (e)− 2. Such a new
“quantitative” insight in the relationship between e and its “residue” −→e is at
the core of our program to study computational properties by semantic means.

15

Before proving Lemma 17, let us consider an example. Take the experiment
e : π of Fig. 7 and consider π h π1: the labelling of π1’s edges and !-links
defines a “residue” −→e : π1 of e (at least according to the construction of
residue given by Girard in [Gir87]). The reader can check that |−→e | = |e| and
s (−→e) = 6 + 18 = 24 = s (e)− 2.
The example of Fig. 7 shows also that a notion of residue in the relational
semantics would be more subtle to define than in the coherent semantics: let
e
−→u
x (resp. e

−→u
y) be the experiment of the box of π1 which takes the values x, x⊥

(resp. y, y⊥) on both the axioms in the box, and let
−→
e′ be the experiment of

π1 which differs from −→e on the !-link −→u , where we set
−→
e′ (−→u) = [e

−→u
x , e

−→u
y]. The

experiment
−→
e′ has the same “right” as −→e to be considered a residue of e (in

particular one has |e| = |−→e | = |
−→
e′ |). This means that an experiment could

have several residues. Indeed it could have also several ancestors: consider
π1 h π2 and the experiment e2 : π2 defined by the labelling of π2 in Fig. 7:

both −→e and
−→
e′ should be considered ancestors of e2 (or, said the other way

round, e2 would be the residue of both −→e and
−→
e′).

Let us comment a bit this very delicate phenomenon (many ancestors, many
residues) by looking more carefully at the case of the different residues −→e and
−→
e′ of e. What happens is that we have a multiset of 4 labels of an ax-link (the
left box of π), and cut elimination requires that we split this multiset in two
multisets, each of which contains 2 labels. In Rel, there is no canonical way
to operate such a splitting 12 .

Lemma 17 (Key-lemma) Let π, π′ be two nets s.t. π h π′. Then:

(1) for every e : π there is −→e : π′ s.t. |e| = |−→e |, and s (−→e) = s (e)− 2;

(2) for every e′ : π′ there is
←−
e′ : π s.t. |

←−
e′ | = |e′|, and s

(←−
e′
)

= s (e′) + 2.

PROOF. Let π h π′ and t be the reduced cut of π. Remember that by
definition of h, t has depth 0 in π. Let α = ground(π) and α′ = ground(π′).
The proof splits in four cases, depending on the type of t: we consider only
the case t is of type (!/?), leaving to the reader the other cases (ax), (1/⊥),
(⊗/`), which are easier.
If t is of type (!/?), then our nets are as in the (!/?) case of Fig. 3. 13 This case
is delicate, since the !-link o dispatches several residues of its box πo in π′ (at
any depth). Let ♭(w) be the set of ♭-nodes associated with the ?-link w, we set
depth♭(w) =

∑
v∈♭(w)(depth(v) + 1). The proof is by induction on depth♭(w).

12 This is in sharp contrast to the case of coherent semantics, where there exists a
unique splitting of the original multiset.
13 To be precise, Fig. 3 deals with the general case where t is at any depth of π.

16

π =
!

♭

⊥

!

⊥
♭♭♭

♭

ax 1 1

?

cut cut

1 1

♭♭

?
♭ ♭

(+, ∗) (+, ∗)

? ?

♭

2[eo
1, e

o
2]

♭
(−, ∗)

♭

2[eu]

x⊥/y⊥
x/y

(−, ∗)

(+, ∗)(+, ∗)

(−, 4[(+, ∗)])(+, 4[(−, ∗)]) (+, 2[(−, ∗)]) (−, 2[(+, ∗)])

o u

(−, 2[x, y]) (−, 2[x⊥, y⊥])

h ��

�O

π1 =

!

⊥

1 1

♭♭

?

cut

cut

⊥ 1

(−, ∗) (+, ∗)cut

⊥ 1

(−, ∗) (+, ∗)♭ ♭

ax

ax

♭♭

??

(−, 2[x, y])

2[e
−→
u]

♭(−, ∗) ♭

(+, ∗)

(+, 2[(−, ∗)]) (−, 2[(+, ∗)])

y⊥

♭♭

x⊥x

−→u

(+, ∗)

♭ ♭

y

(−, 2[x⊥, y⊥])

h ��

�O

π2 =
♭ ♭♭ ♭ ♭♭ ♭

ax

ax

ax

ax

?

(−, 2[x, y])

?

(−, 2[x⊥, y⊥])

⊥ 1

cut

⊥ 1

cut

(−, ∗) (+, ∗)

(−, ∗) (+, ∗)

⊥ 1

cut

⊥ 1

cut

(−, ∗) (+, ∗)

(−, ∗) (+, ∗)

⊥ 1

cut

⊥ 1

cut

(−, ∗) (+, ∗)

(−, ∗) (+, ∗)

♭

♭♭

y y x x⊥ y⊥ y⊥
x x⊥

♭♭♭ ♭ ♭ ♭

h ∗��
�O

π8 =
♭ ♭♭ ♭ ♭♭ ♭

ax

ax

ax

ax

?

(−, 2[x, y])

?

(−, 2[x⊥, y⊥])

♭

♭♭

y y x x⊥ y⊥ y⊥
x x⊥

♭♭♭ ♭ ♭ ♭

Fig. 7. Example of an experiment e : π and its residues under cut elimination. The
value of an experiment on an edge or !-link is written as a label of that edge/!-link.
Inside the left box of π we use fractions x/y to describe different values of experi-
ments: we write as numerator (resp. denumerator) the values of eo

1 (resp. eo
2). For

simplicity we have omitted the values on the structural edges.

Case depth♭(w) = 0, i.e. w is a ?-link without premises. Let us prove (1):
let us define −→e : π′ from any e : π. If d′ (resp. l′) is an edge (resp. a !-link)
of α′, then d′ (resp. l′) is the residue of a unique edge d (resp. !-link l) of α.
Moreover the ♭-structure associated with l′ is the same as the one associated
with l. So define −→e (d′) = e(d) and −→e (l′) = e(l). Notice that −→e is well-defined.
Moreover, we have |−→e | = |e|. As for the sizes, remark that s (α′) = s (α)− 2,
since a, b are the only two logical edges of α erased in α′. Moreover, since
e(o) = [], we deduce:

∑

l∈!(α)

∑

el∈e(l)

s
(
el
)

=
∑

l∈!(α)
l 6=o

∑

el∈e(l)

s
(
el
)

=
∑

l′∈!(α′)

∑

el′∈−→e (l′)

s
(
el′
)

17

We conclude: s (−→e) = s (e)− 2.
Conversely, let us prove (2): consider e′ : π′. Let d (resp. l) be any edge (resp.
!-link) of π s.t. d is not a conclusion of o (resp. l 6= o). Then d (resp. l)
has a unique residue d′ (resp. l′) in α′, moreover the ♭-structure associated

with l′ is the same as the one associated with l. So set:
←−
e′ (d) = e′(d′) (resp.

