
Lecture Notes
Part III of MPRI 2 – 02

2021 - 2021

Michele Pagani
pagani@irif.fr

February 4, 2022

Contents

1 The Probabilistic Extension pPCF of PCF 2
1.1 The Syntax of pPCF . 2
1.2 Compendium of Markov Chains . 5
1.3 The Markov Chain of pPCF . 6
1.4 Basic Examples . 8

2 The standard model of pPCF in Pcoh! 12
2.1 The structure of Pcoh! out of that of Pcoh 12

List of exercises

Exercise 1 t . 2
Exercise 2 t . 4
Exercise 3 t . 4
Exercise 4 t . 4
Exercise 5 t . 4
Exercise 6 t . 4
Exercise 7 t . 7
Exercise 8 t . 7
Exercise 9 t . 7
Exercise 10 t . 9
Exercise 11 t . 9
Exercise 12 t . 10
Exercise 13 t . 10
Exercise 14 t . 10
Exercise 15 t . 10
Exercise 16 t . 12
Exercise 17 t . 13
Exercise 18 t . 13
Exercise 19 t . 14
Exercise 20 t . 15
Exercise 21 t . 16
Exercise 22 t . 16

1

pagani@irif.fr

Exercise 23 t . 16
Exercise 24 t . 17
Exercise 25 t . 17
Exercise 26 t . 18

These notes are a continuation of the lecture notes by Thomas Ehrhard, https://www.
irif.fr/~ehrhard/pub/mpri-2020-2021.pdf.

1 The Probabilistic Extension pPCF of PCF

1.1 The Syntax of pPCF

Figure 1 sketches the probabilistic extension of PCF, written pPCF. Let Γ be a typing context
and A be a type, we denote by ΛA

Γ the set of all terms M such that Γ ⊢ M : A. In the case
where Γ is empty, and so the elements of ΛA

Γ are closed, we use ΛA
0 to denote that set. A

program will be a closed term of pPCF of ground type ι, i.e. an element of Λι
0

By a simple inspection of the typing rules, the reader can check the following.
Remark : Let M be a term and Γ be a typing context. There is at most one type A such
that Γ ⊢ M : A.

Exercise 1. Give an example of expression M generated by the grammar of Figure 1b,
such that M cannot be typed by the rules of Figure 1c. Can you find an M using only
abstractions, applications and variables? and another M using only only variables, numerals,
coin, branchings and succ(M)?

Answer of Exercise 1. The expressions succ(λx.x) or λx. (x)x cannot be simply typed. By struc-
tural induction, one can prove that an expression generated with only variables, numerals, coin, branch-
ings and succ(M) is always typable with the ground type ι.

The reduction relation for evaluating pPCF terms is given in Figure 1d. In the β-rule
(topmost leftmost rule of Figure 1d), the term M [N/x] stands for M where the variable x is
substituted with the term N , avoiding the capture of the free variables in N . If M p→ M ′ is
the conclusion of one axiom rule (i.e. one of the rules in the first three lines of Figure 1d), then
we call M the redex of the reduction, M ′ its contractum and p the probability to happen. This
reduction is called weak-head reduction (or simply weak reduction) since it always reduces the
leftmost outermost redex and never reduces redexes under abstractions. We say that M is
weak-normal, or a value, if there is no reduction M

p→ M ′.

Lemma 1 (Substitution) Assume Γ, x : A ⊢ M : B and Γ ⊢ N : A, then Γ ⊢ M [N/x] : B.

Exercise 2. Prove Lemma 1.

Answer of Exercise 2. By induction on the derivation of Γ, x : A ⊢ M : B.

Proposition 2 (Subject reduction) Assume M
p→ M ′. If Γ ⊢ M : A, then Γ ⊢ M ′ : A.

Exercise 3. Give a proof of Proposition 2.

Answer of Exercise 3. By structural induction on a derivation of M p→ M ′. All cases are easy,
but for the β and if-reduction, where the substitution lemma should be used.

2

https://www.irif.fr/~ehrhard/pub/mpri-2020-2021.pdf
https://www.irif.fr/~ehrhard/pub/mpri-2020-2021.pdf

A,B, . . . := ι | A ⇒ B

(a) The grammar of types, ι is the ground type of natural numbers.

M,N, . . . := n | x | succ(M) | if(M,P, z ·R) | λxAM | (M)N

| fix(M) | coin

(b) The grammar of terms, with n ∈ N, p ∈ [0, 1], and x, y. . . variables.

Γ ⊢ n : ι Γ, x : A ⊢ x : A Γ ⊢ coin : ι

Γ ⊢ M : ι
Γ ⊢ succ(M) : ι

Γ, x : A ⊢ M : B

Γ ⊢ λxAM : A ⇒ B

Γ ⊢ M : A ⇒ B Γ ⊢ N : A
Γ ⊢ (M)N : B

Γ ⊢ M : A ⇒ A
Γ ⊢ fix(M) : A

Γ ⊢ M : ι Γ ⊢ P : A Γ, z : ι ⊢ R : A

Γ ⊢ if(M,P, z ·R) : A

(c) The typing rules, with Γ = y1 : A1, . . . , yk : Ak a typing context, k ∈ N and yi ̸= yj whenever
i ̸= j.

(
λxAM

)
N

1→ M [N/x] fix(M)
1→ (M) fix(M)

succ(n)
1→ n+ 1 if(0, P, z ·R)

1→ P if(n+ 1, P, z ·R)
1→ R [n/z]

coin
1/2→ 0 coin

1/2→ 1

M
p→ M ′

(M)N
p→ (M ′)N

M
p→ M ′

succ(M)
p→ succ(M ′)

M
p→ M ′

if(M,P, z ·R)
p→ if(M ′, P, z ·R)

(d) The reduction relation M
p→ M ′, with p ∈ [0, 1], M,M ′ pPCF terms.

Figure 1: Résumé of pPCF.

