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Abstract. Despite the fact that call-by-value λ-calculus was defined by Plotkin in 1977, we be-
lieve that its theory of program approximation is still at the beginning. A problem that is often
encountered when studying its operational semantics is that, during the reduction of a λ-term,
some redexes remain stuck (waiting for a value). Recently, Carraro and Guerrieri proposed to en-
dow this calculus with permutation rules, naturally arising in the context of linear logic proof-nets,
that succeed in unblocking a certain number of such redexes. In the present paper we introduce
a new class of models of call-by-value λ-calculus, arising from non-idempotent intersection type
systems. Beside satisfying the usual properties as soundness and adequacy, these models vali-
date the permutation rules mentioned above as well as some reductions obtained by contracting
suitable λI-redexes. Thanks to these (perhaps unexpected) features, we are able to demonstrate
that every model living in this class satisfies an Approximation Theorem with respect to a refined
notion of syntactic approximant. While this kind of results often require impredicative techniques
like reducibility candidates, the quantitative information carried by type derivations in our system
allows us to provide a combinatorial proof.
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1. Introduction

The state-of-the-art Call-by-name and call-by-value evaluations constitute the two principal pa-
rameter passing mechanisms that are used in real programming languages: in the latter parameters are
evaluated before being passed to a program, while in the former they can be passed as they are. The
classical λ-calculus defined by Church [1] and the λv-calculus designed by Plotkin [2] are two theoret-
ical calculi respectively modeling these parameter passing styles, through two slightly different eval-
uation rules. In λ-calculus the evaluation is made using the β-rule, formalized as (λx.M)N →β M[N/x],
while the λv-calculus is endowed with the βv-rule, which is a restriction of→β to the case where N is
a value, i.e., an already evaluated term. The λv-calculus, however, is not yet the paradigmatic calculus
for the call-by-value evaluation — in particular the reduction βv is too weak and does not allow to
model important operational properties like potential valuability and solvability. In fact some attempts
have been made for enforcing it, the most important being the one in [3], where two commutation
rules have been introduced with the result of avoiding some paradoxical situations, like the existence
of unsolvable normal forms. Moreover, in [4], it has been proved that the theory of the extended cal-
culus is conservative with respect to that of λv-calculus, so it can be considered as the best language
for modelling the call-by-value reduction, until now.

The denotational semantics of both λ and λv-calculus has been intensively studied in the literature,
but the mathematical strength of the results achieved is quite different in the two settings. Indeed, while
for the first there are many models that are fully abstract with respect to the more usual operational
semantics, for the the latter there is no known fully abstract model. A particularly interesting feature
to study in denotational semantics is the Approximation Theorem, saying that the behavior of a term is
the least upper bound of the behavior of its approximants, that are normal forms living in an extended
language. In λ-calculus a very satisfying notion of approximant for Scott’s model D∞ has been built
in [5]: in fact, the denotational equivalence is reflected in the syntactical shape of the approximants,
and syntactically different approximants can be separated [6]. Such a separation property is the key
tool to prove that this model is fully abstract with respect to the operational semantics induced by
the leftmost-outermost evaluation strategy. For the λv-calculus the results are less satisfactory. Its
denotational semantics has been studied in various settings: continuous functions domains [7, 8],
stable functions domains [9], and relational domains [10, 11], but in each of these models there is a
counterexample to the full abstraction property. In particular, in [8], an Approximation Theorem has
been proven, but the syntactical shape of these approximants is too weak to be useful in practice.

Our result In this paper we use a semantic tool to further refine the reduction rule of λv-calculus.
Namely we define in Section 3 a class of relational models of the λv-calculus, through a non-idempotent
intersection type assignment system, parametrized with respect to an equivalence relation on types:
every equivalence satisfying some given constraints induces a different model (Theorem 3.8). Every
model is closed not only under the βv equality and under the commutation rules cited in the previous
paragraph, but also under a new rule (Definition 4.12), that we discovered studying the cut elimination
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of the type assignment system. The resulting notion of reduction, which we call →V, is in our opin-
ion the best candidate for modeling the call-by-value evaluation: in fact, we prove that the calculus
equipped with the→V-reduction is conservative with respect to the λv-calculus and that every model
in the class is adequate for Plotkin’s operational semantics (Theorem 5.12). The proof is based on
an Approximation Theorem (Theorem 5.10), satisfied by all the models living in this class, where
the notion of approximant is syntactically much more refined than in [8], being normal forms in an
extended syntax, equipped with the→V-reduction. The Approximation Theorem allows to reason in a
finitary way about the denotation of terms: for example we use it to prove that all recursion operators
(Definition 5.13) are equated in all models in the class, and that our models characterize the poten-
tially valuable terms (Corollary 5.11), where a term is potentially valuable if there exists a substitution
replacing variables by values making such a term reducible to a value. An important technical point
needs to be cited: while in continuous and stable models the proof of an Approximation Theorem
requires quite complex proof-theoretical tools like computability or reducibility candidates, the fact
that the type assignment system we use carries out quantitative information opens the way to a very
simple proof, by induction on the type derivation. This is in line with what happens in other relational
based models, e.g. see the adequacy proof of [10].

Finally, we prove that the class of models induced by our type assignment system increases the
semantic knowledge of the λv-calculus: in fact all the induced theories are different from those induced
by the continuous models in [7, 8] and the relational models in [10, 11].

Related work Several variants of λv, have been introduced in the literature for modeling the call-by-
value computation. Some authors proposed the introduction of new constructs to the syntax of λv, like
Curien and Herbelin [12], Dyckhoff and Lengrand [13], Herbelin and Zimmerman [14], Accattoli and
Paolini [15], Accattoli and Sacerdoti Coen [16]. Others proposed to extend the βv reduction with new
reduction rules, in particular [17, 18, 19, 20, 21, 22, 23, 14] present some variants of the commutation
rules introduced by Carraro and Guerrieri in [3] and further studied in [4, 24, 25], often in a setting
with explicit substitutions. A generalization of the commutation rules is used in [26] for a variant of
the λ-calculus subsuming both call-by-name and call-by-value evaluations.

2. The λV-calculus

Syntax We generally follow the syntax and the notation for λ-calculus, as defined in [27]. The
syntax of terms of ΛV is the same as the one of ordinary λ-calculus, i.e., terms and term contexts of ΛV
are generated respectively by the grammars:

M, N, P, Q ::= x | λx.M | MM

C ::= � | x | λx.C | MC | CM

where x ranges over a countable set Var of variables (denoted by x, y, z, . . . ), and � denotes the hole
of the term context. As usual, we assume that λ-abstraction associates to the right, and has higher
priority than application. So, for instance, we may write λxyz.xyz instead of λx.(λy.(λz.((xy)z))).
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The set Val ⊂ ΛV of values is defined by:

U, V ::= x | λx.M

Note that the set of values is closed under substitution. The set of free variables of a term M is denoted
by FV(M). We say that a term M is closed whenever FV(M) = ∅ and we denote by Λ0

V the set of all
closed terms. Both terms and term contexts are considered up to α-conversion, i.e., modulo renaming
of bound variables.

The symbol ≡ denotes the syntactic identity, modulo α-conversion.
Given a term context C, we denote by C(M) the term obtained from C by filling the hole with M,

possibly allowing the capture1 of some free variables.

Definition 2.1. A head term context H is a term context having shape H ≡ (λx1 . . . xn.�)U1 · · · Um, for
some m, n ≥ 0, such that Ui ∈ Val, for all i (1 ≤ i ≤ m).

Reduction The reduction relation→βv is the contextual closure of the rule:

(λx.M)V→ M[V/x] if V ∈ Val

where M[V/x] denotes the capture avoiding simultaneous substitution of V for all free occurrences of x
in M. As usual,→∗βv

denotes the reflexive and transitive closure of→βv , and =βv its reflexive, transitive
and symmetric closure.

Remember that, in the call-by-value setting, the general η-reduction is unsound, but the following
version restricted to values is sound:

λx.Vx→ηv V if V ∈ Val and x < FV(V).

