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Abstract12

We consider the notion of probabilistic applicative bisimilarity (PAB), recently introduced as a13

behavioural equivalence over a probabilistic extension of the untyped λ-calculus. Alberti, Dal Lago14

and Sangiorgi have shown that PAB is not fully abstract with respect to the context equivalence15

induced by the lazy call-by-name evaluation strategy. We prove that extending this calculus with16

a let-in operator allows for achieving the full abstraction. In particular, we recall Larsen and17

Skou’s testing language, which is known to correspond with PAB, and we prove that every test is18

representable by a context of our calculus.19
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1 Introduction25

We consider the probabilistic extension Λ⊕ of the untyped λ-calculus, obtained by adding a26

probabilistic choice primitive M ⊕N representing a term evaluating to M or N with equal27

probability. This calculus provides a useful although quite simple framework for importing28

tools and results from the standard theory of the λ-calculus to probabilistic programming.29

As well-known, the choice of an evaluation strategy for Λ⊕ plays a crucial role, even for30

strongly normalising terms. Consider a function λx.F applied to a probabilistic term M ⊕N :31

if we adopt a call-by-name policy, cbn by short, the whole term M ⊕N would be passed to32

the calling parameter x before actually performing the choice between M and N , while in33

a call-by-value strategy, cbv by short, we first chose between M and N and then pass the34

value associated with this choice to x. If the evaluation of F calls n times the parameter35

x, then the cbn strategy performs n independent choices between M and N , while the cbv36

strategy copies n times the result of one single choice. In linear logic semantics [12], this37

phenomenon can be described by precising that the application is a bilinear function in cbv38

(so (λx.F )(M ⊕N) is equivalent to ((λx.F )M)⊕ ((λx.F )N)), while it is not linear in the39

argument position in cbn (see discussion at Example 3).40

In probabilistic programming it is worthwhile to have a cbv operator even in a cbn41

language, as the most of the randomised algorithms need to sample from a distribution42

and passing to a sub-procedure the value of this sample rather than the whole distribution.43

Consider for example the randomised quicksort: this algorithm takes a pivot randomly44

from an array and it passes it to the partitioning procedure, which uses this pivot several45
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XXX:2 Λ⊕ with let-in operator

times. The algorithm would be unsound if we allow to make different choices each time the46

partitioning procedure calls for the same pivot. In [10] the authors enrich the cbn probabilistic47

PCF with a let-in operator, restricted to the ground values, so that let x = M ⊕ N in F48

behaves like a cbv application of λx.F to M ⊕N . In a continuous framework this kind of49

operator is usually called sampling (e.g. [17]), but this is just a different terminology for the50

same computation mechanism: sampling a value from a distribution before passing it to a51

parameter.52

Both calling policies (cbn and cbv) can be declined with a further attribute which is53

Abramsky’s lazyness [1]: a reduction strategy is lazy (sometimes called also weak) whenever54

it does not evaluate the body of a function, i.e. it does not reduce a β-redex under the scope55

of a λ-abstraction. This notion has been presented in order to provide a formal model of the56

evaluation mechanism of the lazy functional programming languages.57

Two probabilistic programs are context equivalent if they have the same probability of58

converging to a value in all contexts. Of course, this notion depends on which reduction59

strategy has been chosen. The prototypical example of diverging term Ω def= (λx.xx)(λx.xx)60

is context equivalent with λx.Ω for a non-lazy strategy, while the two terms can be trivially61

distinguished by a lazy strategy as λx.Ω is a value for such a reduction. Similarly, the term62

(λxy.y)Ω is equivalent to Ω for cbv, but it is converging for the cbn policy (lazy or not),63

because the reduction step (λxy.y)Ω→ λy.y is admitted.64

One of the major contribution of the already mentioned [1] has been to use the notion of65

bisimilarity in order to study the context equivalence of the lazy cbn λ-calculus. The idea is66

to consider a reduction strategy as a labelled transition system where the states and labels67

of the system are the λ-terms and a transition labelled by a term P goes from a term M68

to a value M ′ whenever M ′ is the result of evaluating the application MP . The benefit of69

this setting is to be able to transport into λ-calculus the whole theory of bisimilarity (called70

in [1] applicative bisimilarity) and its associated coinduction reasoning, which is one of the71

main tools for comparing processes in concurrency theory. Basically, two terms M and N72

are applicative bisimilar whenever their applications MP and NP are applicative bisimilar73

for any argument P . Abramsky proved that applicative bisimilarity is sound with respect to74

lazy cbn context equivalence (i.e. the former implies the latter), but it is not fully abstract75

(there are context equivalent terms that are not bisimilar).76

Abramsky’s applicative bisimilarity has been recently lifted to Λ⊕ by Dal Lago and his77

co-authors [4, 7]. The transition system becomes now a Markov Chain (here Definition 12) on78

the the top of it one can define a notion of probabilistic applicative bisimilarity (PAB). The79

paper [7] considers a lazy cbn reduction strategy, while [4] focuses on the (lazy) cbv strategy.80

In both settings, PAB is proven sound with respect to the associated context equivalence,81

but, surprisingly, the cbv bismilarity is also fully abstract, while the lazy cbn is not. Our82

paper shows that adding the let-in operator mentioned before is enough for recovering the83

full abstraction even for the lazy cbn.84

Let us discuss more in detail the problem with the lazy cbn operation semantics. The two85

terms λxy.(x⊕y) and (λxy.x)⊕(λxy.y) are context equivalent but not bisimilar (Example 6).86

The difference is between a process giving a value allowing two choices and a process giving87

two values after a choice (see Figure 4 to have a pictorial representation of the two processes).88

The cbn contexts are not able to discriminate such a subtle difference while bisimilarity does89

(Examples 14 and 21). In [4] the authors show a cbv context discriminating a variant of90

these two terms and they conjecture that a kind of sequencing operator can recover the full91

abstraction for the lazy cbn : our paper proves this conjecture.92

The result is not surprising if compared to [4], however let us stress the contrast with the93
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Testing Equivalence
∀t test, Pt(M) = Pt(N)

Bisimilarity ∼
∃R bisimulation, M RN

Context Equivalence '
∀C context,

∑
[[C[M ]]] =

∑
[[C[N ]]]

Theorem 22

Theorem 24 Theorem 18

Figure 1 Sketch of the main results in the paper, giving Corollary 25.

non-lazy cbn reduction strategy (i.e. the full head-reduction). We have already mentioned94

that [10] considers the cbn probabilistic PCF endowed with the let-in operator. The full95

abstraction result of probabilistic coherence spaces proved in [10] shows that the let-in operator96

does not change the context equivalence of probabilistic PCF, as this latter corresponds with97

the equality in probabilistic coherence spaces, regardless of the presence of the let-in in the98

language. Also, [2, 16] achieve a similar probabilistic coherence spaces full abstraction result99

for the untyped non-lazy cbn probabilistic λ-calculus without the let-in operator. These100

considerations show that the need of let-in operator for getting the full abstraction is due to101

the notion of lazy normal form rather than the call-by-name policy.102

Structure of the paper. Section 2 defines Λ⊕,let, the lazy call-by-name probabilistic103

λ-calculus extended with the let-in operator. The operational semantics is given by a notion104

of big-step approximation, following [8]. An equivalent notion based on Markov chains could105

be given as in e.g. [9]. The context equivalence is defined by Equation (5) where what we106

observe is the probability of getting a value. Notice that the notion of lazyness plays a crucial107

role here, since a value is a variable or just an abstraction and not a head-normal form, as it108

is the case instead in the non-lazy cbn considered in e.g. [2, 9, 15, 16].109

Section 3 defines the probabilistic applicative bisimulation and the corresponding bisimil-110

arity by considering Λ⊕,let as a labelled Markov chain. The definitions and results of this111

section are an adaptation of the ones in [7]. The main result is the soundness of bisimilarity112

with respect to the context equivalence (Theorem 18), whose proof is based on Lemma 17113

stating that the bisimilarity is a congruence. The proof of this lemma is quite technical114

but follows the same lines of [4, 5, 7], using Howe’s lifting: we postpone the details in the115

Appendix. The last Section 4 achieves the converse of Theorem 18 by considering Larsen116

and Skou’s testing language (Definition 19) which is well-known to induce an equivalence117

corresponding with probabilistic bisimilarity (Theorem 22). Lemma 23 states that any test118

can be represented by a context of Λ⊕,let (here we are using in an essential way the presence119

of the let-in operator), so giving Theorem 24 and closing the circle (Corollary 25). Figure 1120

sketches the main reasoning of the paper.121

FSCD 2019
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2 Preliminaries122

In this section we introduce the syntax and operational semantics of Λ⊕,let.123

2.1 Probabilistic Lambda Calculus Λ⊕,let124

We present the probabilistic lambda calculus Λ⊕,let, that is the pure, untyped lambda calculus125

endowed with two new operators: a probabilistic binary sum operator ⊕, representing a126

fair choice and a let-in operator, simulating the call-by-value evaluation in a call-by-name127

calculus. The operational semantics of Λ⊕,let is defined by a big-step approximation relation128

as in [8] , we refer to this paper for more details. Given a countable set X = {x, y, z, . . . } of129

variables, term expressions (terms) and values are generated by the following grammar:130

(values) V,W ::= x | λx.M,

(terms) M,N ::= V |MN |M ⊕N | let x = M in N, (1)131

where x ∈ X. The set of all terms (resp. values) is denoted by Λ⊕,let (resp. V⊕,let ) and132

is ranged over by capital Latin letters M,N, . . . , the letters V,W being reserved for values.133

The set of free variables of a term M is indicated as FV(M) and is defined in the usual way.134

Given a finite set of variables Γ = {x1, . . . , xn} ⊆ X, ΛΓ
⊕,let (resp. VΓ

⊕,let ) denotes the set of135

terms (resp. values) whose free variables are within Γ. A term M is closed if FV(M) = ∅, or136

equivalently if M ∈ Λ∅⊕,let. The capture-avoiding substitution of N for the free occurrences137

of x in M is denoted by M{N/x}.138

I Example 1. Let us define some terms useful in the sequel. The identity I def= λx.x, the139

boolean projections T def= λxy.x and F def= λxy.y and the duplicator ∆ def= λx.xx, this latter140

giving the ever looping term Ω def= ∆∆. The let-in operator allows for a call-by-value141

duplicator ∆` def= λx.let x = x in xx that will distribute over the probabilistic choice (see142

Example 3).143

Because of the probabilistic operator ⊕, a closed term does not evaluate to a single144

value, but to a discrete distribution of possible outcomes, i.e. to a function assigning a145

probability to any value. More formally, a (value) distribution is a map D : V∅⊕,let → R[0,1]146

such that
∑
V ∈V∅⊕,let

D(V ) ≤ 1. The set of all value distributions is denoted by P. Given147

a value distribution D , the set of all values to which D attributes a positive probability is148

denoted by S(D) and we will call it the support of D . Note that value distributions do not149

necessarily sum to 1, this allowing to model the possibility of divergence (Example 4). We will150

use the abbreviation
∑

D to stand for
∑
V ∈V∅⊕,let

D(V ). The expression p1V1 + · · ·+ pnVn151

denotes the distribution D with finite support {V1, . . . , Vn} such that D(Vi) = pi, for every152

i ∈ {1, . . . , n}. Note that
∑

D =
∑n
i=1 pi. In particular, 0 denotes the empty distribution153

and V can denote both a value and the distribution having all of its mass on V .154

The operational semantics of Λ⊕,let is given in two steps. First, the derivation rules in155

Figure 2 inductively define a notion of big-step approximation relation M ⇓ D between a156

closed term M and a finite value distribution D . Then, the semantics [[M ]] of M is given as:157

[[M ]] = sup{D ; M ⇓ D}, (2)158

according to the point-wise order over value distributions (D ≤ E if and only if ∀V,D(V ) ≤159

E (V )). The lub in Equation (2) is well-defined since ≤ is an ω-complete partial order and160

the set {D ; M ⇓ D} is directed (for every M ⇓ D and M ⇓ E , then exists a distribution161

F ≥ D ,E such that M ⇓ F ).162
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M ⇓ 0 V ⇓ V
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2 ·D + 1

2 · E

M ⇓ D {P{N/x} ⇓ EP,N}λx.P∈S(D)

MN ⇓
∑
λx.P∈S(D) D(λx.P ) · EP,N

N ⇓ G {M{V/x} ⇓HV }V ∈S(G )

let x = N in M ⇓
∑
V ∈S(G ) G (V ) ·HV

Figure 2 Rules for the approximation relationM ⇓ D , withM ∈ Λ∅⊕,let and D a value distribution.