3

Exercise 4. Give a counterexample to the inverse of subjection reduction, called subject
expansion: give an example of reduction M

p→ M ′ and of type A, environment Γ, such that
Γ ⊢ M ′ : A but it is false that Γ ⊢ M : A.

Answer of Exercise 4. M = (λxι 0) y
d→ 0 = M ′. We have ⊢ M ′ : ι, while M cannot be typed

under the empty context.

Exercise 5. Characterise the set of closed values of pPCF.

Answer of Exercise 5. The closed values are either numerals or abstractions. In fact, these are
normal forms for p→. Viceversa, if M is a closed normal form for p→, we prove that it is a numeral
or an abstraction, by structural induction on M .

Notice that M cannot be a variable since it is closed, neither a fixpoint nor coin, otherwise it would
reduce. If M = succ(N) for some closed term N , then N also must be a normal form (see rules Figure
1d) so that by induction hypothesis N is a numeral and hence M = succ(N) is not normal. The case
M = if(N,P, z · R) is similar. In case M = (P)Q, we have that P also is a closed normal form. By
typing, P cannot be a numeral, so it is an abstraction and hence M is a β-redex.

A reduction sequence from a term M to a term M ′ is a finite sequence φ = (Mi)
k
i=0 such

that M0 = M , Mk = M ′ and for every i < k, Mi
pi→ Mi+1 for some probability pi ∈ [0, 1]. By

inspection of the rules in Figure 1d, the reader can check that the probability pi in Mi
pi→ Mi+1

is unique, given Mi and Mi+1. The length of φ is k and the probability p(φ) of φ is the product∏k−1
i=0 pi.
We say that a term M deterministically reduces to a value V , written M →d

∗ V , if there is
a reduction sequence φ from M to V of probability 1. Notice that such a reduction is unique,
i.e. any other reduction sequence starting from M is a prefix of φ. The following exercise
exploits the deterministic fragment of pPCF.

Exercise 6. Define terms representing the following functions:
1. the predecessor function, i.e. a term pred such that:

(pred)n →d
∗

{
0 if n = 0

n− 1 if n > 0

2. the addition function, i.e. a term add such that:

(add)nm →d
∗ n+m

3. the exponential function, i.e. a term exp2 such that:

(exp2)n →d
∗ 2n

4. the comparison function, i.e. a term cmp such that:

(cmp)nm →d
∗

{
0 if n ≤ m

1 if n > m

4

Answer of Exercise 6.

pred = λxι if(x, 0, z · z) add = λxι fix(λaι⇒ι λyι if(y, x, z · succ((a) z)))

exp2 = fix(λeι⇒ι λxι if(x, 1, z · (add) (e) z (e) z))

cmp = fix(λcι⇒ι⇒ι λxι λyι if(x, 0, z · if(y, 1, z′ · (c) z z′)))

The constructor coin is the stochastic primitive of pPCF, leading to different outcomes.
Given a term M and a value V , we define the set of different reduction sequences from M to
V as:

Path≤n(M,V) = {φ |φ reduction sequence of length at most n from M to V } (1)

Path(M,V) =
⋃
n∈N

Path≤n(M,V) (2)

The quantity
∑

φ∈Path(M,V) p(φ) defines the probability that M reduces to V . We will for-
malise this idea in Section 1.3 by representing the reduction relation as a discrete time Markov
chain whose states are terms, weak-normal terms being stationary. Before that, let us recall
some notions we need in the sequel.

1.2 Compendium of Markov Chains

Let S be a countable set and let R ∈ [0, 1]S×S be a matrix with S-indexed rows and columns.
One says that R is sub-stochastic if ∀i ∈ S,

∑
j∈S Ri,j ≤ 1, we call R stochastic whenever the

previous sum is equal to 1 for all i. Given two such matrices R and T , their product RT is
given by

∀(i, j) ∈ S2, (RT)i,j =
∑
k∈I

Ri,kTk,j

which is also a (sub-)stochastic matrix. Given n ∈ N, we denote by Rn the n-fold product of
R, which is the diagonal matrix if n = 0.

A stochastic matrix represents a one-step evolution of a discrete-time Markov process. A
typical example is a random-walk, as the following one.
Example. Let S = N and consider the following matrix over [0, 1]S×S :

Wi,j =


1 if i = j = 0,
1
2 if i > 0 and (j = i− 1 or j = i+ 1),
0 otherwise.

(3)

Notice that W is stochastic. In fact, W defines a Markov process describing a particle trav-
elling over N: once the particle reaches 0, it will stay there, otherwise it will move +1 or −1
with equal probability 1

2 . The matrix Wn will then describe the state of the particle after n
iterations.

Given a stochastic matrix R over S, the set of stationary states of R is defined by:

SR
1 = {i ∈ S | Ri,i = 1} (4)

so that if i ∈ SR
1 and Ri,j ̸= 0 then i = j.

Let (i, j) ∈ S×SR
1 . Then the n-indexed sequence (Rn)i,j ∈ [0, 1] is monotone. Indeed, for

all n we have
(Rn+1)i,j =

∑
k∈S

(Rn)i,kRk,j ≥ (Rn)i,jRj,j = (Rn)i,j

5

So we can define a matrix R∞ ∈ [0, 1]S×S as follows

(R∞)i,j =

{
supn∈N(R

n)i,j if (i, j) ∈ S × SR
1

0 otherwise.
(5)

The matrix S∞ is a sub-stochastic matrix because, given i ∈ I∑
j∈S

(R∞)i,j =
∑
j∈SR

1

sup
n∈N

(Rn)i,j

= sup
n∈N

∑
j∈SR

1

(Rn)i,j by the monotone convergence theorem

≤ sup
n∈N

∑
j∈S

(Rn)i,j = 1

1.3 The Markov Chain of pPCF

Given a context Γ and a type A, we consider ΛA
Γ as a set of states, and we define the reduction

relation as a stochastic matrix Red given by

Red(Γ, A)M,M ′ =


p if M p→ M ′

1 if M is a value and M ′ = M

0 otherwise.
(6)

We also use the notation Red(A) for the matrix Red(Γ, A) when the typing context is empty.
Also, we will simply write Red if the typing annotation is irrelevant or clear from the context.
The number Red(Γ, A)M,M ′ is the probability of M to reduce to M ′ in one step. Notice that all
weak-normal terms are stationary states of Red(Γ, A), but not all stationary states are weak-
normal terms. Therefore, if V is a weak-normal form, then the n-fold product Red(Γ, A)nM,V

gives the probability that M reduces to V in at most n steps. This is precised by the following
proposition (recall notation (1)).