Operational semantics In the pioneering article [2], Plotkin defined an operational preorder on the
call-by-value λ-calculus in the following way:

M ≤op N ⇔ ∀C . C(M), C(N) ∈ Λ0
V

(
∃U1 ∈ Val . C(M)→∗βv

U1 ⇒ ∃U2 ∈ Val . C(N)→∗βv
U2

)
By replacing the double implication⇔ for the implication⇒ in the above formula, we obtain the

definition of operational equivalence =op between terms.

Semantic classes Terms are classified into (potentially) valuable or non (potentially) valuable de-
pending on their capability of reducing to a value in suitable term contexts.

Definition 2.2. A term M is valuable if it reduces to a value; potentially valuable if there is a substitu-
tion s, replacing variables by values, such that s(M) is valuable.

The notion of solvability, trying to grasp the notion of meaningful programs, can be defined in a similar
way as for λ-calculus.

1In other words, the symbol � can be thought of as a distinguished algebraic variable.
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Definition 2.3. A term M is solvable if there exists a head term context H such that H(M)→∗βv
I, where

I ≡ λx.x is the identity.

By definition, every term solvable in the λV-calculus is also solvable in the regular λ-calculus. The
converse is false, as shown by the term M ≡ (λyx.x)(DD) where D ≡ λz.zz. Indeed, M β-reduces to I (by
contracting its outermost redex) while it can only βv-reduce to itself as DD →βv DD < Val. Moreover,
no head term context can interfere with this behaviour.

The following properties are easy to check:

Property 2.4. The class of solvable terms is a strict subclass of the potentially valuables.

In fact, if the term M is unsolvable then λx.M is unsolvable as well, but it is also a value and as such
potentially valuable.

Property 2.5. Let M, N ∈ ΛV be such that M =βv N. Then M is valuable (potentially valuable, solvable)
if and only if N is valuable (potentially valuable, solvable).

λV-models The general definition of a denotational model for ΛV, as first defined in [7] and further
simplified in [28], is a modification of that for Λ given in [29].

Definition 2.6. ([28], Def. 10.0.1)
A λv-model is a quadruple M = 〈D,V, ◦, ~·�M〉, such that D is a set (the carrier set), V ⊆ D is
the set of semantic values, ◦ is a total map from D2 to D. Moreover, if E is the class of functions
from Var to V, called semantic environments and ranged over by ρ, ρ′, . . . , the interpretation function
~·�M(·) : ΛV × E→ D satisfies the following conditions:

1. ~x�Mρ = ρ(x);

2. ~MN�Mρ = ~M�Mρ ◦ ~N�
M
ρ ;

3. ~λx.M�Mρ ◦ d = ~M�M
ρ[d/x] if d ∈ V;

4. if ~M�M
ρ[d/x] = ~M′�M

ρ′[d/x] for each d ∈ V, then ~λx.M�Mρ = ~λx.M′�Mρ′ ;

5. ~λx.M�Mρ ∈ V for all ρ ∈ E;

where ρ[d/x] denotes the environment ρ′ which coincides with ρ, except on x, where ρ′ takes the
value d. When M ∈ Λ0

V we simply write ~M�M since the interpretation does not depend on ρ. We write
M |= M = N whenever ∀ρ . ~M�Mρ = ~N�Mρ .

The principal difference with respect to the general definition of a λ-model [27, Def. 5.3.2] is the
introduction of a subset V of the carrier set, which represents the semantical counterpart of the set Val
of values. The fact that environments send variables to elements of V is a natural consequence of the
fact that variables are values. Let us discuss now the five conditions on the interpretation function.
Point 1 is rather standard. Points 2 and 4 ensure that the interpretation is context closed. In point 3 the
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equality is required to hold just in case the argument is a semantic value (thus reflecting the behaviour
of→βv). Finally, the condition in point 5 requires that all abstraction terms are interpreted as semantic
values, thus reflecting the syntactical definition of Val. An immediate consequence of this definition
is that any λv-modelM is correct with respect to βv- conversion, namely M =βv N entailsM |= M = N.

Definition 2.7. A λv-modelM is called extensional if M =ηv N impliesM |= M = N.

An extension of the λV-calculus In [28, 8] it has been shown that the reduction→βv is too weak to
obtain a syntactic characterization of the semantic properties defined above, like potential valuability
and solvability. To solve this problem, the following two commutation rules have been introduced
in [3]:

(λx.M)NP →σ1 (λx.MP)N with x < FV(P),
V((λx.M)N) →σ3 (λx.VM)N with x < FV(V).

Notice that the rule σ1 is the standard one, originally introduced by Regnier in call-by-name [30],
while σ3 is more recent and proper to the call-by-value setting.

Let →βv,σ be the union of the βv-reduction and the two commutation reductions, and let the λσV -
calculus be the calculus equipped with this reduction rule: in [4] it has been proved that it is conser-
vative with respect to λV-calculus, in the following sense.

Property 2.8. A term of the λσV -calculus is valuable (potentially valuable, solvable) if and only if it is
valuable (potentially valuable, solvable) in the λV-calculus.

In the same article the authors show that the operational semantics of λV is also preserved in λσV .
The advantage of adding these permutation rules is that they open the way for an internal charac-

terization of the semantical properties listed above. In particular, a nice syntactical characterization of
solvability has been supplied.

Theorem 2.9. (Carraro and Guerrieri, [3])
A term M is solvable if and only if it βv, σ-reduces to an S-term of the following grammar:

S ::= xW1 · · · Wn | λx.S | (λx.S)(yW1 · · · Wm) (n ≥ 0,m > 0)
W ::= V | S where V ∈ Val

So the λσV -calculus can be used as a syntactical tool to study the semantics of the λV-calculus. We
will show in the following sections that this feature is preserved by the denotational semantics.

3. A class of relational models for ΛV

The relational models of (call-by-name) λ-calculus can be easily described through non-idempotent
intersection types (first shown in [31], then generalized in [32, 33]). Following the same idea, we
define here a class of relational models of the λV-calculus, described by an intersection type assignment
system, parametric with respect to a set of type constants and a congruence relation between types.
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x : [A] `C,' x : A
ax

Γ `C,' M : A A ' B

Γ `C,' M : B
'

Γ, x : σ `C,' M : A
Γ `C,' λx.M : σ→ A

→I
Γ `C,' M : σ→ A ∆ `C,' N : σ

Γ ] ∆ `C,' MN : A
→E

`C,' V : [ ] !0
n > 0 ∀i, 1 ≤ i ≤ n, Γi `C,' M : Ai⊎n

i=1 Γi `C,' M : [A1, . . . , An]
!>0

Figure 1. The relational parametric type assignment system SC,'.

Definition 3.1.

• Let C be a countable (possibly empty) set of constants called atomic types. We define the set TC
of types over C and the set T !

C
of finite multisets of types over C, by mutual induction as follows:

A, B, C ::= a | [ ] | σ→ A TC

σ, τ ∈ Mf(TC \ {[ ]}) T !
C

where a ∈ C and Mf(TC \ {[ ]}) denotes the set of finite multisets containing types different
from [ ]. Multisets are represented as unordered lists, possibly with repetitions, and delimited
by square parentheses. Given two multisets σ, τ we write σ ] τ for their union. Notice that the
empty multiset [ ] belongs to both TC and T !

C
. We denote by T (!)

C
the set-theoretical union of

TC and T !
C

, the meta-variables α, β varying over T (!)
C

.

• A relational type theory ' is any congruence over TC such that:

[ ] ' A iff [ ] = A

σ→ A ' τ→ B iff A ' B and ∃n ≥ 0, σ = [A1, . . . , An], τ = [B1, . . . , Bn]

and ∀i ≤ n, Ai = Bi.

Remark 3.2. Intuitively, the multiset of types [A1, . . . , An] is an alternative notation for A1 ∧ · · · ∧ An,
where the intersection connective enjoys associativity and commutativity, but not idempotency. There-
fore the congruence on multisets needs to take into account the multiplicity of the elements.

