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Abstract9

We consider an extension of multiplicative linear logic which encompasses bayesian networks and10

expresses samples sharing and marginalisation with the polarised rules of contraction and weakening.11

We introduce the necessary formalism to import exact inference algorithms from bayesian networks,12

giving the sum-product algorithm as an example of calculating the weighted relational semantics of13

a multiplicative proof-net improving runtime performance by storing intermediate results.14
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1 Introduction21

Linear logic [18] provides a linear algebra flavour to logic, associating linear algebra operations22

with logical connectives, e.g. tensor ⊗ is seen as a form of conjunction, direct sum ⊕ as a23

disjunction and duality as an involutive negation (·)⊥. This perspective has given many24

insights. In denotational semantics, we have quantitative semantics, e.g. [25, 21, 10, 11, 6, 24]:25

a family of models denoting λ-terms and functional programs with some notion of analytic26

maps or power series that can be locally approximated by multilinear functions, these27

latter denoting linear logic proofs. In proof-theory, we have proof-nets: a representation28

of proofs and programs expressing the interdependences of these algebraic operations in a29

graph-theoretical fashion.30

Quantitative semantics turns out to be particularly suitable for probabilistic programming,31

giving fully abstract semantics [14, 15, 17], denoting probabilistic programs with very regular32

functions (absolutely monotone) even on “continuous” datatypes (e.g. real numbers) [16, 5, 13],33

giving a compositional analysis of various operational behaviours, such as runtime or liveness34

[24], providing suitable notions of program metrics [12]. Due to this expressivity, calculating35

the quantitative denotations for a Turing complete programming language is obviously36

non-computable, but we can fix on relevant fragments supporting an effective procedure.37

Effectiveness is a relevant feature for a denotational model, as it can provide automatic tools38

for verifying program correctness, as well as the other mentioned operational properties.39

Let us focus our attention to one of the simplest fragments of linear logic: the multiplicative40

fragment (MLL), which has the ⊗ conjunction, its unit 1 and their respective duals, the par `41

(a disjunction different from ⊕) and ⊥ = 1⊥. From a programming perspective, this fragment42

contains (although it is not restricted to) an exponential-free fragment of the linear λ-calculus43
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4:2 Sum-Product for MLL

with tuples, e.g. [1]: the linear functional type F ( G is in fact represented by F⊥ ` G.44

Although very simple, this fragment is already surprisingly expressive on probabilistic data.45

First, positive types (i.e. combinations of 1, ⊕ and ⊗) express linear combinations of the46

values of a finite data-type. For example, the quantitative denotation of 1⊕ 1 contains linear47

combinations of booleans and can be used to model boolean random variables1. Moreover, it48

is known since the inception of polarised linear logic that positive formulas are endowed with49

a polarised version of the structural rules of weakening and contraction ([19] and Remark 3),50

so one can represent λ-terms having multiple occurrences of a same boolean variable without51

breaking the linearity features of MLL. In probabilistic programming, these occurrences52

duplicate the samples from a random variable, but not the random variable itself. Finally,53

we can allow semantical boxes expressing matrices indexed by finite data-types, which can54

express conditional probabilities. We call this system quantitative MLL (Section 2).55

As for the semantics, let us focus on the R≥0-weighted relation semantics (see Section 356

and [24]), which is one of the most basic examples of quantitative semantics, allowing to57

model probabilistic programs over countable data-types. The denotation of a proof-net is58

then a vector of dimension equal to the number of the possible samples of a probabilistic59

distribution computed by the proof-net. This vector is computable for quantitative MLL60

and the standard semantical definitions yield a recursive procedure (Figure 1c) to compute61

it. In practice, this procedure is unfeasible, as it is exponential in time and in space with62

respect to the size of the proof-net. The goal of this paper is to inaugurate a new approach63

for improving it by taking inspiration from bayesian networks, which have partially a similar64

graph-theoretical structure as proof-nets.65

For example, the R≥0-weighted denotation of a proof-net describing a probabilistic66

distribution over a tuple of n booleans is a vector of dimension 2n (the number of the67

possible outcomes of a random variable over n booleans), independently whether the values68

of some of these booleans depend each other or not (Example 9). The proof-net carries very69

clearly these interdependences via paths over boolean edges: may we reduce the dimension70

of its denotation by following such a structure? On a different note, the composition of two71

proof-nets on a tuple of n booleans yields a sum of 2n terms (Example 11). However, this72

composition can be ordered by following the switching paths over the corresponding cuts.73

May we refactor the sum according to this order and gain in efficiency by memorising some74

intermediate factors?75

Similar questions are typical of the research on Bayesian networks ([27], see as reference [8]),76

these latter being directed graphs expressing the conditional dependences between different77

random variables. The benefit of this approach is to provide a battery of algorithms78

computing, e.g., marginal distributions in a quite efficient way by taking advantage of the79

graph-theoretical structure of a network. Our general goal is to inaugurate a new approach80

to quantitative semantics which pays attention to the cost of computing the semantics, and81

we do so by exploiting techniques form Bayesian inference. One paradigmatic example is the82

sum-product variable elimination algorithm [29]: we propose here a formalism for computing83

the semantics of a quantitative MLL proof-net by adapting this algorithm (here Algorithm 1).84

Related works. Bayesian networks form, mutatis mutandis, a strict subset of quantit-85

ative MLL proof-nets (Remark 1), morally the set of those proof-nets which do not contain86

1 It is known that the space of random variables ranging over a finite set of outcomes of cardinality n can
be described by the finite additive disjunction

⊕
i≤n 1 of the tensor unit, see e.g. [17]. This formula is

not in MLL, as ⊕ is not a multiplicative connective, but it appears in our setting as these spaces of
finite random variables are associated with the positive atomic formulas of MLL (see Example 7).
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formulas alternating polarities, e.g. alternation of ⊗ and ` connectives. This correspondence87

has been already acknowledged, with a slight different terminology, by the recent literature88

about the semantical foundations of Bayesian programming. We mention in particular89

[3, 22] which represent Bayesian networks as string diagrams and analyse the notion of90

disintegration. The paper [26] proposes a game semantics based on event structures for a91

variant of the linear λ-calculus underlined by quantitative MLL. The paper [28] studies an92

equational theory and provides a denotational semantics based on matrices for this calculus93

when restricted to ground data-types. However, to our knowledge, our paper is the first time94

that the efficiency of computing the semantics is taken into consideration. Moreover, we show95

that the techniques of Bayesian networks can be adapted to the more general framework of96

quantitative MLL without so much effort.97

Paper outline. Section 2 introduces quantitative MLL proof-nets and Section 3 its98

associated R≥0-weighted relational semantics. Section 4 revisits the standard notion of factor99

in Bayesian inference so to apply it to atomic proof-nets in Section 5 and to general proof-nets100

in Section 6. Section 7 concludes by mentioning some future developments.101

2 Quantitative Multiplicative Linear Logic102

Metavariables X,Y, Z will vary over a countable set of propositional variables. The grammar103

of the formulas of MLL is given by (together with its metavariables):104

F,G,H ::= X+ | X− | 1 | ⊥ | F ⊗G | F `G. (1)105
106

We call X+ (resp. X−) a positive atomic formula (resp. negative atomic formula) over the107

variable X, the superscript symbol + (resp. −) being its polarity. We will write X◦ for a108

generic atomic formula over X, if we do not want to precise its polarity. The linear logic109

negation is introduced as syntactical sugar: (X+)⊥ ::= X−, 1⊥ ::= ⊥, (F⊗G)⊥ ::= F⊥`G⊥,110

and for the dual cases (X−, ⊥, `), (F⊥)⊥ ::= F .111

A sequent is a finite sequence F1, . . . , Fn of MLL formulas. Capital Greek letters Γ,∆, . . .112

will vary over sequents. Given a sequent Γ = F1, . . . , Fn, we write Γ⊥ for the sequent113

F⊥1 , . . . , F
⊥
n . Moreover, if n > 0, we write `Γ (resp. ⊗Γ) for the formula F1 ` (· · · ` Fn)114

(resp. F1 ⊗ (· · · ⊗ Fn)). If Γ is empty (i.e. n = 0), `Γ (resp. ⊗Γ) will mean ⊥ (resp. 1).115

As accustomed in linear logic, sequent proofs are represented by special graphs, called116

proof-nets. Figure 1e gives an example of two proof-nets: N at the left side of the arrow117
∗−→, and N0 at the right side. A proof-net is a labelled directed acyclic graph2 (DAG for118

short) such that the edges are labelled by MLL formulas and the nodes by deduction rules of119

our extended MLL, i.e. by a symbol among: ax (axiom), cut (cut), 1 (one), ⊗ (tensor), ⊥120

(bottom), ` (par), w (weakening), c (contraction), b (semantical box or simply box). The121

nodes of the proof-nets in Figure 1e are represented just by their labels, except for the box122

which is depicted as a rectangular and labeled by an enumerated occurrence of b. The label123

of a node determines the number of incoming edges (called premises of the node) and the124

number of outgoing edges (called conclusions of the node), as well as the type of formulas125

labelling these edges, according to the rules sketched in Figure 1a. The edges will be oriented126

top-bottom, so that axioms, ones, bottoms, weakenings and boxes have no premises, while127

2 More formally, a directed graph is a quadruplet (V,E, t, s) of a set V of vertices and a set E of edges,
and two maps t, s : E 7→ V associating an edge with a target and a source, respectively. We alllow
directed graphs with pending edges, i.e. t and s may be partial partial. The edges not in the domain of
t or s are called pending. A directed graph is acyclic (a DAG for short), if there is no directed cycle.