Proposition 3 Let M be term and V be a value in ΛA
Γ . One has

Red(Γ, A)nM,V =
∑

φ∈Path≤n(M,V)

p(φ) .

Hence, Red(Γ, A)∞M,V =
∑

φ∈Path(M,V) p(φ).

Exercise 7. Prove Proposition 3.

Answer of Exercise 7. By induction on n. For n = 0, if M = V , we have Red(Γ, A)0M,V = 1 by
definition of diagonal matrix, and

∑
φ∈Path≤0(M,V) p(φ) = 1 as φ ∈ Path≤0(M,V) contains the empty

path. If M ̸= V , then Red(Γ, A)0M,V = 0 as well as Path≤0(M,V) is empty.

6

For n > 0, we have:

Red(Γ, A)nM,V =
∑

M ′∈ΛA
Γ

Red(Γ, A)M,M ′Red(Γ, A)n−1
M ′,V by def.

=
∑

M ′∈ΛA
Γ

Red(Γ, A)M,M ′
(∑
φ∈Path≤n−1(M ′,V)

p(φ)
)

by IH

=
∑

M ′∈ΛA
Γ

∑
φ∈Path≤n−1(M ′,V)

Red(Γ, A)M,M ′p(φ)

=
∑

φ∈Path≤n(M,V)

p(φ) by def.

The last statement is immediate: Red(Γ, A)∞M,V = supn Red(Γ, A)
n
M,V = supn

∑
φ∈Path≤n(M,V) p(φ) =∑

φ∈Path(M,V) p(φ).

Exercise 8. Does Red have stationary states that are not weak-head normal terms? and
what about Red2?

Answer of Exercise 8. The only possible stationary states of Red are the weak-head normal
terms: the proof is by inspection of the rules in Figure 1d, checking that whenever M

1→ M ′, we have
M ′ ̸= M . Indeed, the case of β-reduction is not trivial (notice that in untyped λ-calculus we have
that (λx (x)x) (λx (x)x)

1→ (λx (x)x) (λx (x)x)). In case of pPCF, if M
1→ M by β-reduction we

should have M =
(
λxA M1

)
M2 = M1[M2/x]. This means M1 = (P)Q with P [M2/x] = λxA M1 and

Q[M2/x] = M2. Moreover, suppose that Γ ⊢ M : B, so that Γ, x : A ⊢ M1 : B and Γ ⊢ M2 : A, with
x : A not in Γ. We consider two cases:

• if P = x, then from P [M2/x] = λxA M1, we have M2 = λxA M1, so A ⇒ B = A, which is
impossible;

• if P ̸= x, then from P [M2/x] = λxA M1, P = λyA P ′ with P ′[M2/x] = M1. Since x is a free
variable in M1, this means that M2 should have x free also. But this contradicts the fact that
Γ ⊢ M2 : A, with x not in Γ.

On the contrast, the term fix(λx.x) is an example of not weak-head normal term but stationary for
Red2, in fact fix(λx.x) 1→ (λx.x) fix(λx.x)

1→ fix(λx.x).

Exercise 9. A stochastic program can have different notions of termination. Given a program
M , we say that :

• M strongly terminates (ST), whenever the set
⋃

n Path(M,n) is finite;

• M positively almost surely terminates (PAST), whenever the expected runtime∑
n∈N

∑
φ∈Path(M,n)

p(φ)length(φ)

is finite;

• M almost surely terminates (AST), whenever
∑

n Red
∞
M,n = 1.

Prove that ST → PAST → AST and that no implication can be inverted. (This exercise is
not trivial. You can have a look at [1] to have some inspiration. . .).

7

Answer of Exercise 9. ST → PAST is immediate (notice that
⋃

n Path(M,n) is a disjoint sum).
As for PAST → AST. By Proposition 3 we have that:∑

n∈N

∑
φ∈Path(M,n)

p(φ)length(φ) =
∞∑
k=1

(1−
∑
n∈N

RedkM,n)

Then,
∑∞

k=1(1−
∑

n∈N RedkM,n) < ∞ implies limk→∞(1−
∑

n∈N RedkM,n) = 0, so limk→∞
∑

n∈N RedkM,n =

1 and we conclude as limk→∞
∑

n∈N RedkM,n =
∑

n∈N Red∞M,n.
For the counterexamples of the inversions, consider the terms:

M1 = fix(λxι if(coin, x, z · 0))
M2 = fix(λf ι⇒ι λxι if(x, if(coin, 0, z · (f) (exp2)x), z · (f) z))1

Clearly M1 is not ST. However, one can check that M1 reduces to itself in 4 steps with probability 1
2

and to 0 always in 4 steps with probability 1
2 . So that:

∑
n∈N

∑
φ∈Path(M1,n)

p(φ)length(φ) =
∞∑
i=1

4i

2i
= 2

∞∑
i=1

i

2i−1
= 8

so that M1 is PAST. Concerning M2, one have that the expected runtime diverges as the reduction
sequences are of length exponentials in the number of probabilistic choices. M2 however is easily proven
to be AST.

1.4 Basic Examples

We illustrate the expressive power of pPCF by encoding in this language simple probabilistic
algorithms. We explain intuitively the behaviour of these programs, but a formal proof of
their soundness would require more sophisticated tools, like a denotational semantics. In fact,
the next section will provide one of such semantics, based on probabilistic coherence spaces.