A context Γ is a function from Var to T !
C

having finite domain, this latter being defined as the
set dom(Γ) = {x ∈ Var | Γ(x) , [ ]}. We write x1 : σ1, . . . , xn : σn for the context Γ such that
dom(Γ) ⊆ {x1, . . . , xn} and Γ(xi) = σi (for 1 ≤ i ≤ n). Given two contexts Γ and ∆ their union Γ ] ∆ is
defined component-wise.

Definition 3.3. The relational parametric type assignment system SC,', parametric with respect to C
and ' is defined in Figure 1, where Γ and ∆ are contexts.
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The system proves statements of the shape Γ `C,' M : α, where Γ is a context, and α is either a
type or a finite multiset of types over C. When writing Γ `C,' M : α we intend that there is a derivation
proving such a statement, and by Π . Γ `C,' M : α that there exists a particular derivation, called Π,
proving this statement.

We write `C,' M : α when the context has empty domain.
A comment on the typing rules is in order. Rules (ax), (→I), (→E) are the usual rules for λ-

calculus. Rule (!0) allows to characterize values through the empty multiset type, and it is essential to
type terms like λx.DD, which is a value despite the fact that DD is not typable in this system. Rule (!>0)
collects in a multiset a finite amount of types for the same term, so it is an auxiliary rule for typing the
argument of an application; note that it cannot be iterated. The parametric rule (') is self-explanatory.

In the denotational models for λ or λV-calculus described through intersection types, two cases
are possible. If the intersection is idempotent, the interpretation of a term is simply the set of types
derivable for it. When the intersection is non-idempotent, this interpretation is not correct anymore,
as shown in [31]: as proved in [32], a term needs to be interpreted as a set of pre-typings, where a
pre-typing is a pair of a context and a type.

Definition 3.4. Let SC,' be a relational parametric type assignment system.

• A pre-typing is a pair (Γ; A), where Γ is a context and A is a type.

• The equivalence ' is extended to pre-typings component-wise:

Γ ' ∆ ⇐⇒ dom(Γ) = dom(∆) and ∀x ∈ dom(Γ),Γ(x) ' ∆(x),
(Γ; A) ' (Γ′; A′) ⇐⇒ A ' A′ and Γ ' Γ′.

Lemma 3.5. Let Γ `C,' M : α. If Γ ' ∆ and α ' β then ∆ `C,' M : β.

Proof:
By induction on a derivation of Γ `C,' M : α. ut

Now we prove that every parametric relational type assignment system induces a model of ΛV.
When writing “∀x ∈ dom(Γ),∀Bx ∈ Γ(x).P(Bx)” for some property P, we mean that if the context Γ has
shape x1 : [A1

1, . . . , A
1
k1

], . . . , xn : [An
1, . . . , A

n
kn

] then P(Ai
j) holds for all i (1 ≤ i ≤ n) and j (1 ≤ j ≤ kn).

Definition 3.6. Let SC,' be a parametric relational type assignment system. We define a quadruple
MC,' = 〈SC,',VC,', ◦C,', ~·�C,'〉 as follows.

• The carrier set SC,' of MC,' and its subset VC,' of semantic values are defined as follows
(where s denotes a set of pre-typings):

SC,' :=
{
s | ∪(Γ;A)∈s dom(Γ) is finite and s is closed under '

}
,

VC,' :=
{
s ∈ SC,' | (∅; [ ]) ∈ s and if (Γ; [ ]) ∈ s then Γ = ∅

}
.

The first condition inVC,' is needed for having ~x�C,'ρ = ρ(x). The second condition is neces-
sary for having ~λx.M�C,'ρ ◦ d = ~M�C,'

ρ[d/x]. These conditions are non-standard but unproblematic
because they are enjoyed by the sets of pre-typings interpreting values.
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• The binary operation ◦C,' is defined on SC,' in the following way:

s1 ◦
C,' s2 = {(Γ ] ∆; A) | (Γ; [ ]→ A) ∈ s1, (∆; [ ]) ∈ s2}

∪
{
(Γ ] (]n

i=1∆i); A) | n > 0, (Γ; [B1, . . . , Bn]→ A) ∈ s1,∀i, 1 ≤ i ≤ n, (∆i; Bi) ∈ s2
}
.

• Given an environment ρ, i.e. a map from Var toVC,', and a term M, we set:

~M�C,'ρ =

(Γ; A)

∣∣∣∣∣∣∣ ∃∆, ∆ `C,' M : A and ∀x ∈ dom(∆), ∀Bx ∈ ∆(x),
∃(ΣBx ; Bx) ∈ ρ(x), s.t. Γ = ]x∈dom(∆) ]Bx∈∆(x) ΣBx


When M ∈ Λ0

V we have, up to isomorphism, that ~M�C,'ρ = {A | `C,' M : A} ⊆ TC. We write
MC,' |= M ≤ N if and only if ∀ρ . ~M�C,'ρ ⊆ ~N�C,'ρ holds.

The definition of the interpretation ~M�C,'ρ given above might seem intricate at first, but the idea is
to consider a derivation

x1 : [B1
1, . . . , B

1
k1

], . . . , xn : [Bn
1, . . . , B

n
kn

] `C,' M : A

to decompose the context Γ into k1 + · · · + kn many pieces Σi
j (where 1 ≤ i ≤ n and 1 ≤ j ≤ ki) and to

fetch the pairs (Σi
j; B

i
j) in the corresponding set ρ(xi) as described in the following scheme:

∃∆ = x1 : [ B1
1 , . . . , B

1
k1

], . . . , xn : [ Bn
1 , . . . , B

n
kn

] `C,' M : A

Γ = Σ1
1] · · · ] Σ1

k1
] · · · ] Σn

1] · · · ]Σn
kn

ρ(x1) · · ·

∈ ∈ ∈ ∈

ρ(xn)

^ ^ ^ ^

_ _ _ _

⇐⇒ (Γ; A) ∈ ~M�C,'ρ .

Clearly the definition of interpretation is simpler in case of a closed term. In fact, if M is closed,
then ∆ `C,' M : A implies dom(∆) = ∅, which in its turn entails ~M�C,'ρ = {(∅; A) | ∅ `C,' M : A}.

Example 3.7. Consider, for the sake of simplicity, the relational type assignment system S∅,= having
no atomic types and the syntactic equality as relational type theory. In the associated λV-modelM∅,=,
we have:

1. Let ρ(z) = {(y : τ;σ → A), (y : σ, z : τ;σ → A)}. Since z : [σ → A] `C,' z : σ → A, then
~z�∅,=ρ = {(y : τ;σ → A) | z : [σ → A] `C,' z : σ → A} ∪ {(y : σ, z : τ;σ → A) | z : [σ →
A] `C,' z : σ→ A} = ρ(z).

2. ~λx.x�∅,=ρ = ~λxy.xy�∅,=ρ = {(∅; [A] → A) | A ∈ T∅} ∪ {(∅; [ ]), (∅; [ ] → [ ])}, hence the model is
extensional.

3. ~D�∅,=ρ = {(∅; [σ→ A, σ]→ A) | σ ∈ T !
∅
, A ∈ T∅} ∪ {(∅; [ ])} for D ≡ λz.zz. From this it follows:

4. ~DD�∅,=ρ = ∅ and ~λx.DD�∅,=ρ = {(∅; [ ])}.



10 G. Manzonetto et al. / Relational Models for CbV λ-Calculus

We prove that for each choice of C and ' respecting the conditions of Definition 3.1, the quadruple
MC,' is a λv-model, according to Definition 2.6.

Theorem 3.8. MC,' is a λV-model.

Proof:
By checking that all conditions on the interpretation function stated in Definition 2.6 are satisfied.

(1) By the fact that only the axiom, the ' and the !0 rules can type a variable, the definition of
~x�C,'ρ is equal to the following union of two sets:

~x�C,'ρ = {(Γ; A) | ∃(ΣA′ ; A′) ∈ ρ(x) s.t. (ΣA′ ; A′) ' (Γ; A)}

∪ {(Γ; A) | A = [ ],Γ = ∅}

= ρ(x) ∪ {(∅; [ ])} = ρ(x)

The first equality holds because ρ(x) is closed under '. The last equality holds because the
semantic value ρ(x) contains {(∅; [ ])} by Definition 3.6.

