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SANE: des réseaux pour le Λµ-alul.Résumé : Le Λµ-alul a été introduit omme une extension non-typée du λµ-alul de Parigot, re manière à retrouver la propriété de séparation (ou théorèmede Böhm) dont on savait qu'elle était fausse en λµ-alul. Un élément essentielen Λµ-alul pour que la séparation soit valide est l'utilisation sans restritiond'abstration sur les ontinuations qui donnent au alul une onstrution destreams.Fondé sur le paradigme de Curry-Howard, Olivier Laurent a dé�ni une tra-dution du λµ-alulus dans les réseaux de preuve polariés. Malheureusement,ette tradution ne peut pas être étendue au Λµ-aluls: le système de typagesur lequel elle est basée désative le méanisme de stream du Λµ-alul.Nous introduisons les stream assoiative nets (SANE), une variante de ré-seaux qui se situe entre les réseaux polarisées de Laurent et les réseaux habituelsde la logique linéaire. Les SANE ont deux types de O (et don de ⊗): l'un estlinéaire tandis que l'autre admet librement des règles struturelles omme dansles réseaux polarisés.Nous prouvons la on�uene pour SANE et présentons une rédution qui pré-serve l'enodage du Λµ-alul dans SANE. Cette rédution, fondée sur un nou-veau système de typage introduit par le seond auteur. On s'aperçoit que le mé-anisme de stream à l'÷uvre en Λµ-aluls peut être expliqué par l'assoiativitédes deux types de O des SANE.Finalement, on montre un théorème de Böhm pour les SANE. Le résultatsuit le programme de Girard visant à donner une plae lé à la séparation parmiles propriétés des systèmes logiques.Mots-lés : λµ-alul, logique linéaire, théorème de Böhm, réseaux de preuve,logique lassique, assoiativité en logique, ontinuations.
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4 Mihele Pagani Alexis Saurin1 IntrodutionCurry-Howard in lassial logi. Curry-Howard isomorphism states a or-respondene between programs and proofs. Basially, it expresses (i) that a typean be seen as a logial formula, and onversely, and (ii) that a program anbe seen as a proof, s.t. the exeution of the program orresponds to applyingthe ut-elimination proedure to the assoiated proof, and onversely. Indeed,this orrespondene was at �rst limited to intuitionisti logi on the one handand to funtional programming (λ-alulus) on the other hand. Extending theorrespondene to lassial logi resulted in strong onnetions with ontrol op-erators in funtional programming languages as �rst notied by Gri�n [Gri90℄.In partiular, λµ-alulus [Par92℄ was introdued by Mihel Parigot as an exten-sion of λ-alulus isomorphi to an alternative presentation of lassial naturaldedution (known as free dedution) in whih one an enode usual ontrol op-erators and in partiular the all/ operator.Polarized linear logi. Based on the extension of the Curry-Howard isomor-phism to lassial logi, Laurent de�nes a translation of Parigot's λµ-alulus inpolarized linear logi: a variant of linear logi (LL), allowing free strutural ruleson negative formulas [Lau02℄. Laurent's translation enlarges the omparison be-tween LL and usual λ-alulus, started from Girard [Gir87℄, Danos [Dan90℄ andRegnier [Reg92℄. In partiular polarized LL provides a lass of proof-nets (thegraph-theoretial representation of LL proofs) orresponding to the λµ-terms,so sheding new light into the omputation of λµ-alulus.
λµ-alulus and Separation. λµ-alulus beame one of the most standardways to examine lassial lambda-aluli. As a result, the alulus has been moreand more studied and more fundamental questions arose. Among them, one ofthe most important is separation. The best known example of separation resultis Böhm's theorem for the pure λ-alulus [B�68℄: if t, t′ are two distint losed
βη-normal terms, then there exist terms u1, . . . , un, suh that (t)u1 . . . un →β xand (t′)u1 . . . un →β y. This result has onsequenes both at the semantial levelas well as at the syntatial one: on the one hand it entails that a model of the
λ-alulus annot identify two di�erent βη-normal forms without being trivial;on the other hand it establishes a balane between syntatial onstruts and
β-redution: any di�erene in the struture of a βη-normal form implies a di�er-ene in the value of that normal form on suitable arguments. In 2001 David &Py addressed the question of separation to Parigot's λµ-alulus and they gave anegative answer by exhibiting a ounter-example [DP01℄. In a previous work of2005, the seond author introdued an extension to λµ-alulus, Λµ-alulus, forwhih he ould prove that separation holds [Sau05℄. Λµ-alulus is fairly loseto standard presentations of λµ-alulus (see [dG94, dG98℄ for instane), but isde�nitely a di�erent alulus. In partiular, an essential omputational featureof Λµ-alulus for separation to hold is the unrestrited use of abstrations overontinuations that provides the alulus with a onstrution of streams.The logi of Λµ-alulus. We pursue an investigation of the logi behind
Λµ-alulus. Our feeling is that the rules of lassial logi imposes a too stritdisipline over the use of streams: in Parigot's λµ-alulus streams representonly hannels through whih terms an be sent, these hannels an be pluggedINRIA