FSCD 2023
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cuts have no conclusions. Figure 1e does not explicit all formulas labelling the edges of N and128

N0, in fact these formulas can be recovered by the axioms and boxes labelling and the rules129

sketched in Figure 1a. Proof-nets have edges without targets which are called the conclusions130

of the proof-net. Both N and N0 have one single conclusion, labelled by X+
4 ⊗X

+
5 .131

Not all DAGs of MLL nodes are proof-nets: the set of proof-nets is the subset of the set132

of all DAGs which can be generated inductively by the rules sketched in Figure 1b. We call133

atomic a proof-net whose edges are only labelled with atomic formulas. Notice that atomic134

proof-nets can contain only axioms, cuts, weakening, contractions and semantical boxes.135

I Example 1. The (atomic) proof-net N0 in Figure 1e is mutatis mutandis an example of a136

Bayesian network as expressed by quantitative MLL. The propositional variables X1, . . . , X5137

are place-holders for (sets of the possible outcomes of) random variables and the semantical138

boxes are place-holders for their associated “conditional probabilistic tables” (we borrow139

here the terminology of [8]). For example, the box b4 is a place-holder for a probabilistic140

distribution over the variableX4 conditioned by the outcomes of the variablesX2 andX3. The141

polarities discriminate between input and output occurrences in a conditional probabilistic142

table. These place-holders will be instantiated with concrete conditional distributions by the143

semantics, as detailed in Section 3.144

The acquainted reader in Bayesian graphs should be convinced that these latter are145

depicted plainly in this syntax just by adding cuts transforming outputs into inputs. Notice146

that by inverting the orientation of the edges labelled by negative atoms, we get exactly the147

same directed paths between the nodes of the corresponding Bayesian network. Of course,148

MLL allows for more nets than Bayesian graphs, for example the proof-net N at left of the149
∗−→ arrow is not bayesian, namely it has par nodes. But yet, Remark 54 will allude to a150

correspondence between N and a run of the sum-product algorithm over N0. Our goal is to151

show how Bayesian graph algorithms can be imported in this more general setting.152

I Remark 2. Some papers, e.g. [3, 22], represent Bayesian graphs as string diagrams, which153

is a graphical syntax omitting the axiom and cut nodes. Although one can present MLL in a154

similar way by using Lafont’s interaction nets [23], we prefer to keep axioms and cuts explicit155

as they condense the main threats to an efficient computation of the semantics which is a156

core topic of this paper.157

I Remark 3. We allow for structural rules (weakening and contraction) on negative atomic158

formulas. In fact, as it will be clear in Section 3, negative atoms will be interpreted by finite159

products of bottoms
˘
x∈S ⊥ (although we do not detail here the additive connectives & and160

⊕ and the exponential modalities ? and !). It is well-known since the inception of polarized161

linear logic [19] that ⊥ is isomorphic to the exponential formula ?0, so that the structural162

rules of ? can be lifted to
˘
x∈S ⊥, extending the expressivity of MLL. One might even allow163

the structural rules to all formulas of negative polarity, but we preferred to restrict to atomic164

formulas to ease the presentation, namely cut reduction.165

I Remark 4. A less standard extension is given by the semantical boxes b, which are place166

holders for conditional distributions or, more generally, matrices. For technical convenience,167

we restrict their conclusions (as well as those of MLL axioms) to be atomic formulas with168

exactly one occurrence of a positive formula. The structural rules of contractions and169

weakenings take then a precise operational meaning: a cut between the positive conclusion of170

a box and a contraction duplicates the samples of the probabilistic distribution associated with171

the box, while weakenings maginalise out this distribution. These operations are categorically172

axiomatised by the so-called CD-structure, for “copier” and “discarder”, e.g. [22, 28]. We173
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. . .
X−1

⊗
F G1

1

F

cut

F⊥ax

X− X+

`
F G⊥

⊥

c

X− X−w

X− X−n Y +

b

X−F `GF ⊗G

(a) Labelling of MLL nodes with their incident edges. Edges are oriented top-down.

empty = empty
graph one = 1

1 ⊥(N ) = ⊥

⊥
. . .
N
∆

b = . . .
X1
− Xn

− Y +

b axX =
ax

X− X+

`(NF,G) =
`F G. . .

∆

N

F `G

NF ⊗N ′F ′ =
⊗F G

F ⊗G
. . .
∆

. . .
∆′

N N ′ cut(NF ,N ′F⊥) =
cutF F⊥. . .

∆
. . .
∆′

N N ′

w(NX−) = w

X−
. . .
N
∆

c(NX−,X−) =
c

X− X−. . .
∆

N

X−

mix(N ,N ′) = . . .
∆

. . .
∆′

N N ′

(b) Sequent rules generating the set of proof-nets. The notation NΓ in the subscript of a rule stands for
the pair of a proof-net N and a sequence Γ of conclusions of N , which will be “active” in the rule.

JemptyK? = JoneK? = 1 J⊥(N )K
(~d,?)

= JN K~d JbK(~x,y) = ι(b)(~x,y) JaxXKx,x′ = δx,x′

J`(N )K
(~d,(x,y))

= JN K
(~d,x,y)

JN ⊗N ′K
(~d,~d′,(x,y))

= JN K
(~d,x)

JN ′K
(~d′,y)

Jcut(N ,N ′)K~d,~d′ =
∑
x∈JF KJN K~d,xJN

′K~d′,x

Jw(N )K
(~d,x)

= JN K~d Jc(N )K
(~d,x)

= JN K
(~d,x,x)

Jmix(N ,N ′)K
(~d,~d′)

= JN K~dJN
′K~d′

(c) Inductive definition of the interpretation JN Kι by induction on a sequence of sequent rules giving N ,
we omit to explicit the valuation ι as well as the active sequent in the sequent rule.

ax

cut

ax

cut

1 ⊥ 1/⊥
graph

⊗
F G G⊥

`
F

cut

cut

cut

G G⊥F⊥F⊥

⊗/`empty

(d) MLL cut-reduction rewriting steps.

c

X+
2X−

1

X−
1X+

1

X−
2 X−

3
X+

3

X−
2

⊗

X+
4 X+

5

X+
4 ⊗X+

5

b1
b5b4

b2 b3

`

cut `

⊗
c

ax

ax

c ⊗ `
ax

⊗

cut

cut

X−
2

X+
2 ⊗X+

4
X+

2 ⊗ (X−
2 `X+

3 )

X−
1

∗−→

X+
1

c

c

X+
5

X−
3

⊗

X−
2

X+
3X−

1

X+
2X−

1

X+
4

X−
2

X+
4 ⊗X+

5

b5

b4b3

b2b1
c

cut
X−

2

cut
X−

2cut

(e) Example of two proof-nets of conclusion X+
4 ⊗X

+
5 such that N ∗−→ N0. The labelling of some edges is

omitted.

Figure 1 The proof-net syntax and weighted-relational semantics of quantitative MLL.
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explicit here how the structural polarised linear logic rules perfectly fulfil this rôle, showing174

a natural Curry-Howard correspondence with Bayesian programming.175

Given a proof-net N and an edge e of N , we write by e : F whenever e is labelled by the176

formula F . By ease of notation, we often write the sequent F1, . . . , Fn synonymously for an177

enumeration e1 : F1, . . . , en : Fn of labelled edges, if the edges e1, . . . , en are clear from the178

context or inessential. We write N : ∆ whenever the sequent ∆ enumerates the (formulas179

labelling the) conclusions of N , also speaking about ∆ as simply the conclusions of N .180

Cut-reduction is defined as a graph-rewriting, replacing a subgraph containing a cut (the181

redex) with a new subgraph (the contractum) having the same pending edges. Figure 1d182

sketches the three different kinds of MLL redexes: ax, 1/⊥, ⊗/`. We will write N −→ N ′183

if N rewrites into N ′ by one single rewriting step. The fact that N ′ is still a proof-net is184

proven by using the so-called correctness criteria (see [18] for details). We denote by ∗−→ the185

reflexive and transitive closure of −→. A normal form is a proof-net which contains no redex186

of any kind {ax, 1/⊥,⊗/`}. Cut-reduction is confluent and strong normalising [18].187

I Example 5. Figure 1e gives an example of a proof-net N that rewrites into the normal188

form N0. Notice that cuts between structural nodes (weakening and contraction) and boxes189

are not reduced (see Remark 6) so that the normal form N0 yet contains some cuts. Notice190

also that different sequences of rewriting steps may start from N but all of them can be191

eventually completed into N0, in accordance with the confluence property.192

I Remark 6. Weakening and contraction do not erase nor duplicate semantical boxes as this193

rewriting would break the correspondence with Bayesian networks mentioned in Example 1.194

In fact, if we rewrote a cut between a contraction and a box b into two distinct copies of b,195

then this would correspond to create two independent and identically distributed random196

variables out of a single one and not to duplicate a sample of this latter. The sharing nodes in197

bayesian networks share samples of random variables but do not duplicate random variables198

