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Abstract
Various typing system have been recently introduced giving a parametric version of the expo-
nential modality of linear logic, e.g. [6, 2]. The parameters are taken from a semi-ring, and allow
to express coeffects – i.e. specific requirements of a program with respect to the environment
(availability of a resource, some prerequisite of the input, etc.).

We show that all these systems can be interpreted in the relational category (Rel) of sets and
relations. This is possible because of the notion of multiplicity semi-ring, introduced in [3] and
allowing a great variety of exponential comonads in Rel. The interpretation of a particular typing
system corresponds then to give a suitable notion of stratification of the exponential comonad
associated with the semi-ring parametrising the exponential modality.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages (Denotational
semantics);
F.4.1 Mathematical Logic (Lambda calculus and related systems)

Keywords and phrases relational semantics, bounded linear logic, lambda calculus

1 Introduction

Various systems have been recently proposed based on a notion of parametrised exponential
comonad [2, 6] in linear logic. The idea is to parametrise the of-course modality ! with
elements taken from a semi-ring S. The multiplicative monoid of S describes how the
parameters interact under the comonad structure of ! (i.e. dereliction and digging) while the
additive monoid of S gives the interaction under the monoidal structure of ! (i.e. weakening
and contraction). The axioms of the semi-ring allow then to define a parametrised version
of the usual rules of cut-elimination, preserving the confluence property (see Figure 2).

This approach is related with Girard, Scedrov and Scott’s bounded linear logic (BLL)
[8], and thus we refer to it as BSLL. It is in some sense both a generalisation and a
restriction of BLL. It is a generalisation because it allows one to choose any semi-ring S, as
a parameter grammar, while BLL is given with respect to a fixed notion of parameters. On
the other hand, BSLL is a significant restriction because its parameters are just elements of
the semi-ring S while BLL deals with first-order terms extending polynomials and allowing
dependences.

The interest of BSLL is to offer a logical ground to the design of type systems allowing to
express various co-effects, that is requirements of a program with respect to the environment.
For example, in [6] a semi-ring based on contractive affine transformations has been used
to design a type system with annotations on the scheduling of processes; in [2], the semi-
ring of non-negative real numbers is used to express the expected value of the number of
times a probabilistic program calls its input during the evaluation. We briefly recall these
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2 Modelling Coeffects in Rel

examples in Section 2.1. The interesting point is that although these type systems model
quite different co-effects, their soundness is rooted in the same logical framework, that is
BSLL.1

In this paper, we present various denotational models for BSLL. In the literature, there
is a categorical axiomatisation of what is a model of BSLL known by the name of bounded
exponential situation (recalled here in Definition 5). This notion has been presented at first
in [2], but it originates from Melliès’ works on parametrised monads [10].2 However there is
no known concrete category satisfying the axioms of a bounded exponential situation: the
paper [2] gives only a realisability model for few specific examples of semi-ring S.

We give a general recipe for getting a bounded exponential situation out of a model of
linear logic (Section 3 and Theorem 7). Intuitively, the main point of our construction is that
BSLL corresponds to a stratification of the exponential comonad along the semi-ring S: any
model of linear logic admitting such a stratification (and one model can admit more than
one) defines a model also of BSLL. From our point of view, this result, although simple, can
be seen as the first step in relating the semantical notion of “approximant” (or “stratus”) of
the linear logic exponential, with a notion of co-effect annotation in a type system.

In Section 4, we apply our recipe to the category Rel of sets and relations, showing
various examples of bounded exponential situation. The category Rel provides one of
the simplest models of linear logic, where the exponential comonad is given by the finite
multiset functor. In fact, we consider a generalisation of this comonad given by the notion
of multiplicity semi-ring in Carraro et al.’s [3]. A multiplicity semi-ring R is a semi-ring
satisfying some properties (Definition 8) which generalise the notion of multiplicity given by
the natural number semi-ring N in the finite multiset functor. This generalisation has been
introduced in [3] for proving the existence of non-sensible models of the untyped λ-calculus
in the category Rel. As a by-product, the authors show how many and different can be the
exponential comonads living in the category Rel. We want to take advantage of this variety
for giving relational models of BSLL, for any semi-ring S.

We prove that one can stratify the exponential comonad associated with any multiplicity
semi-ringR (so getting a model of BSLL) just by interpreting the parameter semi-ring S into
the multiplicity semi-ring R (Theorem 11). Section 4.3 discusses some concrete examples of
this construction, giving instances of S and R.

Finally, Section 5 gives a taste of the fact that these constructions can be applied to
different categories than Rel. For example, we briefly discuss the case of models based on
coherence spaces, giving stratifications of linear categories that are not compact closed.

Appendices provide detailed proofs of all statements in the paper.

2 Preliminaries

I Definition 1. A semiring is given by (S, ·, 1,+, 0) where S is a set, the sum + is an
associative commutative binary operation with a neutral element 0 ∈ S and the product ·
is an associative binary operation distributing over + (so 0 is absorbing for ·) and with a
neutral element 1 ∈ S.

An ordered semiring (S, ·, 1,+, 0,≤) is a semiring (S, ·, 1,+, 0) with a partial order ≤
such that sum and product are increasing monotone.

1 Let us mention also [12, 13], giving several other examples of applications. These systems are not always
described in the syntactical definition of BSLL, but they can be modeled in our concrete semantics.

2 See also Melliès’ presentation “Sharing and Duplication in Tensorial Logic” at the workshop Develop-
ments in Implicit Computational complExity 2013.
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Ax
A ` A

Γ ` A ∆, A ` B
CutΓ,∆ ` B

Γ, A,B ` C
⊗LΓ, A⊗B ` C

Γ ` A ∆ ` B ⊗R
Γ,∆ ` A⊗B

Γ ` A ∆, B ` C
( LΓ,∆, A( B ` C

Γ, A ` B
( RΓ ` A( B

Γ ` B Weak
Γ, A0 ` B

Γ, A ` B
Der

Γ, A1 ` B
Γ, AI , AJ ` B

Contr
Γ, AI+J ` B

A1
I1 , · · · , AnIn ` B

J−Prom
A1

I1·J , · · ·AnIn·J ` BJ
Γ, AI ` B J ≥ I

SwL
Γ, AJ ` B

Figure 1 The sequent calculus of BSLL. In a sequent Γ ` A, Γ is supposed to be a multiset of
formulas (no implicit contraction rule is admitted).

Notice that because of the monotonicity of the multiplication, 0 ≤ 1 (resp. 1 ≤ 0) implies
that 0 is the bottom (resp. top) element of S. However we will often consider examples
of ordered semi-rings where the two neutral elements are incomparable. In [2] the authors
impose 0 to be the bottom element, but this condition is not necessary.

I Definition 2. Given a set X and a semi-ring S, we denote by Sf 〈X〉 the set of functions
µ : X 7→ S with finite support (where supp(µ) = {g ∈ X | µ(g) 6= 0S}). We denote by [ ]
the constant function with value 0S and, for any g ∈ X, by [g] the function with value 1S
on g and 0S everywhere else.

I Remark. Any order on S implies an order on Sf 〈X〉: µ ≤ ν iff ∀g ∈ supp(µ), µ(g) ≤S ν(g).

I Proposition 1. If X is a monoid then the set Sf 〈X〉 is endowed with a structure of semi-
ring, defined by:

0Sf 〈X〉 := [ ], (µ+Sf 〈M〉 ν)(g) := µ(g) +S ν(g),

1Sf 〈X〉 := [1X], (µ ·Sf 〈X〉 ν)(g) :=
∑

g′,g′′∈X s.t.
g′·Xg′′=g

µ(g′) ·S ν(g′′),

Proof. See Appendix A. �

Notice that the sum appearing in the definition of µ ·Sf 〈X〉 ν is well-defined because the
supports of µ and ν are finite.

I Definition 3. Given an ordered semiring S, we call BSLL the logic given by:
the formulas are defined by the grammar, with J ∈ S:
A,B,C := α | A⊗B | A( B | AJ ,

the sequent calculus is given in Figure 1,
the cut-elimination procedure is defined by the usual rules of multiplicative linear logic
plus the rules of Figure 2.

One can add the additive connectives without any effort, we prefer however to omit their
account because they do not play any crucial role with respect to our results. In [2], the
authors use a term calculus instead of a logical sequent system: the two presentations can
be made in relation via a Curry-Howard correspondence.
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Π1
∆ ` B Prom

∆0 ` B0

Π2
Γ ` C Weak

Γ, B0 ` C
Cut

∆0,Γ ` C

−→
Π2

Γ ` C Weak· · · Weak
∆0,Γ ` C

Π1
∆ ` B Prom
∆ ` B1

Π2
Γ, B ` C

Der
Γ, B1 ` C

Cut∆,Γ ` C

−→
Π1

∆ ` B
Π2

Γ, B ` C
Cut∆,Γ ` C

Π1
∆ ` B Prom

∆K+J ` BK+J

Π2

Γ, BK , BJ ` C
Contr

Γ, BK+J ` C
Cut

∆K+J ,Γ ` C

−→

Π1
∆ ` B Prom

∆K ` BK

Π1
∆ ` B Prom

∆J ` BJ
Π2

Γ, BK , BJ ` C
Cut

Γ, BK ,∆J ` C
Cut

∆K ,∆J ,Γ ` C
Contr· · · Contr

∆K+J ,Γ ` C

Π1
∆ ` B Prom

∆K·J ` BK·J

Π2

Σ, BK ` C
Prom

ΣJ , BK·J ` CJ
Cut

∆K·J ,ΣJ ` CJ

−→

Π1
∆ ` B Prom

∆K ` BK
Π2

Σ, BK ` C
Cut

∆K ,Σ ` C
Prom

∆K·J ,ΣJ ` CJ

Π1
∆ ` B Prom

∆J ` BJ

Π2

Γ, BK ` C J ≥ K
SwL

Γ, BJ ` C
Cut

∆J ,Γ ` C

−→

Π1
∆ ` B Prom

∆K ` BK
Π2

Γ, BK ` C
Cut

∆K ,Γ ` C
J ≥ K

In·J ≥ In·K SwL· · ·
J ≥ K

I1·J ≥ I1·K SwL
∆J ,Γ ` C

Figure 2 Cut-elimination rules (for the exponentials only). Given a sequent ∆ = A1
I1 , . . . , An

In

and a parameter J , we denote by ∆J , the sequent A1
J·I1 , . . . , An

J·In . Notice in particular that
∆0 = A1

0, . . . , An
0, and ∆1 = ∆.
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2.1 Examples
Trivial semi-ring: the multiplicative exponential fragment of intuitionistic linear logic is
recovered from BSLL by taking S as the one element semi-ring.

