
Solvability in Resource Lambda-Calculus?

Michele Pagani and Simona Ronchi della Rocca

Dipartimento di Informatica – Università di Torino
C.so Svizzera 185 – 10149 Torino (IT)

{pagani,ronchi}@di.unito.it

Abstract. The resource calculus is an extension of the λ-calculus allow-
ing to model resource consumption. Namely, the argument of a function
comes as a finite multiset of resources, which in turn can be either linear
or reusable, giving rise to non-deterministic choices, expressed by a for-
mal sum. Using the λ-calculus terminology, we call solvable a term that
can interact with the environment: solvable terms represent meaningful
programs. Because of the non-determinism, different definitions of solv-
ability are possible in the resource calculus. Here we study the optimistic
(angelical, or may) notion, and so we define a term solvable whenever
there is a simple head context reducing the term into a sum where at
least one addend is the identity. We give a syntactical, operational and
logical characterization of this kind of solvability.

1 Introduction

The resource calculus (Λr) is an extension of the λ-calculus allowing to model
resource consumption. Namely, the argument of a function comes as a finite mul-
tiset of resources, which in turn can be either linear or reusable. A linear resource
needs to be used exactly once, while a reusable one can be called ad libitum. In
this setting the evaluation of a function applied to a multiset of resources gives
rise to different possible choices, because of the different possibilities of distribut-
ing the resources among the occurrences of the formal parameter. So the calculus
is not deterministic, but no internal choice is performed actually, the result being
a formal sum of all the possible cases. In case of a multiset of linear resources,
also a notion of crash arises, whenever the cardinality of the multiset does not
fit exactly the number of occurrences. Then the resource calculus is a useful
framework for studying the notions of linearity and non-determinism, and the
relation between them.

Λr is an evolution of the calculus of multiplicities, this last introduced by
Boudol in order to study the semantics of the lazy λ-calculus [1]. Ehrhard and
Regnier designed the differential λ-calculus [2], drawing on insights gained from
an analysis of some denotational models of linear logic. As the authors remarked
the differential λ-calculus seemed quite similar to Boudol’s calculus of multiplic-
ities. Indeed this was formalized by Tranquilli, which defined the Λr syntax, and
? Partially founded by the Italian MIUR project CONCERTO, and the French ANR

projet blanc CHOCO, ANR-07-BLAN-0324.

2 Michele Pagani and Simona Ronchi della Rocca

showed a Curry-Howard correspondence between this calculus and Ehrhard and
Regnier’s differential nets [3]. The main differences between Boudol’s calculus
and Λr are that the former is equipped with explicit substitution and lazy oper-
ational semantics, while the latter is a true extension of the classical λ-calculus.

One way to appreciate the resource calculus is by observing the various sub-
calculi it contains. Clearly, usual λ-calculus can be embedded into Λr translating
the application MN into M [N !], where [N !] represents the multiset containing
one copy of the resource N , which is reusable (see the grammar of Figure 1(a)).
Forbidding linear terms but allowing non-empty finite multisets of reusable terms
yields a purely non-deterministic extension of λ-calculus, which recalls de Liguoro
and Piperno’s λ⊕-calculus [4]. On the other side, allowing only multisets of linear
terms gives the linear fragment of Λr, used by Ehrhard and Regnier for giving a
quantitative account to λ-calculus β-reduction through Taylor expansion [5, 6].

The aim of this paper is to study the operational behaviour of the full resource
calculus. It has been already proved that it enjoys the properties of confluence
and a sort of standardization [7]. In particular confluence does not clash with
non-determinism since the sum carries all the possibilities. Here we study the
solvability property. Namely, following the λ-calculus terminology, we use the
word solvable in order to denote a term that can interact operationally with the
environment, i.e., that can produce a given output when inserted into a context
supplying it with suitable resources. According to this definition, in a computer
science setting the solvable terms represent the meaningful programs.

Let us recall that in the λ-calculus a term M is defined to be solvable if
and only if there is a context C(·) (of a non constant behaviour) such that
C(M) reduces to the identity. λ-solvability has been completely characterized, by
different points of view. Syntactically a term is solvable if and only if it reduces to
a head-normal form [8], operationally if and only if the head reduction strategy
applied to it eventually stops [8], logically if and only if it can be typed in a
suitable intersection type assignment system [9], denotationally if and only if its
denotation is not minimal in a suitable sensible model [10, 11]. Our aim is to
characterize the notion of solvability in Λr following the same lines.

The first problem we meet is the definition of solvability in Λr. In this paper
we decided to follow an optimistic (angelical, or may) approach, and so we define
a term to be solvable whenever there is a context, of a non constant behaviour,
that, when filled by the term, reduces to a sum of terms, at least one of these
being the identity. Other possible definitions of solvability (on which we are
currently working) are discussed in the conclusion of the paper.

Our result is a characterization of solvability in Λr from a syntactical, oper-
ational and logical point of view (Theorem 19). It turns out that an extended
notion of head-normal form can be defined, such that a term is solvable if and
only if it can reduce to a term of such form. From an operational point of view,
we use the notion of outer-reduction strategy, defined in [7], where no reduction
is made inside reusable resources, and we prove that in order to reach the head-
normal form we can restrict ourselves to use just reduction strategies of this
kind. Moreover we give also a logical characterization of solvability, through a

Solvability in Resource Lambda-Calculus 3

Λr: M,N,L ::= x | λx.M |MP terms

Λ(!): M (!), N (!) ::= M |M ! resources

Λb: P,Q,R ::= [M
(!)
1 , . . . ,M

(!)
n] bags

Λ(b): A,B ::= M | P expressions

M,N ∈ N〈Λr〉 P,Q ∈ N〈Λb〉 A,B ∈ N〈Λ(b)〉 := N〈Λr〉 ∪ N〈Λb〉 sums

(a) Grammar of terms, bags, expressions, sums.

λx.(
P

i Mi) :=
P

i λx.Mi (
P

i Mi)P :=
P

i MiP M(
P

i Pi) :=
P

i MPi

[(
P

i Mi)]·P :=
P

i[M]i ·P [(
P

i Mi)
!]·P := [M !

1, . . . ,M
!
k]·P

(b) Notation on N〈Λ(b)〉.