(2) Notice that if ∆ `C,' MN : A then either there exists [B1, . . . , Bn] with n > 0, such that there exist
∆0 `C,' M : [B1, . . . , Bn] → A and ∆1 `C,' N : B1, . . . , ∆n `C,' N : Bn for ∆ = ]i∆i, or there exist
∆0 `C,' M : [ ]→ A and ∆1 `C,' N : [ ] for ∆ = ∆0 ] ∆1.

This means that the set ~MN�C,'ρ can be given by the following union:

~MN�C,'ρ =(Γ; A)

∣∣∣∣∣∣∣∣∣∣
∃n > 0,∃∆0 `C,' M : [B1, . . . , Bn]→ A and ∀i, 0 < i ≤ n,∃∆i `C,' N : Bi

and ∀x ∈ dom(∆i),∀Cx ∈ ∆i(x),∃(ΣCx ; Cx) ∈ ρ(x),
s.t. Γ = ]n

i=0 ]x∈dom(∆i) ]Cx∈∆i(x)ΣCx


∪

(Γ; A)

∣∣∣∣∣∣∣∣∣∣
∃∆0 `C,' M : [ ]→ A and ∃∆1 `C,' N : [ ] and
∀i ∈ {0, 1},∀x ∈ dom(∆i),∀Cx ∈ ∆i(x),∃(ΣCx ; Cx) ∈ ρ(x),
s.t. Γ = ]1

i=0 ]x∈dom(∆i) ]Cx∈∆i(x)ΣCx

 .
Introducing the definition Γi = ]x∈dom(∆i) ]Cx∈∆i(x) ΣCx into the expression, we can rewrite the
union above as follows:(]n

i=0Γi; A)

∣∣∣∣∣∣∣∣∣∣
∃n > 0,∃∆0 `C,' M : [B1, . . . , Bn]→ A and ∀i, 0 < i ≤ n,∃∆i `C,' N : Bi

and ∀x ∈ dom(∆i),∀Cx ∈ ∆i(x),∃(ΣCx ; Cx) ∈ ρ(x),
s.t. Γi = ]x∈dom(∆i) ]Cx∈∆i(x) ΣCx


∪

(Γ0 ] Γ1; A)

∣∣∣∣∣∣∣∣∣∣
∃∆0 `C,' M : [ ]→ A and ∃∆1 `C,' N : [ ] and
∀i ∈ {0, 1},∀x ∈ dom(∆i),∀Cx ∈ ∆i(x),∃(ΣCx ; Cx) ∈ ρ(x),
s.t. Γi = ]x∈dom(∆i) ]Cx∈∆i(x) ΣCx


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which is then equal by definition to:

{(]n
i=0Γi; A) | ∃n > 0, (Γ0; [B1, . . . , Bn]→ A) ∈ ~M�C,'ρ ,∀i, 1 ≤ i ≤ n, (Γi; Bi) ∈ ~N�C,'ρ }

∪ {(Γ0 ] Γ1; A) | (Γ0; [ ]→ A) ∈ ~M�C,'ρ , (Γ1; [ ]) ∈ ~N�C,'ρ }

= ~M�C,'ρ ◦ ~N�C,'ρ .

(3) Given d ∈ VC,', we have:

~λx.M�C,'ρ ◦ d =
(]n

i=0Γi; A)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∃n > 0, ∆, x : [B1, . . . , Bn] `C,' M : A,
and ∀y ∈ dom(∆),∀Cy ∈ ∆(y),
∃(ΣCy ; Cy) ∈ ρ(y) s.t. Γ0 = ]y∈dom(∆) ]Cy∈∆i(y) ΣCy ,

and (Γi, Bi) ∈ d for all 1 ≤ i ≤ n


∪

(Γ0 ] Γ1; A)

∣∣∣∣∣∣∣∣∣∣
∃∆, x : [ ] `C,' M : A, and ∀y ∈ dom(∆),∀Cy ∈ ∆(y),
∃(ΣCy ; Cy) ∈ ρ(y) s.t. Γ0 = ]y∈dom(∆) ]Cy∈∆i(y) ΣCy ,

and (Γ1, [ ]) ∈ d

 .
By hypothesis d ∈ VC,', so we have that (Γ1; [ ]) ∈ d implies Γ1 = ∅ and that (∅, [ ]) ∈ d is
always true, so that we can rewrite the second component of the union above as:(Γ0; A)

∣∣∣∣∣∣∣ ∃∆ `C,' M : A, and ∀y ∈ dom(∆),∀Cy ∈ ∆(y),
∃(ΣCy ; Cy) ∈ ρ(y) s.t. Γ0 = ]y∈dom(∆) ]Cy∈∆i(y) ΣCy

 .
We conclude that the union above is equal to (where ∆ `C,' M : A gathers the cases ∆, x :
[B1, . . . , Bn] `C,' M : A for n > 0 and ∆, x : [ ] `C,' M : A):(Γ; A)

∣∣∣∣∣∣∣ ∃∆ `C,' M : A, and ∀y ∈ dom(∆),∀Cy ∈ ∆(y),
∃(ΣCy ; Cy) ∈ ρ[d/x](y) s.t. Γ = ]

y∈dom(∆) ]Cy∈∆(y) ΣCy

 = ~M�C,'
ρ[d/x]

4) We show that there exists an element d ∈ VC,' such that ~M�C,'
ρ[d/x] = ~M′�C,'

ρ′[d/x] entails ~λx.M�C,'ρ =

~λx.M′�C,'ρ′ .

Let us assume (Γ; A) ∈ ~λx.M�C,'ρ and show that (Γ; A) ∈ ~λx.M′�C,'ρ′ , the other inclusion being
symmetrical. By definition, we have Γ′ `C,' λx.M : A for some Γ′. Moreover, if dom(Γ′) =

{x1, . . . , xm} then Γ′(x j) = [B j
1, . . . , B

j
n j] and there is a decomposition Γ = ]1≤ j≤m ]1≤h≤n j Γ

j
h

such that (Γ j
h; B j

h) ∈ ρ(x j). W.l.o.g., we may assume x . xi, for all i ≤ m, since x can be freely
renamed. So either A ' [C1, . . . , Cn] → B, for some n ≥ 1, and Γ′, x : [C1, . . . , Cn] `C,' M : B or
A ' [ ]→ B and Γ′ `C,' M : B.
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In the first case, let d = {(x : [C′h]; C′′h ) | C′h ' C
′′
h ' Ch, 1 ≤ h ≤ n} ∪ {(∅, [ ])}. From this, it

follows (Γ, x : [C1, . . . , Cn]; B) ∈ ~M�C,'
ρ[d/x] and consequently (Γ, x : [C1, . . . , Cn]; B) ∈ ~M′�C,'

ρ′[d/x]

since ~M�C,'
ρ[d/x] = ~M′�C,'

ρ′[d/x] by hypothesis.

Therefore there exist ∆, with x < dom(∆), and ∆′1, . . . ,∆
′
k satisfying:

– ∆, x : [C′1, . . . , C
′
k] `C,' M′ : B,

– ∀y ∈ dom(∆), if ∆(y) = [By1, . . . , B
y
ny] then there are (∆yh; Byh) ∈ ρ(y) for all h (1 ≤ h ≤ ny),

– (∆′j; C
′
j) ∈ d for all j (1 ≤ j ≤ k),

– Γ, x : [C1, . . . , Cn] = (]y∈dom(∆) ]1≤h≤ny ∆
y
h) ] ∆′1 ] · · · ] ∆′k.

From the definition of d, we get k = n, ∆′j ' x : [C j] and C′j ' C j for all j (1 ≤ j ≤ n). By
Lemma 3.5 and rules (→I) and ('), we have ∆ `C,' λx.M

′ : [C1, . . . , Cn] → B, which gives by
the conditions above (Γ; A) ∈ ~λx.M′�C,'ρ′ .