(see [7]). We will discuss this point also in Example 8 using the weighted relational semantics.199

3 Weighted Relational Semantics200

The quantitative semantics of linear logic refers to a family of denotational models based201

on linear algebra constructions (tensors, linear functions, direct sums, dual spaces, etc.).202

Many examples are known in the literature, such as finiteness and Koethe spaces [11, 10],203

weighted relations [24], probabilistic coherence spaces [6], coherent Banach spaces [20] etc.204

The common idea is to associate types with a mathematical structure underlying a notion of205

vector space (or a module) and the poofs with linear maps represented by matrices, or simply206

vectors in case of proof-nets. We consider here one of the most basic examples of quantitative207

semantics, the “relations” weighted by non-negative real numbers, but the results of this208

paper can be adapted trivially to any quantitative semantics mentioned above.209

The model of R≥0-weighted relations is a variant of the relational semantics of linear210

logic (see e.g. [2]), where the notion of a subset of a set S, seen as a vector (bx)x∈S of211

booleans expliciting whether an element x ∈ S belongs or not to the subset, is generalised to212

a vector of non-negative real numbers. This model is known and we thus just sketch here the213

interpretation of quantitative MLL proof-nets, referring the reader to [24] for more details.214

Let us fix some basic notation. Metavariables S, T, U range over finite sets3. We denote215

by R≥0 the cone of the non-negative real numbers. Metavariables φ, ψ, ξ will range over216

3 This kind of denotational semantics are defined for countable sets S in general. Infinite sets are necessary
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vectors in RS≥0, φx denoting the scalar associated with x ∈ S by φ ∈ RS≥0. The identity217

matrix over a set S, also called diagonal matrix or Kronecker delta, is denoted δ ∈ RS×S≥0218

and defined by δa,a′ = 1 if a = a′, otherwise δa,a′ = 0.219

I Example 7. The simplest example we consider is the singleton set {?}, for some irrelevant220

element ?. The singleton will be associated with multiplicative units 1 and ⊥ and it induces221

the module of scalars, as R≥0
{?} ' R≥0. The module of couples of non-negative real numbers222

is instead induced by any set of cardinality 2, like the set of booleans {t, f}: R{t,f}≥0 ' R2
≥0.223

In all the examples of this paper, we will in fact associate the propositional variables with224

the set {t, f}, so that a proof-net with only one atomic conclusion will be interpreted with a225

vector (λt, λf), giving a “score” to the two booleans. Notice that R2
≥0 = R≥0 ⊕ R≥0, with ⊕226

denoting the direct sum over modules. This is reflected in linear logic by encoding the type227

of booleans with the formula 1⊕ 1, where ⊕ refers to the additive disjunction. We however228

avoid this notation as we do not consider the full additive connectives here.229

More in general, the interpretation of a MLL formula F is a finite set JF Kι defined once230

we have fixed a valuation ι as a function mapping the propositional variables to finite sets.231

The definition of JF Kι is by induction on F , as follows:232

JX+Kι = JX−Kι ::= ι(X), J1Kι = J⊥Kι ::= {?}, JF ⊗GKι = JF `GKι ::= JF Kι × JGKι.233
234

It is easy to check that the usual isomorphisms of linear logic (like associativity and com-235

mutativity of the binary connectives) are validated by set isomorphisms. In particular, we236

can use tuples (x1, . . . , xn) for denoting elements in the interpretation of a n-fold connective,237

e.g. JF1 ` (· · ·` Fn)Kι ' {(x1, . . . , xn) | ∀i ≤ n, xi ∈ JFiKι}.238

Weighted relational semantics equates much more than just linear logic isomorphisms,239

as for example JF Kι = JF⊥Kι for any formula F . More precisely, this semantics has the240

structure of a compact closed category. There are more refined examples of quantitative241

semantics which are not compact closed, e.g. probabilistic coherence spaces. Let us stress242

that our results do not suppose compact closeness.243

The interpretation JN Kι of a proof-net N of conclusions Γ is a vector in RJ`ΓKι

≥0 , which244

can be equivalently seen as a multidimensional matrix indexed by the tuples in J`ΓKι. The245

interpretation can be given inductively as sketched by Figure 1c, once we have associated with246

each box b of conclusionsX−1 , . . . , X−n , Y + a vector ι(b) ∈ RJ(`iX−i )`Y +Kι

≥0 . This interpretation247

is invariant under the cut-reduction rules of Figure 1d, i.e. N −→ N ′ implies JN K = JN ′K.248

I Example 8. Consider the proof-net N ′ of conclusion X+
2 ⊗ (X−2 `X+

3 ) contained in the249

proof-net N depicted at left of Figure 1e and characterised by the three boxes b1, b2, b3250

and the tensor and par above the cut over X+
2 ⊗ (X−2 `X+

3 ). Notice that there is only one251

sequence of the generating rules of Figure 1b producing this proof-net: one first applies a252

par rule under the b3 conclusions X−2 and X+
3 , then a tensor between the resulting proof-net253

and b2, then a contraction between the two X−1 conclusions and finally a cut between the254

conclusion of this contraction and b1. Figure 1c applied to this sequence of rules gives:255

JN ′Kι(x′,(x′′,x′′)) =
∑

y∈JX+
1 Kι

ι(b1)yι(b2)(y,x′)ι(b3)(y,(x′′,x′′)).256

to model linear logic exponential modality as well as the full λ-calculus. Since we focus here to only
MLL, we can restrict to finite sets.

FSCD 2023



4:8 Sum-Product for MLL

Notice that the cut composes the semantics of b1 with that of the proof-net containing b2257

and b3, producing the sum over y ∈ JX+
1 Kι. Notice also that the contraction imposes that the258

same index y is shared between the two different boxes (b2 and b3): contraction duplicates259

the indexes of the vectors, but it does not yield different copies of the vectors themselves.260

This is in accordance with Remarks 4 and 6: sharing of sampled values corresponds here to261

sharing vector indices, which is different from duplicating whole vectors. If we consider in262

fact the proof-net JN ′′Kι given by a tensor between b2 and b3 and two distinct copies of b1,263

one cut with the X−1 conclusion of b2 and the other one with that of b3, then we would have:264

JN ′′Kι(x′,(x′′,x′′)) =
∑

y,y′∈JX+
1 Kι

ι(b1)yι(b2)(y′,x′)ι(b1)y′ι(b3)(y′,(x′′,x′′)).265

I Example 9. Let us consider a proof-net N which is a bunch of n+1 axioms over a tree of n266

contractions, of which edges are labelled by X−, so that N has conclusions X−, X+, . . . , X+.267

The denotation JN Kι is then a vector indexed by the (n + 2)-tuples of elements in ι(X).268

In fact, by using Figure 1c, one can check that JN Kι is a very sparse vector, having zero269

everywhere but on the tuples of equal elements, i.e. (x, x, . . . , x) for x ∈ ι(X), in which270

case JN Kι returns 1. We have here a first source of inefficiency of this kind of semantics,271

representing the denotation of a proof-net with a vector of dimension exponential in the272

number of its conclusions, where it would suffice a much more compact structure to store the273

same information. Section 5 will provide this structure with the notion of component factor.274

If N has several cuts, the computation of JN Kι can be considerably simplified by using275

the following lemma, which is reminiscent of the notion of experiment introduced in [18].276

I Lemma 10 (Cut bundles). Let CutΓ(N ) be a proof-net of conclusions ∆ that can be277

decomposed into a proof-net N of conclusions ∆,Γ,Γ⊥ and a bundle of cuts between the278

formulas in Γ and Γ⊥. Then, for every ~d ∈ J∆Kι, we have: JCutΓ(N )Kι~d =
∑
~c∈JΓKJN Kι

(~d,~c,~c)
.279

I Example 11. Let us compute the semantics of the proof-net N0 in Figure 1e, by using280

Lemma 10 and Figure 1c. We have that, for any (x4, x5) ∈ JX+
4 ⊗X

+
5 Kι:281

JN0Kι(x4,x5) =
∑

xi∈ι(X+
i

)
for i ∈ {1, 2, 3}

ι(b1)x1ι(b2)(x1,x2)ι(b3)(x1,x2,x3)ι(b4)(x2,x3,x4)ι(b5)(x2,x5)282

With a bit more of effort (due to the presence of axioms) also JN Kι can be associated with283

the above summation. If we suppose that for every i, ι(Xi) = {t, f}, this summation has a284

total of 23 terms, so that computing the whole vector JN0Kι requires ∼ 25 basic operations4,285

i.e. a quantity exponential in the number of the semantical boxes.286

By carefully inspecting the summation, one can however realise that it can be refactored287

so to split factors over independent variables, getting for example the expression:288 ∑
x3

(∑
x2

(∑
x1

ι(b1)x1ι(b2)(x1,x2)ι(b3)(x1,x2,x3)
)
ι(b4)(x2,x3,x4)

)
ι(b5)(x2,x5)289

which, by memorising the intermediate sums, performs the same computation of JN Kι in just290

∼ 23 operations.This kind of refactoring is at the core of many algorithms for exact inference291

in Bayesian graphs and the next sections will show how to import these methods.292

4 We are supposing that multiplication, addition and coefficient access are operations of constant cost.
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4 Factors293