“Let” construction. This version of pPCF, which is globally call-by-name, offers however
the possibility of handling integers in a call-by-value way. For instance, we can define the
typical call-by-value “let” construction as follows

let x be M in N = if(M,N [0/x] , z ·N [succ(z)/x]) (7)

and this construction is restricted to the type of natural numbers; it can be typed as:

Γ ⊢ M : ι Γ, x : ι ⊢ N : A

Γ ⊢ let x be M in N : A

The effect of this construction is that, before replacing x with M in N , M must be evaluated
to a value n. This is particularly important in the case where M is a probabilistic integer
since this construction allows to “roll the dice” only once and then provide N with as many
copies of the result as needed.

In accordance with this intuition, one can also check that the following reduction inference
is derivable from the rules of Figure 1d

M
p→ M ′

let x be M in N
p→ let x be M ′ in N

(8)

whereas it is not true that
M

p→ M ′

N [M/x]
p→ N [M ′/x]

(9)

8

Exercise 10. Prove (8) and give a counterexample to (9).

Answer of Exercise 10. One can notice that (8) is an instance of the contextual if-rule in

Figure 1d. A counterexample of (9) is for N = (add)xx and M = coin. We have M
1
2→ 0, but N [M/x]

does not reduce to N [0/x] = (add) 0 0. The only one-step contractums of N [M/x] are (add) 0 coin and
(add) 1 coin, with probability 1

2 . From there we get, in several steps, the values 0 and 2, each with
probability 1

4 , and 1 with probability 1
2 . On the contrast, N [0/x] deterministically evaluates to 0, and

N [1/x] deterministically evaluates to 2.

We have of course

let x be n in N
1→ N [θ(n)/x]

where θ(0) = 0 and θ(n+ 1) = succ(n) (which reduces to n+ 1 in one deterministic step) by
definition of this construction.

Random Generators. Using the functions defined in Exercice 6, we can define a closed
term unif2 of type ι ⇒ ι which, given an integer n, yields a uniform probability distribution
on the integers 0, . . . , 2n − 1:

unif2 = fix(λf ι⇒ι λxι if(x, 0, z · if(coin, (f) z, z′ · (add) (exp2) z (f) z))) (10)

Observe that, when evaluating (unif2)M (where ⊢ M : ι), the term M is evaluated only once
thanks to the CBV feature of the conditional construct. Indeed, we do not want the upper
bound of the interval on which we produce a probability distribution to change during the
computation (the result would be unpredictable!).

Exercise 11. Using the unif2 and let constructions, define a term unif which, given an integer
n, yields a uniform probability distribution on the integers 0, . . . , n.

Answer of Exercise 11. Given n ∈ N, the idea is to apply iteratively unif2 until the result is ≤ n:

unif = λxι let y be x in fix(λf ι let z be (unif2) y in if((cmp) z y, z, w · f))

One checks easily that ⊢ unif : ι ⇒ ι. It is not hard to check that the resulting distribution is uniform
(with probability 1

n+1 for each possible result). Notice that this algorithm is almost sure terminating,
but not strongly terminating, as the recursive call does not decrease any parameter (see Exercice 9).
What about its expected runtime?

Exercise 12. Define a closed term binom of type ι ⇒ ι which, given an integer n, yields a
(fair) binomial distribution out of n trials, i.e. (binom)n evaluates to k with the probability
of getting k-times 1 in a sequence of n independent evaluations of coin.

Answer of Exercise 12.

binom = fix(λf ι⇒ι λxι if(x, 0, z · if(coin, (f) z, w · succ((f) z))))

Notice in fact that (binom)n will perform exactly n recursive calls, each recursive call being preceded
by exactly one evaluation of a coin redex. So that we can represent the evaluation tree of (binom)n as
a complete binary tree of height n where each branching is labelled by either 0 (if the corresponding
evaluation of coin returns 0) or 1. Notice that (binom)n evaluates to k exactly on the branches where
we have had k evaluations of coin to 1, independently from the order of the evaluations. Now, the
number of different branches of this tree having exactly k evaluations of coin to 1 (independently from
their order) is given by the binomial coeffiecient

(
n
k

)
= n!

k!(n−k)! . Also, any branch happens with equal
probability given by 1

2n , so that (binom)n evaluates to k with probability 1
2n

(
n
k

)
, this describing the

binomial law.

9

Las Vegas algorithms. A Las Vegas algorithm is a randomized algorithm that always
gives the correct result but its running time depends on the draws from the random variables
in the algorithm.

Exercise 13. One of the simplest example of a Las Vegas algorithm can be used to find zeros
in a finite array: given a function f : N → N and n ∈ N, find a k ∈ {0, . . . , n} such that
f(k) = 0. This can be done by iterating random choices of k until we get a value such that
f(k) = 0. Define a closed term M of type (ι ⇒ ι) ⇒ ι ⇒ ι that implements this algorithm.

Answer of Exercise 13.

M = λf ι⇒ι λxι fix(λrι let y be (unif)x in if((f) y, y, z · r))

with ⊢ M : (ι ⇒ ι) ⇒ ι ⇒ ι.

One can notice that our CBV version of the conditional is fundamental in solving Ex-
ercise 13. In fact, we strongly believe that this algorithm cannot be written with the usual
version of the conditional (as in standard PCF) but we didn’t really try to prove this. Do you
have some hints in proving (or disproving) this conjecture?

Random-walks. We can define a random-walk over N as a closed term W of type ι ⇒ ι,
meaning that a particle at position i ∈ N will evolve in one step to position j ∈ N with the
probability of (W) i to evaluate to j.

Exercise 14. Define a closed term W of type ι ⇒ ι representing the random-walk of Equa-
tion (3).

Answer of Exercise 14. W = λxι if(x, 0, z · if(coin, succ(succ(z)), z′ · z))
The following exercise give you an exemple of how natural is the use of higher-order

combinators for probabilistic programming. One can in fact defines an iterator of random
processes independently from the specific process to iterate.