Fig. 1: Syntax of resource calculus. The symbol N denotes the set of natural numbers,
N〈Λr〉 (resp. N〈Λb〉) denotes the set of finite formal sums of terms (resp. bags), with
0 referring to the neutral element.

type assignment system, assigning to terms suitable non-idempotent intersection
types. All these characterizations are conservative with respect to the λ-calculus.

The type assignment system we define is strongly related to the relational
semantics of linear logic. It can be seen, basically, as an extension to Λr of the
type system introduced by de Carvalho in the restricted case of λ-calculus [12].
We plan to continue our investigation in the direction of giving a clear setting
where our type assignment can be presented as a logical description of a de-
notational model for the resource calculus, where all the unsolvable terms are
equated. Indeed such a goal seems to us non immediate, since a quantitative
account of resources does not fit well with the contextual closure of the interpre-
tation function. For a discussion about this point see [12]. A possible solution
might be achieved following the ideas in [13].

The paper is organized as follows. Section 2 contains a syntactical description
of the resource calculus. Section 3 is dedicated to the definition of solvability
and of head-normal form. In Section 4 the intersection type assignment system
is presented and its properties are stated. In Section 5 there is the proof of
the main theorem, showing all the characterizations of solvability. In Section 6
alternative notions of solvability are discussed.

2 Resource Calculus

Syntax. Basically, we have three syntactical sorts: terms, that are in functional
position, bags, that are in argument position and represent multisets of resources,
and finite formal sums, that represent the possible results of a computation.
Precisely, Figure 1(a) gives the grammar for generating the set Λr of terms and
the set Λb of bags (which are in fact finite multisets of resources Λ(!)) together

4 Michele Pagani and Simona Ronchi della Rocca

y〈N/x〉 :=

8<:N if y = x,

0 otherwise,

[M]〈N/x〉 := [M〈N/x〉],

[M !]〈N/x〉 := [M〈N/x〉,M !],

(λy.M)〈N/x〉 := λy.(M〈N/x〉),

(MP)〈N/x〉 := M〈N/x〉P +M(P 〈N/x〉),

1〈N/x〉 := 0,

(P ·R)〈N/x〉 := P 〈N/x〉·R+ P ·R〈N/x〉.

Fig. 2: Linear substitution, in the abstraction case we suppose y /∈ FV(N) ∪ {x}.

with their typical metavariables. A resource can be linear (it must be used exactly
once) or not (it can be used ad libitum), in the last case it is written with a !
apex. Bags are multisets presented in multiplicative notation, so that P ·Q is the
multiset union, and 1 = [] is the empty bag. It must be noted though that we
will never omit the dot ·, to avoid confusion with application. An expression
(whose set is denoted by Λ(b)) is either a term or a bag. Though in practice only
sums of terms are needed, for the sake of the proofs we also introduce sums
of bags. In writing N〈Λ(b)〉 we are abusing the notation, as it does not denote
the N -module generated over Λ(b) = Λr ∪ Λb but rather the union of the two
N -modules. This amounts to say that sums may be taken only in the same sort.

The grammar for terms and bags does not include sums in any point, so that
in a sense they may arise only on the “surface”. However as an inductive notation
(and not in the actual syntax) we extend all the constructors to sums as shown
in Figure 1(b). In fact all constructors but the (·)! are, as expected, linear. Notice
the similarity between the equation [(M + N)!] = [M !]·[N !] and ex+y = ex ·ey:
this is far from a coincidence, as Taylor expansion and linear logic semantics
show well [6]. We adopt the usual λ-calculus conventions as in [8]. Also we use
the following notation for terms useful to build examples:

I := λx.x , F := λxy.y , ∆ := λx.x[x!] , Ω := ∆[∆!] .

There is no technical difficulty in defining α-equivalence and the set FV(A)
of free variables as in ordinary λ-calculus. Due to the presence of two kinds of
resources, we need two different notions of substitutions, so to capture both the
linear and non linear behaviour. Moreover we define also a resource substitution,
which is expressed in function of the first two, useful for defining the reduction.

Definition 1 (Substitutions). We define the following substitution operations.

1. A {N/x} is the usual λ-calculus (i.e. capture free) substitution of N for x. It
is extended to sums as in A {N/x} by linearity in A1 and using the notations
of Figure 1(b) for N. The form A {x+N/x} is called partial substitution.

2. A〈N/x〉 is the linear substitution defined inductively in Figure 2. It is
extended to A〈N/x〉 by bilinearity in both A and N.

1 F (A) (resp. F (A,B)) is extended by linearity (resp. bilinearity) by setting
F
`P

i Ai

´
=
P

i F (Ai) (resp. F
`P

i Ai,
P

j Bj

´
=
P

i,j F (Ai, Bj)).

Solvability in Resource Lambda-Calculus 5

3. Resource substitution A〈〈N (!)/x〉〉 is the disjoint union of the partial and
linear substitutions, i.e. A〈〈N/x〉〉 := A〈N/x〉 and A〈〈N !/x〉〉 := A {N + x/x}.

Roughly speaking, the linear substitution corresponds to the replacement of the
resource to exactly one linear occurrence of the variable. In the presence of mul-
tiple occurrences, all the possible choices are made, and the result is the sum
of them. For example (y[x][x])〈M/x〉 = y[M][x] + y[x][M]. Indeed linear sub-
stitution bears resemblance to differentiation, as it is in Ehrhard and Regnier’s
differential λ-calculus [2]. We refer to [3, 14] for the mathematical intuitions
underlying the resource calculus. The following are examples with sums

(x[x!])〈M+N/x〉 = (x[x!])〈M/x〉+ (x[x!])〈N/x〉
= M [x!] + x[M,x!] +N [x!] + x[N, x!],

(x[x!]) {M +N/x}= (M +N)[(M +N)!] = M [M !, N !] +N [M !, N !].

Substitutions commute as stated in the following.

Lemma 2 ([2, 3, 14]). For A a sum of expressions, M,N sums of terms and
x, y variables such that y /∈ FV(M) ∪ FV(N), we have(

A〈N/y〉
)
〈M/x〉 =

(
A〈M/x〉

)
〈N/y〉+ A〈N〈M/x〉/y〉(

A {y + N/y}
)
〈M/x〉 =

(
A〈M/x〉

)
{y + N/y}+ A〈N〈M/x〉/y〉 {y + N/y} .