V ⇓ V
I ⇓ I

V ⇓ V

I ⇓ I V V ⇓ 0
I⊕ V V ⇓ 1

2I...
V V ⇓

∑n−1
i=1

1
2i I

I⊕ V V ⇓
∑n
i=1

1
2i I

V V ⇓
∑n
i=1

1
2i I

Figure 3 A derivation of the big-step approximation V V ⇓
∑n

i=1
1
2i I for V = λx.(I⊕ xx).

Notice that the rules in Figure 2 implement a lazy call-by-name evaluation: they do163

not reduce within the body of an abstraction, and an application (λx.M)N is evaluated164

as M{N/x} for any term N . However, the let-in operator follows a call-by-value policy:165

let x = N in M has the same semantics as M{N/x} only when N is a value.166

I Example 2. Consider the term M
def= ∆(T⊕ F). One can easily check that the rules of167

Figure 2 allows to derive M ⇓ D for any D ∈ {0, 1
2λy.(T⊕ F), 1

2I, 1
2λy.(T⊕ F) + 1

2I}. The168

latter distribution is the lub of this set and so it defines the semantics of M .169

I Example 3. Let us replace in Example 2 the duplicator ∆ with its call-by-value variant170

∆` (Example 1). We have ∆`(T ⊕ F) ⇓ D for any D ∈ {0, 1
2λy.T,

1
2I, 1

2λy.T + 1
2I}, so171

[[∆`(T ⊕ F)]] = 1
2λy.T + 1

2I. Notice that [[∆`(T ⊕ F)]] = [[∆`T ⊕∆`F]] = [[∆T ⊕∆F]],172

while [[∆(T ⊕ F)]] 6= [[∆T ⊕∆F]], as calculated in Example 2. Let us mention that this173

phenomenon is well enlightened by the linear logic encoding of the call-by-name application174

and the call-by-value one, the latter resulting in an operator linear both in the function and175

the argument position, while the former is linear only in the functional position [12].176

I Example 4. The previous examples are about normalizing terms, in this framework177

meaning terms M with semantics of total mass
∑

[[M ]] = 1 and such that there exists a178

unique finite derivation giving M ⇓ [[M ]]. Standard non-converging λ-terms gives partiality,179

as for example [[Ω]] = 0, so [[Ω⊕ I]] = 1
2I. However, probabilistic λ-calculi allow for almost180

sure terminating terms, that is terms M such that
∑

[[M ]] = 1 but there exists no finite181

derivation giving M ⇓ [[M ]]. For example, consider the term M
def= V V , with V def= λx.(I⊕xx):182

any finite approximation of M gives a distribution bounded by
∑n
i=1

1
2i I for some n ≥ 0, as183

Figure 3 shows, but only the limit sum supn
∑n
i=1

1
2i I is equal to [[M ]] = I.184

The following lemma states simple properties of the semantics that can be easily proved by185

continuity of [[ ]] and induction over finite approximations (see e.g. [8] for details).186

I Lemma 5 ([8]). For any terms M and N ,187

FSCD 2019
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1. [[(λx.M)N ]] = [[M{N/x}]].188

2. [[M ⊕N ]] = 1
2 [[M ]] + 1

2 [[N ]].189

2.2 Context Equivalence190

One standard way of comparing term expressions is by observing their behaviours within191

programming contexts. A context of Λ⊕,let is a term containing a unique hole [·], generated192

by the following grammar:193

C,D ::= [·] | λx.C | CM |MC | C ⊕M |M ⊕ C | let x = C in M | let x = M in C (3)194

If C is a context and M is a Λ⊕,let-term, then C[M ] denotes a Λ⊕,let-term obtained by195

substituting the unique hole in C with M allowing the possible capture of free variables196

of M . We will work with closing contexts, that is contexts C such that C[M ] is a closed197

term (where M can be an open term). Thus, we want to keep track of the possible variables198

captured by filling a context hole. Given two finite sets of variables Γ, ∆, we denote by199

CΛ⊕,let
(Γ;∆) the set of contexts capturing the variables in Γ of a term filling the hole but200

keeping free the variables in ∆. So for example the context λx.let y = x⊕ z in x[·] belongs201

to CΛ⊕,let
({x,y};∆) for any ∆ containing z.202

In a probabilistic setting, the typical observation is the probability to converge to a value,203

so giving the following standard definition, for every M,N ∈ ΛΓ
⊕,let:204

M ≤ N iff ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M ]]] ≤

∑
[[C[N ]]], (context preorder) (4)205

M ' N iff ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M ]]] =

∑
[[C[N ]]] (context equivalence) (5)206

207

Notice that M ' N is equivalent to M ≤ N and N ≤M .208

I Example 6. As mentioned in the Introduction, the terms M def= λxy.(x ⊕ y) and N
def=209

(λxy.x)⊕ (λxy.y) are context equivalent in the call-by-name probabilistic λ-calculus without210

the let-in operator [7]. However, they can be discriminated in Λ⊕,let by, e.g. the context211

C
def= (let y = [·] in (let z1 = yIΩ in (let z2 = yIΩ in I))). In fact, by applying the rules of212

Figure 2, one gets:
∑

[[C[M ]]] = 1
4 and

∑
[[C[N ]]] = 1

2 .213

I Example 7. The two duplicators ∆ and ∆` (Example 1) are not context equivalent, for214

example C def= [·](I⊕Ω) gives
∑

[[C[∆]]] = 1
4 while

∑
[[C[∆`]]] = 1

2 .215

I Proposition 8. Let M,N ∈ Λ∅⊕,let, if [[M ]] ≤ [[N ]] then M ≤ N . So, [[M ]] = [[N ]] implies216

M ' N .217

Proof. First, notice that [[M ]] ≤ [[N ]] is equivalent to ∀D,M ⇓ D,∃E ≥ D, N ⇓ E . Then one218

proves, by structural induction on a context C that [[C(M)]] ≤ [[C(N)]], whenever [[M ]] ≤ [[N ]].219

The delicate points are in the cases C is an application or a let-in operator. J220

I Example 9. Thanks to Proposition 8, one can prove that quite different terms are indeed221

context equivalent, e.g. the term V V in Example 4 is context equivalent to I. However, not222

all context equivalent terms have the same semantics, as for example λx.(x⊕ x) and I.223

Proving in general that two terms are context equivalent is rather difficult because of the224

universal quantifier in Equation (5). For example, proving that λx.(x⊕ x) and I are context225

equivalent is not immediate. Various other tools are then used to prove context equivalence,226

as the bisimilarity and testing introduced in the next sections.227
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3 Probabilistic Applicative Bisimulation228

We briefly recall and adapt to Λ⊕,let the definitions of [7] about probabilistic applicative229

(bi)simulation. This notion mixes Larsen and Skou’s definition of (bi)simulation for labelled230

Markov chains [14] with Abramsky’s applicative (bi)simulation for the lazy call-by-name231

λ-calculus [1]. The core idea is to look at a closed term M as a state of a transition system,232

a Markov chain in our setting, having two kinds of transitions. A “solipsistic” transition233

consisting in evaluating M to a value λx.P (this transition being weighted by the probability234

[[M ]](λx.P ) of getting λx.P out of M) and an “interactive” transition consisting in feeding235

a value λx.P by a new term N representing an input from the environment, so getting the236

term P{N/x}. We can then consider the notions of similarity and bisimilarity (resp. (6), (7))237

over such probabilistic transition system. The benefit of this approach is to check program238

equivalence via an existential quantifier (see Equation (7)) rather than a universal one as in239

context equivalence (Equation (5)). The main result of this section is Theorem 18 stating240

that similarity implies context preorder. As a consequence we have that bisimilarity implies241

context equivalence. The key ingredient for achieving this result is to show that the similarity242

is a precongruence relation (Definition 16 and Lemma 17). The proof of Lemma 17 is quite243

technical but standard, see the Appendix and [7] for more details.244

We start with the definition of a generic labelled Markov chain and following Larsen and245

Skou [14] we introduce the notions of a probabilistic simulation and bisimulation.246

I Definition 10. A labelled Markov chain is a tripleM = (S,L, P ) where S is a countable set247

of states, L is a set of labels (actions) and P is a transition probability matrix, i.e. a function248

P : S ×L×S → R[0,1] satisfying the following condition: ∀s ∈ S,∀l ∈ L,
∑
t∈S P (s, l, t) ≤ 1.249

Given a relation R, R(X) denotes the R-closure of the set X, namely the set {y |250

∃x ∈ X such that xRy}. If R is an equivalence relation, then S/R stands for the set of all251

equivalence classes of S modulo R. The expression P (s, l,X) stands for
∑
t∈X P (s, l, t).252

I Definition 11. Let (S,L, P ) be a labelled Markov chain and R be a relation over S:253

R is a probabilistic simulation if it is a preorder and ∀(s, t) ∈ R,∀X ⊆ S,∀l ∈ L,254

P (s, l,X) ≤ P (t, l,R(X)).255

R is a probabilistic bisimulation if it is an equivalence and ∀(s, t) ∈ R,∀E ∈ S/R,∀l ∈ L,256

P (s, l, E) = P (t, l, E).257

We define the probabilistic (bi)similarity, denoted respectively by . and ', as the union258

of all probabilistic (bi)simulations which can be proven to be still a (bi)simulation:259

M . N iff ∃R probabilistic simulation s.t. MRN, (probabilistic similarity) (6)260

M ∼ N iff ∃R probabilistic bisimulation s.t. MRN (probabilistic bisimilarity) (7)261
262

One can prove that M ∼ N is equivalent to M . N and N .M , i.e. ∼=. ∩ .op.263

As previously stated, we want to see the operational semantics of Λ⊕,let as a labelled264

Markov chain defined as follows:265

I Definition 12. The Λ⊕,let-Markov chain is defined as the triple (Λ∅⊕,let ] VΛ∅⊕,let,Λ∅⊕,let ∪266

{τ},P), where the set of states is the disjoint union of the set of closed terms and closed267

distinguished values, labels (actions) are either closed terms or τ action and the transition268

probability matrix P is defined in the following way:269

• for every closed term M and distinguished value νx.N ,270

P (M, τ, νx.N) = [[M ]](λx.N) ,271

FSCD 2019
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• for every closed term M and distinguished value νx.N ,272

P (νx.N,M,N{M/x}) = 1 ,273

• in all other cases, P returns 0.274

For technical reasons the set of states is represented as a disjoint union Λ∅⊕,let ] VΛ∅⊕,let.275

For every closed value V = λx.N ∈ Λ∅⊕,let a distinguished value is indicated as Ṽ = νx.N276

and belongs to the set VΛ∅⊕,let. As an example, value λxy.x belongs to the set Λ∅⊕,let, while277

the distinguished value νx.λy.x is the element of VΛ∅⊕,let.278

Since Λ⊕,let can be seen as a labelled Markov chain, the simulation and bisimulation279

can be defined as for any labelled Markov chain. A probabilistic applicative simulation is a280

probabilistic simulation on Λ⊕,let and a probabilistic applicative bisimulation is a probabilistic281

bisimulation on Λ⊕,let. Then, the probabilistic applicative similarity, PAS for short, and the282

probabilistic applicative bisimilarity, PAB for short, are defined in the usual way applying283

Equation (6) and (7). From now on, the symbol . (resp. ∼) will denote the probabilistic284

applicative similarity (resp. bisimilarity).285

The notions of PAS and PAB are defined on closed terms, and we extend these definitions286

to open terms by requiring the usual closure under substitutions. Let M,N ∈ ΛΓ
⊕,let where287

Γ = {x1, . . . , xn}. We say M and N are similar, (denoted M . N), if for all L1 ∈288