Exercise 15. Define a closed term iter of type (ι ⇒ ι) ⇒ ι ⇒ ι ⇒ ι that takes a term
W representing a random-walk, a numeral n and returns a term of type ι ⇒ ι simulating
n-iterations of W .

Answer of Exercise 15.

iter = λwι⇒ι fix(λf ι⇒ι⇒ι λnι λxι if(n, x, z · (w) (f) zx))

In the above exercices, we just argue intuitively that the solutions actually satisfy the
required specification. In fact, proving the soundness formally can be quite burdensome: for
example, try to prove that the term (iter)W n, with W and iter defined in resp. Exercice 14
and 15, expresses in pPCF the matrix Wn, for W given in (3). The major difficulty is
that the operational semantics of pPCF, i.e. the definition of the matrix Red∞ is not defined
compositionally but with respect to a Makov chain (section 1.3). The next section will present
the probabilistic coherence spaces as a denotational model of pPCF. One major feature of
a denotational semantics is to be defined compositionally on the structure of a term. The
adequacy theorem will then prove the equivalence between the denotational model and the
definition of Red∞ on ground types, so allowing for compositional proofs of soundness.

10

2 The standard model of pPCF in Pcoh!

In order to interpret pPCF in a denotational model, we need:

1. a cartesian closed category, for modelling the simply typed λ-calculus (namely: variables,
abstraction and application) and its β-reduction,

2. completely partially ordered hom-sets, for modelling the fix-point operator,

3. convex hom-sets, for sampling from random data,

4. and an object of numerals, in order to express numerals, successor and our zero-test
conditional.

We consider the category Pcoh!, which is the Kleisli category associated with the !-
comonad of Pcoh. We recall briefly the categorical structure of Pcoh! from the linear logic
structure of Pcoh. The benefit of starting from a linear logic category is to be able to express
at a denotational level the linearity of some programming primitives of pPCF, which is a
remarkable feature for a denotational semantics of a probabilistic programming language.

2.1 The structure of Pcoh! out of that of Pcoh

The category Pcoh!. An object of Pcoh! is a PCS X = (|X|,PX), and the set Pcoh!(X,Y)

of morphisms from X to Y is the set of matrices f ∈ R+Mfin(|X|)×|Y | such that

∀x ∈ PX, f̂(x) = f · x(!) =

 ∑
m∈Mfin(|X|)

fm,bx
m


b∈|Y |

∈ PY (11)

where x(!) is the vector in P!X defined by x
(!)
m = xm =

∏
a∈supp(m) x

m(a)
a , for m ∈ Mfin(|X|).

Notice that the sum in (11) might diverge for arbitrary matrices f ∈ R+|X|×|Y | and vectors
x ∈ R+|X|.

Exercise 16. Recall the PCSs 1 = ({∗}, [0, 1]) and Bool = 1 ⊕ 1 = ({t, f}, {(λt, λf) ∈
[0, 1]2 ; λt + λf ≤ 1}). Give the following examples of matrices in R+Mfin(|Bool|)×|1|:

1. a matrix f such that f̂ is a total function from R+|Bool| to R+|1|, but it does not map
PBool into P1, so f /∈ Pcoh!(Bool, 1);

2. a matrix g such that ĝ is a total function from PBool to P1, so g ∈ Pcoh!(Bool, 1),
but ĝ diverges on some vectors of R+|Bool| outside PBool. (Hint: recall the example of
analytic function on the booleans given in Ehrhard’s notes).

Answer of Exercise 16.

1. Take for example the function fm,∗ =

{
2 if m = [],

0 otherwise.
. We have f̂(x) = 2, so f̂ is well-defined

on the whole R+2, however the codomain of f̂ is ouside P1 = [0, 1].

2. Take for example the function

g[tn,fk],∗ =

{
2n if n = k ≥ 1,
0 otherwise.

We have that ĝ(x) =
∑∞

n=1 2
nxn

t x
n
f . If x ∈ PBool, so xt + yf ≤ 1, the maximal value of this

function is reached when xf = 1−xt, so that we can consider the function λ 7→
∑∞

n=1 2
nλn(1−

11

λ)n, with λ ∈ [0, 1]. The quantity λn(1−λ)n is maximal for λ = 1
2 , so that

∑∞
n=1 2

nλn(1−λ)n ≤∑∞
n=1

1
2n ≤ 1 and we have g ∈ Pcoh!(Bool, 1). On the contrast, if we take x = (1, 1), then of

course ĝ(x) diverges.

Exercise 17. Prove that Pcoh!(X,Y) = Pcoh(!X,Y). What is the difference between (11)
and the condition necessary for inferring f ∈ Pcoh(!X,Y)?

Answer of Exercise 17. f ∈ Pcoh(!X,Y) means:

∀z ∈ P(!X), f · z ∈ PY

The above equation trivially implies (11), as x(!) ∈ P(!X). Let us prove the converse.
Take u ∈ P(!X), y ∈ PY , we have to prove that: ⟨f · u, y⟩ ≤ 1. Notice that we have:

⟨f · u, y⟩ = ⟨f, u⊗ y⟩ = ⟨f⊥ · y, u⟩

By hypothesis we have moreover that f⊥ · y ∈ {x(!) ; x ∈ PX}⊥ = (P!X)⊥, we conclude that
⟨f⊥ · y, u⟩ ≤ 1, as u ∈ P(!X).

The identity on X is given by the dereliction matrix derX ∈ Pcoh(!X,X):

IdKlXm,a = derXm,a =

{
1 if m = [a],

0 otherwise.
(12)

In fact, we have ÎdKlX(x) = derX ·x(!) = x, for every x ∈ PX.
The composition of a morphism f ∈ Pcoh!(X,Y) and a morphism g ∈ Pcoh!(Y, Z) is

obtained via the matrix composition, the digging and the functorial promotion of Pcoh:

g ◦ f = g(!f) digX (13)

where we recall that digX ∈ Pcoh(!X, !!X) and !f ∈ Pcoh(!!X, !Y) are:

digXm,M =

{
1 if m =

∑
M,

0 otherwise.
!fM,p =

∑
r∈L(M,p)

p!

r!
f r (14)

with f r =
∏

(m,b)∈supp(r) f
r(m,b)
m,b and p! =

∏
a∈|X| p(a)! is the multiset factorial.