In the second case, just take d = {(∅; [ ])}. Then we have (Γ; B) ∈ ~M�C,'
ρ[d/x] and consequently

(Γ; B) ∈ ~M′�C,'
ρ′[d/x] by hypothesis. By a similar reasoning as before we can conclude (Γ; A) ∈

~λx.M′�C,'ρ′ .

5) We have to prove that ~λx.M�C,'ρ meets the two conditions definingVC,' in Definition 3.6. First,
(∅, [ ]) ∈ ~λx.M�C,'ρ , because `C,' λx.M : [ ] by the !0 rule. Second, suppose that (Γ, [ ]) ∈
~λx.M�C,'ρ , then there is ∆ `C,' λx.M : [ ] for some ∆. Notice that the only rule in Figure 1
giving type [ ] to an abstraction is the !0. (In particular, the ' rule cannot be applied because,
by Definition 3.1, [ ] is only equivalent to itself.) This means that ∆ = ∅. Then by definition of
~λx.M�C,'ρ we get Γ = ∅. We conclude ~λx.M�C,'ρ ∈ VC,'.

ut

SinceMC,' is a cbv-λ-model, it is correct with respect to βv-conversion.

Theorem 3.9. (Soundness)
Let SC,' be a parametric relational type assignment system andMC,' be the associated cbv-λ-model.
For all terms M, N we have:

M =βv N ⇒ MC,' |= M = N.

4. The semantic theory

Theorem 3.9 implies that the theory of our models is closed under =βv . We will now prove that it is
actually closed under an extension of it. Namely the equality in the model is not only closed under =βv

plus the commutation rules, as expected, but also under a more refined notion of conversion. Roughly
speaking, while (λx.M)N =βv M[N/x] only in case N is valuable, we will see that (λx.M)N and M[N/x]
can share the same typings for an arbitrary N, with the proviso that all the occurrences of x in M are
typed in such a way that the types for x and Nmatch. Since Val is a proper subset of the typable terms,
the resulting equality is an extension of =βv . While it is impossible to exactly reflect this equality in
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an untyped setting, being the system undecidable, we will grasp an approximation of it through the
reduction rule→′V.

Definition 4.1.

1. The set o(M) of occurrences in M is the set of contexts C such that there exists a term N verifying
C(N) = M, N being the subterm of M at the occurrence C.

2. Given Π . Γ `C,' M : A , the set to(Π) ⊆ o(M) of typed occurrences in M in Π is defined by
induction on the structure of Π as follows:

• to(Π) = {�} if Π is an instance of the axiom.
• to(Π) = {�} ∪ {λx.C | C ∈ to(Π′)} if the last rule of Π is (→I), its subject is λx.M′ and its

premise is Π′.
• to(Π) = {�} ∪ {CM2 | C ∈ to(Π′)} ∪ {M1C | C ∈ to(∆)} if the last rule of Π is (→E), its

subject is M1M2, Π′ and ∆ are the major and minor premises of Π respectively.
• to(Π) =

⋂
1≤i≤n{C | C ∈ to(Π′i)} if the last rule of Π is (!>0), and (Π′i)1≤i≤n are its premises.

• to(Π) = ∅ if the last rule of Π is (!0).
• to(Π) = to(Π′) if the last rule of Π is (') and its premise is Π′.

Example 4.2. Note that, if the last rule is (!>0), a subterm is typed if it is typed in all subjects of the
premises. For example, in case of the derivation Π:

∆1 . x : [[ ]→ A] `C,' xy : A ∆2 . x : [[B]→ A], y : [B] `C,' xy : A
x : [[ ]→ A, [B]→ A], y : [B] `C,' xy : [A, A] !>0

we have to(Π) = {�,�y}.

Property 4.3. V ∈ Val implies `C,' V : [ ].

Proof:
Trivial, by the rule (!0). ut

Definition 4.4. Given a derivation Π, the measure of Π, written m(Π), is the number of applications of
rules in Π, without counting the rule (').

Recall that α denotes a generic element of T (!)
C

= TC ∪ T
!
C

.

Lemma 4.5. (Substitution)
Let Π . Γ, x : σ `C,' M : α.

1. If σ , [ ] and either N ∈ Val or all occurrences of x in M are typed in Π, then Σ . ∆ `C,' N : σ
implies Π′ . Γ ] ∆ `C,' M[N/x] : α.

2. If σ = [ ] then Σ . ∅ `C,' N : [ ] implies Π′ . Γ `C,' M[N/x] : α.

In both cases m(Π′) < m(Π) + m(Σ).
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Proof:
We prove both cases by mutual induction on Π.

1. We first treat the case N ∈ Val. If Π is an application of rule (ax), possibly followed by some
applications of rule ('), then M ≡ x, Γ = ∅ and σ = [A] for some A ' α. Moreover m(Π) = 1 and
Π′ = Σ so we get m(Σ) < 1 + m(Σ).

The case Π is an application of rule (!0) does not apply.
The only non-trivial induction case is the rule (!>0). Let α = [B1, . . . , Bn] with n > 0 and let

Πi . Γi, x : σi `C,' M : Bi be the premises of the rule (for 1 ≤ i ≤ n). In particular, Γ = ]n
i=1Γi and

σ = ]n
i=1σi. The derivation Σ . ∆ `C,' N : σ must be the conclusion of a rule (!>0), with premises

Σh . ∆h `C,' N : Ah (1 ≤ h ≤ m). Let σi = [Ai
1, . . . , A

i
ni

] with m =
∑n

i=1 ni, then, by rule (!>0) there
exists Σi and ∆i such that Σi . ∆i `C,' N : σi and ∆ = ]n

i=1∆i. For every i there are two subcases:

• In case ni , 0, by the induction hypothesis there exists Π′i . ]ni
k=1Γk `C,' M[N/x] : Bi with

m(Π′i) < m(Πi) + m(Σ′i).

• Otherwise, the occurrences of x are either under the scope of an abstraction or subject of a rule
(!0); since N ∈ Val, then by Property 4.3, there exists Σ . ∅ `C,' N : [ ] and the induction
hypothesis on the second case applies. In this case the result follows by the rule (!>0).

The case N < Val is similar but easier. Note that, if the last rule is (!>0), then the application of the
induction hypothesis is possible thanks to the definition of typed occurrences.

2. Assume Π . Γ `C,' M : α with x < dom(Γ). If Π ends with an axiom, possibly followed by some
applications of rule ('), then the subject is a variable y . x. In this case M[N/x] ≡ y, Π is the desired
derivation and the condition on the measure is satisfied. If Π ends with the application of rule (!0),
possibly followed by some applications of rule ('), then remembering that values are closed under
substitution, we observe that the desired derivation is actually a copy of Π, just changing the subject
to M[N/x], and the proof is trivial.

All the other cases follow straightforwardly by induction. ut

Lemma 4.6. (Inverse Substitution)
Let Π . Γ `C,' M[N/x] : α.

1. If N ∈ Val and some of the occurrences of N replacing x in M are typed by Σi . Γi `C,' N : Ai

(1 ≤ i ≤ n), then Γ0, x : [A1, . . . , An] `C,' M : α where Γ = ]n
i=0Γi.

2. If N < Val and all the occurrences of N replacing x in M are typed by Σ1, . . . ,Σn (n > 0), where
Σi . Γi `C,' N : Ai (1 ≤ i ≤ n) , then Γ0, x : [A1, . . . , An] `C,' M : α and Γ = ]n

i=0Γi.

Proof:
Both cases we proceed by induction on Π. Note that, in the second case, the base case is no more the
axiom (which is impossible), but only the rule (!0). ut

Example 4.7. Note that the substitution by a term which is not a value preserves types only when all
the occurrences of the variable to be replaced are typed.
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For example, consider the following derivation Π:

x : [A] `C,' x : A
x : [A] `C,' λy.x : [ ]→ A

→I
`C,' x : [ ] !0

x : [A] `C,' (λy.x)x : A
→E

The first occurrence of x in Π is typed while the second occurrence is untyped. Consider now a
derivation Σ . z : [[B] → A], t : [B] `C,' zt : A. In this case we cannot derive z : [[B] → A], t :
[B] `C,' (λy.zt)(zt) : A. Indeed, in order to assign a type to (λy.zt)(zt), two premises with subject z
are needed.