In particular if x /∈ FV(N) then the second addend of both sums is 0 and the two
substitutions commute.

Furthermore we have, if x /∈ FV(M) ∪ FV(N),

(A {x+ M/x}) {x+ N/x} = A {x+ M + N/x} = (A {x+ N/x}) {x+ M/x} .

Reductions. A (monic) context C(·) is a term that uses a distinguished free
variable called its hole exactly once. Formally, the set of simple contexts is
given by the following grammar

Λ(·) : C(·), D(·) ::= (·) | λx.C(·) | C(·)P |M [C(·)]·P |M [(C(·))!]·P

A context C(·) is a simple context in Λ(·) summed to any sum in N〈Λr〉. The
expression C(M) denotes the result of blindly replacing M to the hole (allow-
ing variable capture) in C(·). We generalize to sums applying the notations of
Figure 1(b). For example C(·) := λx.y[(·)!] and D(·) := λx.y[(·)] are simple
contexts. If M = x+ y, then C(M) = λx.y[x!, y!] and D(M) = λx.y[x] + λx.y[y].

A relation r in Λr×N〈Λr〉 is extended to one in N〈Λr〉×N〈Λr〉 by context
closure2 by setting: M r̃ N iff ∃C(·) and M ′ r N′ s.t. M = C(M ′),N = C(N′).
2 In [3, 14] bag contexts are defined too, so that context closure extends a relation to
N〈Λ(b)〉 × N〈Λ(b)〉. In fact we prefer to introduce the term contexts only, making
clear that the set N〈Λr〉 is the actual protagonist of the calculus. However our choice
is a matter of taste, affecting no main property of the calculus.

6 Michele Pagani and Simona Ronchi della Rocca

(λx.x[∆!])[∆!, I] (λx.(∆ + x)[∆!])[I] (λx.x[∆!])[I] (λx.I[∆!])1

I[∆!] (λx.∆)1

∆

b b b

b
b

b

g

g

Fig. 3: An example of baby- and giant-step reductions. We use the notation of Fig.
1(b): after the first b-step the term (λx.(∆ + x)[∆!])[I] stands for (λx.∆[∆!])[I] +
(λx.x[∆!])[I], and the term after the following step is equal to 0+(λx.x[∆!])[I]. In fact

0 is the neutral element of the sum and (λx.∆[∆!])[I] b→ 0.

A context is linear if its hole is not under the scope of a ()! operator. Linear
contexts can be defined inductively omitting the M [(C(·))!]·P generation rule in
the simple context definition. A head context is a context having the hole not
in a bag. Head contexts can be defined inductively omitting the rules M [C(·)]·P
and M [(C(·)!)]·P in the simple context definition. Notice that the composition
C(D(·)) of two head (resp. linear) contexts C(·), D(·) is head (resp. linear).

We introduce two kinds of reduction rule, baby-step and giant-step reduction,
the former being a decomposition of the latter. Both are meaningful: baby-step
is more atomic, performing one substitution at a time, while the giant-step is
closer to λ-calculus β-reduction, wholly consuming its redex in one shot.

Definition 3 ([3, 14]). The baby-step reduction b→ is defined by the context
closure of the following relation (supposing x not free in N):

(λx.M)1 b→M {0/x} (λx.M)[N]·P b→ (λx.M〈N/x〉)P

(λx.M)[N !]·P b→ (λx.M {N + x/x})P

The giant-step reduction
g→ is defined by the context closure of the following

relation, for n ≥ 0: (λx.M)[N (!)
1 , . . . , N

(!)
n]

g→M〈〈N (!)
1 /x〉〉 . . . 〈〈N (!)

n /x〉〉 {0/x}.
For any reduction x→, we denote by x+→ and x∗→ its transitive and reflexive-

transitive closure respectively.

Notice that giant-step reduction is defined independently of the ordering of the
resource substitutions, as shown by the substitution commutations stated above.
Baby-step and giant-step reductions are clearly related each other.

Proposition 4 ([3, 14]). We have
g→ ⊂ b∗→ ⊂ g∗→ g∗←, where the last denotes the

composition between
g∗→ and its inverse

g∗←.

Figure 3 shows an example of baby-step and giant-step reduction sequences.
The reader can check, in this example, that the two reductions are related as
stated in Proposition 4. By the way, let us mention that although giving the
same normal forms, baby-step and giant-step reductions might have different

Solvability in Resource Lambda-Calculus 7

properties: for example, the starting term in the Figure 3 is strongly normalizing
for giant-step but only weakly normalizing for baby-step reduction (an infinite
reduction sequence can be obtained by firing the ∆[∆!] redex in the first addend
of (λx.(∆ + x)[∆!])[I]).

3 Solvability

Using the λ-calculus terminology, we will call solvable the terms representing
meaningful programs, i.e., the ones that can interact with the environment. Let
us recall that in λ-calculus a term is solvable whenever there is a head con-
text reducing it to the identity [8]. In resource calculus terms appear in formal
sums, where repetitions do matter, hence various notions of solvability can arise,
depending on the number of times one gets the identity. This paper deals exten-
sively with the weakest notion of solvability, which asks that a term is solvable
whenever a suitable context filled with it reduces to a sum, where at least one
addend is the identity. This notion is related in some sense to a may-semantics
of Λr, which arises naturally because of the definition of 0 as the neutral element
of the sum. However different notions of solvability could be proposed, and we
will discuss them in Section 6.

Definition 5. A term M is solvable whenever there are a head simple context
C(·) and a sum of terms N, possibly 0, such that C(M)

g∗−→ I + N.

The above definition considers giant-step reduction, however one can replace it
with baby-step reduction, obtaining an equivalent notion of solvability, as easily
argued from Proposition 4. Instead, it is crucial the restriction to simple and head
contexts: there are general contexts reducing constantly to I, disregarding the
term they are applied to. For example consider the head but non-simple context
I+ (·)[I1] or the simple but non-head context (λx.I)[(·)!]: we have C(M)

g−→ I for
every term M .

One major outcome of this paper is the characterization of solvability by
means of the following notion of head-normalizability (see Theorem 19).

Definition 6. A term is a head-normal form, hnf for short, if it has no redex
but under the scope of a ()!. The set of hnf can be defined inductively as follows.

λx.M is hnf if M is hnf,
xP1 . . . Pp is hnf if p ≥ 0 and ∀i ≤ p, every linear resource in Pi is a hnf.