←−
e′ (l) = e′(l′)). Moreover define

←−
e′ (o) = [], hence

←−
e′ (d) = (−, []) for every

auxiliary conclusion d of o, and
←−
e′ (b) = (−, []) =

←−
e′ (a)⊥. Remark that

←−
e′ is

well-defined and check that |
←−
e′ | = |e′|, and s

(←−
e′
)

= s (e′) + 2.

Case depth♭(w) = 1, i.e. w is a ?-link with only one premise which is con-
clusion of a ♭-node v in α. This means π, π′ are as follows:

π =

cut
? ! ?

o

♭
♭

v

w

c

g

t

a b

♭
♭

 π′ =
?

cutao

πo
g′

♭
♭

where πo is the proof-net associated with o in π, c (resp. g) is the premise
of w (resp. v). Set αo = ground(πo). We prove (1): let us define −→e : π′ from
e : π. First of all remark that e(o) = [eo], since the multiset in e(a) contains
exactly one element (that is eo(ao) = e(g)⊥). If d′ (resp. l′) is an edge (resp. a
!-link) of α′, then its ancestor d (resp. l) is in α or in αo. In the first case, set:
−→e (d′) = e(d) (resp. −→e (l′) = e(l)); in the second case: −→e (d′) = eo(d) (resp.
−→e (l′) = eo(l)).
Clearly |e| = |−→e |. Moreover notice that s (α′) = s (α)+s (αo)−2 (t’s reduction
erases the logical edges a and b), so that:

s (−→e) = s (α′) +
∑

l′∈!(α′)

∑

el′∈−→e (l′)

s
(
el′
)

= s (α) + s (αo)− 2 +
∑

l∈!(αo)

∑

el∈eo(l)

s
(
el
)

+
∑

l∈!(α)\{o}

∑

el∈e(l)

s
(
el
)

= s (α)− 2 + s (eo) +
∑

l∈!(α)\{o}

∑

el∈e(l)

s
(
el
)

= s (e)− 2 .

We prove (2): let us define
←−
e′ : π from e′ : π′. Let d (resp. l) be an edge of α

s.t. d is not a conclusion of o neither conclusion nor premise of w (resp. l 6= o).

Then d (resp. o) has a unique residue d′ (resp. l′) in α′: set
←−
e′ (d) = e′(d′) (resp.

←−
e′ (l) = e′(l′)). Let eo be the restriction of e′ to πo (which is a sub♭-net of π′)

and define
←−
e′ (o) = [eo],

←−
e′ (a) = (+, [eo(ao)]) and

←−
e′ (b) =

←−
e′ (c) =

←−
e′ (a)⊥ =

(−, [
←−
e′ (g)]), and finally, for every auxiliary conclusion f of o let f o be the

corresponding edge of πo and set
←−
e′ (f) = eo(f o). Remark that this definition

of
←−
e′ makes sense (i.e.

←−
e′ is indeed an experiment). As in the former case, one

18

can prove |e′| = |
←−
e′ | and s (e′) = s

(←−
e′
)
− 2.

Case depth♭(w) > 1, i.e. either w has more than one premise, or it has
exactly one premise and this premise is associated with a ♭-node in a !-link.
We thus split in two subcases.

If w is associated with exactly one ♭-node v and v is in a !-link u, then
π and π′ have the following shape:

π =

cut

t

ba

v♭

g

!

!

♭

♭

?

· · ·♭

♭! ?

o ♭c

♭ ?

♭

♭
· ·
·

πu

! ♭

u

w

cu

 π′ =

πo

cut

g′

!

!

! u′

?

· · ·♭

♭

♭

· ·
·

♭

πu
′

♭

♭

♭ ?

♭

where πo (resp. πu) is the ♭-net associated with o (resp. u) in π, c (resp. g)
is the premise of w (resp. v). Let now e : π and let us define −→e : π′. Let d′

(resp. l′) be an edge (resp. a !-link) of α′, then its ancestor d (resp. l) is in α.
Moreover if l′ 6= u′, then πl′ = πl. So set: −→e (d′) = e(d) and −→e (l′) = e(l), when
l′ 6= u′. It remains to define −→e (u′). For this, consider the following π̂:

π̂ =

πu

cut

t̂ ?
♭

ĉu

ŵ
♭

b̂â

ô

!
♭

where πo is associated with ô. Remark that π̂ h πu′

, so we can apply the
induction hypothesis to π̂ (indeed depth♭(ŵ) = depth♭(w)−1). 14 Let us define
from e : π an ê : π̂. Set α̂ = ground(π̂). Let e(o) = [eo

1, . . . , e
o
h] and e(u) =

[eu
1 , . . . e

u
k], for h, k ≥ 0. By definition, e(b) = e(a)⊥, i.e. (+,

∑
i≤h[e

o
i (a

o)])⊥ =
(−,

∑
j≤k µj), where ao is the conclusion of πo associated with a, cu is the

conclusion of πu associated with c, and for every j ≤ k, eu
j (c

u) = (−, µj). This
means that

∑
i≤h[e

o
i (a

o)⊥] =
∑

j≤k µj, i.e. there is a function 15 f : {1, . . . , h} →
{1, . . . , k}, s.t. for every j ≤ k, µj =

∑
i∈f−1(j)[e

o
i (a

o)⊥]: let us fix such an f
once for all. For each j ≤ k, let êj : π̂ be defined as follows:

14 Recall that cut elimination is defined on nets and not on ♭-nets, however we have
adopted the convention to speak of the cut elimination of a box πo of a net π,
meaning the cut elimination of the net obtained by adding to πo the ?-links of π
associated with the structural conclusions of πo.
15 Notice that this function is not necessarily unique (due to the fact that
[eo

1(a
o)⊥, . . . , eo

h(ao)⊥] is a multiset), and this implies that −→e is not unique (and
similarly for (2), ←−e is not unique): recall the example of Figure 7.

19

• for every !-link l̂ ∈ α̂:
• if l̂ is in πu, set: êj(l̂) = eu

j (l̂),

• otherwise l̂ = ô, then define: êj(ô) = [eo
i ; i ∈ f−1(j)],

• for every edge d̂ ∈ α̂:
• if d̂ is in πu, set: êj(d̂) = eu

j (d̂),

• otherwise, d̂ is b̂ or a conclusion of ô. Define: êj(b̂) = eu
j (c

u), êj(â) =

(+, [eo
i (a

o) s.t. i ∈ f−1(j)]), and for every other auxiliary conclusion d̂ of
ô, let êj(d̂) = (−,

∑
i∈f−1(j) νi), where do is the conclusion of πo associated

with d̂, and for every i ∈ f−1(j), eo
i (d

o) = (−, νi).

Remark that êj : π̂ is well-defined, in particular êj(b̂) = êj(â)⊥, since by defi-

nition of ej and that of f , êj(b̂) = eu
j (c

u) = (−, µj) = (−,
∑

i∈f−1(j)[e
o
i (a

o)⊥]) =
êj(â)⊥. Applying, for every j ≤ k, the induction hypothesis to êj : π̂, we obtain

the existence of eu′

j : πu′

, s.t. |eu′

j | = |êj | and s
(
eu′

j

)
= s (êj)− 2.