Λ∅⊕,let, . . . , Ln ∈ Λ∅⊕,let, M{L1/x1, . . . , Ln/xn} . N{L1/x1, . . . , Ln/xn}. The analogous289

terminology is introduced for bisimilarity.290

I Example 13. Let us recall the terms λx.(x⊕x) and λx.x from Example 9 having different291

semantics but context equivalent. As mentioned, the proof of their context equivalence292

is not immediate, because of the universal quantifier in Equation (5). However, we can293

check easily that they are bimisilar, because we need just to exhibit a bisimulation relation294

between the two terms. By Theorem 18 we then infer context equivalence from bisimilarity.295

Let us define the relation R = {(λx.(x ⊕ x), λx.x)} ∪ {(λx.x, λx.(x ⊕ x))} ∪ {(νx.(x ⊕296

x), νx.x)} ∪ {(νx.x, νx.(x⊕ x))} ∪ {(N ⊕N,N) | N ∈ Λ∅⊕,let} ∪ {(N,N ⊕N) | N ∈ Λ∅⊕,let} ∪297

{(M,M) | M ∈ Λ∅⊕,let} ∪ {(Ṽ , Ṽ ) | Ṽ ∈ VΛ∅⊕,let}. We prove that R is a bisimulation298

containing (λx.(x⊕ x), λx.x). The relation is trivially an equivalence, so we have to show299

that ∀(M,N) ∈ R,∀E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R,∀` ∈ Λ∅⊕,let ∪ {τ}, P (M, `,E) = P (N, `,E)300

(Definition 11). We prove only for (λx.(x ⊕ x), λx.x) ∈ R and (νx.(x ⊕ x), νx.x) ∈ R.301

First we have that (λx.(x ⊕ x), λx.x) ∈ R and for all closed terms F ∈ Λ∅⊕,let and all302

equivalence classes E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R, P (λx.(x⊕ x), F, E) = 0 = P (λx.x, F,E) holds303

by Definition 12. If the equivalence class E contains νx.(x⊕ x) then P (λx.(x⊕ x), τ, E) = 1,304

otherwise P (λx.(x⊕x), τ, E) = 0. Since (νx.(x⊕x), νx.x) ∈ R, we have that νx.(x⊕x) ∈ E305

if and only if νx.x ∈ E. Hence, P (λx.(x ⊕ x), `, E) = P (λx.x, `, E) for all ` ∈ Λ∅⊕,let ∪ {τ}306

and all E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R. For all equivalence classes E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R,307

P (νx.(x⊕x), τ, E) = 0 = P (νx.x, τ, E) holds by Definition 12. Further, P (νx.(x⊕x), F, E) =308

1 for some F ∈ Λ∅⊕,let if F ⊕ F ∈ E, otherwise P (νx.(x ⊕ x), F, E) = 0. We have that309

F ⊕ F ∈ E if and only if F ∈ E, because (F ⊕ F, F ) ∈ R for all F ∈ Λ∅⊕,let. Hence,310

P (νx.(x⊕ x), `, E) = P (νx.x, `, E) for all ` ∈ Λ∅⊕,let ∪ {τ} and all E ∈ (Λ∅⊕,let ] VΛ∅⊕,let)/R.311

The proof for the other elements of R is analogous to the cases we considered.312

I Example 14. The terms M = λxy.(x⊕ y) and N = (λxy.x)⊕ (λxy.y) are not bisimilar.313

Let us suppose the opposite. Then, there exists a bisimulation R such that (M,N) ∈ R. By314

definition R is an equivalence relation. Let E be an equivalence class of Λ∅⊕,let ] VΛ∅⊕,let with315

respect to R which contains νx.λy.(x ⊕ y). Then, we should have that 1 = P (M, τ,E) =316
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P (N, τ,E). We know that P (N, τ, νx.λy.x) = 1
2 and P (N, τ, νx.λy.y) = 1

2 . Thus, we can317

conclude νx.λy.x ∈ E and νx.λy.y ∈ E. If νx.λy.x ∈ E, then (νx.λy.(x⊕ y), νx.λy.x) ∈ R.318

Hence we have that 1 = P (νx.λy.(x ⊕ y),Ω, E1) = P (νx.λy.x,Ω, E1), where E1 is an319

equivalence class which contains λy.(Ω⊕ y). Using the fact that P (νx.λy.x,Ω, λy.Ω) = 1320

we obtain λy.Ω ∈ E1. Since λy.(Ω⊕ y) and λy.Ω belong to the same equivalence class we321

conclude (λy.(Ω⊕ y), λy.Ω) ∈ R. If E2 is an equivalence class such that νy.(Ω⊕ y) ∈ E2,322

then we have that 1 = P (λy.(Ω ⊕ y), τ, E2) = P (λy.Ω, τ, E2). By a similar reasoning323

as before we obtain that (νy.(Ω ⊕ y), νy.Ω) ∈ R. Let E3 be an equivalence class which324

contains Ω ⊕ I. From 1 = P (νy.(Ω ⊕ y), I, E3) = P (νy.Ω, I, E3) it follows that Ω ∈ E3,325

i.e. (Ω ⊕ I,Ω) ∈ R. Finally, if E4 is an equivalence class such that νx.x ∈ E4, then326

1
2 = P (Ω⊕ I, τ, E4) = P (Ω, τ, E4). This is in contradiction with P (Ω, τ, E4) = 0 which is a327

consequence of the definition of a transition probability matrix. Thus, terms M and N are328

not bisimilar.329

The following proposition is the analogous to Proposition 8, stating the soundness of330

(bi)simulation with respect to the operational semantics.331

I Proposition 15. Let M,N ∈ Λ∅⊕,let, if [[M ]] ≤ [[N ]] then M . N . So, [[M ]] = [[N ]] implies332

M ∼ N .333

Proof. By checking that the relation R = {(M,N) ∈ Λ∅⊕,let×Λ∅⊕,let | [[M ]] ≤ [[N ]]}∪{(Ṽ , Ṽ ) ∈334

VΛ∅⊕,let × VΛ∅⊕,let} is a probabilistic applicative simulation. The second part of the statement335

follows from ∼=. ∩(.)op. J336

We introduce a new notion of relations called Λ⊕,let-relations, which are sets of triples337

in the form (Γ,M,N) where M,N ∈ ΛΓ
⊕,let. Any relation R′ on the set of Λ⊕,let-terms can338

be extended to a Λ⊕,let-relation R, such that whenever (M,N) ∈ R′ and M,N ∈ ΛΓ
⊕,let, we339

have that (Γ,M,N) ∈ R. We will write Γ `MRN instead of (Γ,M,N) ∈ R.340

I Definition 16. A Λ⊕,let-relation R is a congruence (respectively, precongruence) if it is341

an equivalence (respectively, a preorder) and for every Γ ∪ ∆ ` MRN and every context342

C ∈ CΛ⊕,let
(Γ;∆), we have that ∆ ` C[M ]RC[N ].343

It is immediate to check that the context preorder ≤ (resp. equivalence ') is a precongruence344

(resp. congruence)(Appendix A.1). Also (bi)similarity is a (pre)congruence, but its proof is345

more involved (Appendix A.2).346

I Lemma 17. The similarity . (resp. bisimilarity ∼) is a precongruence (resp. congruence)347

relation for Λ⊕,let-terms.348

Proof (Sketch). As standard [4, 5, 7], we use Howe’s technique to prove that probabilistic349

similarity is a precongruence, this implying that the probabilistic bisimilarity is also a350

congruence. The proof is technical and follows the same reasoning as [7], the only difference351

being in the cases needed to handle the compatibility associated with the let-in operator.352

We start with defining Howe’s lifting for Λ⊕,let, which turns an arbitrary relation R to353

another one RH . The relation RH enjoys some properties with respect to the relation R. In354

particular, if R is reflexive, transitive and closed under term-substitution, then it is included355

in RH and the relation RH is context closed and also closed under term-substitution. These356

properties allow to prove that the transitive closure (.H)+ of the Howe’s lifting .H is a357

precongruence including .. One can conclude then easily that . is also a precongruence.358

Finally, from ∼=. ∪(.)op we conclude that ∼ is a congruence. J359
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Now we can prove that simulation preorder is sound with respect to the context preorder.360

As a consequence we have that bisimilarity is included in the context equivalence.361

I Theorem 18 (Soundness). For every M,N ∈ ΛΓ
⊕,let, Γ ` M . N implies Γ ` M ≤ N .362

Therefore, M ∼ N implies Γ `M'N .363

Proof. Suppose that Γ ` M . N . We have that for every context C ∈ CΛ⊕,let
(Γ;∅),364

∅ ` C[M ] . C[N ] holds as a consequence of Lemma 17. Then by definition there exists365

a simulation between C[M ] and C[N ], which implies by Definition 11 that
∑

[[C[M ]]] ≤366 ∑
[[C[N ]]] holds. We conclude Γ `M ≤ N . The second part of the statement follows from367

the definitions ∼=. ∩ .op and '=≤ ∩ ≤op. J368

4 Full Abstraction369

The goal of this section is to prove the converse of Theorem 18, showing that context370

equivalence and bisimilarity coincide. In order to get this result, it is more convenient371

to use the notion of testing equivalence, which has been proven to coincide with Markov372

processes bisimilarity in [20] (here Theorem 22). In this framework we need to consider only373

Markov chains, which are the discrete-time version of Markov processes, so we simplify the374

definitions and results of [20] to this discrete setting, following [7]. Notice that Theorem 22 is375

independent from the particular Markov chain considered, so we recall the general definitions376

and then we applied them to the Λ⊕,let-Markov chain.377

I Definition 19 ([7]). Let (S,L,P) be a labelled Markov chain. The testing language T(S,L,P)378

for (S,L,P) is given by the grammar379

t ::= ω | a.t | (t, t),380

where ω is a symbol for termination and a ∈ L is an action (label).381

It is easy to see that tests are finite objects. A test is an algorithm for doing an experiment382

on a program. During the execution of a test on a particular program, one can observe the383

success or the failure of the experiment with a given probability. The symbol ω represents a384

test which does not require an experiment at all (it always succeed). The test a.t describes385

an experiment consisting of performing the action a and in the case of success performing386

the test t, and the test (t, s) makes two copies of the current state and allows both tests t387

and s to be performed independently on the same state. The success probability of a test is388

defined as follows:389

I Definition 20 ([7]). Let (S,L,P) be a labelled Markov chain. We define a family390

{Pt(·)}t∈T(S,L,P) of maps from the set of states S to R[0,1], by induction on the structure of t:391

Pω(s) = 1;392

Pa.t(s) =
∑
s′∈S P(s, a, s′)Pt(s′);393

P(t1,...,tn)(s) =
∏n
i=1 Pti(s).394

I Example 21. The terms λxy.(x ⊕ y) and (λxy.x) ⊕ (λxy.y) of Example 6 can be dis-395

criminated by the test t = τ.(I.τ.Ω.τ.ω, I.τ.Ω.τ.ω). Figure 4 sketches the computation of396

Pt(λxy.(x⊕ y)) = 1
4 and Pt((λxy.x)⊕ (λxy.y)) = 1

2 .397

The following theorem states the equivalence between the notion of bisimilarity over398

(S,L,P) and testing equivalence. The theorem has been proven in [20] for a labelled Markov399

processes. For lack of space, we have omitted a detailed proof of the adaptation of the results400

from labelled Markov processes to labelled Markov chains.401
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λxy.(x⊕ y)

νx.λy.(x⊕ y)

λy.(I⊕ y)

νy.(I⊕ y)

I⊕Ω
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τ1
2 0

Ω1

τ1
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τ1

λxy.x⊕ λxy.y
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Ω
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Ω1

τ1

I1

τ1
2

Figure 4 The experiment t = τ.(I.τ.Ω.τ.ω, I.τ.Ω.τ.ω) over the terms of Example 21.

