10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

The Discriminating Power of the Let-in Operator
in the Lazy Call-by-Name Probabilistic A-Calculus

Simona Kasterovié

Faculty of Technical Sciences,University of Novi Sad
Trg Dositeja Obradoviéa 6, 21000 Novi Sad, Serbia
http://imft.ftn.uns.ac.rs/~simona/
simona.k@uns.ac.rs

Michele Pagani

IRIF, University Paris Diderot - Paris 7, France
https://www.irif.fr/~michele/

pagani@irif.fr

—— Abstract

We consider the notion of probabilistic applicative bisimilarity (PAB), recently introduced as a
behavioural equivalence over a probabilistic extension of the untyped A-calculus. Alberti, Dal Lago
and Sangiorgi have shown that PAB is not fully abstract with respect to the context equivalence
induced by the lazy call-by-name evaluation strategy. We prove that extending this calculus with
a let-in operator allows for achieving the full abstraction. In particular, we recall Larsen and
Skou’s testing language, which is known to correspond with PAB, and we prove that every test is
representable by a context of our calculus.

2012 ACM Subject Classification Mathematics of computing — Lambda calculus; Theory of
computation — Lambda calculus

Keywords and phrases Probabilistic lambda calculus, Bisimulation, Howe’s technique, Context
equivalence, Testing

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.XXX

1 Introduction

We consider the probabilistic extension Ag of the untyped A-calculus, obtained by adding a
probabilistic choice primitive M @ N representing a term evaluating to M or N with equal
probability. This calculus provides a useful although quite simple framework for importing
tools and results from the standard theory of the A-calculus to probabilistic programming,.

As well-known, the choice of an evaluation strategy for Ag plays a crucial role, even for
strongly normalising terms. Consider a function Ax.F" applied to a probabilistic term M @ N:
if we adopt a call-by-name policy, cbn by short, the whole term M & N would be passed to
the calling parameter x before actually performing the choice between M and N, while in
a call-by-value strategy, cbv by short, we first chose between M and N and then pass the
value associated with this choice to z. If the evaluation of F' calls n times the parameter
x, then the cbn strategy performs n independent choices between M and N, while the cbv
strategy copies n times the result of one single choice. In linear logic semantics [12], this
phenomenon can be described by precising that the application is a bilinear function in cbv
(so (A\z.F)(M @ N) is equivalent to (Az.F)M) & ((Az.F)N)), while it is not linear in the
argument position in cbn (see discussion at Example 3).

In probabilistic programming it is worthwhile to have a cbv operator even in a cbn
language, as the most of the randomised algorithms need to sample from a distribution
and passing to a sub-procedure the value of this sample rather than the whole distribution.
Consider for example the randomised quicksort: this algorithm takes a pivot randomly
from an array and it passes it to the partitioning procedure, which uses this pivot several
? Simona Kaéterovié. and Michele Pa}gani;

5v icensed under Creative Commons License CC-BY
4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Chair of FSCD 2019; Article No. XXX; pp. XXX:1-XXX:29

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://imft.ftn.uns.ac.rs/~simona/
mailto:simona.k@uns.ac.rs
https://www.irif.fr/~michele/
mailto:pagani@irif.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.XXX
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XXX:2

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
1)
91

92

93

Ag with let-in operator

times. The algorithm would be unsound if we allow to make different choices each time the
partitioning procedure calls for the same pivot. In [10] the authors enrich the cbn probabilistic
PCF with a let-in operator, restricted to the ground values, so that let z = M & N in F
behaves like a cbv application of Az.F' to M & N. In a continuous framework this kind of
operator is usually called sampling (e.g. [17]), but this is just a different terminology for the
same computation mechanism: sampling a value from a distribution before passing it to a
parameter.

Both calling policies (cbn and cbv) can be declined with a further attribute which is
Abramsky’s lazyness [1]: a reduction strategy is lazy (sometimes called also weak) whenever
it does not evaluate the body of a function, i.e. it does not reduce a S-redex under the scope
of a A-abstraction. This notion has been presented in order to provide a formal model of the
evaluation mechanism of the lazy functional programming languages.

Two probabilistic programs are context equivalent if they have the same probability of
converging to a value in all contexts. Of course, this notion depends on which reduction
strategy has been chosen. The prototypical example of diverging term £ & (A\z.zz)(A\zv.xx)
is context equivalent with Az.€2 for a non-lazy strategy, while the two terms can be trivially
distinguished by a lazy strategy as Az.€2 is a value for such a reduction. Similarly, the term
(Azy.y)Q is equivalent to € for cbv, but it is converging for the cbn policy (lazy or not),
because the reduction step (Azy.y)Q — Ay.y is admitted.

One of the major contribution of the already mentioned [1] has been to use the notion of
bisimilarity in order to study the context equivalence of the lazy cbn A-calculus. The idea is
to consider a reduction strategy as a labelled transition system where the states and labels
of the system are the A-terms and a transition labelled by a term P goes from a term M
to a value M’ whenever M’ is the result of evaluating the application M P. The benefit of
this setting is to be able to transport into A-calculus the whole theory of bisimilarity (called
in [1] applicative bisimilarity) and its associated coinduction reasoning, which is one of the
main tools for comparing processes in concurrency theory. Basically, two terms M and N
are applicative bisimilar whenever their applications M P and NP are applicative bisimilar
for any argument P. Abramsky proved that applicative bisimilarity is sound with respect to
lazy cbn context equivalence (i.e. the former implies the latter), but it is not fully abstract
(there are context equivalent terms that are not bisimilar).

Abramsky’s applicative bisimilarity has been recently lifted to Ag, by Dal Lago and his
co-authors [4, 7]. The transition system becomes now a Markov Chain (here Definition 12) on
the the top of it one can define a notion of probabilistic applicative bisimilarity (PAB). The
paper [7] considers a lazy cbn reduction strategy, while [4] focuses on the (lazy) cbv strategy.
In both settings, PAB is proven sound with respect to the associated context equivalence,
but, surprisingly, the cbv bismilarity is also fully abstract, while the lazy cbn is not. Our
paper shows that adding the let-in operator mentioned before is enough for recovering the
full abstraction even for the lazy cbn.

Let us discuss more in detail the problem with the lazy cbn operation semantics. The two
terms Azy.(x @y) and (Azy.x) ® (Ary.y) are context equivalent but not bisimilar (Example 6).
The difference is between a process giving a value allowing two choices and a process giving
two values after a choice (see Figure 4 to have a pictorial representation of the two processes).
The cbn contexts are not able to discriminate such a subtle difference while bisimilarity does
(Examples 14 and 21). In [4] the authors show a cbv context discriminating a variant of
these two terms and they conjecture that a kind of sequencing operator can recover the full
abstraction for the lazy cbn : our paper proves this conjecture.

The result is not surprising if compared to [4], however let us stress the contrast with the

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

S. Kasterovi¢ and M. Pagani

Context Equivalence ~

Theorem 24 VC context, S[CIM]] = S[CIN]] [K——=——==] Theorem 18
Testing Equivalence a Bisimilarity ~
t test, P,(M) = P,(N > isi i

Yt test, P(M) (V) Thoorom 22 IR bisimulation, M R N

Figure 1 Sketch of the main results in the paper, giving Corollary 25.

non-lazy cbn reduction strategy (i.e. the full head-reduction). We have already mentioned
that [10] considers the cbn probabilistic PCF endowed with the let-in operator. The full
abstraction result of probabilistic coherence spaces proved in [10] shows that the let-in operator
does not change the context equivalence of probabilistic PCF, as this latter corresponds with
the equality in probabilistic coherence spaces, regardless of the presence of the let-in in the
language. Also, [2, 16] achieve a similar probabilistic coherence spaces full abstraction result
for the untyped non-lazy cbn probabilistic A-calculus without the let-in operator. These
considerations show that the need of let-in operator for getting the full abstraction is due to
the notion of lazy normal form rather than the call-by-name policy.

Structure of the paper. Section 2 defines Ag jet, the lazy call-by-name probabilistic
A-calculus extended with the let-in operator. The operational semantics is given by a notion
of big-step approximation, following [8]. An equivalent notion based on Markov chains could
be given as in e.g. [9]. The context equivalence is defined by Equation (5) where what we
observe is the probability of getting a value. Notice that the notion of lazyness plays a crucial
role here, since a value is a variable or just an abstraction and not a head-normal form, as it
is the case instead in the non-lazy cbn considered in e.g. [2, 9, 15, 16].

Section 3 defines the probabilistic applicative bisimulation and the corresponding bisimil-
arity by considering Ag it as a labelled Markov chain. The definitions and results of this
section are an adaptation of the ones in [7]. The main result is the soundness of bisimilarity
with respect to the context equivalence (Theorem 18), whose proof is based on Lemma 17
stating that the bisimilarity is a congruence. The proof of this lemma is quite technical
but follows the same lines of [4, 5, 7], using Howe’s lifting: we postpone the details in the
Appendix. The last Section 4 achieves the converse of Theorem 18 by considering Larsen
and Skou’s testing language (Definition 19) which is well-known to induce an equivalence
corresponding with probabilistic bisimilarity (Theorem 22). Lemma 23 states that any test
can be represented by a context of Ag et (here we are using in an essential way the presence
of the let-in operator), so giving Theorem 24 and closing the circle (Corollary 25). Figure 1
sketches the main reasoning of the paper.

XXX:3

FSCD 2019

XXX:4

122

123

124

125
126
127
128
129

130

131

132
133
134
135
136
137

138

139
140
141
142

143

144
145
146
147
148
149
150

151

152
153
154
155
156

157

158

159
160
161

162

Ag with let-in operator

2 Preliminaries

In this section we introduce the syntax and operational semantics of Ag et

2.1 Probabilistic Lambda Calculus Ag

We present the probabilistic lambda calculus Ag; jet, that is the pure, untyped lambda calculus
endowed with two new operators: a probabilistic binary sum operator @, representing a
fair choice and a let-in operator, simulating the call-by-value evaluation in a call-by-name
calculus. The operational semantics of Ag je¢ is defined by a big-step approximation relation
as in [8] , we refer to this paper for more details. Given a countable set X = {z,y,z,...} of
variables, term expressions (terms) and values are generated by the following grammar:

(values) VW u=uz| Az.M, 1)
(terms) M,N ==V |MN|M&N |letx=DMin N,

where z € X. The set of all terms (resp. values) is denoted by Ag et (resp. Vg et) and
is ranged over by capital Latin letters M, N, ..., the letters V, W being reserved for values.
The set of free variables of a term M is indicated as FV(M) and is defined in the usual way.
Given a finite set of variables T' = {1,...,2n,} C X, AL ¢ (vesp. V§ i,) denotes the set of
terms (resp. values) whose free variables are within I'. A term M is closed if FV(M) =), or
equivalently if M € A%Jet. The capture-avoiding substitution of N for the free occurrences

of x in M is denoted by M{N/z}.

» Example 1. Let us define some terms useful in the sequel. The identity I = Az.z, the
boolean projections T S Ary.x and F £ Azy.y and the duplicator A £ Azx.xx, this latter
giving the ever looping term £ AA. The let-in operator allows for a call-by-value
duplicator Af & \zlet 2 = z in 2z that will distribute over the probabilistic choice (see
Example 3).