Lemma 4.8. (Commutation)
Let M→σ1 N or M→σ3 N, then:

• for any Π . Γ `C,' M : α, there exists Π′ . Γ `C,' N : α,

• and vice versa, for any Π′ . Γ `C,' N : α, there exists Π . Γ `C,' M : α,

such that m(Π′) = m(Π).

Proof:
In fact, every commutation reduction corresponds exactly to a commutation of some rules in the type
derivation.

For instance, let V((λx.M)N) →σ3 (λx.VM)N, so that V ∈ Val and x < FV(V). The last rule of a
derivation of Γ `C,' V((λx.M)N) : A should be a (→E), with premises, say, Π0 . Γ0 `C,' V : σ→ A and
Π1 . Γ1 `C,' (λx.M)N : σ. Now there are two cases to consider, depending on whether σ is empty.

• If σ = [ ] then the last rule of Π1 should be the conclusion of a (→E), with premises Π′1 . Γ′1 `C,'
λx.M : σ′ → [ ] and Π′′1 . Γ′′1 `C,' N : σ′. The former derives from a (→I) with premise
Π′1 . Γ′1, x : σ′ `C,' M : [ ]. We then construct a derivation of Γ `C,' (λx.VM)N : A by composing
Π0, Π′1 and Π′′1 .

• If σ = [A1, . . . , An] for some n > 0, then for any i ≤ n there is a derivation Πi
1 . Γi

1 `C,' (λx.M)N :
Ai with Γ1 =

⊎
i Γi

1. The last rule of Πi
1 is a (→E), with premises, say, Πi

`
. Γi

`
`C,' λx.M : σ′i → Ai

and Πi
r . Γi

r `C,' N : σ′i , so the reasoning is analogous to the previous case.

The converse case, i.e. deriving Γ `C,' V((λx.M)N) : A from Γ `C,' (λx.VM)N : A, is similar. ut

Remark that Lemma 4.5 implies that the set of types associated with a term is invariant under a
reduction which a slight extension of →βv,σ. Definition 4.12 will give such an extension and Theo-
rem 4.15 will prove its type invariance.

Example 4.9. 1. Consider the following derivations:

• Π . x : [[A]→ B], y : [A] `C,' xy : B,

• Σ . z : [[E]→ A], t : [E] `C,' zt : A.
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By Lemma 4.5, there is Π′ . z : [[E]→ A], t : [E], x : [[A]→ B] `C,' x(zt) : B, and this would
imply that the derivation is sound for the reduction rule (λy.xy)(zt) → x(zt), but zt < Val.
In fact, consider the potential valuability property, and take any substitution s — it is easy to
check that s((λy.xy)(zt)) is valuable if and only if s(x(zt)) is valuable. Indeed either s(zt) is
valuable, and the property holds trivially, by reducing s(zt) to a value and then applying rule βv

to the outermost application, or s(zt) is not valuable, and in this case s((λy.xy)(zt)) cannot be
reduced further, hence it is not valuable.

2. Replace the derivation Π in the previous point by Π′′ . x : [[ ] → B] `C,' x(λx′.y) : B:
then the lemma does not ensure anymore that the reduction (λy.x(λx′.y))(zt) → x(λx′.zt) is
sound. Indeed, let s be the substitution replacing x by λy.y and both z and t by λx.xx, then
s((λy.x(λx′.y))(zt)) is not valuable, while s(x(λx′.zt)) is valuable, so the new reduction breaks
Property 2.5.

In order to formalize the intuition above, we introduce the following notions.

Definition 4.10.

1. A free occurrence of a variable x occurs at level 0 in M if it does not occur free in M under the
scope of a λ-abstraction.

2. An occurrence C of a variable x in M is in active head position if it occurs at level 0 in M and
there exists a context C′ such that M ≡ C(x) ≡ C′(xN1 · · · Nm) for some m > 0.

3. A variable x is in active head position in M, written x ∈ah M, if all occurrences of x in M are in
active head position.

Lemma 4.11. Let Π . Γ `C,' M : A. If x ∈ah M then all occurrences of x in M are typed in Π.

Proof:
The proof is by induction on the structure of M. It is well known that the general shape of a term is
M ≡ λx1 . . . xn.ζM1 · · · Mm (for some n,m ≥ 0), where ζ is either a variable or an abstraction (λy.P). Let
us notice that the hypothesis x ∈ah M implies that M is not a value. Hence we have:

(i) M is not an abstraction, i.e. n = 0, nor a variable, i.e. m > 0, and

(ii) for every Mi (with 1 ≤ i ≤ m) if x ∈ah Mi then Mi is not a value, hence cannot be the subject of a
(!0) rule.

Item (i) implies that M should be fired by a (→E) rule. In particular, in the case ζ ≡ x, this occurrence of
x is typed by the major premise of this (→E) rule. Moreover, item (ii) implies that there are subderiva-
tions of Π typing each Mi with x ∈ah Mi. So we conclude by applying the induction hypothesis. ut

Definition 4.12. Define→′V as the contextual closure of the reduction rule:

(λx.M)N→ M[N/x] if either N ∈ Val or x ∈ah M

and let→V be→′V ∪ →σ1 ∪ →σ3 . As usual,→∗V is the reflexive and transitive closure of→V and =V is
its symmetric, reflexive and transitive closure.
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Now we will prove a subject reduction property for→V. In order to prove it in a weighted version,
we will use a measure defined in [3], which decreases when a commutation reduction is performed.

Definition 4.13. Let s(M) and #(M) be defined as follows:

s(x) = 2, #(x) = 1,
s(λx.M) = s(M) + 1, #(λx.M) = #(M) + s(M),
s(MN) = s(M) + s(N) + 1, #(MN) = #(M) + #(N) + 2s(M)s(N) − 1.

We define a new measure of a derivation Π . Γ `C,' M : A, as md(Π) = 〈m(Π), #(M)〉, and we let < be
the lexicographic order between pairs.

Lemma 4.14. Let M→V M′:

1. (weighted subject reduction) for every Π . Γ `C,' M : A, there exists Π′ . Γ `C,' M
′ : A such

that, in the case the contracted redex is a→′V typed redex, md(Π′) < md(Π).

2. (subject expansion) for every Π′ . Γ `C,' M
′ : A there exists Π . Γ `C,' M : A.

Proof:
If the reduction step M →V M′ is of type→σ1 or→σ3 , then the proof is a consequence of Lemma 4.8
and the fact that #(M) decreases is proven in [3].

Otherwise, suppose M ≡ C((λx.N)Q) and M′ ≡ C(N[Q/x]) with either Q ∈ Val or x ∈ah N. The proof
is by structural induction on C.

If C ≡ �, then the statement (1) follows from Lemma 4.5, while (2) follows from Lemma 4.6.
Notice that in the case Q < Val, the hypothesis x ∈ah N implies that all occurrences of x in N are typed
in Π (resp. all occurrences of Q replacing x in N[Q/x] are typed in Π′) by Lemma 4.11.

If C ≡ λy.C′, then there are two cases. Either A = [ ] and the derivation (Π or Π′, depending on
which statement we are proving) consists in a (!0) rule, or A ' σ → B and the derivation contains a
sub-derivation typing the context C′. The first case is trivial (in particular notice that in this case the
reduced redex is not typed, so we prove nothing about the measure md), while the second case is a
consequence of the induction hypothesis.

The cases C ≡ PC′ and C ≡ C′P follow from the induction hypothesis. ut

As a corollary, we obtain the following theorem.

Theorem 4.15. Every modelMC,' is correct with respect to =V, i.e.,

M =V N ⇒ MC,' |= M = N.

Proof:
By Lemma 4.14, the hypothesis M =V N implies that Γ `C,' M : A if and only if Γ `C,' N : A holds.
By the definition of the interpretation function ~·�C,'· , we conclude that ~M�C,'ρ = ~N�C,'ρ holds, for all
environments ρ. ut
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The next quite technical corollary will be useful in the next section.