Boolean semi-ring: the Boolean semi-ring B = ({tt, ff},∧, tt,∨, ff) allows finer types than
the trivial one, distinguishing between data that can be weakened (of type Aff ) from data
that can be duplicated (Att). The order over B plays a role, also: the discrete order will
make the two types disjoint, while tt ≥ ff will make Aff a subtype of Att, so that the (_)tt

modality behaves as the usual of-course modality ! of linear logic.

Natural numbers: the natural number semi-ring (N,×, 1,+, 0) yields modalities express-
ing the number of times a resource is to be used. The order relation then allows some
flexibility: for example, the natural order 0 < 1 < 2 < . . . makes An to be the type of
data that can be used up-to n times. Notice that in this case there is no modality allowing
a resource to be used an indefinite number of times, so the system is not an extension of
linear logic. In order to recover the usual of-course modality ! one should take the order
completion N̄, adding a top-element ω.

Polynomial semi-ring: by taking the semi-ring (N[Xi]i∈N,×, 1,+, 0) of polynomials with
natural numbers as coefficients (the choose order here is irrelevant for the discussion), one
can express a basic form of resource dependency. One can write formulas like Ap(~x) ( Bq(~x)

where p, q are polynomials in the unknowns ~x. Roughly speaking, this is the type of a
function giving a result reusable q(~n) number of times as soon as its input can be used p(~n)
number of times, for any sequence of natural numbers ~n. This system has been discussed
in [8] as an introduction to bounded linear logic (BLL). What is lacking with respect to
the whole BLL is the possibility to bound first-order variables, so writing types of the form
Ay≤p(x), where y is an unknown of a polynomial occurring inside A.

Affine contractive transformations: the one-dimensional contractive affine transforma-
tions x 7→ sx+p can be represented by real-valued matrices xs,p =

( s p
0 1
)
with 0 ≤ s ≤ 1 and

−1 ≤ s+ p ≤ 1. The value s is a scaling factor relative to the unit interval, and p is a delay
from the time origin. The set of such transformations forms a monoid Affc1 with composition
given by matrix product.3 By Proposition 1, Nf 〈Affc1〉 is a semi-ring so it defines the logic
BNf〈Affc1〉LL. This system has been introduced by Ghica and Smith [6] in order to express at
the level of types a scheduling on the execution of certain resources. For example, a formula
A

[(
.5 0
0 1
)
,
(
.5 .25
0 1

)]
represents a resource of type A that can be called twice, both calls will

last 1
2 the duration relative to which we are measuring, but one call starts at the beginning

of the available time interval, while the other call starts when 1
4 of the time has elapsed.

Of course, such annotations have a meaning when the language has primitives describing
processes to be scheduled. See [6] for more details.

Positive real numbers: in presence of random primitives, one can associate any resource
with a discrete random variable quantifying on the number of times this resource is used
during the evaluation. In [2], BSLL has been parametrised with the ordered semi-ring
R+ = (R+,×, 1,+, 0,≤) of the non-negative real numbers endowed with the natural order,
the parameters expressing the expected values of these random variables.

This system can be extended (syntactically) with true dependent types and be able to
catch finer properties, like differential privacy [5].

3 Notice, however, that the semring product I·J denotes the reverse matrice product J ·I, this is due to
a change in notation between us and [6].
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3 Stratifying Linear Logic Exponentials

We recall the notion of linear category, which has been introduced in [1] as a categorical
axiomatization of a model of intuitionistic linear logic. This definition has been recently
revisited in [2] with the notion of bounded exponential situation, which roughly corresponds
to a variant of linear category where the exponentials are parametrised by the elements of a
partially ordered semi-ring S and which gives a categorical model of BSLL. Our contribution
is the definition of stratification (Definition 6), giving a general recipe for extracting a
bounded exponential situation from a linear category (Theorem 7). Section 4 will apply this
recipe to the concrete case of the relational category.

I Definition 4 ([1]). A linear category consists of:
a symmetric monoidal closed category (L,⊗, 1,(),
a comonad (!, d : !A→ A, p : !A→ !!A) endowed with three natural transformations and
a morphism: wA : !A → 1, cA : !A → !A ⊗ !A, m1 : 1 → !1, mA,B : !A ⊗ !B → !(A ⊗ B),
satisfying a bunch of equations (see, for example, [1]).

A linear category L gives a model of BSLL with S the trivial semi-ring (i.e. the usual
intuitionistic MELL). In this case we have just one exponential modality, which is inter-
preted by the functor ! of L and its associated structure. When S is non-trivial, one has
to parametrise the exponential modality ! by the elements of S and to add some equations
making to interact these various modalities following the laws of the semi-ring S. Such a
structure has been suggested by Melliès and formally introduced in [2]:

I Definition 5 ([2]). A bounded exponential situation consists of:
a symmetric monoidal closed category (L,⊗, 1,(), used to interpret the multiplicative
fragment of BSLL;
a categorical axiomatization of the notion of partially ordered semi-ring, that is a bi-
monoidal category (S,+, 0, ·, 1). The objects I, J,H, . . . of S correspond to the elements
of the semi-ring and the hom-sets define the order of the semiring: I ≤ J iff S(I, J) is
non-empty4.
an exponential action (_)_ of S on L, giving a parametric version of the exponential
comonad and used to interpret the formulas AI . Formally, it is a bifunctor (_)_ : S×L →
L together with six natural transformations: p′I,J,A : AI·J → (AJ)I , d′A : A1 → A,
w′A : A0 → 1, c′I,J,A : AI+J → AI ⊗ AJ , m′I,1 : 1 → 1I , m′I,A,B : AI ⊗ BI → (A⊗B)I ,
which should satisfy various diagrams, see [2] for details.

I Definition 6. A stratification of a linear category L is a triplet (S, (_)_,

∂

), where:
S is an ordered semi-ring (seen as a bimonoidal category);
(_)_ is a bifunctor S × L → L;

∂

is a natural transformation from ! to (_)_, i.e.

∂

I,A : !A 7→ AI such that:
each of the morphism

∂

I,A : !A 7→ AI is an epimorphism, i.e., for any φ, ψ : AI → B,
if

∂

I,A;φ =

∂

I,A;ψ then φ = ψ,
the diagrams of Figure 3 can be completed (in a unique way due to the epi property)
by families of morphisms d′A, p

′
A,I,J , w′A, c′A,I,J and m′A,B,I,J , for any A,B, I, J .

4 For our purposes, we can suppose that S has hom-sets of at most one element.
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!A

A1

A

∂

d

∂

A,1

dA

d′A

!A

A0

1∂

w

∂

A,0

wA

w′A

1

1I

!1

∂

m1

m′1,I

m1

∂

I

!A

AI·J

!!A

!(AI)

AI
J

∂

p

∂

A,I·J,

p′A,I,J

pA

!(

∂

A,I)

∂

AI ,J

!A

AI+J

!A⊗ !A

AI ⊗BJ

∂

c

∂

A,I+J

cA

∂

A,I ⊗

∂

A,J

c′A,I,J

!A⊗ !B

AI ⊗BI

!(A⊗B)

(A⊗B)I

∂

m

∂

A,I ⊗

∂

B,J

m′A,B,I,J

mA,B

∂

A⊗B,I

Figure 3 Coherence diagrams between the natural transformation

∂

, the exponential structure
(!, d, p, w, c, m) of a linear category and the exponential structure ((_)_, d′, p′, w′, c′, m′) of a bounded
exponential situation.

Notice that all the diagrams of Figure 3 simply state that each natural transformation e
required for the linearity of L is transported along

∂

to its parametrized version e′. Notice
also that the diagram

∂

m1 of Figure 3 is always obtained for m′I := m1;

∂

1,I .

Finally, the naturality of the families d′A, p
′
A,I,J , w

′
A, c

′
A,I,J and m′A,B,I,J can be automat-

ically retrieved from the diagrams of Figure 3 and the universal property of epimorphisms.

I Theorem 7. A stratification (S, (_)_
,

∂

) of a linear category yields a bounded exponential
situation hence a model of BSLL.

Proof. The transformations defining a bounded exponential situation are given by the fam-
ilies d′A, p

′
A,I,J , w

′
A, c

′
A,I,J and m′A,B,I,J . In fact, the naturality and coherence diagrams asso-

ciated with these transformations are obtained by invoking the corresponding diagram from
the linear category, by transporting the whole diagram through

∂

(via pre/post composing
and the diagrams of Figure 3), and finally by using the universal property of epimorphisms.

For example, Figure 4 gives the commutation that the morphism p′A,I,J should enjoy in
order to give a positive action. The triangle I is naturality of

∂

over the associativity of
the semiring multiplication, the square IV is the usual one of a linear category, V uses the
promotion of the square on the first line of Figure 3, VI and VII are the naturality of, resp.,

∂

and p, and finally II, III and VIII are again squares of Figure 3. Notice that this is a
priori not sufficient to obtain the commutation of the external cell due to the first

∂

that
point on the wrong direction. However, we actually obtain that

∂

;Aas· ; p′; p′H =

∂

; p′; p′

which results in the commutation of the external cell by the universal property of the epi

∂

.