Stream Assoiative Nets and Λµ-alulus. 5to eah other, they an be exhanged, but they do not really ommuniate withthe terms in the ourse of a omputation. Streams and terms live in di�erentworlds, in partiular the former ones are not �rst lass itizens in the early ver-sions of λµ-alulus. We think that the Curry-Howard isomorphism at the baseof Parigot's λµ-alulus restrits too muh the omputational power of streams,a onsequene of whih is the failure of the separation property, as proved byDavid & Py. If we forget the Curry-Howard isomorphisms and start to buildmore freely the programs in Λµ-alulus, then we get bak the separation prop-erty and in the same time we move away from lassial logi.Stream Assoiative NEts: from the rules of lassial logi to the logiof Λµ-alulus rules. This turning-point indues a hange of the enoding of
λµ-alulus into proof-nets: indeed Laurent's translation is based on the Curry-Howard isomorphism with lassial logi. We follow another diretion, in orderto have an enoding of Λµ-alulus whih is more faithfull to the stream behaviorat the base of the separation property. We believe that it is by departing fromthe rules of lassial logi that we will understand the real logi of Λµ-alulusrules.We thus de�ne a new lass of nets, Stream Assoiative NEts (SANE). SANElies in between usual linear logi proof-nets and polarized proof-nets: we havetwo kinds of O (and dually of ⊗), one oming from LL (assoiated with the λ-variables) and the other one oming from polarized LL (and assoiated with the
µ-variables). The essential ingredient is the assoiativity property between thesetwo kinds of multipliatives, whih makes possible the ommuniation betweenstreams and λ-variables muh in the same way as fst rule does in Λµ-alulus.Better be in SANE to study Λµ-alulus. The orrespondene between
Λµ-alulus and SANE will allow for onsiderable �transfers of tehnologies� be-tween the two domains, in partiular proof-nets will provide powerful geometri-al abstrations and a deeply symmetrial framework as well as strong dualities.In addition to a �ner-grained study of the redution rules of Λµ-alulus (as em-phasized by our simulation result), SANE redutions will provide Λµ-aluluswith a notion of expliit substitution. Moreover, SANE should help studyingthe relationships of Λµ-alulus with other ontinuation-based aluli.Proof-nets with separation property. SANE have been designed in orderto study Λµ-alulus, but separation property plays a key role in the theory ofSANE. As in Ludis [Gir01℄ where Girard hose separation to be a requirementfor his elementary objets, the designs, the nets we introdue in the presentwork have been designed with separation property to be at the heart of thetheory, muh in the same way as on�uene does.Struture of the Paper. The following setion is dediated to a short intro-dution to Parigot's λµ-alulus to separation related topis and to Λµ-alulus.A new type system for Λµ-alulus is provided whih serves as a basis to de-�ne, in setion 3, the pure Stream assoiative nets, their redutions, state theorretness riterion for SANE and prove an original strong normalization re-sult of  s,r,a whih implies the strong normalization of exponential redutionRR n° 6431



6 Mihele Pagani Alexis Saurinin SANE1. The following setion is dediated to proving on�uene of SANEbefore going to the question of the separation property in setion 5. Finally, wesimulate Λµ-alulus in SANE in setion 6.

1This gives as a orollary the SN of the impliit expliit substitution system INRIA



Stream Assoiative Nets and Λµ-alulus. 72 Λµ-alulus2.1 λµ-alulus, streams and Separation: Λµ-alulusDavid & Py ounter-example to Separation in λµ-alulus. In their2001 paper [DP01℄, David & Py addressed the question of separation prop-erty in λµ-alulus by exhibiting a ounter-example to separation, the λµ-term
W = λx.µα.[α]((x) µβ.[α](x) U0 y) U0 with U0 = µδ.[α]λz1.λz2.z2. Separationproperty fails in this setting beause there is no way to put the variable y inhead position. The key point is that the entire appliative ontext in whih thisterm is plaed is transmitted through µα to subterms; as a onsequene, theusual tehnique (whih onsists in building a ontext that shall explore the partof the term we want) annot be applied.Reovering Separation in λµ-alulus: relaxing impliit (underlying)typing onstraints. What we do by introduing Λµ-alulus is preisely tobe more liberal with the onstrution of terms in order to provide the aluluswith more appliative ontexts and retrieve the ability to realize the neededexploration paths. In partiular, Parigot's λµ-alulus syntax has a onstraintof naming a term right before it is µ-abstrated (terms have the form µα.[β]_)whih an atually be seen as a typing onstraint diretly built in the syntaxof the untyped alulus. Λµ-alulus is basially the result of removing thisonstraint. By doing so, we obtain a alulus whih is lose to de Groote'spresentation of λµ-alulus but it is not equivalent to this alulus sine deGroote's presentation also ontains a typing onstraint whih is built in thesyntax, namely the ǫ rule that is absent from Λµ-alulus2.