I Theorem 22 ([7],[20]). Let (S,L,P) be a labelled Markov chain. Then s, s′ ∈ S are402

bisimilar if and only if Pt(s) = Pt(s′) for every test t ∈ T(S,L,P).403

It is known that this theorem does not hold for inequalities [20]. More precisely, it is not404

true that s . s′ just in case Pt(s) ≤ Pt(s′) for every test t ∈ T(S,L,P).405

4.1 Every Test has an Equivalent Context406

Here is the main contribution of our paper, showing that for every test t associated with407

the Λ⊕,let-Markov chain there exists a context Ct expressing t in the syntax of Λ⊕,let,408

i.e. Pt(M) =
∑

[[Ct[M ]]] for every term M (Lemma 23). So context equivalence implies409

testing equivalence (Theorem 24) and hence bisimilarity by Theorem 22. Together with410

Theorem 18 this achieves the diagram in Figure 1, so Corollary 25.411

I Lemma 23. For every test t ∈ TΛ⊕,let , there are contexts Ct ∈ CΛ⊕,let
(∅;∅) and Dt ∈412

CΛ⊕,let
(∅;∅) such that for every term M ∈ Λ∅⊕,let and value V ∈ V∅⊕,let it holds that:413

Pt(M) =
∑

[[Ct[M ]]] and Pt(Ṽ ) =
∑

[[Dt[V ]]],414

where Ṽ is a distinguished value from the set VΛ∅⊕,let.415

Proof. We prove it by induction on the structure of a test t.416

• First we consider the case where t = ω. Then, by the definition of Pt(·), we have that417

for every M ∈ Λ∅⊕,let and V ∈ V∅⊕,let , Pω(M) = 1 and Pω(Ṽ ) = 1. Thus, we can define418

Cω = (λxy.x)[·] and Dω = (λxy.x)[·] and we obtain, for every M ∈ Λ∅⊕,let419 ∑
[[Cω[M ]]] =

∑
[[(λxy.x)M ]] =

∑
[[λy.M ]] = 1 = Pω(M),420

and for every value V ∈ V∅⊕,let421 ∑
[[Dω[V ]]] =

∑
[[(λxy.x)V ]] =

∑
[[λy.V ]] = 1 = Pω(Ṽ ).422
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• Next, let us consider the case where t = a.t′ for some action (label) a. By induction423

hypothesis there are contexts Ct′ ∈ CΛ⊕,let
(∅;∅) and Dt′ ∈ CΛ⊕,let

(∅;∅) such that for every424

M ∈ Λ∅⊕,let and V ∈ V∅⊕,let we have that Pt′(M) =
∑

[[Ct′ [M ]]] and Pt′(Ṽ ) =
∑

[[Dt′ [V ]]].425

An action a can be either a closed term or a τ action, thus depending on it we differ two426

cases.427

1. If a = τ , then a test t is of the form τ.t′. From Definition 12 and Definition 20 we have428

Pτ.t′(Ṽ ) = 0 for any value V ∈ V∅⊕,let . Hence, we define Dτ.t′ = Ω[·] and the statement429

holds. Let M be a closed term. From the definition of a transition probability matrix430

(P (M, τ, Ṽ ) = [[M ]](V )) and induction hypothesis Pt′(Ṽ ) =
∑

[[Dt′ [V ]]] it follows that431

Pτ.t′(M) =
∑

Ṽ ∈VΛ∅⊕,let

P (M, τ, Ṽ )Pt′(Ṽ ) =
∑

V ∈V∅⊕,let

[[M ]](V ) ·
∑

[[Dt′ [V ]]].432

433
434

We define Cτ.t′ = (let y = [·] in Dt′ [y]). Then, by the definition of operational semantics435

we get436 ∑
[[Cτ.t′ [M ]]] =

∑
[[let y = M in Dt′ [y]]] =

∑
V ∈V∅⊕,let

[[M ]](V ) ·
∑

[[Dt′ [V ]]],437

for any closed term M ∈ Λ∅⊕,let. Thus, Pτ.t′(M) =
∑

[[Cτ.t′ [M ]]].438

2. If a = F for some closed term F , then a test t is of the form F.t′. From Definition 12439

and Definition 20 we have PF.t′(M) = 0 for any term M ∈ Λ∅⊕,let. Hence, we define440

CF.t′ = Ω[·] and the statement holds. Let V be a value λx.N (Ṽ = νx.N). From the441

definition of a transition probability matrix (P (νx.N, F,N{F/x}) = 1) and induction442

hypothesis, Pt′(M) =
∑

[[Ct′ [M ]]] for every M ∈ Λ∅⊕,let, it follows that443

PF.t′(Ṽ ) =
∑

N ′∈Λ∅⊕,let

P (Ṽ , F,N ′)Pt′(N ′)444

= P (νx.N, F,N{F/x}) · Pt′(N{F/x})445

= 1 · Pt′(N{F/x}) =
∑

[[Ct′ [N{F/x}]]]446
447

By Lemma 5 terms N{F/x} and (λx.N)F have the same semantics. Hence, they are448

bisimilar (Proposition 15). Due to the fact that bisimilarity is included in context449

equivalence (Theorem 18) we have that terms N{F/x} and (λx.N)F are context450

equivalent. More precisely, for any context C,
∑

[[C[N{F/x}]]] =
∑

[[C[(λx.N)F ]]].451

Finally, we obtain that452

PF.t′(Ṽ ) =
∑

[[Ct′ [N{F/x}]]] =
∑

[[Ct′ [(λx.N)F ]]] =
∑

[[Ct′ [V F ]]].453

454
455

We define DF.t′ = Ct′ [[·]F ]. Then, we have that
∑

[[DF.t′ [V ]]] =
∑

[[Ct′ [V F ]]], holds for456

any value V ∈ V∅⊕,let . Thus, PF.t′(Ṽ ) =
∑

[[DF.t′ [V ]]].457

• Finally, let t = (t1, t2). By induction hypothesis there exist contexts Ct1 , Dt1 , Ct2 , Dt2 ∈458

CΛ⊕,let
(∅;∅) such that for any closed term M and a value V the following holds:459

Pt1(M) =
∑

[[Ct1 [M ]]], Pt1(Ṽ ) =
∑

[[Dt1 [V ]]],460
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461

Pt2(M) =
∑

[[Ct2 [M ]]] and Pt2(Ṽ ) =
∑

[[Dt2 [V ]]].462

From Definition 20 we have463

P(t1,t2)(M) = Pt1(M) · Pt2(M) =
∑

[[Ct1 [M ]]] ·
∑

[[Ct2 [M ]]],464

for any closed term M ∈ Λ∅⊕,let. We define:465

C(t1,t2) = (λy.(let z1 = Ct1 [y] in (let z2 = Ct2 [y] in I)))[·] (8)466

and by the definition of operational semantics we have467 ∑
[[C(t1,t2)[M ]]] =

∑
[[Ct1 [M ]]] ·

∑
[[Ct2 [M ]]].468

Since, for a value V ∈ V∅⊕,let it holds that469

P(t1,t2)(Ṽ ) = Pt1(Ṽ ) · Pt2(Ṽ ) =
∑

[[Dt1 [V ]]] ·
∑

[[Dt2 [V ]]],470

we define D(t1,t2) = (λy.(let z1 = Dt1 [y] in (let z2 = Dt2 [y] in I)))[·] and the statement471

holds.472

This concludes the proof. J473

I Theorem 24. Let M,N ∈ Λ∅⊕,let, M'N implies that Pt(M) = Pt(N), for every test t.474

Proof. It is a straightforward consequence of Lemma 23. Let us assume that terms M475

and N are context equivalent, ∅ ` M'N . Then, for every context C ∈ CΛ⊕,let
(∅;∅),we476

have
∑

[[C[M ]]] =
∑

[[C[N ]]]. Suppose that there exists test t ∈ TΛ⊕,let such that Pt(M) 6=477

Pt(N). By Lemma 23, we have that there exists context Ct such that for every term478

M , Pt(M) =
∑

[[Ct[M ]]]. Then, for this context Ct, it holds that
∑

[[Ct[M ]]] = Pt(M) 6=479

Pt(N) =
∑

[[Ct[N ]]], which is in contradiction with the assumption thatM and N are context480

equivalent. Hence, for every test t ∈ TΛ⊕,let it holds that Pt(M) = Pt(N). J481

Notice that the let-in operator is crucial in defining the context C(t1,t2) associated with the482

product (t1, t2) of tests (Equation (8)) in the proof of Lemma 23. For example, if we consider483

the call-by-name version of C(t1,t2), i.e. the context C = (λy.(λz1z2.I)Dt1 [y]Dt2 [y])[·], then484

the semantics of C[M ] is independent from the contexts Dt1 [·], Dt2 [·] and the term M ,485

being [[C[M ]]] = I. Hence, we cannot have P(t1,t2)(M) =
∑

[[C[M ]]] for every M . Another486

possibility is to try to use a context not erasing Dt1 [·] and Dt2 [·] during the evaluation, as487

for example in C = (λy.Dt1 [y]Dt2 [y])[·]. However this would imply to be able to control488

the result of Dt1 [M ] for every term M , for example supposing [[Dt1 [M ]]] = Pt1(M)I, which489

increases considerably the difficulty of the proof. Anyway, the fact that there are examples490

of terms distinguished by tests (Example 21) but not by contexts without the let-in operator491

(Example 6) shows the necessity of this latter.492

The following resumes all results in the paper, as sketched in Figure 1:493

I Corollary 25 (Full Abstraction). For any M,N ∈ Λ∅⊕,let, the following items are equivalent:494

(context equivalence) M'N ,495

(bisimilarity) M ∼ N ,496

(testing equivalence) Pt(M) = Pt(N) for all tests t.497

Concerning inequalities, the equivalence of similarity and testing preorder, i.e. a relation498

which contains (s, s′) if and only if Pt(s) ≤ Pt(s′) for every test t ∈ T(S,L,P), does not hold499

as we stated before. So, we have no clue for proving that similarity is fully abstract with500

respect to the context preorder. We actually conjecture that full abstraction for similarity501

does not hold for Λ⊕,let.502
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5 Conclusion503

In this paper we have considered the Λ⊕,let-calculus, a pure untyped λ-calculus extended504

with two operators: a probabilistic choice operator ⊕ and a let-in operator. The calculus505

implements a lazy call-by-name evaluation strategy, following [1, 7], however the let-in operator506

allows for a call-by-value passing policy. We prove that context equivalence, bisimilarity and507

testing equivalence all coincide in Λ⊕,let (Corollary 25).508

Concerning the inequalities associated with these equivalences: it is known that that509

the probabilistic similarity does not imply the testing approximation [20]. We prove that510

similarity implies context preorder (Theorem 18), but it remains open whether also the511

converse holds.512

This paper confirms a conjecture stated in [4], showing that the calculus introduced in [7]513

can be endowed with a fully abstract bisimilarity by adding a let-in operator. As discussed514

in the Introduction, our feeling is that the need of this operator is due to the lazyness rather515

than to the cbn policy of the calculus. In order to precise this intuition we plan to investigate516

the definition of bisimilarity for the non-lazy cbn probabilistic λ-calculus, which has already517

fully abstract denotational models [2, 16] as well as infinitary normal forms [15] but not a518

theory of bisimulations.519
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A Appendix - Proofs575

A.1 Context Equivalence is a congruence576

We consider Λ⊕,let-relations defined in Section 3. The set PFIN(X) denotes the set of all finite577

subsets of X.578

I Definition 26. A Λ⊕,let-relation R is compatible if and only if the five conditions below579

hold:580

(Com1) ∀Γ ∈ PFIN(X), x ∈ Γ : Γ ` x R x;581

582

(Com2) ∀Γ ∈ PFIN(X),∀x ∈ X − Γ, ∀M,N ∈ ΛΓ∪{x}
⊕,let : Γ ∪ {x} ` M R N ⇒ Γ `583

λx.M R λx.N ;584

585

(Com3) ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let : Γ ` M R N ∧ Γ ` L R P ⇒ Γ `586

ML R NP ;587

588

(Com4) ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let : Γ ` M R N ∧ Γ ` L R P ⇒ Γ `589