Appendix C gives some more examples. �
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AI·(J·H)

(AI)J·H

A(I·J)·H (AI·J)H

AI
JH

!A

!!A

!!A

!!!A

.

.

. .

I II

III IV V VI

VII

VIII

p′A,I,J·H

Aas· p′A,I·J,H

p′A,I,J
H

p′
AI ,J,H

pA

pA

!pA

p!A

∂

∂

!

∂

∂

∂

!

∂

!!

∂

!

∂

∂

!p′A,I,J

pAI

Figure 4 An example of the proof of the commutation of the diagrams needed to have a bounded
exponential situation.

4 Relational Based Models

4.1 The linear category RelR

The category Rel has sets as objects and relations as morphisms, i.e. Rel(X,Y ) :=
P(X × Y ). Composition and identities are given by:

f ; g := {(x, y) | ∃z, (x, z) ∈ f, (z, y) ∈ g}, idX := {(x, x) | x ∈ X}.

Rel is symmetric monoidal closed (in fact, compact closed) with tensor product given by:

X ⊗ Y := X × Y, f ⊗ g := {((x, x′), (y, y′)) | (x, y) ∈ f, (x′, y′) ∈ g}.

Associativity (α⊗X,Y,Z := {((x, (y, z)), ((x, y), z)) | x ∈ X, y ∈ Y, z ∈ Z} ∈ Rel(X ⊗ (Y ⊗
Z), (X ⊗ Y )⊗ Z)) and commutativity (β⊗X,Y := {((x, y), (y, x)) | x ∈ X, y ∈ Y } ∈ Rel(X ⊗
Y, Y ⊗X)) are natural bijections; the neutral object is the singleton 1 := {∗}. The internal
hom functor is defined by: X ( Y := X ⊗Y and f ( g := f ⊗ g, the evaluation morphism
is eval := {(((x, y), x), y) | x ∈ X, y ∈ Y } ∈ Rel((X ( Y )⊗X,Y ).

It is well-known that Rel models the linear logic exponential with the multi-set comonad.
It is less known, however, that this is just an example of how one can express the exponential
modality. Carraro et al. [3] have shown many other possibilities by introducing the notion
of resource semi-ring (here Definition 8 and Theorem 9). We briefly recall this result, adding
some examples. 5

I Definition 8 ([3]). A multiplicity semi-ring is a semi-ring R = (|R|, ·, 1,+, 0) such that
(p, q, r will vary over R):
(MS1) R is positive: p+q = 0 implies p = q = 0;
(MS2) R is discrete: p+q = 1 implies p = 0 or q = 0;
(MS3) R is additively splitting: p1 + p2 = q1 + q2 implies ∃r1,1, r1,2, r2,1, r2,2, such that

pi = ri,1 + ri,2 , qi = r1,i + r2,i ;

5 Notice once again that we have to reverse the semiring multiplication of [3] due to a change in notations.
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(MS4’) R is multiplicatively splitting: q1+q2 = p · r implies there is l ∈ N such that for all
j ≤ l, we can find rj , p1,j , p2,j such that

r = r1 + · · ·+ rl,

p = p1,j + p2,j for all j ≤ l,
qi = pi,1 · r1 + · · ·+ pi,l · rk.

The notion of multiplicity semi-ring given by Definition 8 is a slight generalization of the one
in [3], because the multiplicative splitting has been slightly relaxed. It is straightforward to
check that all proofs in [3] still hold.

The semi-ring of natural numbers N is the prototypical example of multiplicity semi-ring,
while the Boolean semi-ring (as well as any cyclic semi-ring) is a non-example because the
discreteness condition fails. Other non-trivial examples can be obtained via the following
propositions.

I Proposition 2. For any multiplicity semi-ring R, the extension with an idempotent (for
+ and ·) element ω that is absorbing for the addition and the multiplication (except with 0)
results in a semiring R̄ = R∪ {ω} that is a multiplicity semi-ring.

For example, the semi-ring N̄ = N ∪ {ω} is a multiplicity semi-ring. The idea is that it
allows an infinite number of resources (and by infinite we do not mean unbounded, but
really infinite, obtained by taking a greatest fixpoint for example).

I Proposition 3. Given a monoid M, the semi-rings Nf 〈M〉 and N̄f 〈M〉 are multiplicity
semi-rings.

Proof. See Appendix B. �

For example, the semi-ring Nf 〈Affc1〉 induced by the monoid Affc1 of one-dimensional
affine contractive transformations [6] is an example of multiplicity semi-ring, different from
N.

I Theorem 9 (RelR CarraroES10). Any multiplicity semi-ring R defines an exponential
comonad over Rel (for r ∈ Rel(A,B)):

!RA := Rf 〈A〉,

!Rr := {(u, v) ∈ Rel(!RA, !RB) | ∃σ ∈ Rf 〈r〉, u(a) =
∑
b∈B

σ(a, b),

v(b) =
∑
a∈A

σ(a, b)}

Dereliction dA := {(δa, a) | a ∈ A} : !RA → A, where δa(a) = 1 and δa(a′) = 0 for every
a 6= a′, digging pA := {(m,M) | ∀a ∈ A,m(a) = Σn∈!RAn(a)·M(n)} : !RA → !R!RA,
contraction cA := {(u, (v1, v2)) | ∀a ∈ A, u(a) = v1(a) + v2(a)} : !RA → !RA ⊗ !RA,
weakening wA = {(0, ∗)} : !RA → 1, where 0 denotes the constant zero function in Rf 〈A〉,
and the morphisms m1 = {(∗, u) | u ∈ !R1} : 1 → !R1 and mA,B := {((u1, u2), v) | u1(a) =
Σbv(a, b), u2(b) = Σav(a, b)} : (!RA ⊗ !RB) → !R(A ⊗ B) are natural and respect usual
diagrams.

We denote by RelR the linear category induced by this exponential comonad.

A construction due to Grellois and Melliès [9] can be used to extend these results in
any semi-ring R of the form R′f 〈M〉 (where R′ is a multiplicity semi-ring and M a monoid).
This uses the fact that R′f 〈M〉 is a composition of the exponential comonad !R and a writer
comonad (M, ·,⊗) that distributes over the former.
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4.2 Stratifications over RelR

We show how to associate with an ordered semi-ring S a stratification of the linear cat-
egory RelR, for any multiplicity semi-ring R. The key-point is that such stratifications
can be presented as a kind of interpretation of the ordered semi-ring S into the hom-set
RelR(!R1, 1), which is isomorphic to the power-set P(R). Definition 10 gives the condi-
tions that such interpretation should enjoy in order to induce a stratification over RelR

(Theorem 11).

Given a semi-ring R, one can define the following operations over P(R) (α, β, γ vary
over P(R)):

α⊕ β := {p+ q | p ∈ α, q ∈ β},

α� β :=
{ h∑
i=1

pi · qi | h ≥ 0,
h∑
i=1

qi ∈ β,∀i ≤ h, pi ∈ α
}
.

The operation ⊕ (resp. �) will be used to stratify contraction (resp. digging). Notice that the
two operations are associative, ⊕ is commutative but not �, {0R} (resp. {1R}) is the neutral
element of⊕ (resp.�). Moreover, � left-distributes over⊕ (i.e. γ�(α⊕β) = (γ�α)⊕(γ�β)),
but it does not right-distribute. For example, take R to be the standard semi-ring over
natural numbers, then:

({1} ⊕ {1})� {1, 2} = {2, 4}, ({1} � {1, 2})⊕ ({1} � {1, 2}) = {2, 3, 4}.

I Definition 10. An interpretation of an ordered semi-ring S into a multiplicity semi-ring
R is a function J−K : S 7→ P(R) such that (for all I, J ∈ S):

I ≤S J implies JIK ⊆ JJK, JIK⊕ JJK ⊆ JI +S JK, JIK� JJK ⊆ JI ·S JK,

{0R} ⊆ J0SK, {1R} ⊆ J1SK.

Indeed, Definition 10 simply expresses the bimonoidal functoriality of J−K, where S and
P(R) are both considered as bimonoidal categories6.

I Theorem 11. Any interpretation J−K of an ordered semi-ring S into a multiplicity semi-
ring R induces a stratification of the linear category RelR, defined by:

AI :=
{
u ∈ !RA |

∑
x∈A

u(x) ∈ JIK
}
, f I≥J := {(u, v) ∈ !Rf | u ∈ AI , v ∈ BJ},

∂

I,A := {(u, u) | u ∈ AI}.

In particular, J−K extends to a sound interpretation of BSLL into RelR.

Proof. Notice that

∂

is an epi (in fact it is a «surjective» relation) and is natural. Moreover,
the morphisms d′, p′, etc... of Definition 6 are obtained by restraining the corresponding
Rel morphisms to the domain/codomain, e.g.:

c′A,I,J := cA ∩ (AI+J × (AI ⊗BJ)).

6 Actually, P(R) is a bit less than bimonoidal because just left-distributive.
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One should also prove that these transformations enjoy the diagrams of Figure 3. For
example, we should prove that: cA; (

∂

I,A⊗

∂

J,A) =

∂

I+J,A; c′I,J,A (Diagram

∂

c of Figure 3).
Indeed,

cA; (

∂

I,A ⊗

∂

J,A) = {(u+ v, (u, v)) |
∑
x

u(x) ∈ JIK,
∑
x

v(x) ∈ JJK}

∂

I+J,A; c′I,J,A = {(u+ v, (u, v)) |
∑
x

(u(x) + v(x)) ∈ JI + JK,∑
x

u(x) ∈ JIK,
∑
x

v(x) ∈ JJK}

The two sets are the same because the conditions on u and v imply that on u + v, since
JIK⊕ JJK ⊆ JI + JK. We detail the other cases in Appendix D. �

4.3 Examples
Let us apply Theorem 11 to the ordered semi-rings discussed in Section 2.1.

There is only one possible interpretation of the trivial semi-ring into the multiplicity
semi-ring N, associating the unique element ∗ with the whole set N. In fact, Definition 10
requires that J∗K contains 0, 1 and that it is closed under addition. This interpretation gives
the usual multi-set based model of linear logic. By enlarging the multiplicity semi-ring, for
example considering N, one can set J∗K = N and getting the model of linear logic giving rise
to the non-sensible models of the untyped λ-calculus studied in [3].