We adapt from Bayesian networks (e.g. [8]) the notion of factor (Definition 18) and of product294

and projection of factors. A factor carries both a vector and a “sharing structure” about what295

entries of this vector will be shared with possibly other factors so that we avoid the dimension296

explosion which is the source of inefficiency in Example 9. Bayesian networks use random297

variables for expressing such a “sharing structure”, while we reduce this latter into the very298

basic definition of set-family, which encompasses the former (Example 15) and generalises299

to whole quantitative MLL. The terminology “factor” is standard in Bayesian networks, in300

fact this notion refers to the terms in the multiplication giving a joint distribution as the301

outcome of the variable elimination algorithm (Algorithm 1). We introduce also a notion302

of renaming (Definition 29) and of factor renaming (Definition 34) necessary to follow the303

compositional structure of MLL (see discussion in Example 41).304

I Definition 12 (Set-family). We call set-family a finite, indexed family of finite sets, i.e. a305

map X from a finite set I(X) of indices to a set Sets(X) of finite sets. We denote by X(a)306

the set associated with index a ∈ I(X) in X. Meta-variables X, Y, Z will range over such307

set-families.308

Two families X and Y are compatible whenever for all a ∈ I(X) ∩ I(Y), X(a) = Y(a).309

Set-theoretical operations lift to compatible set-families by applying the former to the graph of310

these latter, e.g. the intersection X∩Y is the set-family defined by I(X∩Y) ::= I(X)∩I(Y)311

and (X ∩ Y)(a) ::= X(a) = Y(a) for every a ∈ I(X ∩ Y). Similarly, we will consider the312

union X ∪Y and the set-theoretical difference X \Y. In the same spirit, we write Y ⊆ X, for313

I(Y) ⊆ I(X) and for every a ∈ I(Y), Y(a) = X(a).314

Given a set-family X, we denote by JXK the cartesian product
∏
a∈I(X) X(a) of the sets in315

Sets(X), where the same set in Sets(X) can appear multiple times in the product if associated316

with multiple indices. We denote the elements of JXK with the vectorial notation ~x, to317

underline that it is an element in a cartesian product rather than in a simple set.318

I Notation 13. Any element ~x ∈ JXK can be seen as a collection (xa)a∈I(X) of elements in319

Sets(X). In particular, given Y ⊆ X, we denote by ~x|Y the projected element (xa)a∈I(Y) ∈ JYK.320

Similarly, given two set-families X,Y having disjoint sets of indexes, so clearly compatible,321

the elements of JX ] YK can be written as (~x, ~y), for ~x ∈ JXK and ~y ∈ JYK.322

Notice that if X is empty, then JXK is the singleton set {()}.323

I Notation 14. Since finite, set-families can be given by enumerating their graph, like in324

X = {(a1, S1), . . . , (an, Sn)}. In this case we have: I(X) = {a1, . . . , an} and Sets(X) =325

{S1, . . . , Sn}. In this latter set, the possible repetitions are equated, so Sets(X) might have326

less than n elements.327

I Example 15. A finite set {X1, . . . , Xn} of finite random variables defines the set-family328

X = {(X1, JX1K), . . . , (Xn, JXnK)}, where JXiK denotes the finite set of the possible outcomes329

taken by the random variable Xi. Notice that JXK is then the set of samples of the joint330

distribution over X1, . . . , Xn. To be more explicit, suppose that each random variable Xi is331

boolean, i.e. JXiK = {t, f} for all i ≤ n, then Sets(X) = {{t, f}}, while JXK = {(b1, . . . , bn) |332

bi ∈ {t, f}}.333

I Example 16. Consider a sequent Γ = X◦1 , . . . , X
◦
n of atomic formulas. A natural set-family334

that can be associated with Γ and a valuation ι, has indices the sequent positions {1, . . . , n}335

and it maps a position i to the set ι(Xi). This set-family however is not the only possible336

one: for example, one may take as indices the propositional variables X1, . . . , Xn, where337
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multiple occurrences of the same variable are equated, and map Xi to ι(Xi). The two338

set-families are quite different if Γ contains repetitions. Namely, let Γ = X+, X,+X−, Y −,339

with JXK = JY K = {t, f}. The two set-families are:340

X = {(1, {t, f}), (2, {t, f}), (3, {t, f}), (4, {t, f})}, Y = {(X, {t, f}), (Y, {t, f})}.341
342

I Remark 17. Notice that Z,Y ⊆ X implies that both Z and Y are compatible. Henceforth343

we will always consider families which are subset of a fixed “universal” family (underlined by344

a proof-net), so that the compatibility condition in Definition 12 is not an issue and hence345

will be often not mentioned.346

I Definition 18 (Factor). A generalised factor, or simply factor, φ is a pair (Fam(φ),Fun(φ))347

of a set-family Fam(φ) and a function Fun(φ) from the set JFam(φ)K to R≥0.348

We will short the notation Fun(φ) by writing just φ when it is clear from the context that we349

are considering the function associated with a factor and not the whole pair (Fam(φ),Fun(φ)).350

We often consider Fun(φ) as a vector indexed by the elements of its domain, so that φ~x stands351

for Fun(φ)(~x), for every ~x ∈ JFam(φ)K.352

I Example 19. Let us recall the set-family Y = {(X, {t, f}), (Y, {t, f})} of Example 16,353

and consider the function Fun(φ) given by {(tX , tY ) 7→ 0.2, (tX , fY ) 7→ 0.25, (fX , tY ) 7→354

0.25, (fX , fY ) 7→ 0.3}. The pair φ = (Y,Fun(φ)) is an example of factor. Intuitively, φ355

can be seen as the presentation 0.2e(tX ,tY ) + 0.25e(tX ,fY ) + 0.25e(fX ,tY ) + 0.3e(fX ,fY ) of a356

vector in R4
≥0 with respect to a set of basis vectors e(bX ,bY ) associated with the elements in357

(bX , bY ) ∈ JYK.358

I Definition 20 (Factor projection). Let φ be a factor and let X be a set-family compatible359

with Fam(φ), the projection of φ to X is the factor πX(φ) defined by:360

Fam(πX(φ)) ::= X, πX(φ)~x ::=
∑

~y∈JFam(φ)\XK

φ(~x|Fam(φ),~y), for ~x ∈ JXK.361

362

I Example 21. Recall the set-family Y and the factor Fun(φ) given in Example 19, let363

X = {(X, {t, f})} ⊆ Y. We have that πX(φ) = {tX 7→ 0.45, fX 7→ 0.55}. Let now364

Z = X ] {(Z, {t, f})}, we have that πZ(φ) = {(tX , tZ) 7→ 0.45, (tX , fZ) 7→ 0.45, (fX , tZ) 7→365

0.55, (fX , fZ) 7→ 0.55}. Notice in particular that the factor projection to a set-family Z does366

not preserve in general the property of being a probability mass function, unless Z ⊆ Fam(φ).367

I Remark 22. With the notations of Definition 20, if X ⊆ Fam(φ), then πX(φ) corresponds to368

what is called in Bayesian programming summing out Fam(φ) \ X, which gives the marginal369

distribution over X. Suppose on the contrary that X and Fam(φ) are disjoint, then for every370

~x ∈ JXK, πX(φ)~x is the total mass of φ, i.e.
∑
~y∈JFam(φ)K φ~y.371

I Remark 23. Suppose that Fam(φ) has n indices and that k is the maximum cardinality of372

a set in Sets(Fam(φ)), then the computation of the whole vector πX(φ) is in O(kn).373

I Definition 24 (Binary factor product). Given two factors φ and ψ, such that Fam(φ) and374

Fam(ψ) are compatible, we define their factor product as the factor φ� ψ given by:375

Fam(φ� ψ) ::= Fam(φ) ∪ Fam(ψ), (φ� ψ)~z ::= φ~z|Fam(φ)
ψ~z|Fam(ψ)

, for ~z ∈ JFam(φ� ψ)K.376377

I Remark 25. If Fam(φ) ∪ Fam(ψ) has n indices and k is the maximum cardinality of a set378

in Sets(Fam(φ) ∪ Fam(ψ)), then the computation of the whole vector φ� ψ is in O(kn).379
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I Example 26. In terms of MLL operations, factor products correspond to a ⊗ product plus380

a bunch of contractions on the common indexes. For example, let us take as indexes the381

propositional variables and as sets just {t, f} (recall Example 16) and consider Fam(φ) =382

{X2, X3, X4} and Fam(ψ) = {X2, X5} (this choice is reminiscent of the variables in the383

proof-nets in Figure 1e, in fact φ and ψ can be associated with the boxes, respectively, b4 and384

b5). Then, Fun(φ� ψ) is over {X2, X3, X4, X5}, so of dimension 24, while Fun(φ)⊗ Fun(ψ)385

is a vector indexed by tuples of 5 booleans, so of dimension 25.386

The next proposition states expected properties of factor projection and product that are387

fundamental in the sequel.388

I Proposition 27. Factor product is associative and commutative, with neutral element the389

empty factor (∅, 1). Moreover:390

1. πX∪Z(πX∪Y(φ)) = πX∪Z(φ), whenever Y ⊆ Fam(φ) and Z ∩ Fam(φ) = ∅;391

2. πX(φ� ψ) = πX(φ)� ψ, whenever Fam(ψ) ⊆ X.392

I Definition 28 (n-factor product). Let I be a finite set. Given a collection of pairwise393

compatible factors (φi)i∈I , we define their factor product as the factor
⊙

i∈I φi ::= φi1 �394

· · · � φin , for some enumeration of I. This is well-defined independently from the chosen395

enumeration because of Proposition 27.396

Section 5 will associate factors to MLL proof-nets and in order to make this association397

compositional (Theorem 48) we introduce the following notion of renaming, as the contraction398

and cut rules of Figure 1b may change the sharing structure associated with a proof-net.399