M ⊕ L R N ⊕ P ;590

591

(Com5) ∀Γ ∈ PFIN(X),∀x ∈ X,∀M,N ∈ ΛΓ
⊕,let,∀L,P ∈ ΛΓ∪{x}

⊕,let : Γ `M R N ∧ Γ∪{x} `592

L R P ⇒ Γ ` (let x = M in L) R (let x = N in P ).593

The following lemmas give us an easier way to establish (Com3), (Com4) and (Com5)594

under particular assumptions.595

I Lemma 27. Let us consider the properties596

(Com3L) ∀Γ ∈ PFIN(X),∀M,N,L ∈ ΛΓ
⊕,let : Γ `M R N ⇒ Γ `ML R NL597

(Com3R) ∀Γ ∈ PFIN(X),∀M,N,L ∈ ΛΓ
⊕,let : Γ `M R N ⇒ Γ ` LM R LN598

If R is transitive, then (Com3L) and (Com3R) together imply (Com3).599

I Lemma 28. Let us consider the properties600

(Com4L) ∀Γ ∈ PFIN(X),∀M,N,L ∈ ΛΓ
⊕,let : Γ `M R N ⇒ Γ `M ⊕ L R N ⊕ L601

(Com4R) ∀Γ ∈ PFIN(X),∀M,N,L ∈ ΛΓ
⊕,let : Γ `M R N ⇒ Γ ` L⊕M R L⊕N602

If R is transitive, then (Com4L) and (Com4R) together imply (Com4).603

I Lemma 29. Let us consider the properties604

(Com5L) ∀Γ ∈ PFIN(X),∀x ∈ X,∀M,N ∈ Λ⊕,let(Γ),∀L ∈ ΛΓ∪{x}
⊕,let ,Γ ` M R N ⇒ Γ `605

(let x = M in L) R (let x = N in L)606

(Com5R) ∀Γ ∈ PFIN(X),∀x ∈ X,∀L ∈ ΛΓ
⊕,let,∀M,N ∈ ΛΓ∪{x}

⊕,let ,Γ ∪ {x} ` M R N ⇒ Γ `607

(let x = L in M) R (let x = L in N)608

If R is transitive, then (Com5L) and (Com5R) together imply (Com5).609

Proof. To prove (Com5) we have to show that the hypothesis Γ ` M R N and Γ ∪ {x} `610

L R P imply Γ ` (let x = M in L) R (let x = N in P ). If we apply (Com5L) to the611

first hypothesis, with L as steady term, we get Γ ` (let x = M in L) R (let x = N in L).612

Similarly, applying (Com5R) to the second hypothesis, with N as steady term we obtain613

Γ ` (let x = N in L) R (let x = N in P ). Then, by transitivity of R we can conclude the614

claim. J615

I Definition 30. A Λ⊕,let-relation is a congruence (respectively, precongruence) if it is an616

equivalence relation (respectively, preorder) and compatible.617
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This definition of a (pre)congruence is equivalent to Definition 16.618

I Lemma 31. The context preorder ≤ is a precongruence relation.619

Proof. In order to prove ≤ is a precongruence, we need to show that ≤ is a preorder (reflexive620

and transitive) relation, which is compatible. Relation ≤ is reflexive by its definition and621

proving its transitivity means to show: ∀Γ ∈ PFIN(X),M,N,L ∈ ΛΓ
⊕,let,622

Γ `M ≤ N ∧ Γ ` N ≤ L⇒ Γ `M ≤ L.623

Let assume that Γ `M ≤ N and Γ ` N ≤ L, then we have the following hypothesis:624

(1) ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M ]]] ≤

∑
[[C[N ]]];625

(2) ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[N ]]] ≤

∑
[[C[L]]].626

To prove Γ `M ≤ L we need to show that for every D ∈ CΛ⊕,let
(Γ;∅),

∑
[[D[M ]]] ≤

∑
[[D[L]]].627

For any such context D, from the hypothesis (1) and (2) we have
∑

[[D[M ]]] ≤
∑

[[D[N ]]] ≤628 ∑
[[D[L]]]. In order to prove that ≤ is compatible, we show it satisfies conditions (Com1),629

(Com2), (Com3), (Com4) and (Com5). We do not consider (Com1), since it is trivial.630

• Proving (Com2) means to show ∀Γ ∈ PFIN(X),∀x ∈ X − Γ,∀M,N ∈ ΛΓ∪{x}
⊕,let ,631

Γ ∪ {x} `M ≤ N ⇒ Γ ` λx.M ≤ λx.N.632

From the assumption Γ ∪ {x} ` M ≤ N , we have ∀C ∈ CΛ⊕,let
(Γ∪{x};∅),

∑
[[C[M ]]] ≤633 ∑

[[C[N ]]] as hypothesis. Let us consider a context D ∈ CΛ⊕,let
(Γ,∅). Since context634

λx.[·] belongs to the set CΛ⊕,let
({x};Γ) we have that E = D[λx.[·]] ∈ CΛ⊕,let

(Γ∪{x};∅).635

We can apply the hypothesis for context E and obtain
∑

[[E[M ]]] ≤
∑

[[E[N ]]], i.e.636 ∑
[[D[λx.M ]]] ≤

∑
[[D[λx.N ]]]. Thus, Γ ` λx.M ≤ λx.N .637

• As we already proved, ≤ is transitive relation, thus by Lemma 27 it is enough to638

prove two characterizations (Com3L) and (Com3R). Proving (Com3L) means to show639

∀Γ ∈ PFIN(X),∀M,N,L ∈ ΛΓ
⊕,let,640

Γ `M ≤ N ⇒ Γ `ML ≤ NL.641

If we assume Γ ` M ≤ N , then we have ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M ]]] ≤

∑
[[C[N ]]] as642

hypothesis. We want to show that for any context D ∈ CΛ⊕,let
(Γ;∅),

∑
[[D[ML]]] ≤643 ∑

[[D[NL]]] holds. For an arbitrary context D ∈ CΛ⊕,let
(Γ;∅) and [·]L ∈ CΛ⊕,let

(∅;Γ) we644

get E = D[[·]L] ∈ CΛ⊕,let
(Γ;∅). From the hypothesis, we can conclude that

∑
[[E[M ]]] ≤645 ∑

[[E[N ]]] holds, i.e.
∑

[[D[ML]]] ≤
∑

[[D[NL]]]. Thus, Γ `ML ≤ NL. We do not write646

a detailed proof of (Com3R) because it is analogous to the proof of (Com3L).647

• As in the previous case, the fact that ≤ is transitive and Lemma 28 ensure that (Com4L)648

and (Com4R) imply (Com4), so it is enough to prove these two characterizations. We649

omit the proof of (Com4L) and (Com4R), since we prove it by a similar reasoning as in650

the previous case (proof of (Com3L)).651

• As we already proved, ≤ is transitive relation, thus by Lemma 29 it is enough to652

prove two characterizations (Com5L) and (Com5R). Proving (Com5L) means to show653

∀Γ ∈ PFIN(X),∀x ∈ X,∀M,N ∈ ΛΓ
⊕,let,∀L ∈ ΛΓ∪{x}

⊕,let ,654

Γ `M ≤ N ⇒ Γ ` (let x = M in L) ≤ (let x = N in L).655

If we assume Γ ` M ≤ N , then we have ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M ]]] ≤

∑
[[C[N ]]]656

as hypothesis. We want to show that for any context D ∈ CΛ⊕,let
(Γ;∅),

∑
[[D[let x =657

M in L]]] ≤
∑

[[D[let x = N in L]]] holds. For an arbitrary context D ∈ CΛ⊕,let
(Γ;∅) and658

let x = [·] in L ∈ CΛ⊕,let
(∅;Γ) we have that E = D[let x = [·] in L] ∈ CΛ⊕,let

(Γ;∅). From659
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the hypothesis, we can conclude that
∑

[[E[M ]]] ≤
∑

[[E[N ]]] holds, i.e.
∑

[[D[let x =660

M in L]]] ≤
∑

[[D[let x = N in L]]]. Thus, Γ ` (let x = M in L) ≤ (let x = N in L). The661

characterization (Com5R) can be proved in a similar way.662

J663

I Lemma 32. The context equivalence ' is a congruence relation.664

Proof. This statement follows directly from Lemma 31 and the definition of context equival-665

ence, i.e. '=≤ ∩(≤)op. J666

A.2 Bisimulation Equivalence is a congruence667

We use Howe’s technique to prove that probabilistic similarity is a precongruence and as a668

consequence probabilistic bisimilarity is a congruence. Howe’s technique is a commonly used669

technique for proving (pre)congruence of bisimilarity (similarity). The proof is very technical.670

It is the adaptation of the technique used in [4, 5, 6] and it has the same structure as the671

proof in [6]. Contrary to the proof in [6], our proof introduces a new notion of compatibility672

with the let-in operator.673

The property ∼=. ∩ .op ensures it is enough to show that probabilistic similarity (.)674

is a precongruence in order to prove that probabilistic bisimilarity (∼) is a congruence. The675

key part is proving that . is a compatible relation and it is done by Howe’s technique.676

We call an Λ⊕,let-relation R (term) substitutive if for all Γ ∈ PFIN(X), x ∈ X − Γ,M,N ∈677

ΛΓ∪{x}
⊕,let , L, P ∈ ΛΓ

⊕,let the following holds678

Γ ∪ {x} `M R N ∧ Γ ` L R P ⇒ Γ `M{L/x} R N{P/x}.679

If a relation R satisfies680

Γ ∪ {x} `M R N ∧ L ∈ ΛΓ
⊕,let ⇒ Γ `M{L/x} R N{L/x},681

we say it is closed under term-substitution.682

Please notice that ifR is substitutive and reflexive then it is closed under term-substitution.683

As stated in the paper, open extensions of . and ∼ are closed under term-substitution by684

definition.685

For an arbitrary Λ⊕,let-relation R, Howe’s lifting RH is defined by the rules in Figure 5.686

We start with some auxiliary statements.687

I Lemma 33. If R is reflexive, then RH is compatible.688

Proof. We prove that (Com1), (Com2), (Com3), (Com4) and (Com5) hold for RH , if R is a689

reflexive relation.690

• To prove (Com1) we need to show that:691

∀Γ ∈ PFIN(X), x ∈ Γ : Γ ` x RH x.692

Since R is reflexive, we have that ∀Γ ∈ PFIN(X), x ∈ Γ : Γ ` x R x. If we apply (How1)693

to Γ ` x R x, we obtain Γ ` x RH x.694

• In order to prove (Com2) we need to show that: ∀Γ ∈ PFIN(X),∀x ∈ X − Γ,∀M,N ∈695

ΛΓ∪{x}
⊕,let ,696

Γ ∪ {x} `M RH N ⇒ Γ ` λx.M RH λx.N697

Using the reflexivity of R, we obtain Γ ` λx.N R λx.N . We have Γ ∪ {x} `M RH N698

by hypothesis, so we can apply (How2) and conclude Γ ` λx.M RH λx.N holds.699
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Γ ` x R M (How1)
Γ ` x RH M

Γ ∪ {x} `M RH L Γ ` λx.L R N x 6∈ Γ
(How2)

Γ ` λx.M RH N

Γ `M RH P Γ ` N RH Q Γ ` PQ R L (How3)
Γ `MN RH L

Γ `M RH P Γ ` N RH Q Γ ` P ⊕Q R L (How4)
Γ `M ⊕N RH L

Γ `M RH P Γ ∪ {x} ` N RH Q Γ ` (let x = P in Q) R L
(How5)

Γ ` (let x = M in N) RH L

Figure 5 Howe’s lifting for Λ⊕,let

• Proving (Com3) means to show: ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let,700

Γ `M RH N ∧ Γ ` L RH P ⇒ Γ `ML RH NP.701

Since the relation R is reflexive, we have that Γ ` NP R NP holds. Moreover, Γ `702

M RH N and Γ ` L RH P hold by hypothesis. Therefore, by (How3), we conclude703

Γ `ML RH NP holds.704

• To prove (Com4) we have to show: ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let,705

Γ `M RH N ∧ Γ ` L RH P ⇒ Γ `M ⊕ L RH N ⊕ P.706

We have that Γ ` N ⊕ P R N ⊕ P holds, because of the reflexivity of R. Furthermore,707

Γ ` M RH N and Γ ` L RH P hold by hypothesis. Now, by (How4) we obtain that708

Γ `M ⊕ L RH N ⊕ P holds.709

• In order to prove (Com5) we need to show: ∀Γ ∈ PFIN(X),∀x ∈ X,∀M,N ∈ ΛΓ
⊕,let,∀L,P ∈710