The interpretation of a Boolean-based ordered semi-ring into N depends on the order
between tt and ff . In the case ff ≤ tt, we can set either JttK = N and JffK = {0}, or JttK =
N = JffK.7 The latter collapses the two modalities to the usual multiset comonad, while
the former interprets the formula Aff by the singleton of the empty multiset, representing
the type of unused resources. In the case ff and tt are incomparable in S, then we can set
JttK = N−{0} and JffK = {0}, strictly distinguishing between used resources of type Att and
unused resources of type Aff .

In the case the syntactic semi-ring S is already a multiplicity semi-ring (like N, N[Xi]i∈N

and Nf 〈Affc1〉), then we have a natural interpretation of S into itself, associating a scalar
with the downward closure of its singleton. In fact, we have:

I Proposition 4. For any ordered multiplicity semi-ring (R,≤R), the following is an inter-
pretation of R into R:

JIK = {J | J ≤R I}. (1)

Proof. The only condition of Definition 10 which is not so immediate to check is the one
dealing with �. Any element of JIK� JJK is of the form

∑
i Ii·Ji such that

∑
i Ji ≤R J and

for all i, Ii ≤R I. Thus we have:∑
i

Ii·Ji ≤R
∑
i

I·Ji = I·(
∑
i

Ji) ≤R I·J

so that
∑
i Ii·Ji ∈ JI·JK. �

7 There are other uninteresting possibilities.



12 Modelling Coeffects in Rel

For example, if R is N, the interpretation of An induced by Equation (1) is the set of
the multisets with cardinally at most n, if we consider the standard order, or with car-
dinally exactly n, if we consider the discrete order. In the case of the polynomial semi-ring
(N[Xi]i∈N,×, 1,+, 0), Equation (1) associates with Ap(x) the set of functions mapping an ele-
ment a ∈ A to a polynomial q(x) bounded by p(x) (according to the notion of boundedness
described by the order considered).

The interpretation given by Equation (1) faithfully mirrors in the semantics the behavior
of the typing system and hence it is uninteresting, at least in our setting. More relevant
models can be obtained by shrinking the semantic semi-ring, via the following proposition.

I Proposition 5. Given an ordered semi-ring S, an interpretation J−KR of S into a mul-
tiplicity semi-ring R and a multiplicity sub-semi-ring R′ of R, we have that the map
J−KR′ : I 7→ (JIK ∩ R′) defines an interpretation of S into R′ whenever it respects the
order, i.e.:

I ≤S J iff JIKR′ ⊆ JJKR′ .

For example, N̄ can be interpreted into itself by Equation 1, or, by using Proposition 5,
into its sub-semi-ring N by setting JωK = N = JωKN̄ ∩ N. This latter interpretation has the
virtue of expressing both finite and infinite scalars with sets of finite natural numbers.

If S is not a multiplicity semi-ring, one can interpret it into the “free” multiplicity semi-
ring Nf 〈S·〉 induced by the multiplicative monoid S· of S (recall Proposition 3):

I Proposition 6. For any ordered semi-ring (S,≤S), the following is an interpretation of
S into Nf 〈S·〉 (square brackets [. . . ] below denote standard multisets):

JIK =
{

[J1, ..., Jn] |
∑
i≤n

Ji ≤S I
}
. (2)

Proof. As in the previous proposition, one has to check (among other equations) that
JIK⊕ JJK ⊆ JI + JK

JIK⊕ JJK = {[I1, ..., In, J1, ..., Jm] |
∑
i≤n

Ii ≤S I,
∑
i≤m

Ji ≤S J}

⊆ {[J1, ..., Jn] |
∑
i≤n

Ji ≤S I + J}

= JI + JK

We did the other cases in details in Appendix E. �

This construction makes a sharp difference between the way syntax and semantics express
sums between parameters. For example, if you take S to be R+ endowed with the usual
order, then the interpretation of a type Ar, for r ∈ R+, induced by Equation (2) can be
seen as the set of finite multisets [(a1, r1), . . . , (an, rn)] of elements in A × R+ such that
r1 + · · · + rn ≤ r. The contraction between two types Ar and Ar′ gives at the level of the
syntax the type Ar+r′ where the two parameters r, r′ are totally merged into r+ r′. While
at the level of the semantics we have the set of the disjoint unions of a multiset in Ar and
one in Ar′ , so that the real-values r1, . . . , rn are kept distinct.

Such an interpretation of R+ into Nf 〈R+
· 〉 however is not completely satisfactory because

it does not express a clear notion of probability. One can get something better by applying
Proposition 5. Consider the semi-ring Nf 〈[0, 1]·〉 made by the elements of Nf 〈R+

· 〉 that can
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be seen as multisets of probabilities. Proposition 3 shows that Nf 〈[0, 1]·〉 is a multiplicity
semi-ring, and one can easily check that the interpretation R+ 7→ Nf 〈R+

· 〉 is still injective
when restricted to Nf 〈[0, 1]·〉. So Proposition 5 states that RelNf 〈[0,1]·〉 is a model of BR+LL
by the interpretation:

JrK :=
{

[p1, . . . , pn] | n ≥ 0, pi ∈ [0, 1],
n∑
i=1

pi ≤ r
}
.

This interpretation is not only refining the previous one but perfectly fit the intuitive se-
mantics. Indeed, a multiset [r1, . . . , rn] represents n independent calls to a resource, each
call answered with a probability ri ∈ [0, 1]. In particular, the expected value of the number
of accessible resources is r1 + · · ·+ rn ≤ r.

5 Beyond Rel

We have seen that the relational category provides a large panel of different semantics,
but all of them are definitely degenerated because the ambient category is compact closed.
Actually, our tools apply to various other categories, even not compact closed. Just to have a
taste of this generality we discuss here the case of coherence spaces. A more general account
will be developed by the first author in his forthcoming Ph.D. thesis.

A coherence space A is a pair of a set |A|, called web, and a reflexive and symmetric
relation ¨A, called coherence. A coherence space can be seen as a symmetric graph over
its web, and in fact we denote by Cl(A) the set of cliques of A, that is Cl(A) = {u ⊆
|A| | ∀a, a′ ∈ u, a ¨A a′}. Given two coherence spaces A, B, the hom-set Coh(A,B) is the
set of relations r ⊆ |A| × |B| such that: for every (a, b), (a′, b′) ∈ r, if a ¨A a′ then b ¨B b′
and, if moreover a 6= a′ then also b 6= b′.

Coherence spaces have been introduced by Girard as the first model of linear logic [7].
We omit to give here a detailed description of it, referring to [7] for the details. There are
two main linear categories based on coherence spaces, differing on the exponential comonad,
one (denoted Cohs) is based on the finite set functor and the other one (denoted by Cohm)
on the finite multi-set functor. The action of the two comonads on a coherence space A is
defined as follows (Pf , Mf refer to the set of, respectively, finite sets and multisets):

|!sA| := {u ∈ Pf (|A|) | u ∈ Cl(A)}, u ¨!sA u
′ := u ∪ u′ ∈ Cl(A),

|!mA| := {u ∈ Mf (|A|) | supp(u) ∈ Cl(A)}, u ¨!mA u
′ := supp(u) ∪ supp(u′) ∈ Cl(A).

In Section 4.2 we have seen how to define a stratification of RelR by interpreting
the semi-ring S into (P(R),⊕,�). We chose (P(R),⊕,�) because it grows out from
an hidden structure of RelR(!R1, 1). In the setting of set-based Cohs, we must con-
sider Cohs(!s1, 1) (1 is the one-element coherence space) which gives a three element
semi-ring B⊥ = ({⊥, ff, tt},⊕,�) with ff, tt,⊕,� representing the usual Boolean opera-
tions and ⊥ being absorbing for ⊕ and ff � ⊥ = ff (zero case of left-distribution) but
⊥ � ff = ⊥ � tt = tt � ⊥ = ⊥ � ⊥ = ⊥. The order is flat: ⊥ is the bottom element
and ff, tt are incomparable. The only interpretation J−K : B⊥ 7→ B⊥ respecting the condi-
tions of Definition 10 is the identity function, so that one can recover (by Theorem 11) the
stratification defined by:

|A⊥| := ∅, |Aff | := {∅}, |Att| := Cl(A)− {∅}, u ¨Att u′ := u ∪ u′ ∈ Cl(A),

∂

n,A := {(u, u) | u ∈ |An|}, for n =⊥, 0, 1.



14 Modelling Coeffects in Rel

In fact, one can easy check that (_)_ is a bifunctor B⊥ × Cohs → Cohs, with a natural
transformation

∂

satisfying the diagrams of Figure 3.
If you consider the multi-set based linear category Cohm, we have that Cohm(!m1, 1)

yields N⊥ = ({⊥}∪N,⊕,�) with ⊕,� the usual sum and product over the natural numbers
extended to ⊥ as in B⊥. Also in this case the order is flat: ⊥ is the bottom element and any
two non-equal natural numbers are incomparable. If we can consider the identity function as
an interpretation J−K : N⊥ 7→ N⊥ we get the stratification defined by (where, for u ∈ |!mA|,
#u refers to its cardinality as a multiset: #u =

∑
a∈|A| u(a)):

|A⊥| := ∅, |An| := {u ∈ |!mA| | #u = n}, u ¨An u′ := u ¨!mA u
′,

∂

s,A := {(u, u) | u ∈ |As|}, for s ∈ {⊥} ∪ N.