Finally we can complete the definition of −→e , by setting: −→e (u′) = [eu′

1 , . . . , eu′

k].
We leave to the reader the proof that −→e is well defined and that |e| = |−→e |.
Let us prove instead that s (−→e) = s (e) − 2. We know that s (α′) = s (α) −
2, since a, b have been erased by t’s reduction; moreover, for each j ≤ k,
s
(
eu′

j

)
= s (êj) − 2. Notice that, by the definition of êj , we know that:

s (êj) =
∑

i∈f−1(j) s (eo
i) + s

(
eu

j

)
+ 2 (+2 since π̂ has the logical edges â, b̂

in addition to πo and πu). So, s
(
eu′

j

)
=
∑

i∈f−1(j) s (eo
i) + s

(
eu

j

)
, from which

we conclude that:

s (−→e) = s (α′) +
∑

l′∈!(α′)

el′∈−→e (l′)

s
(
el′
)

= s (α)− 2 +
∑

l∈!(α)
l 6=o,u

el∈e(l)

s
(
el
)

+
∑

eu′∈−→e (u′)

s
(
eu′
)

= s (α)− 2 +
∑

l∈!(α)
l 6=o,u

el∈e(l)

s
(
el
)

+
∑

eo∈e(o)

s (eo) +
∑

eu∈e(u)

s (eu) = s (e)− 2

The definition of an experiment
←−
e′ : π from an experiment e′ : π′ is completely

symmetric to the definition of −→e : π′ from e : π and it is left to the reader.

If w has more than one premise, then π has the following shape:

π =
!

o

♭ ♭

?

?
w

· · ·

c1 c2 cm+1

♭♭ ♭

cut

t
ba

The proof of this case is an easy variant of the former one, we just sketch the
proof here. The key ingredient is to define a structure π̂ obtained from π by

20

substituting the above highlighted subgraph with the following one:

π̂ = !

ô1

?

♭
♭

? !

♭

ŵ1

ĉ1
♭

?
ŵ2

· · ·
ô2 ĉ2 ĉm+1

♭♭

cut cut
â2 b̂2

t̂2
â1 b̂1

t̂1

where with both ô1, ô2 is associated the ♭-net πo associated with o in π. Let
π̂′ be the result of reducing t̂1 in π̂, so that π̂ h π̂′. Moreover notice that
π̂′
 h π′, by reducing the residue of t̂2 in π̂′. The next step is to show that

from any experiment e : π, one can define (similarly to the former case) an
experiment ê : π̂, s.t. |ê| = |e| and s (ê) = s (e) + 2. Once we have ê : π̂, we
can apply the induction hypotheses on π̂ first, and on π̂′ thereafter (indeed
depth♭(ŵ1), depth♭(ŵ2) < depth♭(w)). In this way we get the experiments
−→
ê : π̂′ and

−→−→
ê : π′, s.t. s

(−→−→
ê

)
= s

(−→
ê
)
−2 = s (ê)−4 = s (e)−2. Set −→e =

−→−→
ê .

The definition of an experiment
←−
e′ : π from an experiment e′ : π′ is completely

symmetric to the definition of −→e : π′ from e : π. 2

In the general case, if e : π and t is a cut-link of π (of depth greater than 0),
the size of the residues −→e : π′ depends on e, and not only on s(e). However,
the Key-lemma allows to tame this change of size during cut elimination (at
any depth):

Fact 18 Let π, π′ be two nets s.t. π π′. Then:

(1) for every e : π there is −→e : π′ s.t. |e| = |−→e | and s (−→e) ≤ s (e);

(2) for every e′ : π′ there is
←−
e′ : π s.t. |

←−
e′ | = |e′| and s

(←−
e′
)
≥ s (e′).

PROOF. The proof is by induction on the depth of the reduced cut t of
π. If t has depth 0 the fact is an immediate consequence of the Key-lemma.
Otherwise one applies the induction hypothesis to the net πo associated with
the !-link o of depth 0 containing t. 2

In the stratified case, Fact 18 can be improved: we now adapt the Key-lemma
to stratified reduction. We introduce for this purpose the notion of exhaustive
element of D.

Definition 19 (Exhaustive element) Let x ∈ D. We say that x is exhaus-
tive if (+, []) does not appear in x 16 . An element (x1, . . . , xn) of

˙n
i=1 D is

exhaustive when xi is exhaustive for every i ∈ {1, . . . , n}. An experiment is

16 We mean here that the ordered sequence of characters (+, []) is not a subsequence
of x (as a word).

21

exhaustive if its result is exhaustive. Given a set X ⊆ D, we denote by Xex

the set of the exhaustive elements of X.

Clearly it might be the case that x is exhaustive while x⊥ isn’t. Notice also that
the definition of exhaustive experiment only relies on the notion of exhaustive
point of D: if π and π′ are ♭-nets and if e : π and e′ : π′ are s.t. |e| = |e′|, then
either e and e′ are both exhaustive or they are both non exhaustive.

Lemma 20 Let π and π′ be two nets s.t. π s π′. Then:

(1) for every e : π exhaustive s.t. s(e) = min{s(e); e : π is exhaustive}, there
exists −→e : π′ s.t. |e| = |−→e | and s (−→e) = s (e)− 2;

(2) for every e′ : π′ exhaustive s.t. s(e′) = min{s(e); e : π is exhaustive},

there exists
←−
e′ : π s.t. |

←−
e′ | = |e′| and s

(←−
e′
)

= s (e′) + 2.

PROOF. Let π s π′ and t be the reduced cut of π. We proceed by in-
duction on depth(t). We prove only (1), the proof of (2) being symmetric. If
depth(t) = 0, then π h π′ and we can apply Lemma 17. Otherwise, let o be
the !-link of ground(π) whose box πo contains t: the structure t(π0) is a one step
stratified reduct of πo. Let e : π be s.t. s(e) = min{s(e′); e′ : π is exhaustive}.
Because by hypothesis the reduction step leading from π to π′ is stratified,
we know that π is head-cut free. Then e(o) = [eo] for some experiment eo : πo

s.t. s(eo) = min{s(e′); e′ : πo is exhaustive}. Indeed, e(o) 6= [] (otherwise e
wouldn’t be exhaustive) and e(o) 6= [e1, . . . , en] with n ≥ 2 (otherwise s(e)
wouldn’t be minimal). Furthermore eo is exhaustive because so is e. By in-
duction hypothesis (applied to eo : πo and t(πo)) there exists an experiment
−→
eo : t(πo) s.t. |

−→
eo | = |eo| and s

(−→
eo
)

= s(eo)− 2. We then define −→e by chang-

ing the value of e on the !-link o (and leaving all the rest unchanged): we set
−→e (o) = [

−→
eo]. One clearly has s (−→e) = s (e)− 2. 2

Notice that the experiments −→e : π′ and
←−
e′ : π of Lemma 20 are exhaustive,

since |e| = |−→e | and |
←−
e′ | = |e′|.