Exercise 18. Given f ∈ Pcoh!(X,Y), g ∈ Pcoh!(Y,Z) and x ∈ PX, prove that ĝ ◦ f(x) =
ĝ(f̂(x)). (Hint: use the categorical properties of dig and !). Conclude that g◦f ∈ Pcoh!(X,Z).

Answer of Exercise 18.

ĝ ◦ f(x) = (g(!f) digX) · x(!) by definition

= (g(!f)) · (digX ·x(!)) = (g(!f)) · x(!)(!) by def. of dig

= g · ((!f) · x(!)(!)) = g · (f · x(!))(!) by funct. of !

= ĝ(f̂(x)) by def. of ̂
We can conclude that g ◦ f ∈ Pcoh!(X,Z), since by hypothesis f̂(x) ∈ PY and hence ĝ(f̂(x)) ∈ PZ,
so condition (11) holds.

Recall from Ehrhard’s notes that a crucial feature of Pcoh! is to be well-pointed, meaning
that a matrix f ∈ Pcoh!(X,Y) is univocally characterised by its behaviour as the map f̂ :

12

Proposition 4 (Functional characterization) Given two matrices f, f ′ ∈ Pcoh!(X,Y),
one has f = f ′ (as matrices) iff f̂ = f̂ ′ (as maps PX → PY).

This property is extremely convenient, as one can define a morphism of Pcoh! extensionally,
without the need of giving the coefficients of the matrix associated with the morphisms.
In fact, we will use this property in Figure ??, when giving a functional definition of the
denotation of the pPCF terms.

Cartesian closeness. The cartesian product of Pcoh! is the same as that of Pcoh, with
the projections composed with der, that is, given a countable collection of PCSs (Xi)i∈I , we
have:

|&i∈IXi| =
⋃
i∈I

{i} × |Xi|

P&i∈IXi = {x ∈ R|&i∈IXi|
≥0 ; ∀i ∈ I, (x(i,a))a∈|Xi| ∈ PXi}

πKl
j = πj der&i∈IXi

∈ Pcoh!

(
&i∈IXi, Xj

)
i.e. (πKl

j)m,a =

{
1 if m = [(i, a)] and j = i

0 otherwise

Exercise 19. Prove the universal property of the cartesian product in Pcoh!, i.e. given a
collection fi ∈ Pcoh!(Y,Xi) for i ∈ I, the morphism ⟨fi⟩i∈I ∈ Pcoh!(Y,&i∈IXi) is the only
one satisfying (πKl

j ◦ ⟨fi⟩i∈I) = fj for every j ∈ I.

Answer of Exercise 19.

(πKl
j ◦ ⟨fi⟩i∈I) = πj der(!⟨fi⟩) dig

= πj⟨fi⟩i∈I

= fj

The unicity follows from the unicity of ⟨fi⟩ for πj and the universal property of der and dig.

In the following we will use the infix notation X & Y and ⟨f, g⟩ for binary cartesian
products. Also, we will denote by T the zero-ary product, which is the PCS of empty web.

A crucial ingredient necessary to lift the closeness structure of Pcoh to Pcoh! is the strong
monoidal isomorphisms mat(m0) ∈ Pcoh(1, !T) and mat(m2

|X1|,|X2|) ∈ Pcoh(!X1⊗ !X2, !(X1&

X2)), transforming the tensor product of promoted spaces into the promotion of a cartesian
product:

mat(m0)∗,[] = 1 mat(m2)(m1,m2),q
=


1 if q(i, a) = mi(a)

for i ∈ {1, 2}, a ∈ |Xi|,
0 otherwise.

(15)

The object of morphisms is defined by Girard’s decomposition:

X ⇒ Y = !X ⊸ Y = Pcoh(!X,Y) = Pcoh!(X,Y) (16)

The evaluation morphism evKl ∈ Pcoh!((X ⇒ Y) &X,Y) and the curryfication CurKl(f) ∈
Pcoh!(Z,X ⇒ Y), for every f ∈ Pcoh!(Z &X,Y) are then obtained by their corresponding
constructions in Pcoh as follows:

evKl = ev(derX⇒Y ⊗ Id!X)mat(m2
|X⇒Y|,|X|)

−1 i.e. evKl(m,p),b =

{
1 if m = [(p, b)],
0 otherwise.

(17)

CurKl(f) = Cur(fmat(m2
|Z|,|X|)

−1
) i.e. CurKl(f)m,(p,b) = f(m,p),b (18)

13

Notice that in the above two equations we deliberately use the relational strong monoidal
isomorphisms in order to represent with a pair (m, p) of two multisets a multiset over the
disjoint union of the supports of m and p.

Exercise 20. By using the properties of the morphisms of Pcoh, prove that:

1. êvKl(⟨f, x⟩) = f̂(x)

2.
̂

(̂CurKl(f)(x))(z) = f̂(⟨x, z⟩)

Answer of Exercise 20.

êvKl(⟨f, x⟩) = (ev(der⊗!X)mat(m2)
−1

) · (⟨f, x⟩)(!)

= (ev(der⊗!X)) · (mat(m2)
−1 · (⟨f, x⟩)(!))

= (ev(der⊗!X)) · (f (!) ⊗ x(!))

= ev ·((der⊗!X) · (f (!) ⊗ x(!)))

= ev ·(f ⊗ x(!))

= f · x(!)

= f̂(x)

̂
(̂CurKl(f)(x))(z) = ((Cur(fmat(m2

|Z|,|X|)
−1

)) · x(!)) · z(!)

= (fmat(m2
|Z|,|X|)

−1
) · (x(!) ⊗ z(!))

= f · ⟨x, z⟩(!)