Also in this case, one can easily check that the above is a stratification of Cohm according
to Definition 6.

With a bit of imagination, one can define many other models of BSLL in Cohs and
Cohm as well as in other linear categories that are not compact closed (e.g. finiteness spaces).
Let us stress that the exponential modalities of Rel, Cohs, Cohm and that of finiteness
spaces, for example, are not trivial instances of a simple common construction (see [11] for
an interesting discussion on this matter). These examples then show the relevance of the
notion of stratification in a rather wide class of ambient categories.

6 Conclusion

Full Linear Logic. BSLL is a refinement of the multiplicative exponential fragment of
intuitionistic linear logic. One can wonder whether this approach can be extended to full
linear logic, with additive connectives and involutive negation.

Additive connectives can be introduced without any difficulty, but the involutive nega-
tion, and especially the introduction of the why-not modality ? dual of the of-course !, is
more delicate. Namely, one should grasp the computational meaning of the action of the S
parameters over the why-not modality.

Toward true dependent types. The major weakness of BSLL is the lack of dependent
types, in particular BSLL is not an extension of bounded linear logic. The interest in this
latter has been recently renewed by a series of work, like Dal Lago and Gaboardi’s D`PCF
[4] or Gaboardi et al.’s DFuzz [5]. These systems use parameters depending on variables
which can be bounded and instantiated in the type derivation. This allows, for example, to
distinguish between the resource usages of two branches of a conditional, or, combined with
a fix-point combinator, to define a parameter depending on the number of loops performed
during the evaluation of an iteration.

It is not clear to us whether and how our semantics extends to such a framework. The
notion of dependence is delicate to catch semantically, namely it amounts to making the
operator

∂

parametrised by some context. We are, in fact, currently investigating in a
different approach (that still use the same intuitions).

In this approach we do not start with a categorical model of linear logic, but with a richer
2-categorical model of linear logic (for example Rel endowed with inclusions as 2-functors).
Rather than having to find manually a stratification, we can directly identify a structure of
BSLL in the lax slice category C/1 (with morphisms of C targeting 1 as objects). There, the
syntactic semiring S is modeled by a sub category of C[!1,1] (with arrows representing the
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order relation). This extends naturally to dependency by considering every lax slice category
C/A together, for duplicable objects A ∈ C representing the values we are dependent on.

Beyond Rel. This paper is focused on the relational category Rel and on the notion
of stratification (Definition 6). This was actually the original goal of our investigation:
constructing relational models of BSLL. Indeed, it is clear that a more general principle
comes out from our results, relating the stratification to a semi-ring structure hidden behind
the hom-sets C(!1,1).

We have briefly discussed such a generality in Section 5, giving examples of stratifications
of linear categories based on coherence spaces. The present setting however cannot explain
how one can recover the target semi-ring of an interpretation out of C(!1,1), for any (or
a large class of) linear category C. To do that one should work in the framework of the
2-categorical models of linear logic, as mentioned in the previous paragraph, and this will
be done in the future.
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A Proposition 1

I Proposition 1. Given a monoid M and a semi-ring S, the set Sf 〈M〉 having as elements
the functions µ : M 7→ S with finite support (where supp(µ) = {g ∈ M | µ(g) 6= 0S}) is a
semi-ring with the operations defined by:

0Sf 〈M〉 := [ ], (µ+Sf 〈M〉 ν)(g) := µ(g) +S ν(g),

1Sf 〈M〉 := [1M], (µ ·Sf 〈M〉 ν)(g) :=
∑

g′,g′′∈M
g′·Mg′′=g

µ(g′) ·S ν(g′′),

Where [ ] is the constant with value 0S and [1M] is the function that value 1S on 1M and 0S
everywhere else.

Proof.
+Sf 〈M〉 is associative:

(µ+Sf 〈M〉 (ν +Sf 〈M〉 κ))(g) = µ(g) +S (ν(g) +S κ(g)) (by def.)
= (µ(g) +S ν(g)) +S κ(g) (ass. of +S)
= ((µ+Sf 〈M〉 ν) +Sf 〈M〉 κ)(g) (by def.)

·Sf 〈M〉 is associative:

(µ ·Sf 〈M〉 (ν ·Sf 〈M〉 κ))(g) =
∑

g1,g2∈M
g1·Mg2=g

µ(g1)·S(
∑

g3,g4∈M
g3·Mg4=g2

ν(g3) ·S κ(g4)) (by def.)

=
∑

g1,g2∈M
g1·Mg2=g

∑
g3,g4∈M
g3·Mg4=g2

µ(g1)·S(ν(g3) ·S κ(g4)) (dist in S)

=
∑

g1,g3,g4∈M
g1·M(g3·Mg4)=g

µ(g1)·S(ν(g3) ·S κ(g4)) (ass. of +S)

=
∑

g1,g3,g4∈M
g1·M(g3·Mg4)=g

(µ(g1)·Sν(g3)) ·S κ(g4) (ass. of ·S)

=
∑

g1,g3,g4∈M
(g1·Mg3)·Mg4)=g

(µ(g1)·Sν(g3)) ·S κ(g4) (ass. of ·M)

=
∑

g5,g4∈M
g5·Mg4=g

∑
g1,g3∈M
g1·Mg3=g5

(µ(g1)·Sν(g3)) ·S κ(g4) (ass. of +S)

=
∑

g5,g4∈M
g5·Mg4=g

(
∑

g1,g3∈M
g1·Mg3=g5

µ(g1)·Sν(g3)) ·S κ(g4) (dist in S)

= ((µ ·Sf 〈M〉 ν) ·Sf 〈M〉 κ)(g) (by def.)

0Sf 〈M〉 is the unity of +Sf 〈M〉:

(0Sf 〈M〉 +Sf 〈M〉 µ)(g) = 0Sf 〈M〉(g) +S µ(g) (by def.)
= 0S +S µ(g) (by def.)
= µ(g) (unity in S)
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1Sf 〈M〉 is the left unity of ·Sf 〈M〉:

(1Sf 〈M〉 ·Sf 〈M〉 µ)(g) =
∑

g1,g2∈M
g1·Mg2=g

(1Sf 〈M〉(g1)·Sµ(g2)) (by def.)

=
∑
g2∈M

1M·Mg2=g

(1S ·Sµ(g2)) (by def. et abs. 0S)

=
∑
g2∈M

1M·Mg2=g

µ(g2) (unity in S)

= µ(g) (left unity in M)

1Sf 〈M〉 is the right unity of ·Sf 〈M〉:

(µ ·Sf 〈M〉 1Sf 〈M〉)(g) =
∑

g1,g2∈M
g1·Mg2=g

(µSf 〈M〉(g1)·S1(g2)) (by def.)

=
∑
g1∈M

g1·M1M=g

(µ(g1)·S1S) (by def. et abs. 0S)

=
∑
g1∈M

g1·M1M=g

µ(g1) (unity in S)

= µ(g) (right unity in M)

·Sf 〈M〉 left distribut over +Sf 〈M〉:

(µ ·Sf 〈M〉 (ν +Sf 〈M〉 κ))(g) =
∑

g1,g2∈M
g1·Mg2=g

µ(g1)·S(ν(g2) +S κ(g2)) (by def.)

=
∑

g1,g2∈M
g1·Mg2=g

(µ(g1)·Sν(g2)) +S (µ(g1)·Sκ(g2)) (dist. in S)

= (
∑

g1,g2∈M
g1·Mg2=g

µ(g1)·Sν(g2)) +S (
∑

g1,g2∈M
g1·Mg2=g

µ(g1)·Sκ(g2)) (comm., ass. of +S)

= ((µ ·Sf 〈M〉 ν) +Sf 〈M〉 (µ ·Sf 〈M〉 κ))(g) (by def.)

·Sf 〈M〉 right distribut over +Sf 〈M〉:

((ν +Sf 〈M〉 κ) ·Sf 〈M〉 µ)(g) =
∑

g1,g2∈M
g1·Mg2=g

(ν(g1) +S κ(g1))·Sµ(g2) (by def.)

=
∑

g1,g2∈M
g1·Mg2=g

(ν(g1)·Sµ(g2)) +S (κ(g1)·Sµ(g2)) (dist. in S)

= (
∑

g1,g2∈M
g1·Mg2=g

ν(g1)·Sµ(g2)) +S (
∑

g1,g2∈M
g1·Mg2=g

κ(g1)·Sµ(g2)) (comm., ass. of +S)

= ((ν ·Sf 〈M〉 µ) +Sf 〈M〉 (κ ·Sf 〈M〉 µ))(g) (by def.)
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+Sf 〈M〉 is commutative:

(µ+Sf 〈M〉 ν)(g) = µ(g) +S ν(g) (by def.)
= ν(g) +S µ(g) (comm. of +S)
= (ν +Sf 〈M〉 µ)(g) (by def.)

�

B Proposition 3

I Lemma 12. If R is a multiplicity semi-ring and M a monoid, Rf 〈M〉 respect (MS1),
(MS2) and (MS3).

Proof.
(MS1) We suppose that µ+Rf 〈M〉 nRf 〈M〉 = 0Rf 〈M〉, i.e., µ(g)+Rν(g) = 0R for all g.

Then µ(g) = ν(g) = 0R by (MS1) in R.
Thus µ = ν = 0Rf 〈M〉.

(MS2) We suppose that µ+Rf 〈M〉nRf 〈M〉 = 1Rf 〈M〉, i.e., µ(1M)+Rν(1M) = 1R and µ(g)+νR(g) =
0R for all g 6= 1M.
Then µ(1M) = 0R (or ν(1M) = 0R) by (MS2) in R and for all g 6= 1M, µ(g) = ν(g) = 0R
by (MS1) in R.
Thus µ = 0Rf 〈M〉 or ν = 0Rf 〈M〉.