A sum M of terms is a head-normal form whenever it contains an addend in
head-normal form. A term M is head-normalizable iff it is reducible to a hnf.

Notice that for the resource terms corresponding to λ-terms these notions coin-
cide with the usual ones.

The term λx.y1[x!,Ω!] is a hnf, and it is solvable via (λy.(·))[F]: indeed,
(λy.(λx.y1[x!,Ω!]))[F]

g→ λx.F1[x!,Ω!]
g→ λx.I[x!,Ω!]

g→ I + λx.Ω. The terms

8 Michele Pagani and Simona Ronchi della Rocca

x : σ ` x : σ
v

` 1 : ω
1

Γ ` A : π, B 6= 0

Γ ` A+ B : π
⊕

Γ, x : σ1, . . . , x : σn `M : τ, x 6∈ d(Γ)

Γ ` λx.M : σ1 ∧ . . . ∧ σn → τ
→In

Γ `M : π → τ ∆ ` P : π
Γ,∆ `MP : τ

→E

Γ `M : σ ∆ ` P : π
Γ,∆ ` [M]·P : σ ∧ π

`
Γi `M : σi, for 1 ≤ i ≤ n ∆ ` P : π

Γ1, . . . , Γn,∆ ` [M !]·P : σ1 ∧ ... ∧ σn ∧ π
!n

Fig. 4: The type assignment system `. The rules →In and !n are parametrized by a
natural number n, their 0-ary versions →I0 and !0 yield ω → τ and π respectively.

F[x!,Ω!], I[x!,Ω!] are not hnf but both are head-normalizable (the former re-
ducing to I, the latter to x+ Ω); both are clearly solvable, also. The terms F[x]
or I[Ω!] are not head-normalizable: they reduce to 0 and Ω, respectively. The
notion of head-reduction is extended in this non-deterministic setting as follows.

Definition 7 ([7]). Let ε ∈ {b, g}. The outer ε-reduction oε−→ is the closure
to linear contexts of the ε steps given in Definition 3.

4 An Intersection Type Assignment System

In this section we present an intersection type system assigning types to all and
only the expressions having head-normal form (Theorem 19). This system lacks
idempotency (σ∧σ 6= σ): in fact we use the intersection as logical counterpart of
the multiset union. The system has some similarities with that one in [15], which
supplies a logical semantics of the language in [1]. The main logical difference
between the two systems is that the one in [15] is affine and describes a lazy oper-
ational semantics. In the restricted setting of λ-calculus similar non-idempotent
systems have been considered starting from [16], e.g. [17, 18, 19, 12].

Definition 8. The set of types is the union of the set of linear types and that
of intersection types, given by the following grammars

σ, τ ::= a | π → σ linear types
π, ζ ::= σ | ω | π ∧ ζ intersection types

where the variable a varies on an infinite set of atoms and ω is a constant. We
consider types modulo the equivalence ∼ generated by the following rules:

π ∧ ζ ∼ ζ ∧ π, π ∧ ω ∼ π, π1 ∧ (π2 ∧ π3) ∼ (π1 ∧ π2) ∧ π3.

The last two rules allow us to consider n-ary intersections σ1 ∧ . . .∧ σn, for any
n ∈ N , ω being the 0-ary intersection.

A basis is a finite multiset of assignments of the shape x : σ, where x is a
variable and σ is a linear type. Capital Greek letters Γ , ∆ range over bases. We

Solvability in Resource Lambda-Calculus 9

denote by d(Γ) the set of variables occurring in Γ and by Γ,∆ the multiset union
between the bases Γ and ∆. A typing judgement is a sequent Γ ` A : π.

The ` type assignment system derivates typing judgements for N〈Λ(b)〉. Its
rules are defined in Figure 4. Capital Greek letters Φ, Ψ range over derivations,
Φ :: Γ ` A : π denoting a derivation Φ with conclusion Γ ` A : π.

Rule ⊕ assigns to a sum the type of one of its addends, and it reflects the
may-semantics we chose. The condition B 6= 0 is not necessary for characterizing
head-normalizable terms, but it is useful to avoid redundant applications of ⊕. In
the rule !n the parameter n takes into account the number of times the reusable
resource M ! will be called, whereas the rule ` assigns just one type to the linear
resource M . Note that any bag containing only reusable resources can be typed
by ω using the rules 1 and !0. All other rules are almost standard.

Let us recall that types are modulo the equivalence ∼, which means that all
the rules of Figure 4 must be considered closed under the ∼.

Definition 9. The measure of a derivation Φ is the number m(Φ) of axioms
(i.e. v and 1 rules) in Φ. The measure m(A) of a sum of expressions A is

m(A) := inf{m(Φ) ; Φ :: Γ ` A : π, for Γ a basis and π a type}.

The following lemmata (Lemma 10-14) state basically that the typing system
behaves well with respect to the substitutions of resource calculus. They are
needed to prove Proposition 15: typing judgements are invariant under baby
and giant-step reductions.

Lemma 10 (Linear Substitution). Let Φ :: Γ, x : τ ` A : π and Ψ :: ∆ `
N : τ . There is a derivation L(Φ, Ψ) :: Γ,∆ ` A〈N/x〉 : π with m(L(Φ, Ψ)) =
m(Φ) + m(Ψ)− 1.

Proof (Sketch). By induction on Φ, splitting depending on its last rule. We treat
in detail only the case of a terminal !n rule. The base of induction is trivial: v
is immediate, while 1 does not meet the condition of having x : τ in the basis.
The cases →In, ⊕ are immediate consequences of the induction hypothesis, the
cases →E, ` are easier variant of the !n case. So let us assume

Φ :=

.... Φi
Γi `M : σi, for 1 ≤ i ≤ n

.... ΦP
ΓP ` P : ζ

Γ1, . . . , Γn, ΓP ` [M !]·P : σ1 ∧ . . . ∧ σn ∧ ζ
!n

We suppose the underlined hypothesis x : τ is in Γ1, i.e. Γ1 = Γ ′1, x : τ (the case
x : τ is in another Γi or in ΓP being an easy variant). Notice that supposing
x : τ in Γ1 entails n ≥ 1. By induction there is L(Φ1, Ψ) :: Γ ′1, ∆ `M〈N/x〉 : σ1

s.t. m(L(Φ1, Ψ)) = m(Φ1) + m(Ψ) − 1. Let M〈N/x〉 =
∑k
j=1 Lj . In order to

be typable M〈N/x〉 must have an addend (i.e. k > 0), say L1, and a proof
Φ′1 :: Γ ′1, ∆ ` L1 : σ1 s.t. m(Φ′1) = m(L(Φ1, Ψ)). We define