I Definition 29 (Renaming). A renaming f from a set-family X to a set-family Y is a map400

from I(X) to I(Y) such that for all a ∈ I(X), we have X(a) = Y(f(a)). Any such renaming401

f induces the map f◦ from JYK to JXK by:402

for ~y ∈ JYK, f◦(~y) ::= (yf(a))a∈I(X) ∈ JXK. (2)403
404

Moreover, we say that a point ~x ∈ JXK agrees on f whenever, for every a, a′ ∈ I(X),405

f(a) = f(a′) implies that xa = xa′ .406

I Remark 30. The notion of “agreeing on a renaming f” generalises the notion in Bayesian407

programming of a set of samples that “agrees on the same random variables” as used in408

e.g. [8].409

I Notation 31. Given a renaming f from X to Y, and a set-family X′ ⊆ X, we denote by410

f(X′) the set-family having as indices the set f(I(X′)) ⊆ I(Y) and that it associates with411

any b ∈ f(I(X′)) the set Y(b). Notice that f(X′) ⊆ Y.412

I Proposition 32. Given a renaming from X to Y, the image set of f◦ is the subset of JXK413

of the elements which agree on f . If, moreover, f is surjective over I(Y), then f◦ is an414

injective map from JYK to JXK, hence a bijection from JYK to {~x ∈ JXK | ~x agrees on f}. In415

this case, we denote its inversion by f•.416

I Example 33. Recall the set-families X and Y in Example 16, associated with the sequent417

Γ = X+, X,+X−, Y −. Let us consider the following two specific renamings from X to Y:418

f =
{

1, 2, 3 7→ X

4 7→ Y
, g =

{
1, 2, 3, 4 7→ X .419

420
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and take for example ~y = (tX , fY ) ∈ JYK. We have (we use the natural order (1,2,3,4) to421

represent elements in JXK):422

f◦(~y) = (t, t, t, f), g◦(~y) = (t, t, t, t).423
424

Notice in fact that f◦(~y) agrees on f but not on g, while g◦(~y) agrees on both f and g. Also425

notice that f is surjective and in fact f◦ is an injection, while g is not surjective and in fact426

g◦ is not a injection, for example: g◦(tX , fY ) = g◦(tX , tY ).427

I Definition 34 (Factor renaming). Let f be a renaming from Fam(φ) to a set-family X. The428

renaming of φ along f is the factor f(φ) defined by:429

Fam(f(φ)) ::= f(Fam(φ)), f(φ)~x ::= φf?(~x), for ~x ∈ Jf(Fam(φ))K.430
431

I Example 35. Recall the renaming f of Example 33 between the set-families X and Y given432

in Example 16. Consider the factor φ over X defined by φ(b1,b2,b3,b4) ::= 1 if b1 = b2 = b3, 0433

otherwise. This factor corresponds to the interpretation of the proof-net having a weakening434

producing Y − and the axiom on top of a contraction giving X+, X+, X−. Then f(φ) is over435

Y and its map is the constant function giving 1.436

I Remark 36. Notice that one can formalise the notions of this section in a categorical way,437

considering a category of renamings as morphisms between set-families. We did not develop438

this more abstract presentation as not needed in the sequel.439

5 Weighted Semantics by Factors, Atomic Case440

We apply to MLL the notions introduced in Section 4. It is convenient to restrict to atomic441

proof-nets and then to extend the results to the non-atomic case in Section 6. Definitions 37442

and 45 associate two different set-families with an atomic proof-net N , the edge and the443

component set-families. The edge set-family permits to consider the standard weighted444

interpretation JN K as a factor (Definition 39), while the component set-family yields a445

more compressed representation of JN K, the component factor (Definition 40), which has a446

form of compositionality (Theorem 48) and hence can be computed directly (Theorem 49)447

without using the rules of Figure 1c. Henceforth, this section fixes a valuation ι and considers448

only atomic proof-nets. We recall that an atomic proof-net can contain only axioms, cuts,449

weakening, contractions and semantical boxes.450

I Definition 37 (Edge set-family). Let N be an atomic proof-net and ι be a valuation. The451

edge set-family of N , written by Famι
e(N ), has the edges of N as indices and associates with452

an edge e : X◦ the set ι(X). Given a sequence Γ of edges e1 : X◦1 , . . . , en : X◦n, we extend the453

metavariable Γ to denote also the edge set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} ⊆ Famι
e(N ).454

I Remark 38. Let Γ be e1 : X◦1 , . . . , en : X◦n. The convention of denoting by Γ both455

the underlined sequent X◦1 , . . . , X◦n and the edge set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} is456

coherent because the cartesian product JΓK associated with the edge set-family is the same457

set as the weighted denotation JΓKι, this latter also denoted simply by JΓK. This ease of458

notation is necessary to avoid a formalism overkill.459

I Definition 39. Given a valuation ι, the edge factor of an atomic proof-net N has as460

set-family the edge-set family induced by the conclusions of N and as function the weighted461

interpretation JN Kι. We take the liberty to denote this edge factor also by JN Kι.462
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I Definition 40 (Component set-family and renaming). Let N¬b denote the graph obtained463

from an atomic proof-net N by removing all its semantical boxes, so keeping their conclusions464

as pending edges of the graph. Given an undirected connected componentM of N¬b, one can465

remark that all edges ofM are atomic formulas over a unique variable, let us denote it XM.466

The component set-family of N , written Famι
c(N ), has as indices the undirected connected467

components of N¬b and associates with a component M the set ι(XM). The component468

renaming of N , written `N , is the renaming from Famι
e(N ) to Famι

c(N ) mapping the edges469

of N to the connected component of N¬b they belong to.470

I Example 41. Consider the atomic proof-net Na obtained from the proof-net N0 in Figure 1e471

by removing the tensor node, so that Na has conclusions X+
4 , X

+
5 . Notice that Na¬b has472

five connected components which correspond to the five propositional variables X1, . . . , X5.473

If however we consider the sub proof-net N ′a obtained from Na by removing the cut and474

the contraction insisting on the edges typed by, e.g., X−1 , we have that N ′a
¬b has now seven475

connected components, in particular three of them supports the same variable X1. This476

example shows that the generating rules of MLL (Figure 1b) require not to mix up the477

component set-family with the variables labelling the edges (see also Remark 55).478

I Remark 42. The `N information can be memorised once and for all by adding a further479

labelling over the edges of N giving the same index to the edges belonging to the same480

connected component of N¬b. This labelling can be computed in linear time with respect to481

the size of N , by adapting one of the many connected component algorithms.482

I Notation 43. Let Γ = e1 : X◦1 , . . . , en : X◦n be a set of edges of N , so that Γ is also the483

set-family {(e1, ι(X1)), . . . , (en, ι(Xn))} contained in Famι
e(N ). By Notation 31, the writing484

`N (Γ) denotes the set-family {(`N (e1), ι(X1)), . . . , (`N (en), ι(Xn))} ⊆ Famι
c(N ). Notice that485

`N is surjective on I(`N (Γ)), so we can apply Proposition 32, getting the two maps:486

`◦N from J`N (Γ)K to JΓK,487

its inverse `•N from {~d ∈ JΓK | ~d agrees on `N } to J`N (Γ)K.488

I Remark 44. In general, given a set of edges Γ of an atomic proof-net N , we have that:489

J`N (Γ)K = JΓK if, and only if, all edges in Γ belong to pairwise different connected components490

of N¬b. Moreover, if J`N (Γ)K = JΓK, then every ~d ∈ JΓK agrees on `N .491

I Definition 45. Given a valuation ι, the component factor of an atomic proof-net N is the492

renaming `N (JN Kι) of its edge factor, i.e. if ∆ are the conclusions of N , Fam(`N (JN Kι)) =493

`N (∆) and for ~d ∈ J`N (∆)K, Fun(`N (JN Kι)~d = JN Kι
`◦N (~d)

.494

I Example 46. Recall the proof-net N and the valuation ι of Example 9. Notice that495

Fam(`N (JN Kι)) is a singleton as the n+ 2 conclusions of N belong to the same component,496

and Fun(`N (JN Kι)) = (1t, 1f), which is a more parsimonious object than JN Kι, this latter of497

dimension exponential in n.498

Proposition 47 details how to recover the original denotation of N out of its component499

factor.500

I Proposition 47. Let N be an atomic proof-net of conclusions ∆. For every ~d ∈ J∆K, we501

have that:502

JN Kι~d =
{
`N (JN Kι)`•N (~d) if ~d agrees on `N ,
0 otherwise.