(MS3) We suppose that µ1 +Rf 〈M〉 µ2 = ν1 +Rf 〈M〉 ν2, i.e., µ1(g)+Rν1(g) = µ2(g)+Rν2(g) for
all g.
Then by (MS3) in R we have (kgi,j)g∈M,1≤i,j,≤2 such that µi(g) = kgi,1 +R kgi,2 and νj(g) =
kg1,j +R kg2,j .
Thus, if we denote κi,j : (g 7→ kgi,j) for all i, j, we indeed have µi = κi,1 +Rf 〈M〉 κi,2 and
νj = κ1,j +Rf 〈M〉 κ2,j .

�

I Proposition 3.a. The semi-ring Nf 〈M〉 is a multiplicity semiring.

Proof. We just have to prove (MS4’).
We suppose that ν1+Nf 〈M〉ν2 = κ1·Nf 〈M〉µ with ν1 = [gn1 | n1 ∈ N1], ν2 = [gn2 | n2 ∈ N2],

κ = [fk | k ∈ K] and µ = [hm | m ∈M ] (we suppose that N1 and N2 are disjoint). There is
then a bijection φ : (N1 ∪N2)↔ K ×M .
We can denote κk = [fk] and µi,k = [hπ2(φ(n)) | n ∈ Ni, π1(φ(n)) = k] for any k ∈ K. Then:

Σk∈Kκk = [fk | k ∈ K] = κ,
and for k ∈ K, µ1,k +µ2,k = [hπ2(φ(n)) | π1(σ(n)) = k] = µ since gn = fπ1(φ(n))·hπ2(φ(n)),
and we have Σkκk·µi,k = [fk·hπ2(φ(n)) | k ∈ K,n ∈ Ni, π1(φ(n)) = k] = [gn|n ∈ Ni] = νi.

�

I Proposition 3.b. The semi-ring N̄f 〈M〉 is a multiplicity semiring.

Proof. We just have to prove (MS4’).
We suppose that ν1 +Nf 〈M〉 ν2 = κ1 ·Nf 〈M〉µ with ν1 = [gn1 | n1 ∈ N l

1]+ [ω·gn′1 | n1 ∈ Nω
1 ],

ν2 = [gn2 | n2 ∈ N l
2] + [ω·gn′2 | n2 ∈ Nω

2 ], κ = [fk | k ∈ Kl] + [ω·fk′ | k ∈ Kω] and µ = [hm |
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m ∈M l] + [ω·hm′ | m′ ∈Mω] (we suppose moreover that N l
1, N

ω
1 , N

l
2, N

ω
2 ,K

l,Kω,M l,Mω

are pairwise disjoint).
We denotes N l = N l

1 ∪ N l
2, Nω = Nω

1 ∪ Nω
2 , X = X l ∪ Xω for X = N,N1, N2,K,M ,

and (K×M)ω = (Kω×M l) ∪ (Kω×Mω) ∪ (Kl×Mω).
There is a relation _R_ ⊆ (N1 ∪N2)×(K×M), such that:

if n ∈ N l
i , nR_ is a singleton,

if n ∈ Nω
i , there is (k,m)Rn such that k ∈ Kω or m ∈Mω,

if k ∈ Kl and m ∈M l, _R(k,m) is a singleton,

if k ∈ Kω or m ∈Mω, there is (k,m)Rn such that n ∈ Nω
i for some i,

and if nR(k,m), gn = fk.hm.
We can moreover choose a partial function φ : (N ×K)→M such that nR(k, φ(n, k)) and
is defined exactly when possible. We also choose a total ψ : (K ×M)ω → Nω such that
φ(k,m)R(k,m).

Let L = K ∪ (Kω ×N l).
We can denotes, for any k ∈ Kl:

κk = [fk],
µi,k = [hm | m∈M l, n∈Ni, nR(k,m)]

+ [hφ(n,k) | φ(n, k) ∈Mω, n∈Ni, nR(k,m)]
+ [ω·hm | m∈Mω, n∈Nω

i , nR(k,m)],

and for any k ∈ Kω:

κk = [ω·fk],
µj,k = [hm | m∈M, ψ(k,m)∈Nω

j ]
+ [ω·hm | m∈Mω, n∈Nω

j , nR(k,m)].

and for any (k, n) ∈ Kω ×N l
i :

κk,n = [fk],
µj,(k,n) = [hm | m∈M, m 6= φ(n, k), ψ(k,m)∈Nω

j ]
+ [pi,j ·hφ(n,k)]
+ [ω·hm | m∈Mω, n′∈Nω

j , n
′R(k,m)].

So that∑
[k∈Kl∪Kω] κk = [fk | k ∈ Kl] + [ω·fk | k ∈ Kω] + [fk | k ∈ K ′] = κ

for k ∈ K,µ1,k + µ2,k = µ. Indeed:

for k ∈ Kl:
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µ1,k + µ2,k = [hm | m∈M l, n∈N, nR(k,m)] def

+ [hφ(n,k) | φ(n, k) ∈Mω, n∈N, nR(k,m)]
+ [ω·hm | m∈Mω, n∈Nω, nR(k,m)]

= [hm | m∈M l, n∈N, nR(k,m)] (k,m) ∈ (K×M)ω ⇒ ∃n ∈ Nω, nR(k,m) and ω + 1 = ω

+ [ω·hm | m∈Mω, n∈Nω, nR(k,m)]
= [hm | m∈M l] (k,m) ∈ Kl×M l ⇒ ∃!n, nR(k,m)

+ [ω·hm | m∈Mω, n∈Nω, nR(k,m)]
= [hm | m∈M l] ω = ω + ω

+ [ω·hm | m∈Mω, ∃n∈Nω, nR(k,m)]
= [hm | m ∈M l] + [ω·hm | m ∈Mω] ∀(k,m) ∈ (K×M)ω, ∃n ∈ Nω, nR(k, n)
= µ def,

for k ∈ Kω:

µ1,k + µ2,k = [hm | m∈M, ∃n∈Nω, nR(k,m)] def

+ [ω·hm | m∈Mω, n∈Nω, nR(k,m)]
= [hm | m∈M, ∃n∈Nω, nR(k,m)] ω = 2ω,

+ [ω·hm | m ∈Mω] ∀(k,m) ∈ (K×M)ω, ∃n ∈ Nω, nR(k,m)
= [hm | m∈M l, ∃n∈Nω, nR(k,m)] ω = ω + 1,

+ [ω·hm | m ∈Mω]
= [hm | m ∈M l] + [ω·hm | m ∈Mω] ∀(m, k) ∈ (M×K)ω, ∃n ∈ Nω, nR(k,m)
= µ,

for (k, n) ∈ Kω ×N l: idem.

we have for all i ∈ {1, 2}:
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Σl∈Lκl.µi,j = [fk.hm | k ∈ Kl, m∈M l, n∈Ni, nR(k,m)] def

+ [fk.hφ(n,k) | k ∈ Kl, φ(n, k) ∈Mω, n∈Ni]
+ [ω·fk.hm | k ∈ Kl, m∈Mω, n∈Nω

i , nR(k,m)]
+ [ω·fk.hm | k ∈ Kω, m∈M, ψ(k,m)∈Nω

j ]
+ [ω·fk.hm | k ∈ Kω, m∈Mω, n∈Nω

j , nR(k,m)]
+ [fk.hm | k ∈ Kω, n ∈ N, m∈M, m 6= φ(n, k), ψ(k,m)∈Nω

j ]
+ [fk.hφ(n,k) | k ∈ Kω, n ∈ Ni]
+ [ω·fk.hm | k ∈ Kω, n′ ∈ N, m∈Mω, n′∈Nω

j , nR(k,m)]
= [fk.hm | k ∈ Kl, m∈M l, n∈Ni, nR(k,m)] ω = ω + 1, ω = 2ω

+ [fk.hφ(n,k) | k ∈ Kl, φ(n, k) ∈Mω, n∈Ni]
+ [fk.hφ(n,k) | k ∈ Kω, n ∈ Ni]
+ [ω·fk.hm | k ∈ Kl, m∈Mω, n∈Nω

i , nR(k,m)]
+ [ω·fk.hm | k ∈ Kω, m∈M, ψ(k,m)∈Nω

j ]
+ [ω·fk.hm | k ∈ Kω, m∈Mω, n∈Nω

j , nR(k,m)]
= [fk.hm | k ∈ Kl, m∈M l, n∈Ni, nR(k,m)] M = M l ∪Mω, ω = 2ω

+ [fk.hφ(n,k) | k ∈ Kl, φ(n, k) ∈Mω, n∈Ni]
+ [fk.hφ(n,k) | k ∈ Kω, n ∈ Ni]
+ [ω·fk.hm | k ∈ Kl, m∈Mω, n∈Nω

i , nR(k,m)]
+ [ω·fk.hm | k ∈ Kω, m∈M l, ψ(k,m)∈Nω

j ]
+ [ω·fk.hm | k ∈ Kω, m∈Mω, n∈Nω

j , nR(k,m)]
= [fk.hm | k ∈ Kl, m∈M l, n∈Ni, nR(k,m)] ψ is total, ω = 2ω

+ [fk.hφ(n,k) | k ∈ Kl, φ(n, k) ∈Mω, n∈Ni]
+ [fk.hφ(n,k) | k ∈ Kω, n ∈ Ni]
+ [ω·fk.hm | (k, l) ∈ (K⊗M)ω, n∈Nω

i , nR(k,m)]
= [fk.hm | k ∈ Kl, m∈M l, n∈Ni, nR(k,m)]

+ [fk.hφ(n,k) | k ∈ Kl, φ(n, k) ∈Mω, n∈Ni]
+ [fk.hφ(n,k) | k ∈ Kω, n ∈ Ni]
+ [ω·gn | n∈Nω

i ]
= [fk.hm | k ∈ Kl, m∈M l, n∈N l

i , nR(k,m)]
+ [fk.hφ(n,k) | k ∈ Kl, φ(n, k) ∈Mω, n∈N l

i ]
+ [fk.hφ(n,k) | k ∈ Kω, n ∈ N l

i ]
+ [ω·gn | n∈Nω

i ]
= [gn | k ∈ Kl, m∈M l, n∈N l

i , nR(k,m)]
+ [gn | k ∈ Kl, φ(n, k) ∈Mω, n∈N l

i ]
+ [gn | k ∈ Kω, n ∈ N l

i ,∃m ∈M,nR(k,m)]
+ [ω·gn | n∈Nω

i ]
= [gn | n∈N l

i ] + [ω·gn | n∈Nω
i ] n ∈ N l ⇒ ∃!(k,m), nR(k,m)

= νi
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�

C Proof of Theorem 7.