L(Φ, Ψ) :=

.... Φ
′
1

Γ ′1, ∆ ` L1 : σ1

.... Φi
Γi `M : σi, for 2 ≤ i ≤ n

.... ΦP
ΓP ` P : ζ

Γ2, . . . , Γn, ΓP ` [M !]·P : σ2 ∧ . . . ∧ σn ∧ ζ
!n−1

Γ ′1, ∆, Γ2, ..., Γn, ΓP ` [L1,M
!]·P : σ1 ∧ ... ∧ σn ∧ ζ

`

Γ ′1, ∆, Γ2, . . . , Γn, ΓP `
∑k
j=1[Lj ,M !]·P : σ1 ∧ ... ∧ σn ∧ ζ

⊕

10 Michele Pagani and Simona Ronchi della Rocca

where by definition [M〈N/x〉,M !] ·P =
∑k
j=1[Lj ,M !] ·P , and if k = 1 the last

⊕ rule is omitted. Moreover, m(L(Φ, Ψ)) = m(Φ′1) + m(ΦP) +
∑n
i=2 m(Φi) =

m(L(Φ1, Ψ))+m(ΦP)+
∑n
i=2 m(Φi) = m(Φ1)+m(Ψ)−1+m(ΦP)+

∑n
i=2 m(Φi) =

m(Φ) + m(Ψ)− 1. ut

Lemma 11 (Linear Expansion). Let Φ :: Γ ` A〈N/x〉 : π. There are a linear
type τ and derivations Φ1 :: Γ1, x : τ ` A : π and Φ2 :: Γ2 ` N : τ with
Γ = Γ1, Γ2.

Proof (Sketch). By structural induction on A, splitting depending on the top
level constructor. We detail the case A = [M !] ·P , the other cases being easy
variants. If A〈N/x〉 = [M〈N/x〉,M !]·P + [M !]·P 〈N/x〉, then Φ types only one
addend of the sum A〈N/x〉 through a ⊕ rule. Let us suppose this addend is
in [M〈N/x〉,M !] ·P (the case it is in [M !] ·P 〈N/x〉 being easier), so being of
the form [M ′,M !] ·P , with M〈N/x〉 = M ′ + M. By inspecting the rules in
Figure 4 one can deduce from Φ a derivation Φ

1
:: Γ 1 `M ′ : σ and a derivation

Φ
2

:: Γ 2 ` [M !] ·P : π s.t. Γ = Γ 1, Γ 2, π = σ ∧ π and Φ
2

ends in a !n rule
with n premises typing M and one premise typing P . Possibly applying one
⊕ rule to Φ

1
we get a derivation of Γ 1 ` M〈N/x〉 : σ, hence by induction

hypothesis we have Φ
1

1 :: Γ 1
1 , x : τ `M : σ and Φ

1

2 :: Γ 1
2 ` N : τ . Then we define

Φ1 :: Γ1, x : τ ` [M !]·P : π as a !n+1 rule with premise Φ
1

1 plus the premises of
the !n rule ending Φ

2
, and Φ2 as Φ

1

2. ut

Lemma 12 (Partial Substitution). Let m ≥ 0, Φ :: Γ, x : σ1, . . . , x : σm ` A :
π and ∀i ≤ m, Ψi :: ∆i ` N : σi with ∆ = ∆1, . . . ,∆m. There is P(Φ, Ψi≤m) ::
Γ,∆ ` A {(N + x)/x} : π with m(P(Φ, Ψi≤m)) = m(Φ)−m+

∑m
i=1 m(Ψi).

Proof (Sketch). Like in the proof of Linear Substitution (Lemma 10) we do
induction on Φ, splitting depending on its last rule. We detail only the case of a
terminal !n rule, the other cases being immediate or easier variants. So let

Φ :=

.... Φj
Γj , Γ

x
j `M : τj , for 1 ≤ j ≤ n

.... Φn+1

Γn+1, Γ
x
n+1 ` P : ζ

Γ, x : σ1, . . . , x : σm ` [M !]·P : τ1 ∧ . . . ∧ τn ∧ ζ
!n

where Γ = Γ1, . . . , Γn+1 and x : σ1, . . . , x : σm = Γ x1 , . . . , Γ
x
n+1. Notice m(Φ) =∑n+1

j=1 m(Φj). For every j ≤ n+1, let Ij be the set of i ≤ m s.t. x : σi is in Γ xj , mj

being the cardinality of Ij , possibly 0. Notice m =
∑n+1
j=1 m

j . Let ∆Ij be the mul-
tiset union of the ∆i bases with i ∈ Ij .We apply the induction hypothesis to each
pair Φj and Ψi∈Ij , getting a derivation P(Φj , Ψi∈Ij) :: Γj , ∆Ij ` M {N + x/x} :
τj for every j ≤ n, and P(Φn+1, ΨIn+1) :: Γn+1, ∆In+1 ` P {N + x/x} : ζ, such
that m(P(Φj , Ψi∈Ij)) = m(Φj)−mj +

∑
i∈Ij m(Ψi) for every j ≤ n+ 1.