ΛΓ∪{x}
⊕,let ,711

Γ `M RH N ∧ Γ ∪ {x} ` L RH P ⇒ Γ ` (let x = M in L) RH (let x = N in P ).712

Since R is reflexive, we have Γ ` (let x = N in P ) R (let x = N in P ). The hypothesis713

is that Γ ` M RH N and Γ ∪ {x} ` L RH P hold. By applying (How5), we obtain714

Γ ` (let x = M in L) RH (let x = N in P ).715

This concludes the proof. J716

I Lemma 34. If R is transitive, then Γ `M RH N and Γ ` N R L imply Γ `M RH L.717

Proof. We prove this by induction on the derivation of Γ ` M RH N , looking at the last718

rule used, thus on the structure of M .719

• Let M be a variable x ∈ Γ, then Γ ` x RH N holds by hypothesis. The last rule used has720

to be (How1). Hence, we have Γ ` x R N as additional hypothesis. Since R is transitive,721

from Γ ` x R N and Γ ` N R L we can conclude Γ ` x R L. Now, by applying (How1)722

to the latter, we obtain Γ ` x RH L, i.e. Γ `M RH L.723

• Let M be an abstraction, say λx.Q, then Γ ` λx.Q RH N holds by hypothesis. The last724

rule used has to be (How2). Hence, we have Γ ∪ {x} ` Q RH P and Γ ` λx.P R N as725

additional hypothesis. Since R is transitive, from Γ ` λx.P R N and Γ ` N R L we can726

conclude Γ ` λx.P R L. Now, by applying (How2) to Γ ` Q RH P and the latter, we727

obtain Γ ` λx.Q RH L, i.e. Γ `M RH L.728
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• Let M be an application, say RS, then Γ ` RS RH N holds by hypothesis. The last rule729

used has to be (How3). Hence, we have Γ ` R RH P , Γ ` S RH Q and Γ ` PQ R N as730

additional hypothesis. Since R is transitive, from Γ ` PQ R N and Γ ` N R L we can731

conclude Γ ` PQ R L. Now, by applying (How3) to Γ ` R RH P , Γ ` S RH Q and the732

latter, we obtain Γ ` RS RH L, i.e. Γ `M RH L.733

• Let M be a probabilistic sum, say R ⊕ S, then Γ ` R ⊕ S RH N holds by hypothesis.734

The last rule used has to be (How4). Hence, we have Γ ` R RH P , Γ ` S RH Q and735

Γ ` P ⊕Q R N as additional hypothesis. Since R is transitive, from Γ ` P ⊕Q R N and736

Γ ` N R L we can conclude Γ ` P ⊕Q R L. Now, by applying (How4) to Γ ` R RH P ,737

Γ ` S RH Q and the latter, we obtain Γ ` R⊕ S RH L, i.e. Γ `M RH L.738

• Let M be a term let x = R in S, then Γ ` (let x = R in S) RH N holds by hypothesis.739

The last rule used has to be (How5). Hence, we have Γ ` R RH P , Γ ∪ {x} ` S RH Q740

and Γ ` (let x = P in Q) R N as additional hypothesis. Since R is transitive, from741

Γ ` (let x = P in Q) R N and Γ ` N R L we can conclude Γ ` (let x = P in Q) R L.742

Now, by applying (How5) to Γ ` R RH P , Γ ∪ {x} ` S RH Q and the latter, we obtain743

Γ ` (let x = R in S) RH L, i.e. Γ `M RH L.744

This concludes the proof. J745

I Lemma 35. If R is reflexive, then Γ `M R N implies Γ `M RH N .746

Proof. We prove the statement by inspection on the last rule used in the derivation of747

Γ `M R N , that is on the structure of M .748

• First, we consider the case where M is a variable x ∈ Γ, then Γ ` x R N holds by749

hypothesis. We can apply (How1) to this and obtain Γ ` x RH N , i.e. Γ `M RH N .750

• Next, we consider the case where M is an abstraction, say λx.Q, then Γ ` λx.Q R N751

holds by hypothesis. Since R is reflexive, we have that RH is compatible and it is easy752

to prove that RH is also reflexive. Hence, we have that Γ ∪ {x} ` Q RH Q holds. If we753

apply (How2) to the latter and Γ ` λx.Q R N we conclude Γ ` λx.Q RH N holds, i.e.754

Γ `M RH N .755

• Let us now look at the case where M is an application, say RS, then Γ ` RS R N holds756

by hypothesis. Since R is reflexive, RH is also reflexive and we have that Γ ` R RH R757

and Γ ` S RH S hold. If we apply (How3) to the latter and Γ ` RS R N we conclude758

Γ ` RS RH N holds, i.e. Γ `M RH N .759

• If M is a probabilistic sum, say R⊕ S, then Γ ` R⊕ S R N holds by hypothesis. Since760

R is reflexive, RH is also reflexive and we have that Γ ` R RH R and Γ ` S RH S hold.761

If we apply (How4) to the latter and Γ ` R⊕S R N we conclude Γ ` R⊕S RH N holds,762

i.e. Γ `M RH N .763

• Finally, we consider the case whereM is a term let R in S, then Γ ` (let R in S)RN holds764

by hypothesis. Since R is reflexive, RH is also reflexive and we have that Γ ` R RH R765

and Γ ` S RH S hold. If we apply (How5) to the latter and Γ ` (let R in S) R N we766

conclude Γ ` (let R in S) RH N holds, i.e. Γ `M RH N .767

This concludes the proof.768

J769

I Lemma 36. If R is reflexive, transitive and closed under term-substitution, then RH is770

(term) substitutive and hence also closed under term-substitution.771

Proof. We need to show that: ∀Γ ∈ PFIN(X),∀x ∈ X − Γ,∀M,N ∈ ΛΓ∪{x}
⊕,let ,∀L,P ∈ ΛΓ

⊕,let,772

Γ ∪ {x} `M RH N ∧ Γ ` L RH P ⇒ Γ `M{L/x} RH N{L/x}.773



S. Kašterović and M. Pagani XXX:21

We prove it by induction on the derivation of Γ ∪ {x} `M RH N , thus on the structure of774

M .775

• Let us start with the case where M is a variable, then there are two possibilities: either776

M = x orM ∈ Γ. Suppose thatM ∈ Γ andM = y. Now, we have that Γ∪{x} ` y RH N777

holds by hypothesis and it can only be deduced by the rule (How1) from Γ∪{x} ` y R N .778

Using the fact that R is closed under term-substitution and P ∈ ΛΓ
⊕,let, we can conclude779

Γ ` y{P/x} R N{P/x}, which is equivalent to Γ ` y R N{P/x}. Next, by Lemma 35780

we obtain Γ ` y RH N{P/x}, which is equivalent to Γ ` y{L/x} RH N{P/x}, i.e.781

Γ ` M{L/x} RH N{P/x}. Let us now suppose that M = x, then Γ ∪ {x} ` x RH N782

holds. The only way to deduce it is by the rule (How1) from Γ ∪ {x} ` x R N . Since R783

is closed under term-substitution and P ∈ ΛΓ
⊕,let, we conclude Γ ` x{P/x} R N{P/x}784

which is equivalent to Γ ` P R N{P/x}. If we apply Lemma 34 to Γ ` L RH P785

and Γ ` P R N{P/x}, we deduce Γ ` L RH N{P/x} which is equivalent to Γ `786

x{L/x} RH N{P/x}. Hence, Γ `M{L/x} RH N{P/x} holds.787

• Next, we consider the case whereM is an abstraction, say λy.Q, then Γ∪{x} ` λy.QRH N788

holds by hypothesis. It can only be deduced by the rule (How2) from Γ ∪ {x} ∪ {y} `789

Q RH R, and Γ ∪ {x} ` λy.R R N , where x, y 6∈ Γ. By applying the induction790

hypothesis to Γ ∪ {x} ∪ {y} ` Q RH R, we conclude Γ ∪ {y} ` Q{L/x} R R{P/x}.791

From the fact that R is closed under term-substitution and P ∈ ΛΓ
⊕,let, we obtain792

Γ ` (λy.R){P/x} R N{P/x}, i.e. Γ ` λy.R{P/x} R N{P/x}. By (How2), we deduce793

Γ ` λy.Q{L/x} RH N{P/x}, which is equivalent to Γ ` (λy.Q){L/x} RH N{P/x}.794

Hence, Γ `M{L/x} RH N{P/x}.795

• If M is an application, say RS, then Γ ∪ {x} ` RS RH N holds by hypothesis. It can796

only be deduced by the rule (How3) from Γ ∪ {x} ` R RH R′, Γ ∪ {x} ` S RH S′ and797

Γ ∪ {x} ` R′S′ R N . By applying the induction hypothesis to Γ ∪ {x} ` R RH R′ and798

Γ∪{x} ` S RH S′, we conclude Γ ` R{L/x} RH R′{P/x} and Γ ` S{L/x} RH S′{P/x}.799

From the fact that R is closed under term-substitution and P ∈ ΛΓ
⊕,let, we obtain Γ `800

(R′S′){P/x} R N{P/x}, i.e. Γ ` R′{P/x}S′{P/x} R N{P/x}. By (How3), we deduce801

Γ ` R{L/x}S{L/x} RH N{P/x}, which is equivalent to Γ ` (RS){L/x} RH N{P/x}.802

Hence, Γ `M{L/x} RH N{P/x}.803

• Let M be a probabilistic sum, say R ⊕ S, then Γ ∪ {x} ` R ⊕ S RH N holds by804

hypothesis. It can only be deduced by the rule (How4) from Γ ∪ {x} ` R RH R′,805

Γ∪ {x} ` S RH S′ and Γ∪ {x} ` R′ ⊕ S′ R N . By applying the induction hypothesis to806

Γ∪ {x} ` R RH R′ and Γ∪ {x} ` S RH S′, we conclude Γ ` R{L/x} RH R′{P/x} and807

Γ ` S{L/x} RH S′{P/x}. From the fact thatR is closed under term-substitution and P ∈808

ΛΓ
⊕,let, we obtain Γ ` (R′⊕S′){P/x} R N{P/x}, i.e. Γ ` R′{P/x}⊕S′{P/x} R N{P/x}.809

By (How4), we deduce Γ ` R{L/x} ⊕ S{L/x} RH N{P/x}, which is equivalent to810

Γ ` (R⊕ S){L/x} RH N{P/x}. Hence, Γ `M{L/x} RH N{P/x}.811

• Finally, we consider the case where M is a term let y = R in S, then Γ ∪ {x} ` (let y =812

R in S) RH N holds by hypothesis. It can only be deduced by the rule (How5) from813

Γ ∪ {x} ` R RH R′, Γ ∪ {x} ∪ {y} ` S RH S′ and Γ ∪ {x} ` (let y = R′ in S′) R N . By814

applying the induction hypothesis to Γ ∪ {x} ` R RH R′ and Γ ∪ {x} ∪ {y} ` S RH S′,815

we conclude Γ ` R{L/x} R R′{P/x} and Γ ∪ {y} ` S{L/x} RH S′{P/x}. From the816

fact that R is closed under term-substitution and P ∈ ΛΓ
⊕,let, we obtain Γ ` (let y =817

R′ in S′){P/x} R N{P/x}, i.e. Γ ` (let y = R′{P/x} in S′{P/x}) R N{P/x}. By818

(How5), we deduce Γ ` (let y = R{L/x} in S{L/x}) RH N{P/x}, which is equivalent to819

Γ ` (let y = R in S){L/x} RH N{P/x}. Hence, Γ `M{L/x} RH N{P/x}.820

This concludes the proof. J821
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Γ `M R N (TC1)
Γ `M R+ N

Γ `M R+ N Γ ` N R+ L (TC2)
Γ `M R+ L

Figure 6 Transitive closure for Λ⊕,let

The goal is to prove that .H is a precongruence, but in order to do that some properties822

are missing. Hence, following Howe’s approach we build a transitive closure of a Λ⊕,let-relation823

R as a relation R+ defined by the rules in Figure 6.824

I Lemma 37. If R is compatible, then so is R+.825

Proof. We need to prove that relation R+ satisfies conditions: (Com1), (Com2), (Com3),826

(Com4) and (Com5).827

• In order to prove (Com1) we have to show:828

∀Γ ∈ PFIN(X), x ∈ Γ : Γ ` x R+ x.829

From the assumption that R is compatible, we can conclude that R is reflexive and830

Γ ` x R x holds. Now, Γ ` x R+ x follows by (TC1).831

• Proving (Com2) means to show that: ∀Γ ∈ PFIN(X),∀x ∈ X − Γ,∀M,N ∈ ΛΓ∪{x}
⊕,let ,832