Whe show here the codings for the most non trivial diagrams. Recall that to close the
external cell of this diagrams, a a call to the universal property of epimorphism is required.

AI·(J·H)

(AI)J·H

A(I·J)·H (AI·J)H

AI
JH

!A

!!A

!!A

!!!A

.

.

. .

p′A,I,J·H

Aas· p′A,I·J,H

p′A,I,J
H

p′AI ,J,H

pA

pA

!pA

p!A

∂

∂

!
∂

∂

∂

!

∂

!!
∂

!
∂

∂

!p′A,I,J

!pAI

AI·1

AI
1

AI AI

!A

!!A

!A

.

p′A,I,1

Aunt+
id

d′AI

pA

id

d!A

∂

!

∂

∂

∂

∂

dAI



Breuvart and Pagani 23

A1·I

A1I

AI AI

!A

!!A

!A

.

p′A,I,1

Aunt+
id

d′AI

pA

id

d!A

∂

!

∂

∂

∂

∂

!dA

A(J+H)·I

AJ·I+H·I

(AJ+H)I (AJ ⊗AH)I

(AJ)I ⊗ (AH)IAJ·I ⊗AH·I

!A

!!A !(!A⊗!A)

!!A⊗!!A!A⊗!A

. .

.

Adst

p′A,J+H,I c′A,J,H
I

m′AJ ,AH ,I

c′A,J·I,H·I p′A,J,I ⊗ p′A,H,I

cA

pA
!cA

pA ⊗ pA

m!A,!A

∂

∂

!

∂

∂

!(

∂

⊗

∂

)

∂

!

∂

⊗!

∂

∂

⊗

∂
∂

⊗

∂

!c′A,J,H

mAJ ,AH
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AI·(J+H)

AI·J+I·H

(AI)J+H (AI)J ⊗ (AI)H

AI·J ⊗AI·H

!A

!!A !!A⊗!!A

!A⊗!A

. .

Adst

p′A,I,J+H c′AI ,J,H

p′A,I,J ⊗ p′A,I,H

c′A,J·I,H·I

cA

pA
c!A

pA ⊗ pA

∂

∂

!

∂

∂

!

∂

⊗!

∂

∂

∂

⊗

∂

cAI ,J,H

A0·I

A0

(A0)I 1I

1

!A

!!A !1

.

Aabso

p′A,0,I w′A
I

m′I

w′A

cA

pA !wA

m⊥

∂

∂

!

∂

∂
∂

!w′A
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AI·0

A0

(AI)0

1

!A

!!A

.

Aabso

p′A,I,0

w′AI

w′A

wA

pA

w!A

∂

∂

!

∂

∂

w′!A

AI·J ⊗BI·J

AI
J ⊗BIJ

(A⊗B)I·J (A⊗B)I
J

(AI ⊗BI)J

!A⊗!B

!!A⊗!!B

!(A⊗B) !!(A⊗B)

!(!A⊗!B)

.

.

.

p′A,I,J ⊗ p′B,I,J

m′A,B,I·J p′A⊗B,I,J

m′A,B,I
J

m′AI ,BI ,J

pA ⊗ pB

mA,B
pA⊗B

!mA,B

m!A,!B
∂

⊗

∂

!

∂

⊗!

∂

∂

⊗

∂

∂

!

∂

∂

!(

∂

⊗

∂

)

∂

mAI ,BI

!m′A,B

D Theorem 11

In the following we denote ‖u‖ =
∑
α∈A u(α) for u ∈!A.

I Lemma 13. For any f : !A→ !B, if (u, v) ∈ f , then ‖u‖ = ‖v‖.

Proof. If (u, v) ∈ f then there is σ ∈ Rf 〈f〉 such that u(a) =
∑
b σ(a, b) and v(b) =

Σaσ(a, b) thus

‖u‖ =
∑
a

u(a) =
∑
a

∑
b

σ(a, b) =
∑
b

∑
a

σ(a, b) =
∑
b

v(b) = ‖b‖

�
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I Lemma 14. For any interpretation J−K of an ordered semi-ring S into a multiplicity
semi-ring R, the following is a bifunctor:

AI :=
{
u ∈ !IA |

∑
x∈A

u(x) ∈ JIK
}
, f≥I,J := {(u, v) ∈ !f | ‖u‖ ∈ JIK, ‖v‖ ∈ JJK},

Proof. By previous lemma, and using the 1st item of Definition 10 that state that if I ≥ J
then JIK ⊇ JparbK, the functoriality can be rewritten:

f≥I,J := {(u, v) ∈ !f | ‖v‖ ∈ JJK},

The identity is preserved:

idA
idI = {(u, v) ∈ !idA | ‖v‖ ∈ JIK}

= {(u, v) ∈ id!A | ‖v‖ ∈ JIK}
= {(u, u) ∈ id!A | ‖u‖ ∈ JIK}
= idAI .

The composition is preserved:

f≥I,J ; g≥J,H = {(u,w) | ∃v, (u, v) ∈ !f, (v, w) ∈ !g, ‖v‖ ∈ JJK, ‖w‖ ∈ JHK}
= {(u,w) | ∃v, (u, v) ∈ !f, (v, w) ∈ !g, ‖w‖ ∈ JHK}
= {(u,w) | (u,w) ∈ !f ; !g, ‖w‖ ∈ JHK}

= f ; g≥I,H .

�

I Lemma 15. For any interpretation J−K of an ordered semi-ring S into a multiplicity semi-
ring R, the transformation

∂

A,I = {(u, u) | ‖u‖ ∈ JIK} : !A =⇒ AI is natural. Moreover,

∂

A,I is epi for any I, A

Proof.
Naturality of

∂

I,A in A:
Let R ∈ Rel(A,B), we must prove that for all I, !R;

∂

I,B =

∂

I,A;RidI .
Let (u, v) ∈!R;

∂

I,B then there exists w such that (u,w) ∈!R and (w, v) ∈

∂

I,B thus v = w

and ‖v‖ ∈ JIK; thus ‖u‖ = ‖v‖ ∈ JIK and (u, u) ∈

∂

I,A what concludes since (u, v) ∈
RidI . Conversely let (u, v) ∈

∂

I,A;RidI then there exists w such that (u,w) ∈

∂

I,A and
(w, v) ∈ RidI thus u = w and ‖w‖ ∈ JIK; thus ‖v‖ = ‖w‖ ∈ JIK and (v, v) ∈

∂

I,B what
concludes since (u, v) ∈!R.
Naturality of

∂

I,A in I:
For I, J , we must prove that for all A,

∂

J,A =

∂

I,A; idA≥I,J , what is trivial since idA≤I,J =
{(u, u) | ‖u‖ ∈ JJK} : AI =⇒ AJ .
The epi property of

∂

A,I commes from the surjectivity of

∂

A,I = {(u, u) | ‖u‖ ∈ JIK} as
a relation.

�

I Theorem 11. Any interpretation J−K of an ordered semi-ring S into a multiplicity
semi-ring R induces a stratification of the linear category RelR.

Proof. After Lemmas 15 and 15, it only remains to verify the diagrams:
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Deriliction (first diagram):

∂

1,A; d′A = {([α], α) | α ∈ A, 1R ∈ J1SK}
dA = {([α], α) | α ∈ A, 1R ∈ J1RK}

The two sets are the same because 1R ∈ J1SK by the 5th item of Definition 10.
Digging (second diagram):

∂

I·J,A; p′A,I,J
= {(u, U) | u(α) = Σv∈!AU(v)·v(α), ‖u‖ ∈ JI·JK, dom(U) ⊆ AJ , ‖U‖ ∈ JIK}
= {(u, U) ∈ pA | ‖Σv∈!AU(v)·v‖ ∈ JI·JK, dom(U) ⊆ AJ , ‖U‖ ∈ JIK}
= {(u, U) ∈ pA | Σα∈AΣv∈!AU(v)·v(α) ∈ JI·JK, dom(U) ⊆ AJ , ‖U‖ ∈ JIK}
= {(u, U) ∈ pA | Σv∈!AU(v)·‖v‖ ∈ JI·JK, dom(U) ⊆ AJ , ‖U‖ ∈ JIK}
= {(u, U) ∈ pA | Σv∈dom(U)U(v)·‖v‖ ∈ JI·JK, dom(U) ⊆ AJ , ‖U‖ ∈ JIK}
pA; !

∂

J,A;

∂

I,A

= {(u, U) ∈ pA | dom(U) ⊆ AJ , ‖U‖ ∈ JIK}.