Corollary 4.16. Let Π . Γ `C,' M : A. Then there is M′ such that M →∗V M
′, and Π′ . Γ `C,' M

′ : A,
where all the→V redexes are untyped in Π′.

Proof:
We can limit ourself to reduce the typed redexes, so md(Π) at every step decreases. ut

5. An approximation theorem

In this section we prove that the semantical properties of potential valuability and solvability are
preserved by the reduction rule→V (Theorem 5.5). This suggests a definition of approximants (Def-
inition 5.6) and an approximantion theorem (Theorem 5.10) which gives as a corollary the adequacy
of our relational typed models with respect to Plotkin’s operational preorder (Theorem 5.12).

Let us recall that the approximation theorem is a standard tool to study the theory induced by a
model. Namely approximants are normal forms in an extended language, and the theorem states that
the interpretation of term is the collection of the interpretation of its approximants, thus allowing to
reason about its interpretation via structural induction.

First, let us introduce the following notation:

Notation 5.1. Let Q ⊆0 M denote that Q is a subterm of M, which does not occur under a λ-abstraction.

Lemma 5.2. Let Q ⊆0 M and assume that Q is not potentially valuable. Then M also is not potentially
valuable, and so also unsolvable.

Proof:
Assume that Q is not potentially valuable, i.e., for all substitutions s, we have s(Q) 6→∗βv

V ∈ Val.
Note that the case Q ≡ M is trivial, so we will consider only the case Q is a proper subterm of M. We
proceed by structural induction on M. Note that the hypothesis Q ⊆0 M implies that M cannot be a value,
therefore the general shape of M is PM1 · · · Mn, with P a value, n > 0 and at least for one i ≤ n, Q ⊆0 Mi.
By induction hypothesis we have that s(Mi) is not valuable. Suppose by contradiction that there exists
a substitution s such that s(M) ≡ s(P)s(M1) · · · s(Mn) is valuable: this means that all arguments of s(P)
should be eventually consumed during the reduction of s(M), in particular s(Mi) should reduce to a
value in order to be fired by a βv redex. This contradicts the hypothesis that s(Mi) is not valuable. ut

Lemma 5.3.

1. x ∈ah M and M→∗βv
N entail x ∈ah N;

2. (λx.M)N→V M[N/x] implies that either N is valuable, or for all M′ satisfying M[N/x]→∗βv
M′, there

exists an N′ such that N→∗βv
N′ and N′ ⊆0 M

′.
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Proof:
1. Indeed, x ∈ah M implies that every occurrence of x in M is of shape xM1 · · · Mm for some m ≥ 1.
Such subterms cannot be erased nor substituted for a variable occurring under an abstraction by a→βv

reduction.
2. Assume that (λx.M)N →V M[N/x] and N is not valuable. Then every occurrence of N in M[N/x] is of
the shape NM1 · · · Mm, with m ≥ 1. As N is not valuable, the same reasoning as in the first point of this
lemma applies. ut

Lemma 5.4. Let M→V N. M is solvable if and only if N is solvable.

Proof:
If M→V N because either M→σ1 N or M→σ3 N, then this conservativity result has been already proved
in [3].

If M→V N is actually a→βv reduction, then it is a consequence of the confluence theorem for→βv

[28].
The only case we need to consider is the case where M ≡ C((λx.P)Q) and N ≡ C(P[Q/x]), with

Q < Val and x ∈ah P. The proof is by structural induction on the context C.
Case C ≡ �. Let consider first the only if case: there is a head context H ≡ (λy1 . . . yn.�)M1 · · · Mm

such that H((λx.P)Q) →∗βv
I, we will actually prove that also H(P[Q/x]) →∗βv

I. By hypothesis we
have: (λy1 . . . yn.(λx.P)Q)M1 · · · Mm →

∗
βv
λym+1 . . . yn.(λx.P′)Q′, where P′ ≡ P[Mi/yi]1≤i≤m and Q′ ≡

Q[Mi/yi]1≤i≤m. So Q′ must be valuable, i.e., Q′ →∗βv
Q′′ ∈ Val and the reduction is of the shape

λym+1 . . . yn.(λx.P′)Q′ →∗βv
λym+1 . . . yn.(λx.P′′)Q′′

→∗βv
λym+1 . . . yn.P

′′[Q′′/x]

→∗βv
I

Consider filling the same context H with P[Q/x]. Then we get

(λy1 . . . yn.P[Q/x])M1 · · · Mm →
∗
βv
λym+1 . . . yn.P

′′[Q′′/x]

and the proof is given.

On the other side, assume H(P[Q/x])→∗βv
I and let us prove that we have also H((λx.P)Q)→∗βv

I.

(λy1 . . . yn.P[Q/x])M1 · · · Mm →
∗
βv
λym+1 . . . yn.P

′[Q′/x]→∗βv
I.

By Lemma 5.3(2), either Q′ is valuable or Q′ ⊆0 P
′[Q′/x], then by Lemma 5.2, Q′ must be potentially

valuable. Always by Lemma 5.3(2), since Q′ occurs in subterms of P′[Q′/x] having shape Q′P1 · · · Pk,
such subterms need to be transformed into values in order to reach the identity, so by definition of
⊆0, Q′ must reduce to an abstraction Q′′. So the reduction is of the shape λym+1 . . . yn.P

′[Q′/x] →∗βv
λym+1 . . . yn.P

′′[Q′′/x], where Q′′ is a value. Since the notion of solvability is closed under =βv ,
λym+1 . . . yn.(λx.P′′)Q′′ →∗βv

I, and finally λym+1 . . . yn.(λx.P)Q→∗βv
I.

The other cases follow by induction, taking into account that unsolvability is preserved by abstrac-
tion and application as shown in [28]. ut
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Theorem 5.5. The notions of potential valuability and solvability are preserved by the→V reduction.

Proof:
The case of potential valuability derives directly from Lemma 5.2, just considering that (λx.R)Q →′V
R[Q/x] implies Q ⊆0 R[Q/x]. The case of solvability follows from Lemma 5.4. ut

The new reduction rule→V opens the way to define a notion of approximants of a term which is
more precise than the one given in [28].

Definition 5.6. Let us consider ΛVΩ be the set of terms generated by the rules of λ-calculus plus a
constant Ω. We define the following subsetA ⊂ ΛVΩ of approximants:

A ::= λx.Ω

| λx.A

| xA1 · · ·Am m ≥ 0,
| (λx.A)(yA1 · · ·Am) m > 0, x <ah A.

We consider ΛVΩ partially ordered by the smallest partial order � which is context closed and
contains the rule Ω � M, for any M ∈ ΛVΩ.

We define the set of approximants of a term M in the following way:

A(M) = {A | M→∗V N and A ∈ A and A � N}.

Lemma 5.7. If M is a→V-normal form, then M ∈ A.

Proof:
Assume that M is normal and proceed by structural induction.

The cases M ≡ λx.M′ and M ≡ xM1 · · · Mm (m ≥ 0) follow straightforwardly from the induction
hypothesis.

Consider now M ≡ (λx.M′)N1 · · · Nn (n ≥ 1). We must have x <ah M′ and n = 1 otherwise M would
contain a→′V or→σ1 redex, respectively. Moreover N1 cannot have the shape (λy.N′)P1 · · · Pk otherwise
M would have a→βv redex (for k = 0) or a→σ3 redex for k > 0, whence N1 ≡ yM1 · · · Mm. Finally, we
must have m > 0 otherwise M would have a→βv redex, so we conclude by induction hypothesis. ut

Notice that the converse of Lemma 5.7 does not hold, because approximants may still contain
σ3-redexes, like x((λy.z)(xz)) ∈ A. A more complicated grammar taking care of such redexes has
been obtained by Guerrieri [34] (see also [35]).