Γ ∪ {x} `M R+ N ⇒ Γ ` λx.M R+ λx.N.833

We prove it by induction on the derivation of Γ ∪ {x} ` M R+ N , looking at the last834

rule used. First we consider base case, where the last rule used is (TC1) and we have835

that Γ ∪ {x} `M R N holds by hypothesis. Using the fact that R is compatible, we can836

conclude Γ ` λx.M R λx.N holds. By applying (TC1) we obtain Γ ` λx.M R+ λx.N .837

Next, let us look at the case where the last rule used is (TC2). Now, we have that for838

some L ∈ ΛΓ∪{x}
⊕,let , Γ ∪ {x} ` M R+ L and Γ ∪ {x} ` L R+ N hold by hypothesis. We839

can apply the induction hypothesis on both of them and obtain Γ ` λx.M R+ λx.L840

and Γ ` λx.L R+ λx.N . Finally, by applying (TC2) on the latter two, we conclude841

Γ ` λx.M R+ λx.N holds.842

• To prove (Com3) we need to show: ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let,843

Γ `M R+ N ∧ Γ ` L R+ P ⇒ Γ `ML R+ NP.844

First, we will prove the following two statements:845

(1) ∀M,N,L, P ∈ ΛΓ
⊕,let : Γ `M R+ N ∧ Γ ` L R P ⇒ Γ `ML R+ NP,846

(2) ∀M,N,L, P ∈ ΛΓ
⊕,let : Γ `M R N ∧ Γ ` L R+ P ⇒ Γ `ML R+ NP .847

We prove (1) by induction on the derivation of Γ ` M R+ N , looking at the last rule848

used. First we consider the base case where (TC1) is the last rule used. Then we have849

that Γ ` M R N holds by hypothesis. Since we have assumed that R is compatible850

and Γ ` L R P holds, we can conclude Γ ` ML R NP . Now, by applying (TC1) on851

the latter we obtain Γ ` ML R+ NP . Let us now consider the case where (TC2) is852

the last rule used. In this case we have Γ ` M R+ Q and Γ ` Q R+ N as additional853
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hypothesis, for some Q ∈ ΛΓ
⊕,let. Now, by induction hypothesis on Γ ` M R+ Q and854

Γ ` L R P we have Γ `ML R+ QP . Using the fact that relation R is compatible, we855

can conclude its reflexivity and Γ ` P R P holds. Next, by induction hypothesis on856

Γ ` Q R+ N and Γ ` P R P we get Γ ` QP R+ NP . Finally, we conclude applying857

(TC2) on Γ `ML R+ QP and the latter, obtaining Γ `ML R+ NP . Statement (2) can858

be proved similarly.859

Let consider the original statement (Com3). We prove it by induction on two derivations860

Γ `M R+ N and Γ ` L R+ P . If we look at the last rules used, we have four possible861

cases:862

1. (TC1) is the last used rule in both derivations;863

2. the last rule used in the derivation of Γ `M R+ N is (TC1), and the last rule used in864

the derivation of Γ ` L R+ P is (TC2);865

3. the last rule used in the derivation of Γ `M R+ N is (TC2), and the last rule used in866

the derivation of Γ ` L R+ P is (TC1);867

4. (TC2) is the last used rule in both derivations.868

The first case follows from the fact that relation R is compatible, and second and third869

cases follow from the statements (1) and (2) we proved. Thus, we only consider the870

case where both derivations are concluded by applying the rule (TC2). In this case, as871

additional hypothesis we get that: for some Q ∈ ΛΓ
⊕,let, Γ `M R+ Q and Γ ` Q R+ N872

hold, and for some R ∈ ΛΓ
⊕,let, Γ ` L R+ R and Γ ` R R+ P hold. First by induction873

hypothesis on Γ `M R+ Q and Γ ` L R+ R we get Γ `ML R+ QR. Next, by induction874

hypothesis on Γ ` Q R+ N and Γ ` R R+ P we have Γ ` QR R+ NP . Now we can875

apply (TC2) and obtain Γ `ML R+ NP .876

• Proving (Com4) means to show: ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let,877

Γ `M R+ N ∧ Γ ` L R+ P ⇒ Γ `M ⊕ L R+ N ⊕ P.878

We do not write a detailed proof, since it is analogous to the previous case. The idea is879

to prove the following two statements:880

(3) ∀M,N,L, P ∈ ΛΓ
⊕,let : Γ `M R+ N ∧ Γ ` L R P ⇒ Γ `M ⊕ L R+ N ⊕ P,881

(4) ∀M,N,L, P ∈ ΛΓ
⊕,let : Γ `M R N ∧ Γ ` L R+ P ⇒ Γ `M ⊕ L R+ N ⊕ P .882

Then, we prove (Com 4) by a similar reasoning as in the previous case.883

• In order to prove (Com5) we need to show: ∀Γ ∈ PFIN(X),∀x ∈ X,∀M,N,∈ ΛΓ
⊕,let,∀L,P ∈884

ΛΓ∪{x}
⊕,let ,885

Γ `M R+ N ∧ Γ ∪ {x} ` L R+ P ⇒ Γ ` (let x = M in L) R+ (let x = N in P ).886

First, we will prove the following two statements:887

(5) ∀M,N ∈ ΛΓ
⊕,let,∀L,P ∈ ΛΓ∪{x}

⊕,let : Γ ` M R+ N ∧ Γ ∪ {x} ` L R P ⇒ Γ ` (let x =888

M in L) R+ (let x = N in P ),889

(6) ∀M,N ∈ ΛΓ
⊕,let,∀L,P ∈ ΛΓ∪{x}

⊕,let : Γ ` M R N ∧ Γ ∪ {x} ` L R+ P ⇒ Γ ` (let x =890

M in N) R+ (let x = N in P ).891

We prove (5) by induction on the derivation of Γ ` M R+ N , looking at the last rule892

used. First we consider the base case where (TC1) is the last rule used. Then we have893

that Γ `M R N holds by hypothesis. Since we have assumed that R is compatible and894
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Γ ∪ {x} ` L R P holds, we can conclude Γ ` (let x = M in L) R (let x = N in P ). Now,895

by applying (TC1) on the latter we obtain Γ ` (let x = M in L) R+ (let x = N in P ).896

Let us now consider the case where (TC2) is the last rule used. In this case we have897

Γ ` M R+ Q and Γ ` Q R+ N as additional hypothesis, for some Q ∈ ΛΓ
⊕,let. Now,898

by induction hypothesis on Γ ` M R+ Q and Γ ∪ {x} ` L R P we have Γ ` (let x =899

M in L) R+ (let x = Q in P ). Using the fact that relation R is compatible, we can900

conclude its reflexivity and Γ ∪ {x} ` P R P holds. Next, by induction hypothesis on901

Γ ` Q R+ N and Γ ∪ {x} ` P R P we get Γ ` (let x = Q in P ) R+ (let x = N in P ).902

Finally, we conclude applying (TC2) on Γ ` (let x = M in L) R+ (let x = Q in P ) and903

the latter, obtaining Γ ` (let x = M in L) R+ (let x = N in P ). Statement (6) can be904

proved similarly.905

Let consider the original statement (Com5). We prove it by induction on two derivations906

Γ ` M R+ N and Γ ∪ {x} ` L R+ P . If we look at the last rules used, we have four907

possible cases:908

1. (TC1) is the last used rule in both derivations;909

2. the last rule used in the derivation of Γ `M R+ N is (TC1), and the last rule used in910

the derivation of Γ ∪ {x} ` L R+ P is (TC2);911

3. the last rule used in the derivation of Γ `M R+ N is (TC2), and the last rule used in912

the derivation of Γ ∪ {x} ` L R+ P is (TC1);913

4. (TC2) is the last used rule in both derivations.914

The first case follows from the fact that relation R is compatible, and second and915

third cases follow from the statements (5) and (6) we proved. Thus, we only consider916

the case where both derivations are concluded by applying the rule (TC2). In this917

case, as additional hypothesis we get that: for some Q ∈ ΛΓ
⊕,let, Γ ` M R+ Q and918

Γ ` Q R+ N hold, and for some R ∈ ΛΓ∪{x}
⊕,let , Γ ∪ {x} ` L R+ R and Γ ∪ {x} ` R R+ P919

hold. First by induction hypothesis on Γ ` M R+ Q and Γ ∪ {x} ` L R+ R we get920

Γ ` (let x = M in L)R+ (let x = Q in R). Next, by induction hypothesis on Γ ` QR+ N921

and Γ ∪ {x} ` R R+ P we have Γ ` (let x = Q in R) R+ (let x = N in P ). Now we can922

apply (TC2) and obtain Γ ` (let x = M in L) R+ (let x = N in P ).923

J924

I Lemma 38. If R is closed under term-substitution, then so is R+.925

Proof. Proving thatR+ is closed under term-substitution means to show: ∀Γ ∈ PFIN(X),∀x ∈926

X − Γ,∀M,N ∈ ΛΓ∪{x}
⊕,let ,∀L ∈ ΛΓ

⊕,let,927

Γ ∪ {x} `M R+ N ⇒M{L/x} R+ N{L/x}.928

We prove this statement by induction on the derivation of Γ ∪ {x} `M R+ N . As usual,929

we look at the last rule used in the derivation. First we consider the base case, where the930

last rule used is (TC1) and we have that Γ ∪ {x} ` M R N holds. Using the fact that931

relation R is closed under term-substitution, we can conclude Γ `M{L/x} R N{L/x} holds.932

Now, we apply (TC1) on the latter and obtain Γ ` M{L/x} R+ N{L/x}. Next, let us933

consider the case where (TC2) is the last rule used. Then, we have that for some Q ∈ ΛΓ∪{x}
⊕,let ,934

Γ ∪ {x} ` M R+ Q and Γ ∪ {x} ` Q R+ N hold. Now, by induction hypothesis on both935

of them, we get Γ ` M{L/x} R+ Q{L/x} and Γ ` Q{L/x} R+ N{L/x}. We conclude936

applying (TC2) on the latter two, obtaining Γ `M{L/x} R+ N{L/x}. J937

I Lemma 39. If a Λ⊕,let-relation R is a preorder, then so is (RH)+.938
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Proof. A relation is a preorder if it is reflexive and transitive. We assume that R is reflexive939

and transitive. Then, by Lemma 33 and Lemma 37 we conclude (RH)+ is compatible and940

hence reflexive. Relation (RH)+ is transitive by its construction, since it is a transitive941

closure of relation RH . Thus, we conclude relation (RH)+ is a preorder. J942

The crucial part in proving that probabilistic similarity is a precongruence is Key Lemma943

(Lemma 44). First, we need the definition of a probability assignment and an auxiliary944

lemma about it.945

I Definition 40. P = ({pi}1≤i≤n, {rI}I⊆{1,...,n}) is a probability assignment if for each946

I ⊆ {1, . . . , n} it holds that
∑
i∈I pi ≤

∑
J∩I 6=∅ rJ .947

I Lemma 41. Let P = ({pi}1≤i≤n, {rI}I⊆{1,...,n}) be a probability assignment. Then for948

every nonempty I ⊆ {1, . . . , n} and for every k ∈ I there is sk,I ∈ [0, 1] which satisfies the949

following conditions:950

1. for every I, it holds that
∑
k∈I sk,I ≤ 1;951

2. for every k ∈ {1, . . . , n}, it holds that pk ≤
∑
k∈I sk,I · rI .952

The proof of Lemma 41 is omitted, but it can be found in [6]. Besides Lemma 41, in the953

proof of Key Lemma we use the following technical Lemmas.954

I Lemma 42. For every X ⊆ Λ{x}⊕,let, it holds that . (λx.X) = λx.(. (X)) and . (νx.X) =955

νx.(. (X)).956

λx.(. (X)) stands for the set {λx.M | ∃N ∈ X,N .M}.957

Proof.