Because of the probabilistic operator @, a closed term does not evaluate to a single
value, but to a discrete distribution of possible outcomes, i.e. to a function assigning a
probability to any value. More formally, a (value) distribution is a map 2 : Vg,et — Rjo,1
such that ZVGV% - P(V) < 1. The set of all value distributions is denoted by P. Given
a value distribution 2, the set of all values to which 2 attributes a positive probability is
denoted by S(Z) and we will call it the support of 2. Note that value distributions do not
necessarily sum to 1, this allowing to model the possibility of divergence (Example 4). We will
use the abbreviation > 2 to stand for ZVGV% . 2(V). The expression p1 Vi + -+ + p, Vi

denotes the distribution 2 with finite support {V1,...,V,,} such that 2(V;) = p;, for every
i€{1,...,n}. Note that .2 =>""_| p;. In particular, 0 denotes the empty distribution
and V can denote both a value and the distribution having all of its mass on V.

The operational semantics of Ag je¢ is given in two steps. First, the derivation rules in
Figure 2 inductively define a notion of big-step approximation relation M || 2 between a
closed term M and a finite value distribution 2. Then, the semantics [M] of M is given as:

[M] = sup{Z ; M { 7}, (2)

according to the point-wise order over value distributions (2 < & if and only if YV, 2(V) <
&(V)). The lub in Equation (2) is well-defined since < is an w-complete partial order and
the set {Z ; M | 2} is directed (for every M | 2 and M |} &, then exists a distribution
F > D, such that M |} F#).

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

S. Kasterovi¢ and M. Pagani

MI2 NU&
M40 ViV MeN|3-2+1.¢
M2 A{P{N/z} | Epnty, pesa) N9 AM{V/e} b Ay }yesa)
MN § XYy, pesig) Z(Ma.P) - Epn let =N in M § Yy e 9 (V) A

Figure 2 Rules for the approximation relation M || 2, with M € A%Ylet and Z a value distribution.

IJI VV o
IoVV {31

ViV
101 VV Y AT
VIV I@Vvuzzul
VVUZZ 127

L1 for V = Az.(I® zz).

Figure 3 A derivation of the big-step approximation V'V | Zl 13

Notice that the rules in Figure 2 implement a lazy call-by-name evaluation: they do
not reduce within the body of an abstraction, and an application (Az.M)N is evaluated
as M{N/x} for any term N. However, the let-in operator follows a call-by-value policy:
let z = N in M has the same semantics as M{N/x} only when N is a value.

def

» Example 2. Consider the term M = A(T @& F). One can easily check that the rules of
Figure 2 allows to derive M |} Z for any Z € {0, 3Ay.(T & F), 1L, i \y.(T ® F) + 1I}. The
latter distribution is the lub of this set and so it defines the semantics of M.

» Example 3. Let us replace in Example 2 the duplicator A with its call-by-value variant
A’ (Example 1). We have AT @ F) || 2 for any 2 € {0, $\y.T, 31, 1\y.T + 11}, so
ﬂNﬁWﬂﬂ:%MT+%LNMMWMWA%HMW:wNT@AWMﬂMT®AH,
while [A(T @ F)] # [AT & AF], as calculated in Example 2. Let us mention that this
phenomenon is well enlightened by the linear logic encoding of the call-by-name application
and the call-by-value one, the latter resulting in an operator linear both in the function and
the argument position, while the former is linear only in the functional position [12].

» Example 4. The previous examples are about normalizing terms, in this framework
meaning terms M with semantics of total mass Y [M] = 1 and such that there exists a
unique finite derivation giving M |} [M]. Standard non-converging A-terms gives partiality,
as for example [©2] = 0, so [@ I] = 1I. However, probabilistic A-calculi allow for almost
sure terminating terms, that is terms M such that > [M] = 1 but there exists no finite
derivation giving M |} [M]. For example, consider the term M = VV, with V = \z.(I® 2x2):
any finite approximation of M gives a distribution bounded by Yo, 2111 for some n > 0, as
Figure 3 shows, but only the limit sum sup,, Y7 ; 51 is equal to [M] = 1.

The following lemma states simple properties of the semantics that can be easily proved by
continuity of [] and induction over finite approximations (see e.g. [8] for details).

» Lemma 5 ([8]). For any terms M and N,

XXX:5

FSCD 2019

XXX:6

188

189

190

191
192

193
194

195
196
197
198
199
200
201
202
203

204

205

206
207

208

209
210
211
212

213

214

215

216

217

218
219

220

221
222

223

224
225
226

227

Ag with let-in operator

L [Ow-MN] = [M{N/z}]
2. [M & N] = 5[M] + [N].

2.2 Context Equivalence

One standard way of comparing term expressions is by observing their behaviours within
programming contexts. A context of Ag jet is a term containing a unique hole [-], generated
by the following grammar:

C,D:=[]|C|CM|MC|CoOM|ModC|letz=CinMl|letz=MinC (3)

If C is a context and M is a Ag jet-term, then C[M] denotes a Ag jet-term obtained by
substituting the unique hole in C with M allowing the possible capture of free variables
of M. We will work with closing contexts, that is contexts C such that C[M] is a closed
term (where M can be an open term). Thus, we want to keep track of the possible variables
captured by filling a context hole. Given two finite sets of variables I'; A, we denote by
CA@Jet(F;A) the set of contexts capturing the variables in I' of a term filling the hole but
keeping free the variables in A. So for example the context Az.let y = z @ z in z[-] belongs
to CA@Jet({I’y};A) for any A containing z.

In a probabilistic setting, the typical observation is the probability to converge to a value,
so giving the following standard definition, for every M, N € AgB’,et:

M < NiffVC € CA@Jet(F;@), Z[[C’[M]]] < Z[[C’[N]]], (context preorder) (4)
M~ N iff VC € CA@Jet(F;w), Z[[C[M]]] = Z[[C’[N]]] (context equivalence) (5)

Notice that M ~ N is equivalent to M < N and N < M.

def

» Example 6. As mentioned in the Introduction, the terms M S Azy.(z ®y) and N =
(Azy.xz) ® (Azy.y) are context equivalent in the call-by-name probabilistic A-calculus without
the let-in operator [7]. However, they can be discriminated in Ag jet by, e.g. the context
C = (let y = []in (let z; = yIQ in (let 25 = yIQ in I))). In fact, by applying the rules of

Figure 2, one gets: > [C[M]] = ; and > [C[N]] = 3.
» Example 7. The two duplicators A and A’ (Example 1) are not context equivalent, for
example C' = [(I Q) gives Y. [C[A]] = 1 while S [C[A]] = 1.
» Proposition 8. Let M, N € A% . if [M] < [N] then M < N. So, [M] = [N] implies

M ~ N.

Jet?

Proof. First, notice that [M] < [N] is equivalent to VD, M |} D,3€ > D, N | £. Then one
proves, by structural induction on a context C' that [C(M)] < [C(N)], whenever [M] < [N].
The delicate points are in the cases C' is an application or a let-in operator. <

» Example 9. Thanks to Proposition 8, one can prove that quite different terms are indeed
context equivalent, e.g. the term V'V in Example 4 is context equivalent to I. However, not
all context equivalent terms have the same semantics, as for example A\z.(z @ x) and I.

Proving in general that two terms are context equivalent is rather difficult because of the
universal quantifier in Equation (5). For example, proving that Az.(x @) and I are context
equivalent is not immediate. Various other tools are then used to prove context equivalence,
as the bisimilarity and testing introduced in the next sections.

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261
262

263

264

265

266

267

268

269

270

271

S. Kasterovi¢ and M. Pagani

3 Probabilistic Applicative Bisimulation

We briefly recall and adapt to Ag et the definitions of [7] about probabilistic applicative
(bi)simulation. This notion mixes Larsen and Skou’s definition of (bi)simulation for labelled
Markov chains [14] with Abramsky’s applicative (bi)simulation for the lazy call-by-name
A-calculus [1]. The core idea is to look at a closed term M as a state of a transition system,
a Markov chain in our setting, having two kinds of transitions. A “solipsistic” transition
consisting in evaluating M to a value Az.P (this transition being weighted by the probability
[M](A\x.P) of getting Az.P out of M) and an “interactive” transition consisting in feeding
a value Ax.P by a new term N representing an input from the environment, so getting the
term P{N/x}. We can then consider the notions of similarity and bisimilarity (resp. (6), (7))
over such probabilistic transition system. The benefit of this approach is to check program
equivalence via an existential quantifier (see Equation (7)) rather than a universal one as in
context equivalence (Equation (5)). The main result of this section is Theorem 18 stating
that similarity implies context preorder. As a consequence we have that bisimilarity implies
context equivalence. The key ingredient for achieving this result is to show that the similarity
is a precongruence relation (Definition 16 and Lemma 17). The proof of Lemma 17 is quite
technical but standard, see the Appendix and [7] for more details.

We start with the definition of a generic labelled Markov chain and following Larsen and
Skou [14] we introduce the notions of a probabilistic simulation and bisimulation.

» Definition 10. A labelled Markov chain is a triple M = (S, L, P) where S is a countable set
of states, L is a set of labels (actions) and P is a transition probability matriz, i.e. a function
P: S x L xS — Ry satisfying the following condition: Vs € S,Yl € L, ,.s P(s,1,t) < 1.

Given a relation R, R(X) denotes the R-closure of the set X, namely the set {y |
Jz € X such that #Ry}. If R is an equivalence relation, then S/R stands for the set of all
equivalence classes of S modulo R. The expression P(s,[, X) stands for >,y P(s,1,1).

» Definition 11. Let (S, L, P) be a labelled Markov chain and R be a relation over S:
R is a probabilistic simulation if it is a preorder and V(s,t) € R,VX C S,Vl € L,
P(s,1,X) < P(t, 1, R(X)).
R is a probabilistic bisimulation if it is an equivalence and ¥(s,t) € R,VE € S/R,Vl € L,
P(s,l,E) = P(t,l, E).

We define the probabilistic (bi)similarity, denoted respectively by < and ~, as the union
of all probabilistic (bi)simulations which can be proven to be still a (bi)simulation:

M < N iff IR probabilistic simulation s.t. MRN, (probabilistic similarity) (6)
M ~ N iff 3R probabilistic bisimulation s.t. MRN (probabilistic bisimilarity) (7)

One can prove that M ~ N is equivalent to M < N and N < M, ie. ~=<N <P,
As previously stated, we want to see the operational semantics of Ag et as a labelled
Markov chain defined as follows:

» Definition 12. The Ag jet-Markov chain is defined as the triple (AZ)&Iet W V/\g%,et,Aga,Iet U
{7}, P), where the set of states is the disjoint union of the set of closed terms and closed
distinguished values, labels (actions) are either closed terms or T action and the transition
probability matriz P is defined in the following way:

e for every closed term M and distinguished value vz.N,

P(M,r,vx.N) = [M](A\x.N),

XXX:7

FSCD 2019

XXX:8

272
273

274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

291
292
293
294
295
296

297

298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

313
314
315

316

Ag with let-in operator

e for every closed term M and distinguished value vx.N,
P(va.N,M,N{M/z}) =1,
e in all other cases, P returns 0.