As always, M {N + x/x} (resp. P {N + x/x}) is in general a sum
∑k
h=1Mh

(resp. P). Let us suppose k ≥ 2, the case k = 0 not holding since M {N + x/x}
is typed and the case k = 1 being immediate. By inspecting the rules of Figure 4,
we obtain a function f : {0, . . . , n − 1} → {0, . . . , k − 1}, an addend P ′ in P,

Solvability in Resource Lambda-Calculus 11

and a family of derivations Φ′j :: Γj , ∆Ij ` Mf(j) : τj for j ≤ n, and Φ′n+1 ::
Γn+1, ∆In+1∆i ` P ′ : ζ, s.t. m(P(Φj , Ψi∈Ij)) = m(Φ′j) for j ≤ n + 1. For every
h ≤ k, let Jh = f−1(h), and lh be the cardinality of Jh; for h, 0 ≤ h < k,
let π0 = ζ, πh+1 = πh ∧

∧
j∈f−1(h+1) τj , and Γ 0 = Γn+1, Γh+1 = Γh, Γf−1(h),

and ∆0 = ∆In+1 , ∆h+1 = ∆h, ∆j∈f−1(h)

i∈Ij

, where, consistency as before, Γf−1(h)

(resp. ∆j∈f−1(h)

i∈Ij

) denotes the multiset union of the Γj (resp. ∆i) bases with

j ∈ f−1(h) (resp. i ∈
⋃
j∈f−1(h) I

j). Recalling πk = τ1∧ . . .∧ τn∧ ζ = π, we have
P(Φ, Ψi≤m) :=

.... Φ
′
j

Γj , ∆Ij `Mk : τk, for j∈Jk

.... Φ
′
j

Γj , ∆Ij `M1 : τj , for j∈J1

.... Φ
′
n+1

Γn+1, ∆In+1 ` P ′ : ζ

Γ 1, ∆1 ` [M !
1]·P ′ : π1

!l1

....
Γ k−1,∆k−1 ` [M !

1, ...,M
!
k−1]·P ′ : πk−1

Γ,∆ ` [(M {N + x/x})!]·P ′ : τ1 ∧ . . . ∧ τn ∧ ζ
!lk

Γ,∆ ` [(M {N + x/x})!]·P : τ1 ∧ . . . ∧ τn ∧ ζ
⊕

We have m(P(Φ, Ψi≤m)) =
∑n+1
j=1 m(φ′j) =

∑n+1
j=1 m(P(Φj , Ψi∈Ij)) =

∑n+1
j=1

(
m(Φj)+∑

i∈Ij m(Ψi)
)
−
∑n+1
j=1 m

j = m(Φ)−m+
∑m
i=1 m(Ψi). ut

The next lemmata have proofs similar to the previous ones (by induction on A
or Φ). We omit to sketch their proofs.

Lemma 13 (Partial Expansion). Let Φ :: Γ ` A {N + x/x} : π, then there is
a number m ≥ 0, linear types τ1, . . . , τm and derivations Φ1 :: Γ1, x : τ1, . . . , x :
τm ` A : π and Ψi :: ∆i ` N : τi for i ≤ m and Γ = Γ1, ∆1, . . . ,∆m.

Lemma 14. Let x /∈ d(Γ), then for every Φ :: Γ ` A : π there is Ψ :: Γ `
A {0/x} : π with m(Φ) = m(Ψ), and vice versa.

Proposition 15. Let ε ∈ {b, g} and M ε→ M, then M and M share the same
judgements, i.e. Γ `M : τ iff Γ `M : τ . Also, M

og−→M entails m(M) > m(M).

Proof (Scketch). The proof is by structural induction on M . The induction step
splits depending on the top-level constructor of M . All cases are easy conse-
quences of the induction hypothesis, taking into account that, whenever the re-
dex is inside a reusable resource N ! (so the reduction is not outer) the measure
m may not decrease since (the bag containing) N ! may be typed by ω.

The base of induction is when M is the redex fired by the reduction M ε→M.
One can consider only the baby-step cases, the giant one will follow since it cor-
responds to a sequence of baby-steps. In particular one proves that the measure
m is monotone strictly decreasing on every baby-step but the one choosing a
bang element from the bag, in which case m is monotone decreasing. Then m
strictly decreases on giant-steps since they correspond to sequences of baby-steps
ending always in an empty bag baby-step.

The baby-step has three cases (recall Definition 3), depending on the resource
involved in the reduction. The case of the empty bag is proven using Lemma 14,

12 Michele Pagani and Simona Ronchi della Rocca

.... Ψ1

Γ1, x : τ, ~x : ~τ ` L : σ

Γ1 ` λx.L : τ ∧ ζ → σ
→In

.... Ψ2

Γ2 ` N : τ

.... Ψ3

Γ3 ` P : ζ

Γ2, Γ3 ` [N]·P : τ ∧ ζ
`

Γ ` (λx.L)[N]·P : σ
→E

(a) definition of Ψ

.... Φ1

Γ1, Γ2, ~x : ~τ ` L : σ

Γ1, Γ2 ` λx.L : ζ → σ
→In

.... Φ3

Γ3 ` P : ζ

Γ ` (λx.L)P : σ
→E

Γ ` (λx.L〈N/x〉)P : σ
⊕

(b) definition of Φ

Fig. 5: Definition of the derivations Ψ and Φ used in the proof of Proposition 15.

the case of the bag having one underlined linear resource uses Lemma 10 and 11,
and the last case of a bag having one underlined reusable resource uses Lemma 12
and 13. We detail only the linear resource case. Let M = (λx.L)[N] ·P b→
(λx.L〈N/x〉)P = M and suppose Ψ :: Γ ` (λx.L)[N] ·P : σ. By inspecting the
rules of Figure 4 we can assume Ψ to be as in Figure 5(a), where by ~x : ~τ we are
meaning x : τ1, . . . , x : τm, and ζ is τ1∧. . .∧τm (in case m = 0, ζ = ω). By Linear
Substitution (Lemma 10) we get L(Ψ1, Ψ2) :: Γ1, ~x : ~τ , Γ2 ` L〈N/x〉 : σ, with
m(L(Ψ1, Ψ2)) = m(Ψ1) + m(Ψ2)− 1. As usual, we should notice that L〈N/x〉 : σ
might not be a simple term but a sum: in that case L(Ψ1, Ψ2) ends in a ⊕ rule
with premise a derivation Φ1 :: Γ1, ~x : ~τ , Γ2 ` L : σ with L a simple term in the
sum L〈N/x〉 and m(Φ1) = m(L(Ψ1, Ψ2)). Then we define Φ as in Figure 5(b),
with Φ3 = Ψ3. We remark that m(Φ) = m(Φ1) + m(Φ3) = m(L(Ψ1, Ψ2)) +
m(Ψ3) = m(Ψ) − 1. We conclude that every type of (λx.L)[N]·P is also a type
of (λx.L〈N/x〉)P and m((λx.L)[N]·P) ≥ m((λx.L〈N/x〉)P) + 1.