Λµ-alulus was introdued in [Sau05℄ as an untyped extension of Parigot's
λµ-alulus in whih separation holds. Given two in�nite disjoint sets Vt (ofterm variables, denoted by x, y, z . . . ) and Vs (of stream variables, denoted by
α, β, γ . . . ), Λµ-alulus is de�ned by the following grammar:

t, u... ::= x | λx.t | (t)u | µα.t | (t)αAn abstration is a term of shape λx.t or µα.t and an appliation is a termof shape (t)u or (t)α. We refer to the appliation of an abstration as a ut.There are four kinds of uts in Λµ-alulus as shown in �gure 1: (T )T , (T )S,
(S)T , (S)S .
Λµ-alulus redutions.Cuts of type (T )T and (S)S are redexes for the following rules:

(λx.t)u →βT
t[u/x] (1)

(µα.t)β →βS
t[β/α] (2)But uts of type (S)T and (T )S are not redexes for these rules.2The result of the ǫ rule in Λµ-alulus would atually be to anel multiple stream ab-strations whih would be problemati with respet to separation.RR n° 6431



8 Mihele Pagani Alexis Saurin
(T )T : (λx.t)u (T )S : (λx.t)α

(S)T : (µα.t)u (S)S : (µα.t)βFigure 1: Cuts in Λµ-alulus.
⊲ (λx.t)u −→βT

t[u/x]
⊲ λx.(t)x −→ηT

t
⊲ (µα.t)β −→βS

t[β/α]
⊲ µα.(t)α −→ηS

t
⊲ µα.t −→fst λx.µβ.t[(U)xβ/(U)α]Proviso:In η, fst , x 6∈ FVt(t); in ηs, α 6∈ FVs(t)Figure 2: Λµ-alulus redution rulesThe following fst-rule relates term variables with stream variables, it is away to aess the �rst term of the stream and it will allow to redue the lasttwo types of uts:
µα.t →fst λx.µβ.t[(U)xβ/(U)α] (3)� Indeed the fst-rule makes reduible the uts of type (S)T :

(µα.t)u →fst (λx.µβ.t[(U)xβ/(U)α])u →βT
µβ.t[(U)uβ/(U)α]� as well as those of type (T )S, whenever subterms of a losed term:

µβ. . . . (λx.t)β · · · →fst λx.µβ. . . . (λx.t)xβ · · · →β λx.µβ. . . . (t)β . . .The following rules de�nes extensional equivalenes (with the usual proviso
x /∈ FVT (t) and α /∈ FVS(t)):

λx.(t)x →ηT
t (4)

µα.(t)α →ηS
t (5)

Λµ-alulus redution rules are summarized in �gure 2.In Λµ-alulus, µ an be seen as an abstration over streams of terms3.For instane, while λx.λy.λz.((z)(t)xy)(t′)xy may dupliate two terms passed3Streams as �rst-lass itizens are onsequenes of more extensionality in Λµ-alulus thanin λµ-alulus, due to the fat that it is possible to use the extensionality rules η and ηs where
λµ-alulus syntax forbids to do so, for instane: µα.(t)β →η µα.(λx.(t)x)β. INRIA