0
&JVA@’let.

a distinguished value is indicated as V =vz.N

For technical reasons the set of states is represented as a disjoint union A?B

0
P, let

and belongs to the set VA%)let. As an example, value Axy.z belongs to the set Aga
the distinguished value vz.\y.x is the element of VA%Jet-
Since Ag et can be seen as a labelled Markov chain, the simulation and bisimulation

can be defined as for any labelled Markov chain. A probabilistic applicative simulation is a

Jlet

For every closed value V = Az.N € A

let> While

probabilistic simulation on Ag e and a probabilistic applicative bisimulation is a probabilistic
bisimulation on Ag . Then, the probabilistic applicative similarity, PAS for short, and the
probabilistic applicative bisimilarity, PAB for short, are defined in the usual way applying
Equation (6) and (7). From now on, the symbol < (resp. ~) will denote the probabilistic
applicative similarity (resp. bisimilarity).

The notions of PAS and PAB are defined on closed terms, and we extend these definitions
to open terms by requiring the usual closure under substitutions. Let M, N &€ Ag,kt where
I' = {x1,...,2p}. We say M and N are similar, (denoted M < N), if for all L; €
Agﬂ,let’ ..., L, € Ag&,et, M{Ly/x1,...,Ly/xn} S N{Li/x1,...,Ln/x,}. The analogous
terminology is introduced for bisimilarity.

» Example 13. Let us recall the terms A\z.(x @ x) and Az.z from Example 9 having different
semantics but context equivalent. As mentioned, the proof of their context equivalence
is not immediate, because of the universal quantifier in Equation (5). However, we can
check easily that they are bimisilar, because we need just to exhibit a bisimulation relation
between the two terms. By Theorem 18 we then infer context equivalence from bisimilarity.
Let us define the relation R = {(A\z.(x @ x), \z.2)} U {(Az.z, A\zx.(z ® z))} U {(ve.(z ®
x),ve.x)f U{(ve.z,ve.(z®x)U{(NSN,N) | N € Aga,let} U{(N,N®N)|N € A%)let} u
{(M,M) | M € Aga’,et} U{(V,V) |V e VAga,let}' We prove that R is a bisimulation
containing (Az.(z @ z), Az.z). The relation is trivially an equivalence, so we have to show
that V(M,N) € R,VE € (A%, w VAL /R, VE € Al U {7}, P(M,(,E) = P(N,(,E)
(Definition 11). We prove only for (Az.(z @ z), \z.z) € R and (vz.(z & z),vz.x) € R.
First we have that (Az.(x @ z), Az.x) € R and for all closed terms F' € A%,et and all

equivalence classes E € (Ag)&Iet W VA%Jet)/R, PAx.(z®), F,E)=0= P(\zv.z, F, E) holds
by Definition 12. If the equivalence class E contains va.(z @) then P(Az.(x ® z), 7, E) = 1,
otherwise P(Az.(x @ x), T, E) = 0. Since (vz.(x @ x),ve.x) € R, we have that vz.(z@x) € E
if and only if vz.x € E. Hence, P(\x.(z @ z),(, E) = P(Az.xz,{,E) for all £ € Aga,let u{r}
and all £ € (Ag’&Iet W VAglet)/R. For all equivalence classes E € (A%Iet & VA%Jet)/R,
Pvz.(x®zx),7,E) = 0= P(va.z, T, E) holds by Definition 12. Further, P(vz.(x®z), F, E) =

1 for some F € Aglet if F@® F € E, otherwise P(vz.(x @ z),F,E) = 0. We have that
FoF € Eif and only if F' € E, because (FF @ F,F) € R for all F € Aga,let’ Hence,
Pvx(z®)L, E)=Pve.a, L, FE) forall £ € A%Jet U{r}and all E € (Aga,let W VA%7let)/R.

The proof for the other elements of R is analogous to the cases we considered.

» Example 14. The terms M = Azy.(x @ y) and N = (Azy.x) ® (A\zry.y) are not bisimilar.
Let us suppose the opposite. Then, there exists a bisimulation R such that (M, N) € R. By
definition R is an equivalence relation. Let F be an equivalence class of Aga,let W VA‘ga’Iet with
respect to R which contains vx.Ay.(x @ y). Then, we should have that 1 = P(M, 7, FE) =

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

S. Kasterovi¢ and M. Pagani

P(N,T,E). We know that P(N,7,vz.\y.x) = % and P(N,1,vx.\y.y) = % Thus, we can

conclude va.\y.x € E and vz y.y € E. If va.\y.x € E, then (v \y.(z ® y), vz y.x) € R.

Hence we have that 1 = P(va.\y.(x @ y),Q, E1) = P(va.\y.x,$, Ey), where E; is an
equivalence class which contains Ay.(Q @ y). Using the fact that P(vz.\y.x, 2, Ay.Q) =1
we obtain \y.Q € Fj. Since M\y.(Q @ y) and \y.Q belong to the same equivalence class we
conclude (Ay.(Q2 @ y), \y.Q) € R. If E, is an equivalence class such that vy.(Q @ y) € Fa,
then we have that 1 = P(Ay.(Q @ y),7, E2) = P(Ay.Q, 7, E3). By a similar reasoning
as before we obtain that (vy.(Q @ y),vy.Q) € R. Let E3 be an equivalence class which
contains Q & I. From 1 = P(vy.(R @ y),1, E3) = P(ry.Q,1, E3) it follows that Q € FEjs,
ie. (Q@I,Q) € R. Finally, if E, is an equivalence class such that ve.z € Ey4, then
$=P(Qalr7 E) =P(Q, 7, E,). This is in contradiction with P(2,7, E4) = 0 which is a
consequence of the definition of a transition probability matrix. Thus, terms M and N are
not bisimilar.

The following proposition is the analogous to Proposition 8, stating the soundness of
(bi)simulation with respect to the operational semantics.

» Proposition 15. Let M, N € A%
M ~ N.

if [M] < [N] then M < N. So, [M] = [N] implies

Jet?

Proof. By checking that the relation R = {(M, N) € Aga ><A29’Iet | [M] < [NJ}U{(V,V) €

Jet

VA%’Iet X VA?B’let} is a probabilistic applicative simulation. The second part of the statement
follows from ~=< N(<)P. <

We introduce a new notion of relations called Ag |t-relations, which are sets of triples
in the form (I', M, N) where M, N € Aé,et. Any relation R’ on the set of Ag et-terms can
be extended to a Ag je-relation R, such that whenever (M, N) € R’ and M, N € Ag,m, we
have that (I', M, N) € R. We will write I' - M'RN instead of (I', M,N) € R.

» Definition 16. A Ag jc-relation R is a congruence (respectively, precongruence) if it is
an equivalence (respectively, a preorder) and for every T UA F MRN and every context
Ce CA@Jet(F;A), we have that A - C[M]RC|[N].

It is immediate to check that the context preorder < (resp. equivalence ~) is a precongruence
(resp. congruence)(Appendix A.1). Also (bi)similarity is a (pre)congruence, but its proof is
more involved (Appendix A.2).

» Lemma 17. The similarity S (resp. bisimilarity ~) is a precongruence (resp. congruence)
relation for Ag jet-terms.

Proof (Sketch). As standard [4, 5, 7], we use Howe’s technique to prove that probabilistic
similarity is a precongruence, this implying that the probabilistic bisimilarity is also a
congruence. The proof is technical and follows the same reasoning as [7], the only difference
being in the cases needed to handle the compatibility associated with the let-in operator.
We start with defining Howe’s lifting for Ag jet, which turns an arbitrary relation R to
another one R. The relation R enjoys some properties with respect to the relation R. In
particular, if R is reflexive, transitive and closed under term-substitution, then it is included
in R¥ and the relation R¥ is context closed and also closed under term-substitution. These
properties allow to prove that the transitive closure (<)% of the Howe’s lifting < is a

precongruence including <. One can conclude then easily that < is also a precongruence.

Finally, from ~=< U(<)°? we conclude that ~ is a congruence. <

XXX:9

FSCD 2019

XXX:10 Ag with let-in operator

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

Now we can prove that simulation preorder is sound with respect to the context preorder.
As a consequence we have that bisimilarity is included in the context equivalence.

» Theorem 18 (Soundness). For every M,N € Af,
Therefore, M ~ N implies ' = M~N.

I'EM < N impliesT' - M < N.

et

Proof. Suppose that I' H M < N. We have that for every context C € CA@Jet(F;@),
) F C[M] < C[N] holds as a consequence of Lemma 17. Then by definition there exists
a simulation between C[M] and C[N], which implies by Definition 11 that Y [C[M]] <
>"[C[N]] holds. We conclude T'+ M < N. The second part of the statement follows from
the definitions ~=< N <% and ~=< N <°P. <

4 Full Abstraction

The goal of this section is to prove the converse of Theorem 18, showing that context
equivalence and bisimilarity coincide. In order to get this result, it is more convenient
to use the notion of testing equivalence, which has been proven to coincide with Markov
processes bisimilarity in [20] (here Theorem 22). In this framework we need to consider only
Markov chains, which are the discrete-time version of Markov processes, so we simplify the
definitions and results of [20] to this discrete setting, following [7]. Notice that Theorem 22 is
independent from the particular Markov chain considered, so we recall the general definitions
and then we applied them to the Ag je--Markov chain.

» Definition 19 ([7]). Let (S, L, P) be a labelled Markov chain. The testing language T(s . p)
for (S, L, P) is given by the grammar

ti=wlat](tt),
where w is a symbol for termination and a € L is an action (label).

It is easy to see that tests are finite objects. A test is an algorithm for doing an experiment
on a program. During the execution of a test on a particular program, one can observe the
success or the failure of the experiment with a given probability. The symbol w represents a
test which does not require an experiment at all (it always succeed). The test a.t describes
an experiment consisting of performing the action a and in the case of success performing
the test t, and the test (¢, s) makes two copies of the current state and allows both tests ¢
and s to be performed independently on the same state. The success probability of a test is
defined as follows:

» Definition 20 ([7]). Let (S,L,P) be a labelled Markov chain. We define a family
{Pi(-)}teTis.c.py of maps from the set of states S to Ry 1), by induction on the structure of t:
P,(s)=1;
Pai(s) =2 ges Pls,a,8")Pi(s");
P(tl,“.,tn)(s) = H?:l B, (8)

» Example 21. The terms Azy.(x ® y) and (Azy.xz) ® (Azry.y) of Example 6 can be dis-
criminated by the test ¢t = 7.(L.7.Q.7.w, I.7.Q.7.w). Figure 4 sketches the computation of
P(Azy.(x @ y)) = 1 and P((Azy.z) @ (Azy.y)) = 1.

The following theorem states the equivalence between the notion of bisimilarity over
(8, L,P) and testing equivalence. The theorem has been proven in [20] for a labelled Markov
processes. For lack of space, we have omitted a detailed proof of the adaptation of the results
from labelled Markov processes to labelled Markov chains.

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

S. Kasterovi¢ and M. Pagani

Azy.(z @ y) Azy.x ® Axy.y
|7 /TN
2 2
v y.(x @ y) vr.\y.x vr.y.y
1 JI 1T 1T
Ay. (I y) Ay Ay.y
17 1" 1"
vy.(I®y) vy.I vy.y
1 J“ AL 1%
IeQ I Q
T \\ T :
%/ 0, 1 0,
vIT.T vT.T

Figure 4 The experiment t = 7.(L.7.Q.7.w, L.7.Q2.7.w) over the terms of Example 21.