4 Qualitative account

In this section, we use Lemmas 17 and 20 to characterize (head-)normalizable
nets by semantic means: this is Theorem 21, which can be seen as an extension
of the well-known characterization of (head-)normalizable λ-terms by means
of intersection types. Indeed let us stress a fine difference with respect to λ-
calculus, due to the presence of clashes. In our framework (head-)normalizable

22

net means not only reducible in a “(head-)normal form” (i.e. in a net to
which no cut elimination step can be further applied), but reducible in a
“(head-)normal form” without (head-)clashes (recall Definition 6).
At last, we also answer the following question: if π and π′ are two cut free
nets connected by a cut-link, is it the case that the thus obtained net is
(head-)normalizable? The answer is given by only referring to JπK and Jπ′K
in Corollary 24. Quantitative versions of this last result will be proven in
Section 5.

Theorem 21 Let π be a net. We have:

(1) π is head-normalizable iff JπK is non-empty;
(2) π is normalizable iff JπKex is non-empty.

PROOF. (⇒) : We prove only (2); the proof of (1) is an easy variant. Assume
there is a cut free net π0 such that π ∗ π0. Since π0 is cut free, it is possible
to define exhaustive experiments on π0: assign (inductively w.r.t. depth(π)) a
non-empty multiset of exhaustive experiments to each !-link at depth 0. Then
Jπ0K

ex is non-empty, and thus JπKex is non-empty too by Theorem 11.
(⇐) : One proves a bit more than (1) (resp. (2)), by induction on min{s(e); e :
π} (resp. on min{s(e); e : π is exhaustive}): if JπK (resp. JπKex) is non-empty
then there is π0 head-cut free (resp. cut free) such that π ∗

h π0 (resp. π ∗
s

π0), instead of simply π ∗ π0.
As for (1⇐), if π is head-cut free, then we set π0 = π; otherwise let t be a
cut at depth 0 of π. Notice that t is not a clash: if it were a clash then for
its premises a, b, no experiment e could enjoy e(a) = e(b)⊥, that is JπK would
be empty 17 . Let π′ be the result of the reduction of t. By Lemma 17, Jπ′K is
non-empty and min{s(e); e : π′} < min{s(e); e : π}. By induction hypothesis
there is a head-cut free net π0 s.t. π′

∗
h π0. We conclude π h π′

∗
h π0.

As for (2⇐), if π is not cut free, select a stratfied cut t of π (i.e. a cut of
minimal depth, see Definition 6). For the same reasons as before, t is not a
clash (if it were a clash the interpretation of the box containing t at depth 0
would be empty, and thus JπKex would be empty too). Let π′ be the result of the
(stratified) reduction of t: by Lemma 20 Jπ′Kex is not empty and min{s(e); e :
π′ is exhaustive} < min{s(e); e : π is exhaustive}. By induction hypothesis
there is a cut free net π0 s.t. π′

∗
s π0. We conclude π s π′

∗
s π0. 2

Theorem 21 allows to extend to nets the so-called “safeness” property of the
leftmost reduction strategy in the pure λ-calculus: if a net is normalizable, its
normal form can always be reached by a stratified reduction sequence.

17 The fact that for every x ∈ D one has x 6= x⊥ plays here a crucial role: if one had
x = x⊥, a net containing clashes like -say- the ⊥/⊥ one of Figure 2 might have a
non empty interpretation.

23

Corollary 22 Let π be a net.

(1) The net π is head-normalizable iff there exists a head-cut free net π0 such
that π ∗

h π0;
(2) The net π is normalizable iff there exists a cut free net π0 such that

π ∗
s π0.

PROOF. By Theorem 21, JπK (resp. JπKex) is non-empty, and still by (the
proof of (⇐) of) that theorem π ∗

h π0 (resp. π ∗
s π0) for some head-cut free

(resp. cut free) net π0. 2

Notice that using confluence of nets (see [PTdF09]), (2) of Corollary 22 can
be stated in the following way: if π ∗ π0 for some π0 cut free, then π ∗

s π0.

The following definition introduces a notation used in the sequel.

Definition 23 Le π and π′ be two nets. Let c be a conclusion of π and let c′

be a conclusion of π′. We denote by (π|π′)c,c′ the net obtained by connecting π
and π′ by means of a cut-link with premises c and c′.

Theorem 21 and Corollary 22 allow to characterize, in terms of JπK and Jπ′K,
those couples of nets (π, π′) s.t. (π|π′)c,c′ is (head-)normalizable.

Corollary 24 Let π (resp. π′) be a net with conclusions d, c (resp. d′, c′).

(1) The net (π|π′)c,c′ is head-normalizable iff there is x, x′ ∈ D, x ∈ D s.t.
(x, x) ∈ JπK and (x′, x⊥) ∈ Jπ′K.

(2) The net (π|π′)c,c′ is normalizable iff there is x,x′ ∈ Dex, x ∈ D s.t.
(x, x) ∈ JπK and (x′, x⊥) ∈ Jπ′K.

5 Quantitative account

We now turn our attention to the “quantitative” aspects of cut elimination.
The aim is to give a purely semantic account of execution time. Of course, if
π1

∗ π2 we know that Jπ1K = Jπ2K, so that from Jπ1K it is clearly impossible
to determine the number of steps leading from π1 to π2. Nevertheless, if π and
π′ are two cut free nets connected by means of a cut-link, we can wonder what
is the number of cut elimination steps leading from the net with cut to a cut
free one. We prove in this section that we can answer the question by only
referring to JπK and Jπ′K. We solve the problem for both the head-reduction
and the stratified reduction (Theorems 33 and 38).
We first (Subsection 5.1) give a quantitative insight into the correspondence

24

reduction/experiment: Proposition 28 allows to recover the number of steps
of a reduction from the size of an experiment. However, this is not a way to
compute by purely semantic means the number of execution steps of a net:
the method we look for has to refer only to the results of experiments. This
shift is performed by Theorem 33 which gives a purely semantic bound for
the length of head and stratified reduction sequences. The last Subsection 5.2
is devoted to improve Theorem 33 and eventually yields a semantic way to
compute the exact length of head and stratified reduction sequences.

Definition 25 (Size of elements) For every x ∈ D, we define the size s (x)
of x, by induction on depth(x). Let p ∈ {+,−},

• if x = (p, a) and a ∈ A ∪ {∗}, then s (x) = 1;
• if x = (p, y, z), then s(x) = 1 + s(y) + s(z);
• if x = (p, [x1, . . . , xm]), then s(x) = 1 +

∑m
j=1 s(xj);

Given (x1, . . . , xn) ∈
˙n

i=1 D (n ≥ 0), we set s(x1, . . . , xn) =
∑n

i=1 s(xi).