(3)503
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The following is the core theorem of this paper: MLL cuts correspond to a factor product504

plus a projection.505

I Theorem 48. Let N = CutΓ(N ′,N ′′) be an atomic proof-net of conclusions ∆ obtained506

by connecting by a bunch of cuts over a sequent Γ a sub proof-net N ′, of conclusions Γ,∆′,507

and N ′′, of conclusions Γ⊥,∆′′, so that ∆ = ∆′,∆′′. We have:508

`N (JN Kι) = π`N (∆)(`N (JN ′Kι)� `N (JN ′′Kι)) (4)509

As a consequence, we can compute the component factor of N without passing via JN Kι:510

I Theorem 49. Let N be an atomic proof-net with conclusions ∆. We have: `N (JN Kι) =511

π`N (∆)(
⊙

b∈b(N )`N (ι(b))).512

I Example 50. Consider an atomic proof-net N of conclusions ∆ such that no edge in ∆ is513

connected in N¬b with a conclusion of a box of N . By Remark 22, π`N (∆)(
⊙

b∈b(N ) ι(b)) is514

the constant function giving the total mass of the vectors associated with the boxes of N .515

Consider the atomic proof-netNa obtained by removing the tensor node from the proof-net516

N0 of Figure 1e. If we apply Theorem 49 to Na, we will obtain exactly the same summation517

given in Example 11, in fact the edge and component set-families of the conclusions of518

Na are the same. However, we have now the correct formalism to apply exact inference519

algorithms to refactor the expression π`N (∆)(
⊙

b∈b(N )`N (ι(b))), by taking advantage of the520

distributivity law of factor product over the projection (Proposition 27). We adapt here one521

among the simplest such algorithms, called the sum-product variable elimination algorithm,522

first introduced in [29], see [8] as a reference. The terminology “variable elimination” is523

because this procedure infers from a Bayesian network the marginal distribution of a random524

variable X out of a family5 X of variables containing X, by “eliminating” all the other525

variables in X. In our case, what we “eliminate” are the N¬b components of the conclusions526

of the box factors containing no conclusion of the proof-net.527

Algorithm 1 MLL Sum-Product Algorithm
input:
1: N . an atomic proof-net of conclusions ∆
2: ι . a valuation map
3: ω . A linear order on the components in Famι

c(N ) not having a conclusion in ∆
output: the factor `N (JN Kι)
4: F ← {`N (ι(b)) | b ∈ b(N )} . Factors of b(N )
5: for C in ω do
6: Fc ← {φ ∈ F | C ∈ I(Fam(φ))}
7: ψ ←

⊙
φ∈Fc φ . Product

8: ρ← πFam(ψ)\{C}(ψ) . Sum-out
9: F ← {ρ} ∪ (F \ Fc)

return
⊙

φ∈F φ

Algorithm 1 is our adaptation of the sum-product algorithm. Given a linear order ω528

over the connected components of N¬b which contains no conclusion of N , the algorithm529

proceeds as follows: line 4 initialises a variable F with the set of factors to compute; line 5530

5 Any resemblance to the notations in Section 4 is purely voluntary.
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takes from ω the next connected component C to process; line 6 gathers in a variable Fc all531

factors in F which have C as an index (i.e. a conclusion in C); line 7 computes the product532

of these factors and line 8 projects it on the components different from C (a.k.a. summing533

out C); line 9 updates F by replacing the processed factors with the result of this projection534

and then it jumps back to line 5. At the end of this loop, F contains a set of factors indexed535

over the components of N¬b connected with the conclusions in N and then it returns their536

product.537

Soundness follows from Proposition 27 and Theorem 49:538

I Theorem 51. Algorithm 1 returns `N (JN Kι) if fed with an atomic proof-net N , a valuation539

ι and a linear order on the components in Famι
c(N ) not containing any conclusion of N .540

I Example 52. Consider the atomic proof-net Na obtained by removing the tensor node541

from the proof-net N0 of Figure 1e (Example 1) and use the numbers 1, 2, 3, 4, 5 to denote542

the five connected components of Na¬b such that component i is supported by variable Xi.543

The components to eliminate are 1, 2, 3. By taking the order ω = 1 < 2 < 3, Algorithm 1544

will calculate the following intermediate factors: ρ1 = π{2,3}(ι(b1) � ι(b2) � ι(b3)), ρ2 =545

π{2,4}(ρ1 � ι(b4)), ρ3 = π{4,5}(ρ2 � ι(b5)), the output being ρ3. This yields exactly the546

factored equation in Example 11 and it allows to calculate the whole semantics of Na547

in O(k3) basic operations, if k is the maximal cardinality of the sets associated with the548

propositional variables appearing in the proof-net.549

I Remark 53. A run of Algorithm 1 depends on the chosen order ω. Different orders yield550

different factorisations and have different performances. For example, by taking the inverse551

order 3 < 2 < 1 in Example 52 we get a run in O(k4), which is an order of magnitude slower552

than 1 < 2 < 3, although yet more efficient than the immediate recursive algorithm induced553

by the standard semantics (Example 11).554

In general, Algorithm 1 is in O(nkw), where n is the length of ω (i.e. the number of555

components to eliminate), k is the maximal cardinality of a set interpreting an atomic variable556

(in our examples we always suppose k = 2, for the two booleans) and w is the maximal557

cardinality of Fam(φ), for φ a factor created/used by the algorithm (this parameter depends558

on the chosen order ω).559

The quest for optimal orders is a major topic in Bayesian networks, which is however560

known to be a NP-hard problem [4]. Since probabilistic MLL contain Bayesian networks, we561

should focus on heuristics that yield good performances in most cases.562

I Remark 54. Recall the proof-net N in Figure 1e which cut reduces to N0. Notice that563

this proof-net does not resemble to a Bayesian network, e.g. it alternates par and tensor564

nodes. However, the reader may recognise the intermediate factors ρ1, ρ2 and ρ3 computed565

by Algorithm 1 in Example 52 as the nested sub proof-nets of N of conclusions, respectively,566

X+
2 ⊗ (X−2 `X+

3 ), X+
2 ⊗X

+
4 and X+

4 ⊗X
+
5 . This is far from being a coincidence, as any run567

of Algorithm 1 can in fact be associated with a MLL proof-net, although this latter might568

need formulas with an arbitrary number of alternations between tensors and pars. We will569

investigate this point in a forthcoming paper.570

I Remark 55. The component renaming `N is omitted in the setting of Bayesian networks571

as encoded in the formula labelling, by imposing the following type constraint:572

(?) any two edges of N which are supported by the same propositional variable lay in the573

same connected component of N¬b.574

If (?) holds (e.g. as for the proof-net Na discussed in Example 52), then `N is equivalent to575

the renaming from the edge set-family to the variable set-family, an instance being given576
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by the renaming f mentioned in Example 33. Such a shortcut is however misleading in577

our setting, as the rules generating MLL proof-nets (Figure 1b) are more “granular” than578

the ones for Bayesian networks, in particular (?) is not preserved by the c(NX−,X−) rule579

(Example 41). A better alternative would be to introduce “term” variables, like the variables580

of simply typed λ-calculus, decorating edges.581

6 The General Case582

The results of the previous section can be extended to non-atomic proof-nets by using MLL583

cut-reduction. We just sketch here the main ideas, giving the details in the appendix. The584

reader can recall the proof-net N in Figure 1e to follow the reasoning with an example.585

Given a MLL proof-net N of conclusion ∆: (i) reduce N to its normal form N0 by using586

the cut-reduction rules of Figure 1d. (ii) Decompose N0 into the syntax forest F∆ of its587

conclusions and the atomic sub proof-net Na of conclusions the atomic formulas At(∆)588

appearing in ∆, which are the leaves of F∆. Notice that there is a bijection between J∆K589

and JAt(∆)K, relating an element in ~d ∈ J∆K with a tuple At(~d) ∈ JAt(∆)K enumerating the590

atomic components of ~d. (iii) Apply Algorithm 1 in order to compute `N (JN K). We have:591

I Corollary 56. Let N be a proof-net with conclusions ∆, and let N0 be the normal form of592

N and (F∆,Na) be the decomposition of N0 described above. For every ~d ∈ J∆K, we have:593

JN Kι~d = `N (JNaK)`•Na (At(~d)), (5)594

if At(~d) agrees on `Na , otherwise JN Kι~d = 0.595

The cut-reduction in step (i) is linear in the size of N0 as MLL cut-reduction shrinks the size596

of a proof-net. Also the construction of Na out of N0, and the read of `•Na(At(~d)) out of597

~d ∈ J∆K are linear. So all the complexity of this procedure is the calculation of `N (JNaK)598

which has been discussed in the previous section.599

7 Conclusion and Perspectives600

We considered weighted relational semantics just as an instance of quantitative semantics, but601

these techniques can be applied verbatim to other web-based semantics, such as probabilistic602

coherence spaces [6] or finiteness or Köthe sequence spaces [11, 10].603

One can wonder whether our results extend to richer linear logic fragments. The additive604

connectives ⊕ and & can be reasonably added to the picture. In fact, by adopting some form605

of additive boxes [9], one can revisit the sum-product algorithm as a refactorization of a606

proof-net modulo commutative additive cuts. The exponential modalities (so encompassing607

full simply typed probabilistic λ-calculus) are more challenging as they require infinite sets608

at the semantical level. This will deserve future investigation.609

Related to the above point is the correspondence alluded to in Remark 54. We will detail610

in a future work how to map any run ρ of the sum-product algorithm on an atomic proof-net611