» Theorem 22 ([7],[20]). Let (S,L,P) be a labelled Markov chain. Then s,s' € S are
bisimilar if and only if Pi(s) = P(s") for every testt € T(s c p)-

It is known that this theorem does not hold for inequalities [20]. More precisely, it is not
true that s < s’ just in case Pi(s) < Pi(s’) for every test t € T(s z p).

4.1 Every Test has an Equivalent Context

Here is the main contribution of our paper, showing that for every test t associated with
the Ag e--Markov chain there exists a context C; expressing ¢ in the syntax of Ag et,
ie. Py(M) = > [Ci[M]] for every term M (Lemma 23). So context equivalence implies
testing equivalence (Theorem 24) and hence bisimilarity by Theorem 22. Together with
Theorem 18 this achieves the diagram in Figure 1, so Corollary 25.

» Lemma 23. For every test t € Ty, there are conterts Cy € CA@Jet(@;w) and D; €

CA@Jet(@m such that for every term M € A? and value V € V% it holds that:

®,let Jlet

Pt(M)ZZ[[Ot[M]H and Pt(f/):Z[[Dt[VH],

0

where V is a distinguished value from the set VAg .

Proof. We prove it by induction on the structure of a test ¢.

e First we consider the case where ¢t = w. Then, by the definition of P;(-), we have that

for every M € Aga,m and V € V%let , Po(M)=1and P,(V) = 1. Thus, we can define

C, = (Azy.2z)[)] and D, = (Azy.x)[-] and we obtain, for every M € A%Jet

YoIcuM]] =) [(aya)M] =) [ry.M] =1= P,(M),

and for every value V € Vg let

SIDVI = Y laya)V] = S V] = 1 = Po(V),

XXX:11

FSCD 2019

XXX:12 Ag with let-in operator

423

424

425

426

427

428

429

430

431

432

433
433

435

436

437

438

439

440

441

442

443

444

445

446
447

448

449

450

451

452

453

454
455

456

457

458

1.

Next, let us consider the case where ¢t = a.t’ for some action (label) a. By induction
hypothesis there are contexts Cy € CA@Jet(@;@) and Dy € CAg et (0:0) such that for every
M e AeB er and V€ V® e We have that Py (M) = > [Cy[M]] and Py (V V) = S [De[V]].
An action a can be either a closed term or a 7 action, thus depending on it we differ two
cases.

If @ = 7, then a test ¢ is of the form 7.t’. From Definition 12 and Definition 20 we have
PT,t/(‘N/) = 0 for any value V € V%’let)
holds. Let M be a closed term. From the definition of a transition probability matrix
(P(M,7,V) = [M](V)) and induction hypothesis P, (V) = S [Dy[V]] it follows that

Hence, we define D,y = Q[] and the statement

Pry(M)= Y, PM7V)P(V)= > [M|(V) D [Dv[V]

veval vevd ..
We define C; v = (let y = [-] in Dy [y]). Then, by the definition of operational semantics
we get
DICruM]] =) llety=Min Dulyll = > [M(V)-> [Du[V]]
VEVEB et

for any closed term M € A%Jet. Thus, Pryv (M) =Y [Crv[M]].

2. If a = F for some closed term F', then a test ¢t is of the form F.¢'. From Definition 12

and Definition 20 we have Pgy (M) = 0 for any term M € Ag5 ot~ Hence, we define
Cr.v = Q[and the statement holds. Let V be a value Az.N (V = vz.N). From the
definition of a transition probability matrix (P(vz.N, F, N{F/z}) = 1) and induction

hypothesis, Py (M) = > [Cy[M]] for every M € A@ et it follows that

PF.t’ (‘7) = Z P(";v F’ N/)Pt’(N/)

0
N'eAg

= P(ve.N,F,N{F/x}) - P (N{F/z})
=1 Pu(N{F/x}) = Y _[CvIN{F/x}]]

By Lemma 5 terms N{F/x} and (Ax.N)F have the same semantics. Hence, they are
bisimilar (Proposition 15). Due to the fact that bisimilarity is included in context
equivalence (Theorem 18) we have that terms N{F/z} and (Ax.N)F are context
equivalent. More precisely, for any context C, Y [C[N{F/z}]] = D [C[(Az.N)F]].
Finally, we obtain that

Ppy(V) = [Co[N{F/z}]] = > [Cu[(\x.N)F]] = [Cu[VF]].

We define Dpy = Cp[[-]F]. Then, we have that > [Dg.y[V]] = Y [Cr [V F]], holds for
any value V € V2 . . Thus, Ppy(V) = S [Dpv[V]].
Finally, let ¢t = (¢1,t2). By induction hypothesis there exist contexts Cy,, Dy, , Ct,, Dy, €
CA@Jet(@;@) such that for any closed term M and a value V the following holds:

Py (M) =Y [Co[MI], P (V)= [Dy[VI],

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

495

496

497

498

499

500

501

502

S. Kasterovi¢ and M. Pagani

Puy(M) =3 [Cu[M]] and P,(V) = [Du[V]].

From Definition 20 we have
P(t1,t2)(M) = Ptl(Ptz Z[[Ctl]]] . Z[[CtQ [M]]]

for any closed term M € AY We define:

D, let"
Cler) = (My-(let 21 = Cy [yl in (let 25 = Ci,[y] in 1)))[] (8)

and by the definition of operational semantics we have

> [Cw eyl = D _[Co, [M]] - > [Ch,[M

Since, for a value V € VQ it holds that

Jlet

Py ayy(V) =P, (V) - Py (V) = > [Dy, [Vl - > _[Dw[V]]

we define Dy, 1,y = (Ay.(let z1 = Dy, [y] in (let z2 = Dy,[y] in I)))[-] and the statement
holds.
This concludes the proof. |

» Theorem 24. Let M,N € A}, |,

M~N implies that P,(M) = P,(N), for every test t.

Proof. It is a straightforward consequence of Lemma 23. Let us assume that terms M
and N are context equivalent,) F M~N. Then, for every context C € CA@Jet(@‘m,we
have) [C[M]] = > [C[N]]. Suppose that there exists test t € Ty, ., such that P(M) #
P,(N). By Lemma 23, we have that there exists context C; such that for every term
M, P(M) = > [C:[M]]. Then, for this context Cy, it holds that > [Ci[M]] = P.(M) #
P,(N) = > [C¢[N]], which is in contradiction with the assumption that M and N are context
equivalent. Hence, for every test t € Ty, , it holds that P;(M) = P;(N). <

Notice that the let-in operator is crucial in defining the context C, .,y associated with the
product (t1,%2) of tests (Equation (8)) in the proof of Lemma 23. For example, if we consider
the call-by-name version of Cy, 4,), i.e. the context C' = (Ay.(Az122.1) Dy, [y] Dy, [y])[-], then

the semantics of C[M] is independent from the contexts Dy, [-], Dy,[] and the term M,

being [C[M]] = I. Hence, we cannot have P, ;,)(M) = Y [C[M]] for every M. Another
possibility is to try to use a context not erasing Dy, [/] and Dy,][] during the evaluation, as
for example in C' = (A\y.Dy, [y]Ds,[y])[-]. However this would imply to be able to control
the result of Dy, [M] for every term M, for example supposing [D,, [M]] = P,, (M)I, which
increases considerably the difficulty of the proof. Anyway, the fact that there are examples
of terms distinguished by tests (Example 21) but not by contexts without the let-in operator
(Example 6) shows the necessity of this latter.
The following resumes all results in the paper, as sketched in Figure 1:

» Corollary 25 (Full Abstraction). For any M,N € A%
(context equivalence) M~N,

(bisimilarity) M ~ N,

(testing equivalence) P,(M) = P,(N) for all tests t.

Jet?

Concerning inequalities, the equivalence of similarity and testing preorder, i.e. a relation
which contains (s, s’) if and only if P;(s) < Pi(s’) for every test ¢t € T(s 1 p), does not hold
as we stated before. So, we have no clue for proving that similarity is fully abstract with
respect to the context preorder. We actually conjecture that full abstraction for similarity
does not hold for Ag jet.

the following items are equivalent:

XXX:13

FSCD 2019

XXX:14 Ag with let-in operator

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

5 Conclusion

In this paper we have considered the Ag t-calculus, a pure untyped A-calculus extended
with two operators: a probabilistic choice operator @& and a let-in operator. The calculus
implements a lazy call-by-name evaluation strategy, following [1, 7], however the let-in operator
allows for a call-by-value passing policy. We prove that context equivalence, bisimilarity and
testing equivalence all coincide in Ag et (Corollary 25).

Concerning the inequalities associated with these equivalences: it is known that that
the probabilistic similarity does not imply the testing approximation [20]. We prove that
similarity implies context preorder (Theorem 18), but it remains open whether also the
converse holds.

This paper confirms a conjecture stated in [4], showing that the calculus introduced in [7]
can be endowed with a fully abstract bisimilarity by adding a let-in operator. As discussed
in the Introduction, our feeling is that the need of this operator is due to the lazyness rather
than to the cbn policy of the calculus. In order to precise this intuition we plan to investigate
the definition of bisimilarity for the non-lazy cbn probabilistic A-calculus, which has already
fully abstract denotational models [2, 16] as well as infinitary normal forms [15] but not a
theory of bisimulations.

—— References

1 Samson Abramsky. Research Topics in Functional Programming, chapter The Lazy Lambda
Calculus, pages 65—116. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1990. URL: http://dl.acm.org/citation.cfm?id=119830.119834.

2 Pierre Clairambault and Hugo Paquet. Fully abstract models of the probabilistic lambda-
calculus. In Dan R. Ghica and Achim Jung, editors, 27th EACSL Annual Conference on
Computer Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, volume 119 of
LIPIcs, pages 16:1-16:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.CSL.2018.16.

3 Robin Cooper, Simona Dobnik, Shalom Lappin, and Staffan Larsson. A probabilistic rich
type theory for semantic interpretation. In Proceedings of the EACL 2014 Workshop on Type
Theory and Natural Language Semantics (TTNLS), pages 72-79, 2014.

4 Raphaélle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation and call-by-
value A-calculi. In ESOP, volume 8410 of Lecture Notes in Computer Science, pages 209—228.
Springer, 2014.

5 Raphaélle Crubillé, Ugo Dal Lago, Davide Sangiorgi, and Valeria Vignudelli. On applicative
similarity, sequentiality, and full abstraction. In Correct System Design, volume 9360 of Lecture
Notes in Computer Science, pages 65—82. Springer, 2015.

6 Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for
higher-order probabilistic functional programs (long version). CoRR, abs/1311.1722, 2013.

7 Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for
higher-order probabilistic functional programs. In POPL, pages 297-308. ACM, 2014.

8 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et
Applications, 46(3):413-450, 2012. URL: http://www.numdam.org/item/ITA_2012__46_3_
413_0, doi:10.1051/ita/2012012.

9 Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of
probabilistic coherence spaces. In LICS, pages 87-96. IEEE Computer Society, 2011.