Notice that for every point x ∈ D or x ∈
˙n

i=1 D, s (x) is the number of
occurrences of +, − in x (seen as a word).

5.1 An upper bound to cut elimination

In this subsection we first compute the exact length of head and stratified
reduction sequences by means of experiments (Proposition 28), which imme-
diately implies that all these sequences have the same length (Corollary 29).
We then give our first truly semantic measure of execution time by bounding
by purely semantic means the length of head and stratified reduction sequences
(Theorem 33).

Definition 26 For every X ⊆ D, we set sinf(X) = inf{s(x) ; x ∈ X}.

Note that if X is empty, then sinf(X) is equal to ∞. 18 Consider the nets
of Fig. 7: we have sinf(JπK) = sinf(JπKex) = 10, which is equal to sinf(Jπ

′K)
and sinf(Jπ

′Kex) for every π’s reduct π′. Indeed, an immediate consequence of
Theorem 11 is that whenever π ∗ π′, one has sinf(JπK) = sinf(Jπ

′K) and
sinf(JπKex) = sinf(Jπ

′Kex).

Lemma 27 Let π be a ♭-net with k structural conclusions.

(1) If π is head-cut free, then we have sinf(JπK) = s(ground(π)) + k =
min{s(e) ; e : π}+ k.

18 This remark holds since we have defined sinf by using the inf function and not
the min function: the min is undefined on the empty set, while inf gives as value∞.

25

(2) If π is cut free, then we have sinf(JπKex) = s(π) + k = min{s(e); e :
π is exhaustive}+ k.

PROOF. (1): Since π is head-cut free, we can define a 0-experiment e0 :
π that associates with the pair of conclusions of every ax-link the pair of
elements (+, ∗), (−, ∗) (it does not matter in which order), and with every
!-link the empty multiset. Observe that s (|e0|) = s(ground(π)) + k (this can
be proven by an easy induction on s(ground(π))). Moreover, we have also
s(|e0|) = inf{s(|e|); e : π}, s(e0) = min{s(e); e : π}, and s (e0) = s(ground(π)).
We then deduce: sinf(JπK) = inf{s(|e|); e : π} = s(|e0|) = s(ground(π)) + k =
s (e0) + k = min{s(e) ; e : π}+ k.

(2): Since π is cut free, we can define a 1-experiment e1 : π by induction on
depth(π):

• with every pair of conclusions of every ax-link of ground(π), e1 associates
the pair of elements (+, ∗), (−, ∗) (it does not matter in which order);
• with every !-link o, e1 associates the singleton [eo

1], where eo
1 is an experiment

defined as e1 on πo (notice that depth(πo) < depth(π)).

Clearly, e1 is exhaustive. Like in the proof of (1), observe that s (|e1|) =
s(π)+k (induction on depth(π)). Moreover, we have also s(|e1|) = inf{s(|e|); e :
π is exhaustive}, s(e1) = min{s(e); e : π is exhaustive}, and s (e1) = s(π). We
then deduce: sinf(JπKex) = inf{s(|e|); e : π is exhaustive} = s(|e1|) = s(π)+k =
s (e1) + k = min{s(e) ; e : π is exhaustive} +k. 2

Proposition 28 Let π be a net and let π′ (resp. π′′) be a head-cut free (resp.
cut free) net.

(1) For every reduction sequence R : π ∗
h π′, and every e0 : π s.t. s(e0) =

min{s(e) ; e : π} we have length(R) = (s(e0)− sinf(JπK))/2.
(2) For every reduction sequence R : π ∗

s π′′, and every e1 : π s.t. s(e1) =
min{s(e); e : π is exhaustive} we have length(R) = (s(e1)−sinf(JπKex))/2.

PROOF. We prove only (1), the proof of (2) being an easy variant (use
Lemma 20 instead of Lemma 17).
Because π is head-normalizable, JπK is non-empty (Theorem 21). Let e0 : π
be s.t. s(e0) = min{s(e) ; e : π}. The proof is by induction on length(R). In
case length(R) = 0, i.e. π = π′, one has sinf(JπK) = s(e0) (Lemma 27). In case
length(R) = n > 0, i.e. R = π h π1

∗
h π′, there is an experiment −→e0 : π1 s.t.

|−→e0 | = |e0|, and s (−→e0) = s (e0) − 2 (Lemma 17). Still by Lemma 17, if e1 : π1

then there exists←−e1 : π s.t. s (e1) = s (←−e1)−2. Then s (−→e0) = min{s (e) ; e : π1}.
By Theorem 11, we have JπK = Jπ1K hence sinf(JπK) = sinf(Jπ1K). We can
then apply the induction hypothesis to π1 (π1

∗
h π′ in n − 1 steps and

26

min{s (e) ; e : π1} = s (−→e0)), so having:

n−1 =
s(−→e0)− sinf(Jπ1K)

2
=

s(e0)− 2− sinf(JπK)

2
=

s(e0)− sinf(JπK)

2
−1 2

The reader can check Proposition 28 with the nets of Fig. 7: sinf(JπK) = 10,
s(e0) = 26, and indeed every head-reduction sequence from π to π8 consists of
8 head-reduction steps. An immediate consequence of Prop. 28 is the following:

Corollary 29 Let π be a net, and π1
0 , π

2
0 (resp. π1

1, π
2
1) be two head-cut free

(resp. cut free) nets.

(1) For every R1 : π ∗
h π1

0, R2 : π ∗
h π2

0, we have length(R1) = length(R2).
(2) For every R1 : π ∗

s π1
1, R2 : π ∗

s π2
1, we have length(R1) = length(R2).

This corollary allows us to give the following definition.

Definition 30 Let π be a net.

(1) If there exists R : π ∗
h π0 with π0 head-cut free, then we set head(π) =

length(R), else we set head(π) =∞.
(2) If there exists R : π ∗

h π0 with π0 cut free, then we set strat(π) =
length(R), else we set strat(π) =∞.

We now come to the proof of Theorem 33: by using purely semantic data,
we can bound the number of head/stratified reduction steps. This is a simple
consequence of the above Proposition 28 and the next statements.

Fact 31 Let π be a ♭-net with k + 1 conclusions s.t. ground(π) is a !-link o.
Set e(o) = [e1, . . . , em]. We have: s(|e|)− (k + 1) =

∑m
j=1(s(|ej|)− k).

PROOF. For every conclusion ci of o (i ≤ k +1), let co
i be the corresponding

conclusion of the ♭-net πo associated with o. Let moreover c1 be the main
conclusion of o. We have s(e(c1)) = 1 +

∑m
j=1 s(ej(c

o
1)); as for the auxiliary

conclusions (i.e. 1 < i ≤ k + 1), we have s(e(ci)) =
∑m

j=1 s(ej(c
o
i))− (m− 1).