N0 into a non-atomic proof-net Nρ, which rewrites into N0 and such that the intermediate612

factors appearing in ρ correspond to sub-proof-nets of Nρ.613

As mentioned by Remark 53, the performance of many exact inference algorithms, such614

as sum-product, depends on the order of the components to eliminate and the problem of615

finding optimal orders is known to be NP-hard [4]. Many heuristics have been given based616

on the graph-theoretical structure of Bayesian nets. One can wonder whether the additional617

proof-theoretical structure (e.g. switching paths, empires [18]) can suggest new heuristics.618
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A Appendix705

A.1 Auxiliary notions from Section 2 and 3706

We recall the following notations:707

I Notation 57. Given a formula F , we denote by At(F ) the sequent X◦1 , . . . , X◦n of the occur-708

rences of the atomic sub-formulas appearing in F , enumerated from left to right. We extend709

this notation to sequents: At(Γ) ::= At(`Γ). We recall that At defines a bijection between710

JΓK and JAt(Γ)K. For example, if Γ = X+⊗ (Y −`Y +), X−, then At(Γ) = X+, Y −, Y +, X−711

and for any ((x1, (y1, y2)), x2) ∈ JΓK, At(((x1, (y1, y2)), x2)) = (x1, y1, y2, x2) ∈ JAt(Γ)K.712

We denote by FF the syntax tree of a formula F . Similarly, FΓ is the forest induced by713

the syntax trees of the occurrences of formulas in a sequent Γ. Notice that At(Γ gives an714

enumeration of the leaves of the trees in FΓ. Also, FΓ induces a proof-net of conclusions715

Γ,At(Γ⊥) by adding an axiom on the top of each leaf. We call this proof-net the axiom716

closure of FΓ and we denote it by FΓ.717

The following lemmata will be useful in the sequel.718

I Lemma 58 (canonical decomposition). A proof-net N of conclusions ∆ can be decomposed719

into the forest F∆ and a sub proof-net Na of conclusions At(∆). We call the pair (F∆,Na)720

the canonical decomposition of N .721

Proof (Sketch). By structural induction on the conclusions of N , noticing that the axioms,722

boxes, weakenings and contractions are restricted to atomic formulas. J723

I Lemma 59. Given a sequent Γ, recall the forest FΓ as defined in notation 57, so that its724

axiom closure FΓ is a proof-net of conclusions Γ,At(Γ⊥). For every ~z ∈ JΓK, ~z′ ∈ JAt(Γ⊥)K725

we have:726

JFΓKι(~z,~z′) =
{

1 if At(~z) = ~z′,
0 otherwise.

(6)727

Proof (Sketch). By structural induction on Γ. J728

I Lemma 60 (Semantics on atoms). Let N be an atomic proof-net with conclusions Γ =729

X◦1 , . . . , X
◦
n which has only one connected component and no semantical box. Then:730

the atomic formulas in Γ are all over the same propositional variable, i.e. Xi = Xj for731

any i, j ≤ n;732

for all (x1, . . . , xn) ∈ JΓK:733

JN Kι(x1,...,xn) =
{

1 if xi = xj for every i, j ≤ n,
0 otherwise

734

Proof. By structural induction on N , remarking that the only possible nodes of N are735

axioms, cuts, weakenings and contractions, as N is atomic. The induction step is when736

there is a cut or a contraction splitting N in two components N1, N2, then the induction737

hypothesis on the N1, N2 and the fact that the cut and contr cases of Figure 1c give non-zero738

coefficient only on equal indexes on the active edges, give the statement. J739

A.2 Proofs of Section 3740

Proof of Lemma 10. By induction on a sequentialisation of CutΓ(N ), using the cases of741

Figure 1c and distributing all the products over the sums generated by the cut bundle over742

Γ,Γ⊥. J743
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A.3 Proof of Section 4744

Proof of Proposition 27. The associativity, commutativity and neutrality of the factor745

product are immediate from Definition 24.746

As for property (1), by definition the two factors at the left and right sides of the equation747

are over the same set-family X ∪ Z. Let ~x ∈ JX ∪ ZK, we have:748

πX∪Z(πX∪Y(φ))~x749

=
∑

~y∈J(X∪Y)\(X∪Z)K

∑
~z∈JFam(φ)\(X∪Y)K

φ(~x|Fam(φ)∩(X∪Y),~y|Fam(φ),~z) (a)750

=
∑

~y∈JY\(X∪Z)K

∑
~z∈JFam(φ)\(X∪Y)K

φ(~x|Fam(φ)∩(X∪Y),~y|Fam(φ),~z) (b)751

=
∑

(~y,~z)∈JFam(φ)\(X∪Z)K

φ(~x|Fam(φ)∩(X∪Y),(~y,~z)|Fam(φ)) (c)752

=
∑

(~y,~z)∈JFam(φ)\(X∪Z)K

φ(~x|Fam(φ),(~y,~z)|Fam(φ)) (d)753

= πX∪Z(φ)~x (e)754
755

Line (a) unrolls the two projections following Definition 20. Line (b) simplifies the set where756

the first summation ranges. Line (c) using the fact that Y\ (X∪Z) and Fam(φ)\ (X∪Y) give757

a partition of Fam(φ) \ (X ∪ Z), by the hypothesis Y ⊆ Fam(φ) and Z ∩ Fam(φ) = ∅. Line758

(d) is because ~x|Fam(φ)∩(X∪Y) = ~x|Fam(φ) since: Fam(φ) ∩ (X ∪Y) = (Fam(φ) ∩X) ∪Y and we759

know by hypthesis that ~x ∈∈ JX ∪ ZK. Finally, line(e) applied the definition of projection.760

Concerning property (2), it is trivial to prove that the both factors are over the set-family761

X, because of the hypothesis Fam(ψ) ⊆ X. So, let us take ~z ∈ JXK, we have:762

763

(πX(φ� ψ))~z =
∑

~y∈J(Fam(φ)∪Fam(ψ))\XK

(φ� ψ)(~z|Fam(φ)∪Fam(ψ),~y) =
∑

~y∈JFam(φ)\XK

(φ� ψ)(~z|Fam(φ)∪Fam(ψ),~y)764

=
∑

~y∈JFam(φ)\XK

φ(~z,~y)|Fam(φ)
ψ~z|Fam(ψ)

=

 ∑
~y∈JFam(φ)\XK

φ(~z|Fam(φ),~y)

ψ~z|Fam(ψ)
= (πX(φ)� ψ)~z765

766

J767

Proof of Proposition 32. It is immediate that f◦(~y) agrees on f , for any ~y ∈ JYK. Vice768

versa, if ~x agrees on f , then take a ~y ∈ JYK such that for yf(a) = xa. Such a ~y of course769

exists but it might be not totally defined by the previous equation if there are some b not in770

the image set of f . This is not the case if f is a surjective map from I(X) to I(Y). J771

The following lemmata state useful properties of renamings that can be easily argued772

from the above definitions.773

I Lemma 61. Let f be a bijective renaming from X to Y, then:774

1. for any X′ ⊆ X and factor φ over X, f(πX′(φ)) = πf(X′)(f(φ));775

2. for any factors φ, ψ over sub set-families of X, f(φ� ψ) = f(φ)� f(ψ);776

3. for any factors φ, ψ over X, φ = ψ iff f(φ) = f(ψ).777

I Lemma 62. Given renamings f from X to Y and g from Y to Z, then for every factor φ778

over X, (g ◦ f)(φ) = g(f(φ)).779
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A.4 Proofs of Section 5780

I Lemma 63. Let N be an atomic proof-net of conclusions ∆. For every ~d ∈ J∆K, we have781

that:782

1. if ~d does not agree on `N , then JN K~d = 0,783

2. if moreover N has no semantical box, then if ~d agrees on `N , then JN K~d = 1.784

Proof. Let N ′ be the proof-net obtained by expanding each conclusion of the boxes in N785

with an ax cut redex (Figure 1d). This means that N ′ can be seen as a proof-net obtained786

by a bunch of cuts between the conclusions of the proof-net b(N ), assembling all boxes in N ,787

and the axiom closure N¬b of N¬b. Notice that, `N ′ can be seen as a conservative extension788

of `N , in particular ~d ∈ J∆K agrees with `N ′ iff it agrees on `N . Moreover, JN ′K cut reduces789

to JN K, so by invariance of the weighted interpretation, JN ′K = JN K. These observations790

and Lemma 10 reduce the claim to:791

JN¬bK~d =
{

1 if ~d agrees on `N ,
0 otherwise.