10 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic
PCF. J. ACM, 65(4):23:1-23:44, 2018.

http://dl.acm.org/citation.cfm?id=119830.119834
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.16
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.16
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.16
http://www.numdam.org/item/ITA_2012__46_3_413_0
http://www.numdam.org/item/ITA_2012__46_3_413_0
http://www.numdam.org/item/ITA_2012__46_3_413_0
http://dx.doi.org/10.1051/ita/2012012

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

S. Kasterovi¢ and M. Pagani

11

12
13

14

15

16

17

18

19

20

Silvia Ghilezan, Jelena Ivetic, Simona Kasterovic, Zoran Ognjanovic, and Nenad Savic.

Probabilistic reasoning about simply typed lambda terms. In LFCS, volume 10703 of Lecture
Notes in Computer Science, pages 170-189. Springer, 2018.
Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1-102, 1987.

Douglas J. Howe. Proving congruence of bisimulation in functional programming languages.

Inf. Comput., 124(2):103-112, 1996. URL: https://doi.org/10.1006/inco.1996.0008, doi:
10.1006/inco.1996.0008.

Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1-28, 1991.

Thomas Leventis. Probabilistic bohm trees and probabilistic separation. In Proceedings of the
38rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Ozxford, UK,
July 09-12, 2018, pages 649-658, 2018. doi:10.1145/3209108.3209126.

Thomas Leventis and Michele Pagani. Strong adequacy and untyped full abstraction for
probabilistic coherence spaces. accepted to FOSSACS 2019, 2019.

Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based on
sampling functions. ACM Trans. Program. Lang. Syst., 31(1):4:1-4:46, December 2008. URL:
http://doi.acm.org/10.1145/1452044.1452048, doi:10.1145/1452044.1452048.

Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci.,
5(3):223-255, 1977.

Alex Simpson and Niels F. W. Voorneveld. Behavioural equivalence via modalities for algebraic
effects. In ESOP, volume 10801 of Lecture Notes in Computer Science, pages 300-326. Springer,
2018.

Franck Van Breugel, Michael W. Mislove, Joél Ouaknine, and James Worrell. Domain theory,
testing and simulation for labelled markov processes. Theor. Comput. Sci., 333(1-2):171-197,
2005.

XXX:15

FSCD 2019

https://doi.org/10.1006/inco.1996.0008
http://dx.doi.org/10.1006/inco.1996.0008
http://dx.doi.org/10.1006/inco.1996.0008
http://dx.doi.org/10.1006/inco.1996.0008
http://dx.doi.org/10.1145/3209108.3209126
http://doi.acm.org/10.1145/1452044.1452048
http://dx.doi.org/10.1145/1452044.1452048

XXX:16 Ag with let-in operator

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

A Appendix - Proofs

A.1 Context Equivalence is a congruence

We consider Ag jet-relations defined in Section 3. The set Prn(X) denotes the set of all finite
subsets of X.

» Definition 26. A Ag it-relation R is compatible if and only if the five conditions below
hold:

(Coml) vI' e PF|N(X),.’L' el:TFx R z;

(Com2) VI € Pan(X) Vo € X — T, YM,N e AL LY

o.M R M\z.N;

:TU{z} F M RN=T*F

(Com3) VI' € Pen(X),YM,N,L,P € AL, :TFMRN AT+FLRP=TF
ML R NP;

(Comd4) VI' € Pen(X),YM,N,L,P € AL, :TFMRN AT+FLRP=TF
M&LRN®P;

VL, Pe AN0Y T MR N ATU{z} -

(Com5) VI e PF|N(X),VI € X,VM,N € Ag,let’ @, let

LRP=TF(letex=MinL)R (letz=N in P).

The following lemmas give us an easier way to establish (Com3), (Com4) and (Comb)
under particular assumptions.

» Lemma 27. Let us consider the properties

(Com3L) ¥I' € Pen(X),VM,N,L € AL ., :T+M R N=T+MLR NL
(Com3R) V' € Pen(X),VM,N,L e AL . :T+HM R N=T+LMR LN
If R is transitive, then (Com3L) and (Com3R) together imply (Com3).

» Lemma 28. Let us consider the properties

(Com4L) VI' € Pen(X),VM,N,L € AL . :TFM RN=TFMGLRNGL
(Com4R) VT € Peny(X),YM,N,L € AL . :-TFM RN=TFLOM R L®N
If R is transitive, then (Com4L) and (Com4R) together imply (Com4).

» Lemma 29. Let us consider the properties

(Com5L) V' € Prn(X),Vz € X,YM,N € Agie(T),VL € ALLITHFM RN =T -
(letz=Min L) R (let z =N in L)

(Com5R) VT € Prn(X),Vz € X,VL € AL WM, N € AL TU{a} FM RN =T F
(letx=Lin M) R (letx =L in N)

If R is transitive, then (Com5L) and (CombR) together imply (Comb).

Proof. To prove (Com5) we have to show that the hypothesis T M R N and T'U {z} -
LR Pimply '+ (letx = MinL) R (letz = N in P). If we apply (Com5L) to the
first hypothesis, with L as steady term, we get I' - (let 2 = M in L) R (let z = N in L).
Similarly, applying (Com5R) to the second hypothesis, with IV as steady term we obtain
I't(letz=Nin L) R (let x = N in P). Then, by transitivity of R we can conclude the
claim. <

» Definition 30. A Ag c-relation is a congruence (respectively, precongruence) if it is an
equivalence relation (respectively, preorder) and compatible.

618

619

620

621

622

623

624

625

626

627

628

6

]
©

6

@

0

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

S. Kasterovi¢ and M. Pagani

This definition of a (pre)congruence is equivalent to Definition 16.
» Lemma 31. The context preorder < is a precongruence relation.

Proof. In order to prove < is a precongruence, we need to show that < is a preorder (reflexive
and transitive) relation, which is compatible. Relation < is reflexive by its definition and
proving its transitivity means to show: VI € Pen(X), M, N, L € Ale;

Jet?
I'-M<NATFN<L=TFM<L.
Let assume that ' M < N and I' - N < L, then we have the following hypothesis:

(1) YC € Cheye ™, S[CIM]] < S[CIN]];
(2) VO € CAg ™", S[CIN]] < S[CIL]]-

To prove I' = M < L we need to show that for every D € CAEBJet(F;@), SIDM]] < YCIDIL])-

For any such context D, from the hypothesis (1) and (2) we have Y [D[M]] < > [D[N]] <
> IDIL]]. In order to prove that < is compatible, we show it satisfies conditions (Com1),
(Com2), (Com3), (Com4) and (Com5). We do not consider (Com1), since it is trivial.

e Proving (Com2) means to show VI" € Pen(X),Vz € X —T,VM, N € AFU{X}

Jet

FTu{z}F M < N=TFA.M < \z.N.

From the assumption I' U {z} F M < N, we have VC € CA@JH(FU{QC};@),Z[[C[M]]] <
>[C[N]] as hypothesis. Let us consider a context D € CA@Jet(F’m. Since context

Az.[] belongs to the set CAgjee "} we have that E = D[Az.[]] € CAg e "D,

We can apply the hypothesis for context F and obtain > [E[M]] < Y [E[N]], ie
S [D[Az.M]] < S [D[Ax.N]]. Thus, T'F Ax.M < Az.N.

e As we already proved, < is transitive relation, thus by Lemma 27 it is enough to
prove two characterizations (Com3L) and (Com3R). Proving (Com3L) means to show
VI € Pan(X),YM, N, L € AL

Jet?

'rM<N=TFML<NL.

If we assume I' = M < N, then we have VC € CAg "%, SS[C[M]] < SJ[CIN]] as
hypothesis. We want to show that for any context D € CA@Jet(0) Z[[D[ML]]]
S"[DINL]] holds. For an arbitrary context D € CA@Jet(F;m and [-]L E CA@Jet(@ D w
get E = D[[/]L] € CAg, ", From the hypothesis, we can conclude that SIEM]]] <
ST[E[N]] holds, i.e. S [D[ML]] < >[D[NL]]. Thus, I' - ML < NL. We do not write
a detailed proof of (Com3R) because it is analogous to the proof of (Com3L).

e As in the previous case, the fact that < is transitive and Lemma 28 ensure that (Com4l)
and (Com4R) imply (Com4), so it is enough to prove these two characterizations. We
omit the proof of (Com4L) and (Com4R), since we prove it by a similar reasoning as in
the previous case (proof of (Com3L)).

e As we already proved, < is transitive relation, thus by Lemma 29 it is enough to

prove two characterizations (Comb5L) and (Com5R). Proving (Com5L) means to show
VI € Prn(X), Vo € X,YM, N € AL ., VL € AL 5

Jlet? Jet 0
'FM<N=TkF(letx=MinL) < (letz=NinL).

If we assume I' F M < N, then we have VC € CA@Jet(F;@),Z[[C[M]}] < Y [CIN]]
as hypothesis. We want to show that for any context D € CA@Jet(F;@), M [D[let z =
M in L]] <> [D]let z = N in L]] holds. For an arbitrary context D € CA@Jet(F;@) and
let z =[]inL € CA$7|et(®;F) we have that £ = Dllet z =[] in L] € CA@Jet(F;@). From

XXX:17

FSCD 2019

XXX:18 Ag with let-in operator

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

the hypothesis, we can conclude that Y [E[M]] < Y [F[N]] holds, i.e. > [D[let z =
M in L]] <> [D[let x = N in L]]. Thus, '+ (let x =M in L) < (let 2 = N in L). The
characterization (Com5R) can be proved in a similar way.

<

» Lemma 32. The context equivalence ~ is a congruence relation.

Proof. This statement follows directly from Lemma 31 and the definition of context equival-
ence, i.e. =< N(L)°P. <

A.2 Bisimulation Equivalence is a congruence

We use Howe’s technique to prove that probabilistic similarity is a precongruence and as a
consequence probabilistic bisimilarity is a congruence. Howe’s technique is a commonly used
technique for proving (pre)congruence of bisimilarity (similarity). The proof is very technical.
It is the adaptation of the technique used in [4, 5, 6] and it has the same structure as the
proof in [6]. Contrary to the proof in [6], our proof introduces a new notion of compatibility
with the let-in operator.

The property ~=< N <° ensures it is enough to show that probabilistic similarity (<)
is a precongruence in order to prove that probabilistic bisimilarity (~) is a congruence. The
key part is proving that < is a compatible relation and it is done by Howe’s technique.

We call an Ag jer-relation R (term) substitutive if for all T' € Ppn(X),z € X =T, M, N €

AL LY, L, P e AL, the following holds

TU{z}FM RNATHFLRP=TF M{L/x} R N{P/x}.
If a relation R satisfies
Fu{z} M RNALEAL,,=T+M{L/z} R N{L/z},

we say it is closed under term-substitution.

Please notice that if R is substitutive and reflexive then it is closed under term-substitution.
As stated in the paper, open extensions of < and ~ are closed under term-substitution by
definition.

For an arbitrary Ag je-relation R, Howe’s lifting R* is defined by the rules in Figure 5.
We start with some auxiliary statements.

» Lemma 33. If R is reflexive, then R is compatible.

Proof. We prove that (Com1), (Com2), (Com3), (Com4) and (Comb5) hold for R, if R is a
reflexive relation.

e To prove (Coml) we need to show that:
VI'€ Pen(X),z €T :TFa R x.