We thus deduce:

s(|e|)− (k + 1) =
k+1∑

i=1

s(e(ci))− (k + 1)

=
m∑

j=1

(
k+1∑

i=1

s(ej(c
o
i))− k) =

m∑

j=1

(s(|ej |)− k) 2

The following lemma shows that the size of every experiment on a cut free
♭-net is at most the size of its result. More precisely, if π has no structural

27

conclusions and e : π, then s (e) ≤ s (|e|):

Lemma 32 Let π be a cut free ♭-net with k structural conclusions and let
e : π. Then we have s(e) ≤ s(|e|)− k.

PROOF. The proof is by induction on s(π). If ground(π) is an axiom, then
k = 0: if the elements of D associated with the conclusions of the axiom are
of the shape (p, a) with a ∈ A ∪ {∗}, then we have s(e) = s(|e|); else, we
have s(e) < s(|e|). Now, assume that ground(π) is a !-link o with k structural
conclusions. Set e(o) = [e1, . . . , em] and let πo be the box of o. Notice that π
has k + 1 conclusions. We have

s(e) = 1 +
m∑

j=1

s(ej) ≤ 1 +
m∑

j=1

(s(|ej|)− k) (by induction hypothesis)

= 1 + s(|e|)− (k + 1) = s(|e|)− k (by Fact 31)

The other cases are left to the reader. 2

Theorem 33 Let π, π′ be cut free nets, with conclusions resp. d, c and d′, c′.

(1) If (π|π′)c,c′ is head-normalizable, then head((π|π′)c,c′) ≤ (s(y)+ s(y′))/2,
for every y = (x, x) ∈ JπK and y′ = (x′, x⊥) ∈ Jπ′K.

(2) If (π|π′)c,c′ is normalizable, then strat((π|π′)c,c′) ≤ (s(y) + s(y′))/2, for
every y = (x, x) ∈ JπK, y′ = (x′, x⊥) ∈ Jπ′K, and x, x′ ∈ Dex and x ∈ D.

PROOF. We can prove (1) and (2) at once. By Theorem 21, there is e : π
s.t. |e| = y and there is e′ : π′ s.t. |e′| = y′, with y and y′ as required by the
statement of the Theorem. So, there exists e′′ : (π|π′)c,c′ s.t. s(e′′) = s(e)+s(e′).
We have by Proposition 28 and Lemma 32:

length(R) ≤
s(e′′)

2
=

s(e) + s(e′)

2
≤

s(|e|) + s(|e′|)

2
=

s(y) + s(y′)

2
. 2

At first glance, one might think that Theorem 33 applies only to the (obviously
interesting but) restricted case of a net obtained by cutting two cut free ones, in
contrast with our main qualitative result Theorem 21. This is not the case, as
the following proposition shows: in order to bound the length of the reduction
sequences starting from a net π, first apply Proposition 34, then Theorem 33.

Proposition 34 For every net π1 with conclusions d, there exist two cut free
nets π and π′ with conclusions resp. d, c and c′ such that:

(1) (π|π′)c,c′
∗ π1;

28

(2) if π1 is head-normalizable, then so is (π|π′)c,c′, and we have

head(π1) ≤ head((π|π′)c,c′) ;

(3) if π1 is normalizable, then so is (π|π′)c,c′, and we have

strat(π1) ≤ strat((π|π′)c,c′) .

PROOF. We sketch the way π and π′ can be built. In order to obtain π,
proceed as follows, starting from π1: substitute every cut-link at any depth in
π1 with a ⊗-link and a ♭-link immediately below; then, add a unique ?-link
having as conclusion a new conclusion of π1, and as premises the conclusions
of the added ♭-links. One thus obtains a new net without cuts and with exactly
one more conclusion: this is c. 19 As for π′, take an axiom link and perform
a `-link between its conclusions, then add a !-link with box the net made of
the axiom and the `-link. The thus obtained conclusion is c′. 20 The reader
can check that (π|π′)c,c′

∗ π1.
As for claim (2), first notice that by Theorem 11 and Theorem 21, (π|π′)c,c′ is
head-normalizable. Then by Proposition 28, head(π1) = (s(e0)−sinf(Jπ1K))/2,
where s(e0) = min{s(e) ; e : π1}. By Fact 18, s(e0) ≤ min{s(e) ; e : (π|π′)c,c′};
since Jπ1K = J(π|π′)c,c′K (again Theorem 11), this implies that head(π1) ≤
head((π|π′)c,c′). The proof of claim (3) is very similar to the one of claim (2)
and is therefore omitted. 2

5.2 The exact length of cut elimination

This last subsection is devoted to compute the exact length of head and strati-
fied reduction sequences by purely semantic means. With the notations of The-
orem 33, say that y ∈ JπK and y′ ∈ Jπ′K are compatible when y = (x, x) ∈ JπK
and y′ = (x′, x⊥) ∈ Jπ′K. For arbitrary compatible elements y ∈ JπK and
y′ ∈ Jπ′K, it is clearly impossible to obtain an equality in Theorem 33, because
there exist compatible elements with different sizes.

The only equality we have by now is that of Proposition 28, which uses the size
of the experiments. A first idea is then to look for compatible elements y and
y′ whose sizes are equal to the sizes of the experiments used in Proposition

19 This construction holds since we are untyped. In a typed framework we need to
add different ?-links due to the presence of cuts of different types. We then add the
required number of `-links in order to obtain a net with exactly one more conclusion
than π1.
20 In the typed case, we build as many boxes as are the different types of cuts in π1.
Such boxes are then gathered by means of the required ⊗-links.

29

28: let us call these elements suitable. But there are cases in which compatible
elements do exist but suitable compatible elements do not. Take for example
an axiom as π and two axiom links followed by a ` and a ⊗ as π′ (a “η-
expansion” of an axiom). In this case, all experiments on π have the same size
and the same holds for the experiments on π′; hence y = |e| and y′ = |e′| are
suitable iff s(|e|) = s(e) and s(|e′|) = s(e′); but one can easily check that if
s(|e|) = s(e) and s(|e′|) = s(e′), then |e| and |e′| are not compatible.
A more subtle way out is nevertheless possible, and here is where the notions
of equivalence between experiments and of substitution defined in Subsection
2.2 come into the picture. As a matter of fact, we do not need the compatible
elements to be suitable; it is enough that when there exist two compatible
elements y and y′ of JπK and Jπ′K, one can compute (using only data contained
in JπK and Jπ′K) the size of the experiments with results y,y′ 21 . More precisely,
using the notion of substitution, Proposition 37 (the only place where we use
the infinity of A through Lemma 35) shows how to find in JπK, for every
y ∈ JπK, a “suitable element w.r.t. y” that is an element z ∈ JπK such that
s(z) = min {s(e) ; e : π and |e| = y}. By considering the least size of such
z ∈ JπK and z′ ∈ Jπ′K w.r.t. y ∈ JπK and y′ ∈ Jπ′K compatible one obtains the
exact length of head- and stratified reduction sequences starting from (π|π′)c,c′:
this is Theorem 38.