λx.M ∈. (λx.X)⇔ ∃N ∈ X, λx.N . λx.M958

⇔ ∃N ∈ X, N .M,959

⇔ λx.M ∈ λx. . (X).960
961

The second part of the statement can be proved analogously. J962

I Lemma 43. If M . N , then for every X ⊆ Λ{x}⊕,let, [[M ]](λx.X) ≤ [[N ]](λx. . (X)).963

Proof. It is a straightforward consequence of Lemma 42. J964

I Lemma 44. (Key Lemma) If M .H N , then for every X ⊆ Λ{x}⊕,let it holds that965

[[M ]](λx.X) ≤ [[N ]](λx.(.H (X))).966

Proof. Since [[M ]] = sup{D ; M ⇓ D}, it is enough to prove the following statement: if967

M .H N and M ⇓ D then for every X ⊆ Λ{x}⊕,let it holds that D(λx.X) ≤ [[N ]](λx.(.H (X)).968

We prove it by induction on the derivation of M ⇓ D , looking at the last rule used.969

• If M ⇓ ∅, then we have D(λx.X) = 0 ≤ [[N ]](λx.(.H (X))) for every X ⊆ Λ{x}⊕,let.970

• Next, we consider the case where M is a value λx.Q and D = λx.Q, that is D(λx.Q) = 1.971

Since M is a value the last used rule in the derivation of M .H N (i.e. ∅ `M .H N) has972

to be (How2). Thus, we have that for some P ∈ Λ{x}⊕,let, x ` Q .H P and ∅ ` λx.P . N973

hold as additional hypothesis. For X ⊆ Λ{x}⊕,let we consider two cases:974

· If Q 6∈ X, then D(λx.X) = 0 and the statement holds.975

· If Q ∈ X, then D(λx.X) = 1 and P ∈.H (X). For every L ∈. (P ), we have that976

x ` Q .H P and x ` P . L. By Lemma 34 we conclude that x ` Q .H L holds.977

Thus, L ∈.H (X) and it holds that . (P ) ⊆.H (X). From Lemma 43 we obtain the978

following979

D(λx.X) = 1 = [[λx.P ]](λx.P ) ≤ [[N ]](λx. . (P )) ≤ [[N ]](λx. .H (X)).980
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• Let M be an application LP . Then, we have D =
∑
λx.Q F (λx.Q) ·HQ,P where L ⇓ F981

and for any λx.Q ∈ S(F ), {Q{P/x} ⇓ HQ,P }. The last rule used in the derivation of982

∅ `M .H N has to be (How3), thus we get ∅ ` L .H R, ∅ ` P .H S and ∅ ` RS . N983

as additional hypothesis. If we apply the induction hypothesis on L ⇓ F and ∅ ` L .H R,984

we obtain that for any Y ⊆ Λ{x}⊕,let it holds that985

F (λx.Y ) ≤ [[R]](λx. .H (Y )) (9)986

Since F is a finite distribution, distribution D =
∑
λx.Q F (λx.Q) · HQ,P is a sum987

of finitely many summands. Let us assume that S(F ) = {λx.Q1, . . . , λx.Qn}. From988

Equation (9) we conclude989

F (
⋃
i∈I

λx.Qi) ≤ [[R]](
⋃
i∈I

λx. .H (Qi)),990

for every I ⊆ {1, . . . , n} which allows us to apply Lemma 41. Hence, for every U ∈991 ⋃n
i=1 .H (Qi) there exist numbers rU,R1 , . . . , rU,Rn such that:992

[[R]](λx.U) ≥
n∑
i=1

rU,Ri , ∀U ∈
n⋃
i=1

.H (Qi);993

994

F (λx.Qi) ≤
∑

U∈.H(Qi)

rU,Ri , ∀i ∈ {1, . . . , n}.995

From these equations we can conclude the following996

D ≤
n∑
i=1

 ∑
U∈.H(Qi)

rU,Ri

 ·HQi,P =
n∑
i=1

∑
U∈.H(Qi)

rU,Ri ·HQi,P .997

Since Qi .H U and P .H S holds, by Lemma 36 we have Qi{P/x} .H U{S/x}. Now,998

by applying the induction hypothesis on the derivations Qi{P/x} ⇓HQi,P , i ∈ {1, . . . , n},999

we obtain that for every X ⊆ Λ{x}⊕,let it holds that1000

D(λx.X) ≤
n∑
i=1

∑
U∈.H(Qi)

rU,Ri · [[U{S/x}]](λx. .H (X))1001

≤
n∑
i=1

∑
U∈
⋃n

i=1
.H(Qi)

rU,Ri · [[U{S/x}]](λx. .H (X))1002

=
∑

U∈
⋃n

i=1
.H(Qi)

n∑
i=1

rU,Ri · [[U{S/x}]](λx. .H (X))1003

=
∑

U∈
⋃n

i=1
.H(Qi)

(
n∑
i=1

rU,Ri

)
· [[U{S/x}]](λx. .H (X))1004

≤
∑

U∈
⋃n

i=1
.H(Qi)

[[R]](λx.U) · [[U{S/x}]](λx. .H (X))1005

≤
∑

U∈Λ{x}
⊕,let

[[R]](λx.U) · [[U{S/x}]](λx. .H (X))1006

= [[RS]](λx. .H (X))1007

≤ [[N ]](λx. . (.H (X)))1008

≤ [[N ]](λx. .H (X)).1009
1010



S. Kašterović and M. Pagani XXX:27

• Let M be a probabilistic sum L ⊕ P , then D = 1
2F + 1

2E where L ⇓ F and P ⇓ E .1011

The last used rule in the derivation of ∅ ` M .H N has to be (How4) and we have1012

that for some R,S ∈ Λ∅⊕,let, ∅ ` L .H R, ∅ ` P .H S and ∅ ` R ⊕ S . N hold as1013

additional hypothesis. If we apply the induction hypothesis on L ⇓ F and ∅ ` L .H R,1014

we obtain that for any X ⊆ Λ{x}⊕,let, F (λx.X) ≤ [[R]](λx. .H (X)) holds. Similarly, if1015

we apply the induction hypothesis on P ⇓ E and ∅ ` P .H S, we obtain that for1016

any X ⊆ Λ{x}⊕,let, E (λx.X) ≤ [[S]](λx. .H (X)). Since, ∅ ` R ⊕ S . N , it holds that1017

[[R ⊕ S]](λx. .H (X)) ≤ [[N ]](λx. .H (X)). From Lemma 5 and previously concluded1018

statements we obtain the following:1019

D(λx.X) = 1
2F (λx.X) + 1

2E (λx.X)1020

≤ 1
2 [[R]](λx. .H (X)) + 1

2 [[S]](λx. .H (X))1021

= [[R⊕ S]](λx. .H (X))1022

≤ [[N ]](λx. .H (X)).1023
1024

• Let us now consider the case where M = (let x = L in P ). Then, we have D =1025 ∑
λx.Q F (λx.Q) ·HQ,P where L ⇓ F and for any λx.Q ∈ S(F ), {P{λx.Q/x} ⇓HQ,P }.1026

The last rule used in the derivation of ∅ ` M .H N has to be (How5), thus we get1027

∅ ` L .H R, x ` P .H S and ∅ ` (let x = R in S) . N as additional hypothesis. By1028

applying the induction hypothesis on L ⇓ F and ∅ ` L .H R, we obtain that1029

F (λx.Y ) ≤ [[R]](λx. .H (Y )), (10)1030

holds for any Y ⊆ Λ{x}⊕,let. F is a finite distribution, hence the distribution D =1031 ∑
λx.Q F (λx.Q) ·HQ,P is a sum of finitely many summands. Let the support of F be1032

the set S(F ) = {λx.Q1, . . . , λx.Qn}. Equation (10) implies that for every I ⊆ {1, . . . , n}1033

the following holds1034

F (
⋃
i∈I

λx.Qi) ≤ [[R]](
⋃
i∈I

λx. .H (Qi)).1035

This allows us to apply Lemma 41. Thus, for every U ∈
⋃n
i=1 .H (Qi) there exist1036

numbers rU,R1 , . . . , rU,Rn such that:1037

[[R]](λx.U) ≥
n∑
i=1

rU,Ri , ∀U ∈
n⋃
i=1

.H (Qi);1038

1039

F (λx.Qi) ≤
∑

U∈.H(Qi)

rU,Ri , ∀i ∈ {1, . . . , n}.1040

Now, we can conclude the following1041

D ≤
n∑
i=1

 ∑
U∈.H(Qi)

rU,Ri

 ·HQi,P =
n∑
i=1

∑
U∈.H(Qi)

rU,Ri ·HQi,P .1042

Since Qi .H U holds and .H is compatible by Lemma 33 , λx.Qi .H λx.U holds. By1043

applying Lemma 36 on P .H S and the latter we get P{λx.Qi/x} .H S{λx.U/x}. If we1044

apply the induction hypothesis on the derivations P{λx.Qi/x} ⇓HQi,P , i ∈ {1, . . . , n},1045

we obtain that for every X ⊆ Λ{x}⊕,let it holds that1046

D(λx.X) ≤ [[N ]](λx. .H (X)).1047
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This concludes the proof. J1048

Proof of Lemma 17.1049

The proof that similarity is a precongruence consists of two steps: the first step is to1050

show that the relation (.H)+ is a precongruence and the second one is to show that it1051

coincide with relation .. Since . is a preorder, then by Lemma 39, relation (.H)+ is1052

also a preorder. Relation . is reflexive, hence by Lemma 33 we have .H is compatible.1053

Furthermore, Lemma 37 ensures that (.H)+ is also compatible. So, we can conclude1054

that (.H)+ is a precongruence. Next, we want to show that .= (.H)+. From the1055

construction of Howe’s lifting .H and its transitive closure (.H)+ it follows that .⊆ (.H)+.1056

It remains to show the inclusion (.H)+ ⊆.. We show that (.H)+ is included in some1057

probabilistic simulation R, thus it is also included in the largest one, .. The relation we1058

consider is R =
{

(M,N) : M (.H)+ N} ∪ {(νx.M, νx.N) : M (.H)+ N
}
. It is obvious1059

that (.H)+ ⊆ R, so it only remains to show that R is a probabilistic simulation. Relation1060

(.H)+ is closed under term-substitution (by Lemma 36 and Lemma 38), hence it is enough1061

to consider only closed terms and distinguished values. Since (.H)+ is a preorder relation1062

(reflexive and transitive), it is easy to see R is also a preorder. We show the following two1063

points:1064

1. If M (.H)+ N , then for every X ⊆ Λ{x}⊕,let it holds that1065

P (M, τ, νx.X) ≤ P (N, τ,R(νx.X)).1066

2. If M (.H)+ N , then for every L ∈ Λ∅⊕,let and for every X ⊆ Λ{x}⊕,let,1067

P (νx.M,L,X) ≤ P (νx.N,L,R(X)).1068

The first point we prove by induction on the derivation of M (.H)+ N . We look at the1069

last rule used. Let us start with the base case where (TC1) is the last rule used. Then, we1070

have M .H N holds by hypothesis. By Key Lemma we conclude the following:1071

P (M, τ, νx.X) = [[M ]](λx.X)1072

≤ [[N ]](λx. .H (X))1073

≤ [[N ]](λx.(.H)+(X))1074

≤ [[N ]](R(νx.X))1075

= P (N, τ,R(νx.X)).1076
1077

Next, we consider the case where (TC2) is the last rule used and we have that for some1078

P ∈ Λ∅⊕,let, M (.H)+ P and P (.H)+ N hold. By induction hypothesis on both of them,1079

we obtain:1080

P (M, τ,X) ≤ P (P, τ,R(X)),1081

1082

P (P, τ,R(X)) ≤ P (N, τ,R(R(X))).1083

It is easy to show that R(R(X)) ⊆ R(X), thus we can conclude1084

P (M, τ,X) ≤ P (N, τ,R(X)).1085

This concludes the proof of the first point.1086

If M (.H)+ N and L ∈ Λ∅⊕,let, then because of the fact that (.H)+ closed under term-1087

substitution, we have that M{L/x} (.H)+ N{L/x} holds. As a consequence, we have that1088
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whenever M{L/x} ∈ X, then N{L/x} ∈ (.H)+(X) and it holds that1089

P (νx.M,L,X) = 11090

= P (νx.N,L, (.H)+(X))1091

= P (νx.N,L,R(X)).1092
1093

On the other hand, if M{L/x} 6∈ X, then P (νx.M,L,X) = 0 ≤ P (νx.N,L,R(X)).1094

To prove that bisimilarity is a congruence we need to prove that ∼ is an equivalence1095

relation, which is compatible. Relation ∼ is an equivalence relation by its definition. Since1096

we know that ∼=. ∩ .op holds, from the fact that similarity is a precongruence it follows1097

that ∼ is also compatible. This concludes the proof.1098

J1099
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