Since R is reflexive, we have that VI € Prn(X),z € T : T+ 2 R 2. If we apply (Howl)
tol'Fz R x, we obtain T' -z RY z.

e In order to prove (Com2) we need to show that: VI' € Prn(X),Vz € X —T,VM,N €
AFU{X}
@D,let

Tu{z}FMR¥ N=TF .M R” \a.N

Using the reflexivity of R, we obtain I' - Az.N R Az.N. We have T U {z} - M R¥ N
by hypothesis, so we can apply (How2) and conclude I' - Az.M R¥ Az.N holds.

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

S. Kasterovi¢ and M. Pagani

'Fa R M (How1) Tu{z}Fr M RY L THX.LRN x¢T

-z R M I'-Xe.MREN (How2)

r-MREP TFNRHQ THPQRL
'-MNTRHL

(How3)

TFMREP THFNRHEQ THPa®QRL
I'-MoNRIL

(How4)

I'FMREP TU{z})F NREQ TH(letz=PinQ)RL
It (letz=Min N)R¥ L

(Howb)

Figure 5 Howe’s lifting for Ag et

e Proving (Com3) means to show: VI' € Prn(X),VM, N, L, P € AL

Jet?

TFMRENATHFLRY P=TFMLRY NP.

Since the relation R is reflexive, we have that I' - NP R NP holds. Moreover, I" -
M RH N and I' F L R" P hold by hypothesis. Therefore, by (How3), we conclude
I'- ML R¥ NP holds.

e To prove (Com4) we have to show: VI' € Pen(X),YM, N, L, P € Al

TFMRENATFLRYE P=THFMaLRY NoP

We have that I' - N & P R N & P holds, because of the reflexivity of R. Furthermore,
I'MRHY Nand T'+ L R¥ P hold by hypothesis. Now, by (How4) we obtain that
I'-M®LRY N P holds.

e Inorder to prove (Com5) we need to show: VI' € Prn(X), Ve € X,YM,N € AL ,,VL,P €
AFU{X}
D,let

TFMRYENATU{2}FLRY P=>TF (letx=Min L) R (let z = N in P).

Since R is reflexive, we have I' - (let « = N in P) R (let x = N in P). The hypothesis
is that T = M R¥ N and T U {z} - L R P hold. By applying (How5), we obtain
L+ (letxz=Min L) R” (let z =N in P).

This concludes the proof. |

» Lemma 34. If R is transitive, then T =M R¥ N andT- N R L implyT'- M R L.

Proof. We prove this by induction on the derivation of I' - M R¥ N, looking at the last

rule used, thus on the structure of M.

e Let M be a variable z € T, then I' - 2 R N holds by hypothesis. The last rule used has
to be (Howl). Hence, we have I' - 2 R N as additional hypothesis. Since R is transitive,
fromTHa2 R Nand ' N R L we can conclude I' + 2 R L. Now, by applying (How1l)
to the latter, we obtain I' - 2 R L, ie. THM RH L.

e Let M be an abstraction, say Az.Q, then I' - Az.Q R¥ N holds by hypothesis. The last
rule used has to be (How2). Hence, we have T U {z} - Q R¥ Pand T' - A\z.P R N as
additional hypothesis. Since R is transitive, from ' F Ax.P R N and ' F N R L we can
conclude I' - A\z.P R L. Now, by applying (How2) to I' F Q@ R P and the latter, we
obtain ' - Az.Q R L,ie. ' M RY L.

XXX:19

FSCD 2019

XXX:20 Ag with let-in operator

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

Let M be an application, say RS, then I' = RS R¥ N holds by hypothesis. The last rule
used has to be (How3). Hence, we have ' R R P, TFSR¥ Qand T+ PQ R N as
additional hypothesis. Since R is transitive, from ' - PQ R N and ' - N R L we can
conclude I' - PQ R L. Now, by applying (How3) to ' - R R¥ P, TS R¥ Q and the
latter, we obtain I' = RS R L,ie. T'HF M R L.

Let M be a probabilistic sum, say R ® S, then I' - R® S R N holds by hypothesis.
The last rule used has to be (How4). Hence, we have ' - R R P, T+ S R¥ Q and
' P&Q R N as additional hypothesis. Since R is transitive, from ' - P@Q R N and
' N R L we can conclude I' - P® Q R L. Now, by applying (How4) to ' - R RY P,
'S RH Q and the latter, we obtain ’F R® S R¥ L,ie. I'F M RY L.

Let M be a term let z = Rin S, then I' - (let z = R in S) R¥ N holds by hypothesis.
The last rule used has to be (How5). Hence, we have '+ R R P, T U {z} - S RH Q
and I' - (let z = Pin @) R N as additional hypothesis. Since R is transitive, from
I'-(letz=PinQ) R Nand ' N R L we can conclude I' - (let z = Pin Q) R L.
Now, by applying (How5) to ' R R¥ P, TU{z} S R¥ Q and the latter, we obtain
I'(letx=RinS)R¥ L,ie. THMRH L.

This concludes the proof. |

» Lemma 35. If R is reflexive, then T - M R N impliesT'F M R” N.

Proof. We prove the statement by inspection on the last rule used in the derivation of
' M R N, that is on the structure of M.

First, we consider the case where M is a variable x € T', then I' - z R N holds by
hypothesis. We can apply (Howl) to this and obtain I' -2 R¥ N,ie. I'F M RH N.
Next, we consider the case where M is an abstraction, say Az.Q, then I' - Ax.Q R N
holds by hypothesis. Since R is reflexive, we have that R¥ is compatible and it is easy
to prove that R is also reflexive. Hence, we have that I' U {z} - Q R Q holds. If we
apply (How2) to the latter and I' - Az.Q R N we conclude I' - Az.Q R N holds, i.e.
'-MRYN.
Let us now look at the case where M is an application, say RS, then I' - RS R N holds
by hypothesis. Since R is reflexive, R is also reflexive and we have that I' - R R¥ R
and I' =S R S hold. If we apply (How3) to the latter and I' = RS R N we conclude
' RS RH N holds, ie. ' M RHY N.
If M is a probabilistic sum, say R ® S, then ' R® S R N holds by hypothesis. Since
R is reflexive, R¥ is also reflexive and we have that T R R¥Y Rand '+ S R¥ S hold.
If we apply (How4) to the latter and I' - R@® S R N we conclude ' R® .S R N holds,
ie. THMRH N.
Finally, we consider the case where M is a term let R in .S, then ' F (let R in S) R N holds
by hypothesis. Since R is reflexive, R is also reflexive and we have that I'- R RY R
and T' = S R S hold. If we apply (How5) to the latter and I' - (let R in S) R N we
conclude I' - (let R in S) R¥ N holds, i.e. I - M R¥ N.
This concludes the proof.

<

» Lemma 36. If R is reflexive, transitive and closed under term-substitution, then RY is
(term) substitutive and hence also closed under term-substitution.

Proof. We need to show that: VI' € Pen(X), Ve € X —T',VM,N € AP VL,P € AL

®,let D, let?

TU{z}FMRY N ATHFLR"Y P =T+ M{L/z} R" N{L/z}.

S. Kasterovi¢ and M. Pagani XXX:21

77 We prove it by induction on the derivation of I' U {x} - M R¥ N, thus on the structure of
775 M.

76 o Let us start with the case where M is a variable, then there are two possibilities: either
m M =z or M €T. Suppose that M € T'and M = y. Now, we have that TU{z} -y R¥ N
778 holds by hypothesis and it can only be deduced by the rule (Howl) from T U{z} -y R N.
79 Using the fact that R is closed under term-substitution and P € Aé,m’ we can conclude
780 't y{P/x} R N{P/x}, which is equivalent to I' -y R N{P/z}. Next, by Lemma 35
781 we obtain I' - y R¥ N{P/z}, which is equivalent to T' - y{L/z} R" N{P/z}, i..
782 L'+ M{L/z} RY N{P/x}. Let us now suppose that M =z, then [U {x} F 2z R¥Y N
783 holds. The only way to deduce it is by the rule (Howl) from " U{z} F z R N. Since R
784 is closed under term-substitution and P € Al ., we conclude I' - z{P/z} R N{P/x}
785 which is equivalent to I' = P R N{P/z}. If we apply Lemma 34 to I + L R¥ P
786 and I' - P R N{P/z}, we deduce I' - L R¥ N{P/z} which is equivalent to T' -
787 x{L/x} R¥ N{P/x}. Hence, T - M{L/z} R" N{P/z} holds.

76 ® Next, we consider the case where M is an abstraction, say A\y.Q, then TU{z} - \y.Q RY N
780 holds by hypothesis. It can only be deduced by the rule (How2) from I' U {z} U {y}
790 Q RY” R, and TU {2z} - \y.R R N, where z,5 ¢ I'. By applying the induction
791 hypothesis to T' U {z} U {y} F Q@ R¥ R, we conclude ' U {y} + Q{L/z} R R{P/z}.
792 From the fact that R is closed under term-substitution and P € Ag’let, we obtain
793 ' (A\y.R){P/x} R N{P/z},ie. ' Ay.R{P/x} R N{P/x}. By (How2), we deduce
794 I F \y.Q{L/x} R¥ N{P/z}, which is equivalent to I' - (\y.Q){L/z} R" N{P/x}.
795 Hence, I' - M{L/x} R¥ N{P/x}.

26 e If M is an application, say RS, then I'U {z} = RS R¥ N holds by hypothesis. It can
707 only be deduced by the rule (How3) from T'U {z} - R R R, TU{z}+ S RH S and
798 ru{z} + R'S" R N. By applying the induction hypothesis to ' U {z} F R R¥ R’ and
799 TU{z} SR S weconclude I' - R{L/x} RY R'{P/x} and T+ S{L/z} RH S"{P/z}.
800 From the fact that R is closed under term-substitution and P € Aélet, we obtain I' -
801 (R'S"Y{P/z} R N{P/z},ie. I' - R{P/x}S'{P/x} R N{P/xz}. By (How3), we deduce
802 [+ R{L/z}S{L/x} R¥ N{P/x}, which is equivalent to I' - (RS){L/z} R" N{P/z}.
803 Hence, I' - M{L/z} R¥ N{P/x}.

s« o Let M be a probabilistic sum, say R @ S, then T U {2} - R® S R¥ N holds by
805 hypothesis. It can only be deduced by the rule (How4) from I' U {z} + R R¥ R/
206 Fru{z}FSRHE S andTU{z} - R ® S R N. By applying the induction hypothesis to
807 Fru{z}FRRY R andTU{x} S R¥ S’ we conclude I' - R{L/x} R R'{P/x} and
808 [+ S{L/z} R¥ S’{P/x}. From the fact that R is closed under term-substitution and P €
800 AL jers we obtain T' = (R' @ S"){P/x} R N{P/z},ie. Ut R{P/x}®S'{P/x} R N{P/x}.
810 By (How4), we deduce I' - R{L/z} ® S{L/z} R¥ N{P/x}, which is equivalent to
a1t L'~ (R®S){L/z} RY N{P/x}. Hence, I' - M{L/z} R" N{P/z}.

a2 o Finally, we consider the case where M is a term let y = R in S, then TU {x} F (let y =
813 Rin S) R" N holds by hypothesis. It can only be deduced by the rule (How5) from
a4 FTru{z}FRRY R, TU{z}u{y} - SRE S andTU{x} I (lety=R"in S') R N. By
a1 applying the induction hypothesis to TU{z} F R R R’ and TU{z} U{y} - S RH &,
816 we conclude I' = R{L/x} R R'{P/z} and T U {y} - S{L/x} R¥ S'{P/z}. From the
817 fact that R is closed under term-substitution and P € Aéy,et, we obtain I' - (let y =
a8 R’ in S"){P/x} R N{P/z}, i.e. T F (lety = R'{P/z} in S’{P/x}) R N{P/x}. By
819 (How5), we deduce I' - (let y = R{L/x} in S{L/x}) R¥ N{P/z}, which is equivalent to
520 [+ (lety=Rin S){L/x} R¥ N{P/z}. Hence, ' - M{L/x} R¥ N{P/x}.

g1 This concludes the proof. <

FSCD 2019

XXX:22 Ag with let-in operator

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

I'EFMRN

— MR (TC1
'M Rt N ()

r-MRYN r-FNRYL

TC2
'FMRYL ()

Figure 6 Transitive closure for Ag et

The goal is to prove that < is a precongruence, but in order to do that some properties
are missing. Hence, following Howe’s approach we build a transitive closure of a Ag jet-relation
R as a relation R defined by the rules in Figure 6.