(7)792

The proof of this latter equation is by induction on the number of connected components of793

N¬b. If N¬b is connected, then all conclusions in ∆ are associated with the same index by794

`N . So ~d “agrees on `N ” means that ~d is a tuple of multiple occurrences of the same element795

in ι(X). Equation (7) is then immediate from Lemma 60.796

Otherwise, let N1,N2 be two non-empty subnets of N¬b partitioning its connected797

components. Notice that ∆ splits into ∆1 and ∆2, and any ~d ∈ J∆K into ~d1 ∈ J∆1K and798

~d2 ∈ J∆2K. Notice also that ~d agrees on `N iff ~d1 agrees on `N1 and ~d2 agrees on `N2 . We799

can then conclude by applying the induction hypothesis separately to N1 and to N2. J800

Proof of Proposition 47. If ~d does not agree on `N , then we have JN Kι~d = 0 by Lemma 63.801

Otherwise, we have ~d = `◦N (`•N (~d)) and so JN Kι~d = `ι(JN K)`•N (~d) by Definition 45. J802

Lemmata 10 and 63 yield the following technical result which is needed in the proof of803

Theorem 48.804

I Lemma 64. By recalling the notations of Lemma 10, let CutΓ(N ) be a proof-net of805

conclusions ∆ that can be decomposed into a proof-net N of conclusions ∆,Γ,Γ⊥ and a806

bundle of cuts between the formulas in Γ and Γ⊥. Then, for every ~d ∈ J∆K, we have:807

JCutΓ(N )Kι~d =
∑
~c∈JΓK

~c agrees on `CutΓ(N)

JN Kι(~d,~c,~c)808

Proof. By convenience, let us assemble in Γ the positive atomic formulas labelling the809

premises of the cuts in the bundle underlined by the claim, so that Γ⊥ contains the labels of810

the negative premises of these cuts. Consider the proof-net N ′ obtained from N by adding a811

contraction below each conclusion in Γ⊥ and then taking the axiom closure, so that N ′ has812

conclusions ∆,Γ,Γ⊥,Γ⊥. By using the rules of Figure 1c, we have that:813

JN ′K(~d,~c1,~c2,~c3) =
{

JN K
(~d,~c1,~c2)

if ~c2 = ~c3,

0 otherwise.
(8)814

We denote by CutΓ(N ′) the proof-net obtained from N ′ by adding a bunch of cuts between815

Γ and one of the two occurrences of Γ⊥. Notice that CutΓ(N ′) is a proof-net, because816
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CutΓ(N ) is supposed to be a proof-net and the contractions added to N ′ do not introduce817

any new switching cycle. Also, by Equation (8) and Lemma 10 we have that JN K
(~d,~c,~c)

=818

JCutΓ(N ′)K
(~d,~c)

, so that by again Lemma 10:819

JCutΓ(N )K~d =
∑
~c∈JΓK

JN K(~d,~c,~c) =
∑
~c∈JΓK

JCutΓ(N ′)K(~d,~c)820

By Lemma 63 the terms in the last sum are null whenever ~c does not agree on `CutΓ(N ′),821

which is equivalent to say that ~c does not agree on `CutΓ(N ): the former renaming being822

a conservative extension of the latter. We then conclude by restricting the sum to the ~c’s823

which agree on `CutΓ(N ), so getting the statement. J824

Proof of Theorem 48. By definition of factor projection and renaming, the factors of the825

two sides of Equation (4) are over the same set-family `N (∆). Let us prove that they have826

the same associated function. Let ~d ∈ J`N (∆)K. We have that:827 (
π`N (∆)(`N (JN ′K)� `N (JN ′′K))

)
~d

828

=
∑

~c∈J`N (Γ)K
=J`N (Γ⊥)K

((
`N (JN ′K)

)
�
(
`N (JN ′′K)

))
(~c,~d)

(a)829

=
∑

~c∈J`N (Γ)K
=J`N (Γ⊥)K

(
`N (JN ′K)

)
(~c,~d|

`N (∆′))

(
`N (JN ′′K)

)
(~c,~d|

`N (∆′′))
(b)830

=
∑

~c∈J`N (Γ)K
=J`N (Γ⊥)K

JN ′K(`?N (~c),`?N (~d)|∆′ )
JN ′′K(`?N (~c),`?N (~d)|∆′′ )

(c)831

=
∑

~c∈JΓK=JΓ⊥K
~c agrees on `N

JN ′K(~c,`?N (~d)|∆′ )
JN ′′K(~c,`?N (~d)|∆′′ )

(d)832

= JN K
`?N (~d) = `N (JN K)~d (e)833

834

Line (a) is the definition of factor projection (Definition 20) and the remark that `N (Γ) =835

`N (Γ⊥). Line (b) applies the definition of factor product (Definition 24), while Line (c) is836

by Definition 45. Line (d) uses the fact that `?N is a bijection from J`N (Γ)K and the subset837

of points in JΓK which agree on `N (Notation 43). Line (e) applies Lemma 64 and then838

Definition 45. J839

Proof of Theorem 49. The proof is by induction on the number of boxes in N . If there is840

no box, then the factor product over b(N ) is the empty factor (∅, 1), and so its projection to841

`N (∆) associates 1 with every element in J`N (∆)K. We then conclude by Lemma 63 and842

Definition 45.843

Otherwise, let b be a semantical box of N . Consider the proof-net N ? obtained by844

expanding the conclusions Γ of b with axiom cut redexes (Figure 1d), so to have N ? of the845

form CutΓ(N ′,N ′′) with N ′ being b and its conclusions Γ and N ′′ the axiom closure of the846

sub-graph given by N without b, so that N ′′ has conclusions Γ⊥,∆.847

Notice that Famι
e(N ?) ⊇ Famι

e(N ) and there is a renaming bijection f from Famι
c(N ?)848

to Famι
c(N ) such that the composition f ◦ `N? restricted to Famι

e(N ) is equal to `N , as849

the axiom cut expansions generating N ? do not equate any connected components of N¬b.850

Finally, since N ? cut reduces to N , the invariance of the weighted interpretation gives also851

JN ?K = JN K852
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We can therefore prove the equation in the statement for N ? and then the equality follows853

for N by applying f to the two sides of the equation and using Lemma 61 and Lemma 62.854

Moreover, in order to prove the claimed equation for N ?, we need to remark that there is an855

obvious renaming bijection g from Famι
c(N ′′) to Famι

c(N ?), such that g ◦ `N ′′ is equal to the856

restriction of `N? to Famι
e(N ′′). So:857

858

`N?(JN ?Kι) = [a]π`N? (∆)(`N?(ι(b))�`N?(JN ′′K)) = [b]π`N? (∆)(`N?(ι(b))�g(`N ′′(JN ′′K)))859

= [c]π`N? (∆)(`N?(ι(b))� g(π`N′′ (Γ⊥,∆)(
⊙

b′∈b(N ′′)

`N ′′(ι(b′)))))860

= [d]π`N? (∆)(`N?(ι(b))� π`N? (Γ⊥,∆)(
⊙

b′∈b(N ′′)

`N?(ι(b′))))861

= [e]π`N? (∆)(π`N? (Γ⊥,∆)(`N?(ι(b))�
⊙

b′∈b(N ′′)

`N?(ι(b′)))) = [f ]π`N? (∆)(
⊙

b′∈b(N )

`N?(ι(b′)))862

863

Equation (a) is by Theorem 48. Equation (b) is by the fact that `N? = g◦`N ′′ and by applying864

Lemma 62. Equation (c) then applies the induction hypothesis to N ′′ and Equation (d) comes865

back to `N? by invoking Lemma 61 and Lemma 62. Equation (e) uses Proposition 27.(2)866

and the fact that Fam(`N?(ι(b))) = `N?(Γ) = `N?(Γ⊥) ⊆ `N?(Γ⊥,∆). Finally Equation (f)867

uses Proposition 27.(1) and the fact that b(N ) = b(N ?) = b(N ′′) ] {b}. J868

Proof of Theorem 51. We prove that the loop in line 5 preserves the invariants:869

1. Fam(
⊙

φ∈F φ) = Famι
c(N ) \ {C ∈ ω | C processed},870

2. π`N (∆)(
⊙

φ∈F φ) = `N (JN Kι).871

The claim then follows as at the end of the loop, item 1 gives Fam(
⊙

φ∈F φ) ⊆ `N (∆), and872

so π`N (∆)(
⊙

φ∈F φ) =
⊙

φ∈F φ and we can conclude by item 2.873

The proof of item 1 is an immediate consequence of the projection in line 8 and the fact874

that no factor in F \ Fc contains the processed component C as an index.875

The proof of item 2 is by induction on the number i of the current iteration of the loop.876

The initial case is given by Theorem 49. Otherwise, let F i denote the content of variable F877

at the i-th iteration of the loop, for i > 0, and F 0 being the initial value as given in line 4.878

We have then, by denoting with X =
⋃
φ∈FC Fam(φ),879

π`N (∆)(
⊙

φ∈F i+1

φ) = π`N (∆)(

 ⊙
φ∈F i\Fc

φ

�
π(X\{C})(

⊙
φ∈Fc

φ)

) (a)880

= π`N (∆)(πX\{C}(

 ⊙
φ∈F i\Fc

φ

�
⊙
φ∈Fc

φ

)) (b)881

= π`N (∆)(
⊙
φ∈F i

φ) = `N (JN Kι) (c)882

883

Line (a) is by definition of the loop in lines 5-9. Line (b) uses Proposition 27.(2), and line (c)884

Proposition 27.(1), with the last equation given by the induction hypothesis. J885

A.5 Proofs of Section 6886

Proof of Corollary 56. By the strong normalisation and confluence of cut-reduction, N0 is887

well-defined and by the semantic invariance, JN K = JN0K. Moreover, by Lemma 59 and888

Lemma 60, JN0Kι~d = JNaKιAt(~d)
. Finally, remark that Na is an atomic proof-net, so we conclude889

by applying Proposition 47 to Na. J890
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