Lemma 35 Assume A is infinite. Let π be a cut free ♭-net with k structural
conclusions (and possibly other logical conclusions), and let e : π. There exist
e′ ∼ e and a substitution σ (i.e. σ ∈ S) s.t. s(e′) = s(|e′|)−k and σ(|e′|) = |e|.

PROOF. We prove, by induction on s(π), that for every infinite subset A′ of
A, there is an experiment e′ ∼ e s.t.:

(1) s(e′) = s(|e′|)− k;
(2) σ(|e′|) = |e| for some σ ∈ S;
(3) every element of A occurring in |e′| is an element of A′.

Suppose ground(π) is a !-link o (the other cases are easier and left to the
reader). Let πo be the box of o and set e(o) = [e1, . . . , em]. Let A1, . . . , Am

be infinite, pairwise disjoint, subsets of A′, 22 by induction hypothesis there
is e′j ∼ ej for every j ≤ m s.t. points 1 − 3 hold (for point 3, we choose
for every j ∈ {1, . . . , m} as A′ the set Aj). In particular there is σj ∈ S s.t.
σj(|e

′
j|) = |ej |. Define e′(o) = [e′1, . . . , e

′
m].

We now have to show that e′ satisfies points 1−3. For point 3, just remember
that

⋃
i≤m Ai ⊆ A′. As for point 2, we know by induction hypothesis that, for

every j ≤ m, σj(|e
′
j |) = |ej |. Since A1, . . . , Am are pairwise disjoint,

⋃
j≤m σj |Aj

is a function ϕ from
⋃

1≤j≤m Aj to D. Let σ be the substitution induced by

21 This can be easily done for the previous example (axiom and η-expansion).
22 Such A1, . . . , Am exist for m arbitrary large since A is infinite.

30

ϕ (remember Definition 13 of substitution), we have σ ∈ S and σ(|e′|) = |e|
(this is actually the key point of the proof). Concerning point 1, we have:

s(e′)= 1 +
m∑

j=1

s(e′j) = 1 +
m∑

j=1

(s(|e′j|)− k) (by induction hypothesis)

= 1 + s (|e′|)− (k + 1) = s(|e′|)− k (by Fact 31) 2

Notice that in the proof of Lemma 35 we used in an essential way the fact
that A1, . . . , Am are pairwise disjoint. If this were not the case, a conflict in
the definition of σ could occur: if one had y ∈ Aj1 ∩ Aj2 and σj1(y) 6= σj2(y),
then one would be in trouble when trying to define σ from σ1, . . . , σm.

Lemma 36 Assume A is infinite. Let π be a cut free net and let e : π. We
have s(e) = min{s(|e′|) ; e′ ∼ e and ∃σ ∈ S s.t. σ(|e′|) = |e|}.

PROOF. Choose e′0 : π s.t. e′0 ∼ e and s(|e′0|) = min{s(|e′|) ; e′ ∼ e and ∃σ ∈
S s.t. σ(|e′|) = |e|}. By Lemma 32 and Fact 16, s (e) = s (e′0) ≤ s (|e′0|). Thus
we have s(e) ≤ min{s(|e′|) ; e′ ∼ e and ∃σ ∈ S s.t. σ(|e′|) = |e|}.
By Lemma 35 and Fact 16, we have the opposite inequality. 2

Proposition 37 Assume A is infinite. Let π be a cut free net and let y ∈ JπK.
We have min{s(e) ; e : π, |e| = y} = min{s(|e′|) ; e′ : π, ∃σ ∈ S, σ(|e′|) = y}.

PROOF. Set r = min{s(|e′|) ; e′ : π and ∃σ ∈ S, σ(|e′|) = y}, and q =
min{s(e) ; |e| = y}.
First, we prove that q ≤ r. Let e′ : π be such that ∃σ ∈ S, σ(|e′|) = y. By
Lemma 14, there exists e : π such that |e| = y and e ∼ e′. This means that if
we take e′0 : π s.t. s (|e′0|) = r, there exists e0 ∼ e′0 s.t. |e0| = y. By Fact 16
and Lemma 32: q ≤ s (e0) = s (e′0) ≤ s (|e′0|) = r.
The proof of r ≤ q is easier: let e : π be s.t. s (e) = q and |e| = y. By Lemma 36,
s (e) = min{s(|e′|) ; e′ ∼ e and ∃σ ∈ S s.t. σ(|e′|) = |e|} ≥ min {s(|e′|) ; ∃σ ∈
S s.t. σ(|e′|) = |e|}. 2

In the above proposition we consider the set {s(e) ; e : π, |e| = y}, because,
contrary to what happens in coherent semantics, there might be several ex-
periments with the same result.

The point of Theorem 38 is that the length of every head (resp. stratified)
reduction sequence starting from (π|π′)c,c′ (where π and π′ are cut free nets)
and leading to a head-cut free (resp. cut free) net can be determined from JπK
and Jπ′K. W.r.t. the discussion at the beginning of this subsection, notice that

31

here the compatibility of σ(z) ∈ JπK and σ′(z′) ∈ Jπ′K is expressed by stating
σ(zc) = σ′(z′c′)

⊥ (the notations zc and zd were introduced in Def. 10).

Theorem 38 Assume A is infinite. Let π (resp. π′) be a cut free net with
conclusions d, c (resp. d′, c′).

(1) The value of head((π|π′)c,c′) is

inf





s(z) + s(z′)− sinf(J(π|π

′)c,c′K)

2
;

z ∈ JπK, z′ ∈ Jπ′K s.t.

∃σ ∈ S s.t. σ(zc) = σ(z′c′)
⊥





.

(2) The value of strat((π|π′)c,c′) is

inf






s(z) + s(z′)− sinf(J(π|π
′)c,c′K

ex)

2
;

z ∈ JπK, z′ ∈ Jπ′K s.t.

∃σ ∈ S s.t. σ(zc) = σ(z′c′)
⊥ and

σ(zd), σ(z′
d′) are exhaustive






.

PROOF. We only prove statement (1). The only difference occurring in the
proof of statement (2) is the use of Corollary 24 (2) instead of Corollary 24 (1)
and the presence of exhaustive points and experiments. In that case we use
in a crucial way the fact that “exhaustivity” is a property of experiments de-
pending only on their results (by Definition 19).
We distinguish between two cases. In the case where (π|π′)c,c′ is not head-
normalizable, we just apply Corollary 24 (1).
Now, we assume that (π|π′)c,c′ is head-normalizable.
First, note that by Corollary 22, there exist a head-cut free net π0 and a re-
duction sequence R : (π|π′)c,c′

∗
h π0. We have head((π|π′)c,c′) = length(R) =

(q − sinf(J(π|π
′)c,c′K))/2 with

q =min





s(e) + s(e′) ;

e : π, e′ : π′ s.t. ∃(x, x) ∈ JπK, (x′, x⊥) ∈ Jπ′K

s.t. |e| = (x, x) and |e′| = (x′, x⊥)






(by Propositon 28)

=min






min{s(e) ; e : π and |e| = (x, x)}+

min{s(e′) ; e′ : π′ and |e′| = (x′, x⊥)} ;

(x, x) ∈ JπK and (x′, x⊥) ∈ Jπ′K






32

=min






s(z) + s(z′) ;

z ∈ JπK, z′ ∈ Jπ′K s.t.