» Lemma 37. If R is compatible, then so is R

Proof. We need to prove that relation R satisfies conditions: (Com1), (Com2), (Com3),
(Com4) and (Comb).

e In order to prove (Coml) we have to show:
VI € Pan(X),z €T :TFz RT .

From the assumption that R is compatible, we can conclude that R is reflexive and
'tz R x holds. Now, I' -z RT z follows by (TC1).

e Proving (Com2) means to show that: VI' € Pen(X),Vz € X —T,VM,N € Agﬁitx},

FTu{z}F M RY N=TFAx.MR' \z.N.

We prove it by induction on the derivation of I'U {z} - M R™ N, looking at the last
rule used. First we consider base case, where the last rule used is (T'C1) and we have
that TU{a} F M R N holds by hypothesis. Using the fact that R is compatible, we can
conclude I' = Az.M R Az.N holds. By applying (TC1) we obtain I' = Az.M R* \z.N.
Next, let us look at the case where the last rule used is (TC2). Now, we have that for
some L € Ag;jif}, F'u{z}F M R" Land TU{z} F L Rt N hold by hypothesis. We
can apply the induction hypothesis on both of them and obtain I' - Az.M Rt \z.L
and ' = Az.L Rt Az.N. Finally, by applying (TC2) on the latter two, we conclude
I'FAz.M RT Az.N holds.

e To prove (Com3) we need to show: VI' € Pen(X),VM,N,L, P € Ag,m’

FrFMRTNATHLRT P=TFMLR" NP.

First, we will prove the following two statements:

(1) VM,N,L,PeAL ., :TFMR* N A\TFLRP=T+FMLR' NP,

(2) VM,N,L,PGAga,let:FI—MRN ATFLRtYP=TFMLR' NP.
We prove (1) by induction on the derivation of I' = M R+ N, looking at the last rule
used. First we consider the base case where (TC1) is the last rule used. Then we have
that ' F M R N holds by hypothesis. Since we have assumed that R is compatible
and T'H L R P holds, we can conclude T' = ML R NP. Now, by applying (TC1) on
the latter we obtain ' F ML RT NP. Let us now consider the case where (TC2) is
the last rule used. In this case we have ' - M R* Q and I' - Q RT N as additional

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

S. Kasterovi¢ and M. Pagani

hypothesis, for some @ € Ag,et. Now, by induction hypothesis on I' = M R*™ @Q and
'L R Pwehave ' - ML RT™ QP. Using the fact that relation R is compatible, we
can conclude its reflexivity and I' F P R P holds. Next, by induction hypothesis on
F'FQRT" NandT'H PR P weget ' - QP Rt NP. Finally, we conclude applying
(TC2) on T+ ML Rt QP and the latter, obtaining I' - ML Rt NP. Statement (2) can
be proved similarly.
Let consider the original statement (Com3). We prove it by induction on two derivations
I'M Rt Nand 'L Rt P. If we look at the last rules used, we have four possible
cases:
1. (TC1) is the last used rule in both derivations;
2. the last rule used in the derivation of '+ M R™ N is (TC1), and the last rule used in
the derivation of T' = L Rt P is (TC2);
3. the last rule used in the derivation of I' - M R* N is (TC2), and the last rule used in
the derivation of I' = L Rt P is (TC1);
4. (TC2) is the last used rule in both derivations.
The first case follows from the fact that relation R is compatible, and second and third
cases follow from the statements (1) and (2) we proved. Thus, we only consider the
case where both derivations are concluded by applying the rule (TC2). In this case, as
additional hypothesis we get that: for some Q & Agwet, '-MRtQandTHFQRT N
hold, and for some R € A%y,et, I'-LRT Rand ' - R RT P hold. First by induction
hypothesison ' - M Rt Qand ' L RT Rwe get I' - ML RT QR. Next, by induction
hypothesison ' - Q RT N and ' - R Rt P we have I' - QR RT™ NP. Now we can
apply (TC2) and obtain ' - ML RT NP.
e Proving (Com4) means to show: VI' € Prn(X),VM, N, L, P € Al

Jet?

TFMRTNATHFLRYP=THFM&LRT NoP.

We do not write a detailed proof, since it is analogous to the previous case. The idea is
to prove the following two statements:

(3) VM,N,L,Pe AL ., :TFMR* N ATFLRP=T+FM&LR' N®P,

(4) YM,N,L,PeAL . :TFMRN ATFLRtP=>T+Ma&LRY NaP.

Then, we prove (Com 4) by a similar reasoning as in the previous case.

e Inorder to prove (Comb) we need to show: VI € Prn(X),Vz € X, VM, N, € Ale;,|etaVLv Pe
AFU{X}
@D,let

TFMRYN ATU{2}FLRY P=TF (letx=MinL)R' (let =N in P).

First, we will prove the following two statements:

(5) YM,N € AL ,WL,Pe ALl - TFMRY N ATU{z} FLRP=TF (leta =
Min L) R" (let z = N in P),

(6) YM,N e AL ,WLPe ALY TFMRN ATU{g}FLRY P=TF (leta =
M in N) Rt (let x = N in P).

We prove (5) by induction on the derivation of I' = M R* N, looking at the last rule
used. First we consider the base case where (TC1) is the last rule used. Then we have
that I' - M R N holds by hypothesis. Since we have assumed that R is compatible and

XXX:23

FSCD 2019

XXX:24 Ag with let-in operator

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

F'U{az}F L R P holds, we can conclude T't- (let z = M in L) R (let z = N in P). Now,
by applying (TC1) on the latter we obtain I' - (let z = M in L) Rt (let x = N in P).
Let us now consider the case where (TC2) is the last rule used. In this case we have
I'FMRYQandT'F @ RT N as additional hypothesis, for some @ € Ale];,let' Now,
by induction hypothesis on I' = M R* Q and T U {z} - L R P we have T' I (let x =
M in L) R™ (let z = Q in P). Using the fact that relation R is compatible, we can
conclude its reflexivity and T'U {z} F P R P holds. Next, by induction hypothesis on
Fr-QR*" NandTU{z} PR Pweget 't (letx=Q in P) R" (letz =N in P).
Finally, we conclude applying (TC2) on ' (let x = M in L) R™ (let z = Q in P) and
the latter, obtaining ' - (let z = M in L) Rt (let z = N in P). Statement (6) can be
proved similarly.
Let consider the original statement (Com5). We prove it by induction on two derivations
I'-MR" Nand TU{z} F L RT P. If we look at the last rules used, we have four
possible cases:

1. (TC1) is the last used rule in both derivations;

2. the last rule used in the derivation of I' = M R™ N is (TC1), and the last rule used in

the derivation of TU {z} - L RT P is (TC2);
3. the last rule used in the derivation of I' - M R™ N is (TC2), and the last rule used in
the derivation of TU {z} + L RT P is (TC1);

4. (TC2) is the last used rule in both derivations.

The first case follows from the fact that relation R is compatible, and second and
third cases follow from the statements (5) and (6) we proved. Thus, we only consider
the case where both derivations are concluded by applying the rule (TC2). In this
case, as additional hypothesis we get that: for some @ € Agwet, I'MR" Q and

'+ Q R* N hold, and for some R € ALG), TU{z} F LR Rand T U {z} - RR* P
hold. First by induction hypothesis on I' = M Rt Q and T U {z} v L Rt R we get
I'(letx=Min L)R" (let z =Q in R). Next, by induction hypothesison ' - Q R™ N
and TU{z} F RR" Pwehave 't (let z=Q in R) R" (let z = N in P). Now we can

apply (TC2) and obtain '+ (let z = M in L) R* (let x = N in P).

» Lemma 38. If R is closed under term-substitution, then so is R™T.

Proof. Proving that R is closed under term-substitution means to show: VI' € Prn(X), Va €

X —T,VM,N € ALPd vL e AL

@,let > Jlet>

Fu{z}+ M RY N = M{L/z} Rt N{L/x}.

We prove this statement by induction on the derivation of ' U {z} = M R* N. As usual,
we look at the last rule used in the derivation. First we consider the base case, where the
last rule used is (T'C1) and we have that T U {z} F M R N holds. Using the fact that
relation R is closed under term-substitution, we can conclude I' - M{L/x} R N{L/x} holds.
Now, we apply (TC1) on the latter and obtain I' = M{L/x} Rt N{L/xz}. Next, let us
consider the case where (TC2) is the last rule used. Then, we have that for some @ € Ale;ulitx },
FTu{z}F M R* Qand TU{z} F Q@ R* N hold. Now, by induction hypothesis on both
of them, we get I' H M{L/xz} RT Q{L/x} and T + Q{L/x} RT N{L/x}. We conclude
applying (TC2) on the latter two, obtaining T' = M{L/x} RT N{L/xz}. <

» Lemma 39. If a Ag je-relation R is a preorder, then so is (R¥)*.

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960
961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

S. Kasterovi¢ and M. Pagani

Proof. A relation is a preorder if it is reflexive and transitive. We assume that R is reflexive
and transitive. Then, by Lemma 33 and Lemma 37 we conclude (R¥)* is compatible and
hence reflexive. Relation (R¥)T is transitive by its construction, since it is a transitive
closure of relation R¥. Thus, we conclude relation (R”)* is a preorder. <

The crucial part in proving that probabilistic similarity is a precongruence is Key Lemma
(Lemma 44). First, we need the definition of a probability assignment and an auxiliary
lemma about it.

» Definition 40. P = ({pi}1<i<n, {r1}1cq1,...n}) @5 a probability assignment if for each
I'C{1,....n} it holds that 3 ,c;pi < 32 12970

» Lemma 41. Let P = ({pi}1<i<n, {r1}1cq1,....n}) be a probability assignment. Then for
every nonempty I C {1,...,n} and for every k € I there is si,1 € [0, 1] which satisfies the
following conditions:

1. for every I, it holds that), ; sk 1 < 1;

2. for every k € {1,...,n}, it holds that py <>, Sk,1-71-

The proof of Lemma 41 is omitted, but it can be found in [6]. Besides Lemma 41, in the
proof of Key Lemma we use the following technical Lemmas.