Conversely, assume Φ :: Γ ` (λx.L〈N/x〉)P : σ. We can suppose Φ as in
Figure 5(b), where as above ~x : ~τ denotes the basis x : τ1, . . . , x : τm with ζ =
τ1∧ . . .∧τm, and in case L〈N/x〉 is a simple term the terminal ⊕ rule is omitted.
By possibly adding one ⊕ rule to Φ1 one get Φ1 :: Γ1, Γ2, ~x : ~τ ` L〈N/x〉 : σ.
Applying Linear Expansion (Lemma 11) we have Ψ1 :: Γ1, ~x : ~τ , x : τ ` L : σ and
Ψ2 :: Γ2 ` N : τ (where we recall x /∈ FV(N)). Then we set Ψ as in Figure 5(a).
This proves that the types of (λx.L〈N/x〉)P are also of (λx.L)[N]·P . ut

5 Main Theorem

We prove the equivalence among solvability, typability and head-normalizability
(Theorem 19). As a byproduct we achieve also an operational characterization
through the notion of outer reduction (Definition 7). In various calculi the im-
plication typable ⇒ head-normalizable is often proven using suitable notions of
computability (e.g. [20]) or reducibility candidates (e.g. [21]), whereas the im-
plication solvable⇒ head-normalizable is argued through a standardization the-
orem (e.g. [8]). Our proof is instead based on a different method, namely both
implications are easy consequences of Lemma 16, which is argued by induction
on the measure on the type derivations given in Definition 9. In the λ-calculus
setting, a similar approach can be found in [22]. More in general, the idea of
measuring quantitative properties of terms using non-idempotent intersection
types can be found also in [12, 23].

Solvability in Resource Lambda-Calculus 13

Lemma 16. Let M be a resource term and C(·) be a simple head context. If
C(M) is typable, then M is reducible to a hnf by outer reduction.

Proof. We do induction on m
(
C(M)

)
, which is a finite number, being C(M)

typable. If M is a hnf we are done. Otherwise it has an outer redex, so let
M

og−→M. Since C(·) is a head context, every outer redex of M is outer in C(M),
hence we have C(M)

og−→ C(M). By Proposition 15 m
(
C(M)

)
> m

(
C(M)

)
. Let

M = M ′ + M′′ be such that m
(
C(M ′)

)
= m

(
C(M)

)
: the fact that M ′ exists is

due to C(·) being simple, as every addend in C(M) is obtained by plugging an
addend of M in C(·). By induction hypothesis M ′ is outer reducible to a hnf L.
We conclude by context closure: M

og−→M ′ + M′′ og∗−−→ L + M′′. ut

Lemma 17. Every term in head-normal form is solvable.

Proof. By structural induction on a hnf M . The case M = λx.M ′ with M ′ hnf
is a trivial consequence of the induction hypothesis. The case M = xP1 . . . Pp
splits in two subcases, depending whether P1 contains linear resources.
Case I: P1 = [L]·P 1. We do induction on L and xP 1P2 . . . Pp, which are hnf by
definition. Thus we obtain two simple head contexts C(·) and D(·) s.t. C(L)

g∗−→
I+GC and D(xP 1P2 . . . Pp)

g∗−→ I+GD. Let H be the simple term λy.C(y)[x[y!]],
we have H[L]·P 1

g−→ C(L)[xP 1]+GH
g∗−→ (I+GC)[xP 1]+GH

g→ xP 1+GC [xP 1]+
GH , where GH is the garbage, possibly 0, generated by putting an element of
the bag P 1 into C(·), instead of L. Then define E(·) := (λx.(·))[H,x!] and notice
E(x[L]·P 1P2 . . . Pp)

g→ H[L]·P 1P2 . . . Pp+GE , where GE is the garbage, possibly
0, obtained by linearly substituting H for some free occurrence of x in one Pi’s.
Finally, we define the context F (·) := D(E(·)), which is simple and head, being
the composition of simple and head contexts. We have F (x[L]·P 1P2 . . . Pp)

g∗−→
D(H[L] ·P 1P2 . . . Pp) + G′ g∗−→ D(xP 1P2 . . . Pp) + G′′ g∗−→ I + G′′′, where, noted
in passing, G′ = D(GE), G′′ = G′ + D((GC [xP 1] + GH)P2 . . . Pp) and finally
G′′′ = G′′ + GD.
Case II: No linear resource in P1. We do induction on xP2 . . . Pp, thus
getting a simple head context D(·) reducing xP2 . . . Pp to a sum containing the
identity. We set F (·) := (λx.(·))[λy1 . . . yp.D(x[y!

2] . . . [y!
p]), x

!]. Easily one checks

F (xP1P2 . . . Pp)
g∗−→ D(xP2 . . . Pp) + G g∗−→ I + G′, for suitable G, G′. ut

In the λ-calculus the above lemma is trivial since contexts can reduce a head-
normal form into the identity simply replacing the head variable with a term
erasing all its resources. In the resource calculus this is not possible, because of
the linear resources, that cannot be erased but must be used.

Lemma 18. Every head-normal form is typable.

Proof. By structural induction on a hnf M. The only interesting case is when M is
of the form xP1 . . . Pp with each Pi of the form [Mi,1, . . . ,Mi,mi

]·[N !
i,1, . . . , N

!
i,ni

],
with mi, ni ≥ 0 and for each j ≤ mi, Mj,mi

hnf. By induction hypothesis we
have derivations Ψi,j :: Γi,j ` Mi,j : τi,j for each i ≤ p, j ≤ mi hence we can

14 Michele Pagani and Simona Ronchi della Rocca

construct a derivation Φi :: Γi,1, . . . , Γi,mi
` Pi : τi,1 ∧ . . . ∧ τi,mi

by applying a
tree of mi rules ` having as premises the Ψi,1, . . . , Ψi,mi

respectively and, as the
rightmost leaf, a derivation of ` [N !

i,1, . . . , N
!
i,ni

] : ω made of ni rules !0 and one
rule 1. Similarly we get a derivation typing xP1 . . . Pp by applying a tree of p
rules →E having as premises the Φi’s derivations and, as the leftmost leaf, a v
rule typing x with (

∧
j≤m1

τ1,j)∧ . . .∧ (
∧
j≤mp

τp,j)→ σ, for a linear type σ. ut

Theorem 19. Given a resource term M , the following are equivalent:

1. M is head-normalizable,
2. M is typable by `,
3. M is reducible to a hnf by outer reduction,
4. M is solvable.

Proof. 1⇒ 2: by Prop. 15 and Lemma 18. 2⇒ 3: by Lemma 16, merely taking
the hole as the simple head context. 3 ⇒ 4: by Lemma 17 and context closure.
4⇒ 1: if there is a head simple context C(·) s.t. C(M) has a hnf, by the already
proven implication 1⇒ 2, C(M) is typable, we conclude by Lemma 16. ut

The implication 1 ⇒ 3 can also be argued as a corollary of the standardiza-
tion proven in [7]. However our proof uses the type assignment system, namely
Lemma 16, so it adopts a different approach with respect to the techniques in [7].