∃(x, x) ∈ JπK, ∃(x′, x⊥) ∈ Jπ′K, ∃σ ∈ S

s.t. σ(z) = (x, x) and σ(z′) = (x′, x⊥)






(by applying Proposition 37 twice; the points of JπK and Jπ′K we look
for are among those z ∈ JπK and z′ ∈ Jπ′K with disjoint atoms)

=min





s(z) + s(z′) ;

z ∈ JπK, z′ ∈ Jπ′K s.t.

∃σ ∈ S s.t. σ(z)c = σ(z′)⊥c′






(since JπK, Jπ′K are closed by substitution, see Lemma 14).

We conclude by noting that the conditions ∃σ ∈ S s.t. σ(z)c = σ(z′)⊥c′ and
∃σ ∈ S s.t. σ(zc) = σ(z′c′)

⊥ are equivalent. 2

6 Concluding remarks

The role of switching acyclicity. In [PTdF09] the distinction between
correct proof-structures (nets) and the non correct ones (simply “structures”)
is crucial: the very careful handling of the acyclicity condition of Definition 3
was very helpful for a rather sharp understanding of cut elimination in the
framework of structures/nets. We could do the same here (and we did it in
the preliminary version of this work [dCPTdF08]), because Theorem 38 can
be proven for structures.
However, if we eventually decided to restrict to nets, this is not only in order
to have more standard (even though less general) results, but also because we
wouldn’t gain that much with structures. Indeed, in Theorem 38 we would in
any case need to assume that a cut free normal form of a given structure does
exist, which amounts to eliminate the “non correct” part of the computation,
i.e. our structure “computationally behaves” like...a net!

Simple types. In presence of simple types (propositional formulas), the
notion of “η-expanded net” can be defined: simply consider axiom links typed
by atomic formulas. An immediate consequence of the restriction to such nets
is that the notion of substitution becomes useless and the statement of The-
orem 38 can be simplified (just erase every reference to substitutions). In
addition to this, at the time of writing we conjecture that the formulas of
Theorem 38 can be improved by expressing the length of head and stratified
reductions in terms of the sole size of the projection on c of z ∈ JπK (or equiva-
lently of the projection on c′ of z′ ∈ Jπ′K, being zc = z′⊥c′). Also, we are looking
for a similar improvement in the general case of pure nets.

33

Strong normalization. Theorem 21 shows that relational semantics yields
a characterization of (head-)normalizable nets. One can wonder whether this
approach can be adapted also to catch the notion of strong normalization.
Indeed, it seems likely that a different definition of experiments on weakenings
(i.e. on zeroary ?-links) might lead to characterize the strongly normalizing
nets, exactly as various systems of intersection types catch the class of strongly
normalizable λ-terms. Of course, such an interpretation of nets would not be
invariant under cut reduction anymore. We leave this analysis for future work.

Acknowledgements

The authors would like to thank Olivier Laurent, Paul-André Melliès and Si-
mona Ronchi della Rocca for interesting discussions about the topic of this
paper. We also warmly thank the anonymous referees for their insightful com-
ments and suggestions that helped us to improve the paper.

References

[Bai04] P. Baillot. Stratified coherent spaces: a denotational semantics for light
linear logic. Theor. Comput. Sci., 318(1–2):29–55, 2004.

[CDCV80] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type
schemes and λ-calculus semantics. In To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism. Academic Press,
1980.

[Dan90] V. Danos. La Logique Linéaire appliquée à l’étude de divers processus
de normalisation. Ph.D. thesis, Université Paris 7, 1990.

[dC05] D. de Carvalho. Intersection types for light affine lambda calculus.
Electr. Notes Theor. Comput. Sci., 136:133–152, 2005.

[dC07] D. de Carvalho. Sémantiques de la logique linéaire et temps de calcul.
Thèse de doctorat, Université Aix-Marseille II, 2007.

[dC08] D. de Carvalho. Execution time of lambda-terms via denotational
semantics and intersection types. RR 6638, INRIA, 2008. A
revised version of Execution Time of Lambda-Terms via Non-Uniform
Semantics and Intersection Types, Preprint IML, 2006.

[dCPTdF08] D. de Carvalho, M. Pagani, and L. Tortora de Falco. A semantic
measure of the execution time in linear logic. RR 6441, INRIA, 2008.

[DR89] V. Danos and L. Regnier. The structure of multiplicatives. Archive
for Mathematical Logic, 28:181–203, 1989.

34

[DR95] V. Danos and L. Regnier. Proof-nets and the Hilbert space. In
Advances in Linear Logic, volume 222 of London Math. Soc. Lecture
Note Ser. Cambridge University Press, 1995.

[Gir87] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[Gir98] J.-Y. Girard. Light linear logic. Inform. Comput., 143(2), 1998.

[Lag06] U. Dal Lago. Context semantics, linear logic and computational
complexity. In 21th IEEE Symposium on Logic in Computer Science
(LICS 2006), Proceedings, pages 169–178. IEEE Computer Society,
August 2006.

[LL08] U. Dal Lago and O. Laurent. Quantitative game semantics for linear
logic. In M. Kaminski and S. Martini, editors, Computer Science Logic,
volume 5213 of Lecture Notes in Computer Science. Springer, 2008.

[LM06] U. Dal Lago and S. Martini. An invariant cost model for the lambda
calculus. In A. Beckmann, U. Berger, B. Löwe, and J.Ṽ. Tucker,
editors, Logical Approaches to Computational Barriers (CiE 2006),
Proceedings, volume 3988 of Lecture Notes in Computer Science, pages
105–114. Springer, July 2006.

[LTdF06] O. Laurent and L. Tortora de Falco. Obsessional cliques: a semantic
characterization of bounded time complexity. In Proceedings of the
21st annual IEEE symposium on Logic In Computer Science, 2006.

[MO00] A. S. Murawski and C.-H. L. Ong. Discreet games, light affine logic
and ptime computation. In Computer Science Logic, Germany, volume
1862 of Lecture Notes in Comput. Sci. Springer, 2000.

[Pag07] M. Pagani. Proofs, denotational semantics and observational
equivalences in multiplicative linear logic. Math. Structures Comput.
Sci., 17(2):341–359, 2007.

[PTdF09] M. Pagani and L. Tortora de Falco. Strong normalization property for
second order linear logic. To appear in Theor. Comput. Sci., 2009.

[Reg92] L. Regnier. Lambda-Calcul et Réseaux. Ph.D. thesis, Université Paris
7, 1992.

[TdF03] L. Tortora de Falco. Obsessional experiments for linear logic proof-
nets. Math. Structures Comput. Sci., 13(6):799–855, 2003.

[Ter02] K. Terui. Light logic and polynomial time computation. Ph.D. thesis,
Keio University, 2002.

35