= f̂(⟨x, z⟩)

Cpo-enriched hom-sets. A categorical model of a typed programming language associates
the types with objects of the category and the programs with morphisms from the input type
interpretation to the output type interpretation. Some programming primitives may need
some structure on the hom-sets, for example the fix-point operator (giving recursion) needs
the hom-set to be cpo-enriched.

There is actually an equivalence between the sets PX associated with PCSs X and the
sets of the morphisms of Pcoh and Pcoh!. Namely, given a PCS X, PX is equivalent to the
set Pcoh(1, X) as well as Pcoh!(T, X). Viceversa, the sets Pcoh(X,Y) and Pcoh!(X,Y)
are equivalent respectively to the sets P(X ⊸ Y) and P(X ⇒ Y). Henceforth, studying the
structure of PX for generic X corresponds to study the structure of the hom-sets of the
categories Pcoh and Pcoh!, which is what we will do in this subsection.

Given a PCS X, recall that PX is endowed with the partial order defined component-wise:

x ≤ x′ iff ∀a ∈ |X|, xa ≤ x′a (19)

Recall that the vectors in PX are bounded in a fixed direction, i.e. ∀a ∈ |X|, ∃λ ∈ R≥0,∀x ∈
PX,xa ≤ λ. Therefore, giving an increasing ω-chain, i.e. a countable increasing family of
vectors in PX, its limit can be defined as the component-wise supremum:

given (xi)i∈N ∈ PX s.t. xi ≤ xi+1, we define sup
i
(xi) =

(
sup
i
(xia)

)
a∈|X| (20)

The following proposition states that Pcoh! behaves well with such a notion of limit.

14

Proposition 5 (Scott continuity) Let X,Y be PCSs, (xi)i∈N ∈ PX be an increasing ω-
chain,

1. supi(xi) ∈ PX,

2. for every f ∈ Pcoh!(X,Y), (f̂(xi))i∈N is increasing and f̂(supi(xi)) = supi
(
f̂(xi)

)
.

Exercise 21. Prove Proposition 5.

Answer of Exercise 21. For 1, given y ∈ PX⊥, we have: ⟨supi(xi), y⟩ = supi⟨xi, y⟩ ≤ 1.
For 2, notice that xi ≤ xi+1 implies x

(!)
i ≤ x

(!)
i+1 and hence f · x(!)

i ≤ f · x(!)
i+1 as addition and

multiplication (with positive reals) are monotone increasing. We conclude that f̂ also is monotone
increasing and so (f̂(xi))i∈N is an increasing ω-chain. Similarly, f̂(supi(xi)) = supi

(
f̂(xi)

)
is an

immediate consequence of Equation 11 and the fact that addition and multiplication (with positive
reals) commutes with suprema.

An immediate consequence of the component-wise definition in (20) is that, given two
ω-chains (xi)i∈N ∈ PX and (yj)j∈N ∈ PY , we have:

⟨sup
i∈N

xi, sup
j∈N

yj⟩ = sup
i∈N

sup
j∈N

⟨xi, yj⟩ = sup
j∈N

sup
i∈N

⟨xi, yj⟩ = sup
i∈N

⟨xi, yi⟩ ∈ P(X & Y) (21)

Exercise 22. Given increasing (fi)i∈N ∈ P(X ⇒ Y) and (xi)i∈N ∈ PX, prove that:

̂(sup
i

fi)(sup
i
(xi)) = sup

i
(f̂i(xi)).

Answer of Exercise 22. By Exercice 20, Equation (21) and Proposition 5:

̂(sup
i

fi)(sup
i
(xi)) = êvKl(sup

i
⟨fi, xi⟩) = sup

i
êvKl(⟨fi, xi⟩) = sup

i
(f̂i(xi))

The two properties of Proposition 5 justifies the standard definition of the least fix-point
operator for Pcoh!. Given a PCS X, we set Yn ∈ Pcoh!(X ⇒ X,X) for any n ∈ N and its
limit Y ∈ Pcoh(X ⇒ X,X) as:

Y0 = 0, Yn+1 = evKl ◦ ⟨Id,Yn⟩, Y = sup
n

Yn.

Exercise 23.
1. Prove that (Yn)n is a increasing chain in P((X ⇒ X) ⇒ X), so that Y = supn Yn is

well-defined.
2. Prove that, for any n ∈ N, any f ∈ P(X ⇒ X), Ŷn+1(f) = f̂(Ŷn(f)). Conclude the

fix-point equation: Ŷ(f) = f̂(Ŷ(f)).

Answer of Exercise 23.
1. Remark that ◦ and pairing are monotone increasing. Therefore, by induction on n, we have

Yn ≤ Yn+1. The base of induction is trivial, since 0 is the minimum.

2. By definition

Ŷn+1(f) = ̂(evKl ◦ ⟨Id,Yn⟩)(f) by definition

=
(
êvKl(̂⟨Id,Yn⟩(f))

)
by Ex. 18

=
(
êvKl(⟨f, Ŷn(f)⟩)

)
by def. pairing

= f̂(Ŷn(f)) by Ex 20

The fix-point equation is a trivial consequence of the above equality and Proposition 5.

15

This means that the standard least fix-point operator Y can be described as a power series,
which is not completely obvious at first sight.

Convex hom-sets. Random data will be denoted by barycentric sums: for example, if
x, x′ ∈ PX will be the denotation of two values of some type X, and λ ∈ [0, 1], then λx+(1−
λ)x′ will represent a random program evaluating with probability λ to x, and with probability
(1 − λ) to x′. The following proposition states then the PCSs are closed under barycentric
sums:

Proposition 6 (Convexity) Let X be a PCS, ∀(xi)i∈I ∈ PX, ∀(λi)i∈I ∈ [0, 1] s.t.
∑

i∈I λi =
1, we have:

∑
i∈I λixi ∈ PX.

Exercise 24. Prove Proposition 6.

Answer of Exercise 24. Given y ∈ PX⊥, we have: ⟨
∑

i λixi, y⟩ =
∑

i λi⟨xi, y⟩ ≤ 1.