6 Concluding Remarks

Theorem 19 achieves a weak operational characterization of solvability. In fact,
the non-deterministic nature of the calculus makes terms having different outer
reduction sequences, some terminating in a (head-)normal form, others infinite.
Take for example I[(I[x])!, (Ω[I1])!]: a first outer step gives I[x] + Ω[I1], from
which starts an outer reduction terminating in x (i.e. I[x]+Ω[I1]

g→ I[x]+Ω[0] =
I[x]

g→ x), as well as infinite outer reductions looping on the head-normal form
x+ Ω[I1] or looping on I[x] + Ω[I1].

As already mentioned, other notions of solvability are meaningful, depending
on the number of times one requires the identity in the resulting sum. The
following two seem quite interesting:

– a termM is must-solvable whenever there are an applicative simple context
C(·) and n > 0 such that C(M)

g∗−→ nI;
– a term M is exactly-solvable whenever there is an applicative simple con-

text C(·) such that C(M)
g∗−→ I

Clearly exact-solvability implies must-solvability, which in its turn implies
the, let us say, may-solvability of Definition 5. Also, these three notions do not
collapse one another: for example, the term I[I!,Ω!] is may-solvable but not
must- nor exactly-solvable, in fact I[I!,Ω!]

g→ I+Ω; the term I[I!, I!] is may- and
must-solvable, but not exactly-solvable, in fact I[I!, I!]

g→ 2I; the term I[I, I!] is
exactly solvable, hence also may and must solvable, in fact I[I, I!]

g→ I. We will
give an analysis of all these kinds of solvability in a future work.

Solvability in Resource Lambda-Calculus 15

Acknowledgements. We are grateful to Rocco De Nicola, Giulio Manzonetto,
Mauro Piccolo and Paolo Tranquilli for useful discussions and hints.

References

[1] Boudol, G.: The Lambda-Calculus with Multiplicities. INRIA Report 2025 (1993)
[2] Ehrhard, T., Regnier, L.: The Differential Lambda-Calculus. Theor. Comput. Sci.

309(1) (2003) 1–41
[3] Tranquilli, P.: Intuitionistic Differential Nets and Lambda-Calculus. Theor. Com-

put. Sci., to appear (2008)
[4] de’Liguoro, U., Piperno, A.: Non Deterministic Extensions of Untyped Lambda-

Calculus. Inf. Comput. 122(2) (1995) 149–177
[5] Ehrhard, T., Regnier, L.: Böhm trees, Krivine’s Machine and the Taylor Expan-

sion of Lambda-Terms. In: CiE. Volume 3988 of LNCS. (2006) 186–197
[6] Ehrhard, T., Regnier, L.: Uniformity and the Taylor Expansion of Ordinary

Lambda-Terms. Theor. Comput. Sci. 403(2-3) (2008) 347–372
[7] Pagani, M., Tranquilli, P.: Parallel Reduction in Resource Lambda-Calculus. In:

APLAS. Volume 5904 of LNCS. (2009) 226–242
[8] Barendregt, H.: The Lambda-Calculus, its Syntax and Semantics. Second edn.

Number 103 in Stud. Logic Found. Math. North-Holland (1984)
[9] Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional Characters of Solvable

Terms. Zeitschrift für Mathematische Logik 27 (1981) 45–58
[10] Hyland, J.M.E.: A Syntactic Characterization of the Equality in Some Models of

the Lambda Calculus. J. London Math. Soc. 2(12) (1976) 361–370
[11] Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus: a Metamodel for

Computation. EATCS Series. Springer, Berlin (2004)
[12] de Carvalho, D.: Execution Time of λ-Terms via Denotational Semantics and

Intersection Types. Submitted for publication (2009)
[13] Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Not Enough Points Is Enough. In:

CSL. Volume 4646 of Lecture Notes in Comp. Sci. (2007) 298–312
[14] Tranquilli, P.: Nets between Determinism and Nondeterminism. Ph.D. thesis,

Università Roma Tre/Université Paris Diderot (Paris 7) (April 2009)
[15] Boudol, G., Curien, P.L., Lavatelli, C.: A Semantics for Lambda Calculi with

Resources. MSCS 9(5) (1999) 437–482
[16] Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Principal Type Schemes and

Lambda-Calculus Semantics. In: To H. B. Curry. Essays on Combinatory Logic,
Lambda-calculus and Formalism, Accademic Press (1980) 480–490

[17] Kfoury, A.J.: A Linearization of the Lambda-Calculus and Consequences. Journal
of Logic and Computation 10(3) (2000) 411–436

[18] Wells, J.B., Dimock, A., Muller, R., Turbak, F.: A Calculus with Polymorphic
and Polyvariant Flow Types. J. Funct. Program. 12(3) (2002) 183–227

[19] Neergaard, P.M., Mairson, H.G.: Types, Potency, and Idempotency: why Nonlin-
earity and Amnesia Make a Type System Work. In: ICFP, ACM (2004) 138–149

[20] Coppo, M., Dezani-Ciancaglini, M., Zacchi, M.: Type Theories, Normal Forms
and D∞-Lambda-Models. Inf. Comput. 72(2) (1987) 85–116

[21] Girard, J.Y.: Interprétation Fonctionnelle et Élimination des Coupures de
l’Arithmétique d’Ordre Supérieur. Thèse de doctorat, Université Paris 7 (1972)

[22] Valentini, S.: An elementary proof of strong normalization for intersection types.
Archive for Mathematical Logic 40(7) (October 2001) 475–488

[23] de Carvalho, D., Pagani, M., Tortora de Falco, L.: A Semantic Measure of the
Execution Time in Linear Logic. Theor. Comput. Sci., to appear (2008)