Both the type system and the reduction rules generalize straightforwardly to terms in ΛVΩ. To this
aim it is sufficient to extend the set of values by defining ValΩ = Var ∪ {λx.M} for any term M in ΛVΩ.
For every reduction rule→R, where R ∈ {βv, V, σ}, we denote by→RΩ its extension to terms in ΛVΩ.
The type assignment system of Figure 1 is extended to ΛVΩ, taking into account that the constant
Ω is not considered as a value and cannot be typed. It is immediate to check that the extended type
assignment system is closed under =VΩ. Clearly, the following holds:



G. Manzonetto et al. / Relational Models for CbV λ-Calculus 21

Lemma 5.8. Let N be a λ-term and M, M′ be terms in ΛVΩ.

1. If M � N and M→βvΩ M
′ then there exists a λ-term N′ such that N→βv N

′ and M′ � N′.

2. If M � N and M ∈ ValΩ then N ∈ Val.

Proof:
1. By structural induction on M, the only interesting case being M ≡ (λx.L)V and M′ ≡ L[V/x]. By
definition N ≡ (λx.L′)V′ for some λ-terms L′, V′ such that L � L′ and V � V′. From the definition of �,
it follows easily that L[V/x] � L′[V′/x].
2. There are two cases. If M ≡ x then N ≡ x, otherwise M ≡ λx.M′ for some M′ in ΛVΩ and in this case
N = λx.N′ for a λ-term N′ such that M′ � N′. In both cases N ∈ Val. ut

Mimicking Definition 2.2, we can define a term M ∈ ΛVΩ to be valuable if it →βvΩ-reduces to a
term in ValΩ, to be potentially valuable if there is a substitution s, replacing variables by terms in ValΩ,
such that s(M) is valuable.

Lemma 5.9. Every A ∈ A is potentially valuable. Moreover, whenever A(M) , ∅, M is potentially
valuable.

Proof:
We proceed by induction on the grammar in Definition 5.6 generating A. We perform an induction
loading and prove that for every A there exists K such that s(A) is valuable for all substitutions asso-
ciating with every variable a projection Pk ≡ λx1 . . . xk.xk for k > K.

• A ≡ λx.M for M ≡ A′ or M ≡ Ω. Trivial.

• A ≡ xA1 · · ·Am. By induction hypothesis, there exist K1, . . . ,Km such that s(Ai), for 1 ≤ i ≤ m,
is valuable for all s mapping each variable in FV(A) to some Pk where k > max{K1, . . . ,Km,m}.
Therefore, we conclude s(A) ≡ Pks(A1) · · · s(Am)→∗

βvΩ
Pk−m ∈ ValΩ.

• A ≡ (λx.A′)(yA1 · · ·Am). By induction hypothesis there exist K0, . . . ,Km respectively asso-
ciated with A′,A1, . . . ,Am and satisfying the property above. Let s be a substitution sending
every variable in FV(A) to some Pk for k > max{K0 + m,K1, . . . ,Km}. Then we have

s(R) ≡ (λx.s(A′))(Pks(A1) · · · s(Am))
→∗

βvΩ
(λx.s(A′))Pk−m

→βvΩ s(A′)[Pk−m/x]
→∗

βvΩ
V ∈ ValΩ

where the last step follows from the induction hypothesis.

This concludes the proof of the first statement.
Concerning the second statement, suppose thatA ∈ A(M) then there is a λ-term N such that M→∗V N

and A � N. By the proof of the first statement there exists a substitution s : FV(A) → Val, since
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Pk ∈ Val for all k > 0, such that s(A) →∗
βvΩ
V ∈ ValΩ. Remark that A � N entails s(A) � s(N), so by

Lemma 5.8(1) there exists a λ-term N′ such that s(N)→βv N
′ . By Lemma 5.8(2), V ∈ ValΩ and V � N′

entail N′ ∈ Val, whence N is potentially valuable. We conclude that M is also potentially valuable by
Theorem 5.5. ut

Theorem 5.10. (Approximation Theorem)

Γ `C,' M : A if and only if Γ `C,' A : A, for some A ∈ A(M).

Proof:
(⇒) Let Π be the derivation proving Γ `C,' M : A. By Corollary 4.16, there is a term N, such that

M →∗V N, where all redexes (if any) are untyped. So, replacing every subject of a !0 rule by λx.Ω, we
get a term of ΛVΩ which is a→V-normal form, so an approximant (Lemma 5.7) belonging toA(M) by
definition.

(⇐) If A ∈ A(M), then A � N, for some N such that M →∗V N. So, by replacing, in the derivation
Π . Γ `C,' A : A, every subterm of the shape λx.Ω by a suitable subterm λx.P we obtain a derivation
for N. Then the result follows, by Lemma 4.14(2). ut

Corollary 5.11. If M is not potentially valuable, then ~M�C,'ρ = ∅.

Proof:
By Lemma 5.9 we have thatA(M) = ∅, so we conclude by applying the Approximation Theorem. ut

As a consequence, we have the following theorem.

Theorem 5.12. Every model MC,' is adequate for Plotkin’s operational preorder ≤op, i.e., MC,' |=
M ≤ N entails M ≤op N.

Proof:
By the way of contradiction, assume that there exists a context C such that C(M), C(N) ∈ Λ0

V, C(M) →
∗
βv

M′ ∈ Val but C(N) is not valuable. As the interpretation ~−�C,' is contextual, we have that MC,' |=
M ≤ N entails ~C(M)�C,' ⊆ ~C(N)�C,'. By Property 4.3, we get [ ] ∈ ~M′�C,' = ~C(M)�C,' therefore
~C(N)�C,' , ∅. Since C(N) is closed and not valuable it cannot be potentially valuable either, so we
derive a contradiction by Corollary 5.11 ut

We now show that the converse never holds, hence no modelMC,' can be complete and therefore
fully abstract. To prove such a result, we are going to exploit an extensional modelMc of λV-calculus
that has been introduced in [7] in the setting of continuous functions, and further studied in [28, §12.1].

Definition 5.13. A recursion operator is a term Z such that Zx =βv x(λz.Zxz).

For example a recursion operator is λx.(λy.x(λz.yyz))(λy.x(λz.yyz)). It is immediate to check, using
the approximation theorem, that every term Z with this behaviour has the same set of approximants,
namely

A(Z) = {λx.x(λz0.x(λz1.x · · · (λzn−1.x(λzn.Ω)zn−1) · · · z1)z0) | n ≥ 1},
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so they are all equated in the theory. In [28, Thm. 12.1.22], Paolini and the third author proved that
Mc |= I = ZB, where B ≡ λxyz.x(yz) is the composition operator. Using the approximation theorem,
we have that A(I) = {λx.Ω, λx.x}, while it is easy to check that A(ZB) = {λx1 . . . xn.Ω | n ≥ 1}. So,
for example, we have `C,' I : [[ ]→ [ ]]→ [ ]→ [ ], while this type is not derivable for ZB.

As a corollary, we have the following incompleteness result.

Theorem 5.14. No modelMC,' is complete with respect to Plotkin’s operational semantics.

Proof:
In [28], it is proved that Mc is adequate with respect to Plotkin’s operational semantics and that
Mc |= I = ZB holds. So the incompleteness follows. ut

Conclusions and further works

We built a new class of models of the call-by-value λ-calculus, based on parametric intersection types
system. Through a careful study of such a system we extended the reduction rule of the calculus,
in such a way that the new obtained calculus is conservative with respect to the original Plotkin’s
calculus. A key property of all the models in this class is that they satisfy an approximation theorem:
the interpretation of a term is the collection of the interpretations of its approximants, which are normal
forms in an extended language. This theorem supplies a powerful tool to study the theory induced by
a model. Unfortunately, the problem of building a satisfactory denotational model of λv-calculus is
not completely solved yet, since we prove that all models in our class are adequate, but not complete
for Plotkin operational semantics (and therefore not fully abstract). Hence, the problem of finding the
paradigmatic call-by-value calculus remains open. In the present paper we study the properties that are
common to all the models in our class: we would like to continue in exploring different call-by-value
theories, by playing with the equivalence relation on types, and using the approximation theorem. A
further problem is to characterize our class of model from the mathematical point of view. The type
system we define is clearly inspired by the relational semantics, which is based on the category of
sets and relations, as the model in [11], but the two constructions are clearly different, and we need to
support an alternative description of our models in terms on domain equation, in order to be able to
compare the two approaches.
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