The object of numerals. The object of numerals is an object N associated with the ground
type ι of natural numbers and having enough structure to express the basic operations of pPCF
over ι: constants, successor and conditionals based on a zero testing.

In Pcoh!, one can define this object from standard constructions in the linear logic cate-
gory Pcoh. Namely, we let N to be the countable coproduct of the tensor unit:

N =
⊕
i∈N

1, i.e. N =
(
N,

{
v ∈ [0, 1]N ;

∑
i∈N

vi ≤ 1
})

(22)

First of all, notice that a numeral can be associated with a constant function nX ∈ Pcoh!(X,N)
by the weakening wX ∈ Pcoh(!X, 1) and the injections πn ∈ Pcoh(1,N):

nX = πn wX i.e. nXm,k =

{
1 if m = [] and k = n,
0 otherwise,

(23)

Another major benefit of this definition is to lift the structure of !-coalgebra of the tensor
unit 1 to N, by the morphism hN : Pcoh(N, !N):

(hN)n,m =

{
1 if m = k[n] for some k ∈ N
0 otherwise.

(24)

The following exercise shows that hN allows to duplicate and erase “true” natural numbers
en but not general elements of PN which can be considered as “computations” and not as
“values”.

Exercise 25. Prove that for any n ∈ N, hN · en = e
(!)
n . Moreover, observe that it is not true

however that ∀u ∈ PN hN · u = u(!), in fact what we have is: hN · u =
∑

n∈N unen
(!)

Answer of Exercise 25. In fact, if m = k[n] for some k, then (hN · en)m = 1 = (en)
m = (e

(!)
n)m.

Otherwise, if m = [n′] +m′ for some n′ ̸= n, then (hN · en)m = 0 = (en)n′(en)
m′

= e
(!)
n [n′]+m′ .

As for the second statement, consider u = 1
2e0+

1
2e1. We have that (hN ·u)[0,1] = 0 while u

(!)
[0,1] =

1
4 .

In general, we have that (hN · u) = hN · (
∑

n∈N unen) =
∑

n∈N un(hN · en) =
∑

n∈N unen
(!).

16

Finally, N enjoys the strong isos mat(θ) ∈ Pcoh(1⊕ N,N) given by the relation θ:

θ : |1⊕ N| → |N|
(1, ∗) 7→ 0
(2, n) 7→ n+ 1

The successor morphism suc ∈ Pcoh!(N,N) is then the composition of dereliction, the
right injection and the above isomorphism:

suc = mat(θ)π2 der i.e. sucm,n =

{
1 if n > 0 and m = [n− 1], or n = 0 and m = [0],
0 otherwise.

Our conditional, which gathers a zero-test and a predecessor operation, is based on the inverse
of mat(θ) and the !-coalgebra morphism hN. We define If ∈ Pcoh!(N&X & (N ⇒ X)) by:

!(N&X & (N ⇒ X))

!N⊗ !(X & (N ⇒ X))

N⊗ !(X & (N ⇒ X))

(1⊕ N)⊗ !(X & (N ⇒ X))

!(X & (N ⇒ X))⊕ (N⊗ !(X & (N ⇒ X)))

X ⊕ (!N⊗ (N ⇒ X))

X

mat(m2)
−1

der⊗ Id

mat(θ)−1 ⊗ Id mat(distr)

[π1(π1 der), π2(hN ⊗ π2 der)]

[Id, ev]

where we omit to explicit the associativity and neutrality isos of ⊗, mat(distr)X1,X2,Z
∈

Pcoh((X1⊕X2)⊗Z, (X1⊗Z)⊕ (X2⊗Z)) is the strong isos of the distributive lax of ⊗ over
⊕ given by the following relation:

distr : |(X1 ⊕X2)⊗ Z| → |(X1 ⊗ Z)⊕ (X2 ⊗ Z)|
((i, a), b) 7→ (i, (a, b))

with also πi ∈ Pcoh(Xi, X1⊕X2) being the injection of the coproduct X1⊕X2, for i ∈ {1, 2},
and [f1, f2] ∈ Pcoh(X1 ⊕X2, Z) being the copairing of fi ∈ Pcoh(Xi, Z).

Exercise 26. Given u ∈ PN, v ∈ PX and f ∈ P(N ⇒ X), prove that Îf(u, v, f) = u0v +∑∞
n=0 un+1f̂(en).

Answer of Exercise 26. We sketch the proof by travelling through the diagram defining If, every
single step being an easy consequence of the definitions.

17

!(N&X & (N ⇒ X))

⟨u, v, f⟩(!)

!N⊗ !(X & (N ⇒ X))

u(!) ⊗ ⟨v, f⟩(!)

N⊗ !(X & (N ⇒ X))

u⊗ ⟨v, f⟩(!)

(1⊕ N)⊗ !(X & (N ⇒ X))

(1, u0⋆)⊗ ⟨v, f⟩(!) + (2, (un+1)n ⊗ ⟨v, f⟩(!))

!(X & (N ⇒ X))⊕ (N⊗ !(X & (N ⇒ X)))

(1, u0⟨v, f⟩(!)) + (2, (un+1)n ⊗ ⟨v, f⟩(!))

X ⊕ (!N⊗ (N ⇒ X))

u0v +
∑∞

n=0 un+1(en)
! ⊗ f

X

u0v +
∑∞

n=0 un+1f̂(en)

mat(m2)
−1

der⊗ Id

mat(θ)−1 ⊗ Id mat(distr)

[π1(π1 der), π2(hN ⊗ π2 der)]

[Id, ev]

18

References

[1] Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic term rewriting.
Science of Computer Programming, 185:102338, 2020.

19

	The Probabilistic Extension pPCF of PCF
	The Syntax of pPCF
	Compendium of Markov Chains
	The Markov Chain of pPCF
	Basic Examples

	The standard model of pPCF in Pcoh!
	The structure of Pcoh! out of that of Pcoh