» Lemma 42. For every X C AE it holds that S Az X) =2z.(S (X)) and < (va.X) =

@, let’
v (S (X)).
2z.(S (X)) stands for the set {dz.M | 3N € X, N < M}.
Proof.

Az M e< (M. X)) IN e X, \e.N < a. M
<IN e X, NS M,
< MM e dx. S (X).

The second part of the statement can be proved analogously. |

» Lemma 43. If M < N, then for every X C Ag} [M](Az.X) < [N](Az. < (X)).

Jet?

Proof. It is a straightforward consequence of Lemma 42. <

» Lemma 44. (Key Lemma) If M <H N, then for every X C Aé;l}et it holds that
[M](Az.X) < [N](Aa.(ST (X))).

Proof. Since [M] = sup{2% ; M || 2}, it is enough to prove the following statement: if

M <H N and M || 2 then for every X C AP it holds that P(\z.X) < [N](Mz.(SH (X)).

let
We prove it by induction on the derivation (G)af M | 2, looking at the last rule used.
o If M | 0, then we have 2(A\z.X) = 0 < [N](\z.(SH (X)) for every X C Agl}et.
e Next, we consider the case where M is a value Az.QQ and Z = Az.Q, that is Z(\z.Q) = 1.
Since M is a value the last used rule in the derivation of M <H N (ie. 0+ M <H N) has

to be (How2). Thus, we have that for some P € Ag,l}ev rFQSH Pand - Xz PSN

hold as additional hypothesis. For X C Agﬁet we consider two cases:

- IfQ ¢ X, then 2(Ax.X) = 0 and the statement holds.

- If Q € X, then Z(Az.X) =1 and P €< (X). For every L €< (P), we have that
rFQ<H Pand x - P < L. By Lemma 34 we conclude that z - Q < L holds.
Thus, L €<H (X) and it holds that < (P) C<H# (X). From Lemma 43 we obtain the

following

2(\2.X) =1 = [\a.P](Ax.P) < [N](\z. < (P)) < [N](Mz. <H (X)).

XXX:25

FSCD 2019

XXX:26 Ag with let-in operator

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

e Let M be an application LP. Then, we have ¥ =3, o7 (\2.Q) - #g p where L | 7

and for any Az.Q € S(F), {Q{P/z} | #5 p}. The last rule used in the derivation of
0+ M <H N has to be (How3), thus we get 0 L <H R, 0P <H Sand) - RS <N
as additional hypothesis. If we apply the induction hypothesis on L |} .% and 0 - L < R,
we obtain that for any Y C A{X} it holds that

Jlet
F(A\e.Y) < [R](Az. <H (V) 9)

Since 7 is a finite distribution, distribution 2 = 7, o Z#(A\2.Q) - Hg p is a sum
of finitely many summands. Let us assume that S(.%) = {A\z.Q1,...,\z.Q,}. From
Equation (9) we conclude

Z((J Qi) < [RI(re- 57 (Q0)),
icl icl
for every I C {1,...,n} which allows us to apply Lemma 41. Hence, for every U €

U, <H (Q;) there exist numbers 2% ... 7U:R such that:

=1~ T

Rl(\e.U) > > iR, VU € | <7 (@)
=1

i=1
FhxQ) < > Vie{l,...,n}.
UesH(Q:)
From these equations we can conclude the following

7<) =Y Y

i=1 \Ue<H(Q;) =1 UeSH(Qq)

Since Q; P U and P < S holds, by Lemma 36 we have Q;{P/z} < U{S/z}. Now,

~

by applying the 1nduct10n hypothesis on the derivations Q;{P/z} || #5, p,i € {1,...,n},
we obtain that for every X C A{X} it holds that

Jlet

2(\e.X) < Z r B ULS 2} (. SH (X))

=1 Ue<H (Qi)

<> > i [U{S/2}] (. ST (X))
=luel ! $H(@Qi)

= Z Z T [Ugs/ay] (e 7 (X))
velJr_ s# =1

- > (Z) [U{S/a}](ha. ST (X))
velJl_, (@) \i=

< > [R)(Az.U) - [U{S/x}](Az. 7 (X))
velJ;_, SH(Qi)

< Y [RIOwU) - [ULS/2}](Az. S (X))
el

[RS] (. 7 (X))
< [Nz £ (57 (X))
< [N1(Az. €7 (X)).

S. Kasterovi¢ and M. Pagani XXX:27

w1 e Let M be a probabilistic sum L & P, then & = %9 + %5’ where L || % and P || &.
1012 The last used rule in the derivation of § = M <H N has to be (How4) and we have
1013 that for some R, S € A%y,et, PFL<HROFP<HSandDF R®S < N hold as
1014 additional hypothesis. If we apply the induction hypothesis on L || .% and 0 - L < R,
1015 we obtain that for any X C A{Xl}et, F(A\r.X) < [R](Mz. $# (X)) holds. Similarly, if
1016 we apply the induction hypothesis on P || & and § - P <H S, we obtain that for
o any X C ADL L #02.X) < [S](. <7 (X)). Since, 0 F R® S < N, it holds that
1018 [R® S](A\x. < <H (X)) < [N](Az. < (X)). From Lemma 5 and previously concluded

1010 statements we obtain the following:

1
1020 PNz X) = 59()\.%‘)() + %@@()\CCX)
1 1
< S[RIOw. £ (X)) + S [S](. ST (X))
1022 = [[R@ S]]()\l’ gH (X))
1023 < [N](e. 7 (X)).
s e Let us now consider the case where M = (letz = Lin P). Then, we have 9 =

102 >egZ (A2.Q) - Hg, p where L |} F and for any \x.Q € S(F), {P{\2z.Q/z} | Hg p}.
1027 The last rule used in the derivation of () - M <H N has to be (Howb), thus we get
1028 PFL<HR x+-P<H Sand) (let x = Rin S) < N as additional hypothesis. By

1029 applying the induction hypothesis on L |} .% and () - L <# R, we obtain that
F(\z.Y) < [R](\x. ST (Y)), (10)
1031 holds for any Y C Agl}et Z is a finite distribution, hence the distribution ¥ =

1032 Y e 0 F(Az.Q) - Hp,p is a sum of finitely many summands. Let the support of .# be
1033 the set S(F) = {\z.Q1, ..., \x.Q,}. Equation (10) implies that for every I C {1,...,n}
1034 the following holds

1035 ﬁ(U Az.Q;) < [[R]](U Ax. ,SH (@Q)).
i€l i€l

1036 This allows us to apply Lemma 41. Thus, for every U € J;_, < (Q;) there exist

~

1037 numbers rlU’R, <o, 7Y R such that:

1038 [[R]]()\(EU) > ZTZU’R, YU € U gH (Qz),
i=1 i=1
1039
1040 y()\.'L‘Qz) < Z TZU’R, Vi € {1,...,n}.
UesH(Qi)
1001 Now, we can conclude the following
1042 9 < Z Z TiU’R ‘%ﬂQl p= Z Z T’U"R . %th.
i=1 \Ue<H(Q;) =1 Ue<H(Q;)

1043 Since Q; < U holds and <! is compatible by Lemma 33 , Az.Q; < A\z.U holds. By
1004 applying Lemma 36 on P SH S and the latter we get P{\z.Q;/z} <H S{\z.U/x}. If we
1045 apply the induction hypothesis on the derivations P{\z.Q;/z} || 5, p, i € {1,...,n},

1046 we obtain that for every X C A{X} it holds that

Jlet

1047 .@()\.TX) S [[N}]()\Jj SH (X))

FSCD 2019

XXX:28 Ag with let-in operator

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1081

1082

1083

1084

1085

1086

1087

1088

This concludes the proof. |

Proof of Lemma 17.

The proof that similarity is a precongruence consists of two steps: the first step is to
show that the relation (<)t is a precongruence and the second one is to show that it
coincide with relation <. Since < is a preorder, then by Lemma 39, relation (<H)7T is
also a preorder. Relation < is reflexive, hence by Lemma 33 we have <# is compatible.
Furthermore, Lemma 37 ensures that (<)% is also compatible. So, we can conclude
that (<H)* is a precongruence. Next, we want to show that <= (<H)T. From the
construction of Howe’s lifting < and its transitive closure (<H)7 it follows that <C (<H)*.
It remains to show the inclusion (<#)+ C<. We show that (SH)T is included in some
probabilistic simulation R, thus it is also included in the largest one, <. The relation we
consider is R = {(M,N): M (SH)* NYU{(va.M,vz.N): M (SH)* N}. It is obvious
that (SH)* C R, so it only remains to show that R is a probabilistic simulation. Relation
(<H)* is closed under term-substitution (by Lemma 36 and Lemma 38), hence it is enough
to consider only closed terms and distinguished values. Since (<H)* is a preorder relation
(reflexive and transitive), it is easy to see R is also a preorder. We show the following two
points:

1. If M (SH)* N, then for every X C Ag’l}et it holds that

P(M,r,vx.X) < P(N,7,R(vz.X)).

2. If M (<H)* N, then for every L € A%Jet and for every X C Aé;it,

Pva.M,L,X) < P(ve.N,L, R(X)).

The first point we prove by induction on the derivation of M (<#)* N. We look at the
last rule used. Let us start with the base case where (TC1) is the last rule used. Then, we
have M <# N holds by hypothesis. By Key Lemma we conclude the following:

PM,r,ve.X) = [M](Ax.X)
< [N](z. 57 (X))
< [N] (. (S7) (X))
< [N](R(vz.X))
= P(N,7,R(va.X)).

Next, we consider the case where (TC2) is the last rule used and we have that for some
Pe A?&,et, M (<H)Y* Pand P (SH)™ N hold. By induction hypothesis on both of them,
we obtain:

PM,7,X) < P(P,7,R(X)),
P(P,7,R(X)) < P(N,7, R(R(X))).

It is easy to show that R(R(X)) C R(X), thus we can conclude
P(M,7,X) < P(N,7,R(X)).

This concludes the proof of the first point.
If M (SHYY Nand L € A%’let, then because of the fact that (<)* closed under term-
substitution, we have that M{L/x} (<H)+* N{L/z} holds. As a consequence, we have that

1089

1090

1091

1092
1093

1094

1095

1096

1097

1098

1099

S. Kasterovi¢ and M. Pagani

whenever M{L/x} € X, then N{L/x} € (<)*(X) and it holds that

PlvzM,L,X)=1
= P(vz.N, L, (SJH)+(X))
= P(vax.N,L,R(X)).

On the other hand, if M{L/z} ¢ X, then P(ve.M,L,X)=0< P(ve.N,L,R(X
To prove that bisimilarity is a congruence we need to prove that ~ is an equivalence
relation, which is compatible. Relation ~ is an equivalence relation by its definition. Since
we know that ~=< N < holds, from the fact that similarity is a precongruence it follows

that ~ is also compatible. This concludes the proof.

))-

<

XXX:29

FSCD 2019

	Introduction
	Preliminaries
	Probabilistic Lambda Calculus ,let
	Context Equivalence

	Probabilistic Applicative Bisimulation
	Full Abstraction
	Every Test has an Equivalent Context

	Conclusion
	Appendix - Proofs
	Context Equivalence is a congruence
	Bisimulation Equivalence is a congruence