The two sets are the same, indded, if dom(U) ⊆ AJ and ‖U‖ ∈ JIK then:
Either U is empty and JIK = 0S so that Σv∈dom(U)U(v)·‖v‖ = 0S ∈ J0SK = JI·JK by
the 4th item of Definition 10.
or we can apply the 3rd item of Definition 10:

Σv∈dom(U)U(v)·‖v‖ ∈ {Σv∈dom(U)pv·‖v‖ | Σv∈dom(U)pv = ‖U‖, ∀v ∈ dom(U), ‖v‖ ∈ JJK}
∈ {Σv∈dom(U)pv·qv | Σv∈dom(U)pv ∈ JIK, ∀v ∈ dom(U), qv ∈ JJK}
∈ {Σi≤kpi·qi | k ≥ 1, Σi≤kpi ∈ JIK, ∀i ≤ k, qi ∈ JJK}
= JIK� JJK

⊆ JI·JK.

Weakening (third diagram):

∂

0,A; w′A = {([α], α) | α ∈ A, ‖[1·α]‖ ∈ J1K}
w = {([α], α) | α ∈ A}

The two sets are the same since ‖[1·α]‖ = 1R ∈ J1SK by the 4th item of Definition 10.
Contraction (fourth diagram):

∂

I+J,A; c′A,I,J = {(u, (v, w)) | u = v+w, ‖u‖ ∈ JI+JK, ‖v‖ ∈ JIK, ‖w‖ ∈ JJK}
= {(v+w, (v, w)) | ‖v‖+‖w‖ ∈ JI+JK, ‖v‖ ∈ JIK, ‖w‖ ∈ JJK}

cA;

∂

I,A ⊗

∂

J,A = {(v+w, (v, w)) | ‖v‖ ∈ JIK, ‖w‖ ∈ JJK}

The two sets are the same because the conditions on v and w imply that on v+w, since
JIK⊕ JJK ⊆ JI + JK. We detail the other cases in Appendix D.
First promotion (fifth diagram): trivial.
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Second promotion (sixth diagram):

∂

I,A ⊗

∂

I,B ; m′A,B,I
= {((u, v), w) | u(α) = Σβ∈Bw(α, β), v(β) = Σα∈Aw(α, β), ‖u‖, ‖v‖, ‖w‖ ∈ JIK}
= {(((u, v), w) ∈ mA,B | ‖α 7→ Σβw(α, β)‖ ∈ JIK, ‖β 7→ Σαw(α, β)‖ ∈ JIK, ‖w‖ ∈ JIK}
= {((u, v), w) ∈ mA,B | ΣαΣβw(α, β) ∈ JIK,ΣβΣαw(α, β) ∈ JIK, ‖w‖ ∈ JIK}
= {((u, v), w) ∈ mA,B | Σ(α,β)∈A×Bw(α, β) ∈ JIK, ‖w‖ ∈ JIK}
= {((u, v), w) ∈ mA,B | ‖w‖ ∈ JIK}
= mA,B ;

∂

I,A⊗B

�

E Proposition 6

I Proposition 6. The following is a correct interpretation of S into Nf 〈S·〉:

JIK = {[J1, ..., Jn] |
∑
i≤n

Ji ≤S I}

Proof.

If I ≤S J then

JIK = {[J1, ..., Jn] |
∑
i≤n

Ji ≤S I}

⊆ {[J1, ..., Jn] |
∑
i≤n

Ji ≤S J}

= JJK

The addition is preserved:

JIK⊕ JJK = {[I1, ..., In, J1, ..., Jm] |
∑
i≤n

Ii ≤S I,
∑
i≤m

Ji ≤S J}

⊆ {[J1, ..., Jn] |
∑
i≤n

Ji ≤S I + J}

= JI +S JK
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The multiplication is preserved:

JIK� JJK = {
h∑
i=1

pi·qi | h ≥ 0,
h∑
i=1

pi ∈ JIK, ∀i ≥ h, qi ∈ JJK}

= {[Ii,j ·Ji,k | i ≤ h, j ≤ ji, k ≤ ki] | h ≥ 0, [Ii,j | i ≤ h, j ≤ ji] ∈ JIK,

∀i ≥ h, [Ji,k | k ≤ ki] ∈ JJK}

= {[Ii,j ·Ji,k | i ≤ h, j ≤ ji, k ≤ ki] | h ≥ 0,
∑
i≤h

∑
j≤ji

Ii,j ≤S I,

∀i ≥ h,
∑
k≤ki

Ji,k ≤S J}

⊆ {[Ii,j ·Ji,k | i ≤ h, j ≤ ji, k ≤ ki] | h ≥ 0, (
∑
i≤h

∑
j≤ji

Ii,j)·J ≤S I·J,

∀i ≥ h,
∑
k≤ki

Ji,k ≤S J}

= {[Ii,j ·Ji,k | i ≤ h, j ≤ ji, k ≤ ki] | h ≥ 0,
∑
i≤h

((
∑
j≤ji

Ii,j)·J) ≤S I·J,

∀i ≥ h,
∑
k≤ki

Ji,k ≤S J}

⊆ {[Ii,j ·Ji,k | i ≤ h, j ≤ ji, k ≤ ki] | h ≥ 0,
∑
i≤h

((
∑
j≤ji

Ii,j)·(
∑
k≤ki

Ji,k)) ≤S I·J}

⊆ {[Ii,j ·Ji,k | i ≤ h, j ≤ ji, k ≤ ki] | h ≥ 0,
∑
i≤h

∑
j≤ji

∑
k≤ki

Ii,j ·Ji,k ≤S I·J}

⊆ {[Ki′ | i′ ≤ h′] | h ≥ 0,
∑
i′≤h′

Ki′ ≤S I·J}

= JI·JK

The 0 is preserved:

0Nf 〈S·〉 = []

∈ {[J1, ..., Jn] |
∑
i≤n

Ji ≤S 0S}

= J0SK

The 1 is preserved:

1Nf 〈S·〉 = [1S ]

∈ {[J1, ..., Jn] |
∑
i≤n

Ji ≤S 1S}

= J1SK

�

F Admissibility of Rf〈M〉 as an exponential

I Lemma 16. For any semiring R (not necessary a multiplicity semiring) and monoid M,
the monad (A 7→ M×A) distribute over the monad Rf 〈A〉 in Set.
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Proof. The distributive rule is the morphism λA := ((k,m) 7→ ((k′, a) 7→ δk,k′m(a))) :
T1T2A→ T2T1A (where δk,k′ has value 1 is k = k′ and 0 otherwise).

It is natural: for all f : A→ B

(T1T2f ;λB)(k,m) = λB(k, (b 7→
∑
b=f(a)

m(a)))

= (b, k′) 7→ δk,k′Σb=f(a)m(a)
= (b, k′) 7→ Σ(b,k′)=(f(a),k′′)δk,k′′m(a)
= (T2T1f ;λA)(k,m)

We have T1[η2
A];λA = η2

T1A
: T1A→ T2T1A

(T1[η2
A];λA)(k, a)(k′, a′) = λA(k, [a])(k′, a′)

= δk,k′ [a](a′)
= δk,k′δa,a′

= δ(k,a),(k′,a′)

= η2
T1A(k, a)(k′, a′)

We have η1
T2A

;λA = T2[η1
A] : T2A→ T2T1A

(η1
T2A;λA)(m)(k, a) = λA(1M,m)(k, a)

= δ1M,km(a)
= Σa′δ1M,kδa′,am(a′)
= Σ(k,a)=(1M,a′)m(a′)
= T2[η1

A](m)(k, a)

We have T1[λA];λT1A;T2[µ1
A] = µ1

T2(A);λA : T1T1T2A→ T2T1A

(T1[λA];λT1A;T2[µ1
A])(k0, (k1,m))(k2, a)

= (λT1A;T2[µ1
A])(k0, (((k3, a

′) 7→ δk1,k3m(a′))))(k2, a)
= T2[µ1

A]((k4, (k3, a
′′)) 7→ δk0,k4δk1,k3m(a′′))(k2, a)

=
∑

(k2,a)=µ1
A

(k4,(k3,a′′))

δk0,k4δk1,k3m(a′′)

=
∑

(k2,a)=(k4·k3,a′′)

δk0,k4δk1,k3m(a′′)

=
∑

k2=k4·k3

δk0,k4δk1,k3m(a)

= δk0·k1,k2m(a)
= λA(k0·k1,m)(k2, a)
= µ1

T2(A);λA(k0, (k1,m))(k2, a)
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We have λT2A;T2[λA];µ2
T1A

= T1[µ2
A];λA : T1T2T2A→ T2T1A

(λT2A;T2[λA];µ2
T1A)(k0,M)(k1, a)

= (T2[λA];µ2
T1A)((k2,m) 7→ δk0,k0M(m))(k1, a)

= µ2
T1A(t 7→

∑
t=λA(k2,m)

δk0,k2M(m))(k1, a)

= µ2
T1A(t 7→

∑
t=((k3,a′)7→δk2,k3m(a′))

δk0,k2M(m))(k1, a)

=
∑
t

(
∑

t=((k3,a′)7→δk2,k3m(a′))

δk0,k2M(m)).t(k1, a)

=
∑

(k2,m)

δk0,k2M(m)δk2,k1m(a)

=
∑
m

M(m)δk0,k1m(a)

= δk0,k1

∑
m

M(m)m(a)

= λA(k0, (a′ 7→
∑
m

M(m)m(a′)))(k1, a)

= (T1[µ2
A];λA(k0,M))(k1, a)

�

I Theorem 9. For any multiplicity semi-ring R and any monoid M, the semi-ring Rf 〈M〉
defines an exponential comonad over Rel.

Proof. In the category set we have:
(A 7→ M×A) is a strong monad distributing over Bf 〈A〉 (by Lemma 16) and
Rf 〈A〉 is a strong monoidal monad distributing over Bf 〈A〉 (since it gives a comonad
exponential in Rel by Theorem 9).

Thus since the first distribute over the second by Lemma 16, the composition Rf 〈M×A〉 =
(Rf 〈M〉)f 〈A〉 is a strong monoidal monad distributing over Bf 〈A〉. This is sufficient to say
that it extends to a monad in Rel whose inverse (recalls that Rel is compact close) is an
exponential comonad. �
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