Stream Assoiative Nets and Λµ-alulus. 9
V arT

Γ, x : T ⊢ x : T |∆

Γ, x : T ⊢ t : T ′|∆
AbsT

Γ ⊢ λx.t : T → T ′|∆

Γ ⊢ t : T → T ′|∆ Γ ⊢ u : T |∆
AppT

Γ ⊢ (t)u : T ′|∆

Γ ⊢ t : ⊥|∆, α : A
µAbs

Γ ⊢ µα.t : A|∆

Γ ⊢ t : A|∆, α : A
µApp

Γ ⊢ (t)α : ⊥|∆, α : AFigure 3: Λµ-alulus Classial Type System.through x and y, Λµ-term µα.µβ.λz.((z)(t)αβ)(t′)αβ an dupliate two streamsof terms, these streams being for instane applied through the appliative on-text: []t1 . . . tkγu1 . . . ulδ.Compared to λµ-alulus where the e�et of µ is only to rediret the ompu-tation �ow, in Λµ-alulus, one an manage to deal with streams as �rst-lassitizens: for instane, µα.µβ.λx.λy.x is a term that erases two streams of termsand returns the boolean value true. As previously said, Λµ-alulus has been de-signed in order to reover the separation property. The original ounter-exampleto separation by David & Py [DP01℄, W , is solved by the following Λµ-ontext:
C = []Px0x1α0α1α where P = λz0, z1.µγ.λu.((u)µβ.z1)z0: C(W ) →⋆ y (see[Sau05℄ for more details).2.2 Typing Λµ-alulusTyping Λµ-alulus as λµ-alulus. One ould think of typing Λµ using astandard type system for lassial lambda-aluli as shown in �gure 3. However,this approah is not satisfatory onsidering our motivations in developping thenew alulus, that is from the point of view of separation. Indeed, the mainstrutures used in [Sau05℄ in order to obtain separation would not be typable inthe system of �gure 3 and for very fundamental reasons. Any term of the form
µα.λx.t would be untypable whereas this is the typial term used in the proof ofseparation for Λµ-alulus. In fat, the typing system originally introdued inorder to onnet the alulus with free dedution [Par92℄ preisely forbids suhterms: λx.t is a λ-abstrated term and thus shall be of an →-type whereas thefat that it is µ-abstrated through stream variable α fores the term to be oftype ⊥ whih is inompatible (see rule µAbs in �gure 3).Making streams �rst-lass itizens in the typed setting. The streammehanism that was used in the untyped alulus in order to obtain separationis thus desativated when lassial types are reintrodued. We shall look for avariant of this type system that would re�et in types the stream onstrution.In partiular, sine µ is seen as a stream abstration, one might think of afuntional type for streams: if the term t is of type T when stream α is ofstream type S, then µα.t would be of the type of a stream funtion from S to
T (that we write S ⇒ T ). We an thus think of the following typing rules for
RR n° 6431



10 Mihele Pagani Alexis Saurin
V arT

Γ, x : T ⊢ x : T |∆

Γ, x : T ⊢ t : T ′|∆
AbsT

Γ ⊢ λx.t : T → T ′|∆

Γ ⊢ t : T → T ′|∆ Γ ⊢ u : T |∆
AppT

Γ ⊢ (t)u : T ′|∆

Γ ⊢ t : T |∆, α : S
AbsS

Γ ⊢ µα.t : S ⇒ T |∆

Γ ⊢ t : S ⇒ T |∆, α : S
AppS

Γ ⊢ (t)α : T |∆, α : SFigure 4: ΛS : a type system for Λµ-alulus.
µ-abstrated terms in Λµ-alulus:

Γ ⊢ t : T |∆, α : S
AbsS

Γ ⊢ µα.t : S ⇒ T |∆

Γ ⊢ t : S ⇒ T |∆, α : S
AppS

Γ ⊢ (t)α : T |∆, α : SA type mismath. Rule fst does ompliate the de�nition of a type systemfor Λµ that would take streams into aount: whereas µα.t is of a stream type,say S ⇒ T , the term resulting from µα.t by applying the fst rule one (namely
λx.µβ.t[(U)xβ/(U)α]) should be of a standard funtion type A → B (morepreisely A → (S′ ⇒ T ′)). Moreover, things should not be as simple as in theprevious paragraph sine streams are streams of terms and thus they should berelated to eah other and they should not leave in distint worlds: one shouldbe allowed to apply a term to a stream funtion (for instane (µα.t)u) and on-versely, one might want to apply a stream to a λ-abstrated term (for instane
(λx.t)α). ⇒-types and →-types should be related in some way. fst gives thekey to this onnetion; we thus analyze more arefully this rule in the followingparagraph.A relation over stream types. We reall that fst synthesized in Λµ-alulusas the result of a η-expansion and a µ-redution. In the typed ase, the η-expansion an our only on →-type terms. This restrition adapted to Λµ-alulus results in the ondition that µα.t is of a stream type of the form
(T → S) ⇒ T ′. After an appliation of fst, we have term λx.µβ.t[(U)xβ/(U)α]that should be of type T → (S ⇒ T ′).Simply typed streams: ΛS . We now de�ne more formally the type system
ΛS for Λµ-alulus. The types are produed by the following grammar of simpletypes: Term types: T , A,B, . . . ::= o | A→ B | S ⇒ TStream types: S, P,Q, . . . ::= ⊥ | T → SIn addition, we onsider the ongruene relation ≡fst over Term types whihis the symmetri, re�exive and transitive losure of relation ≻fst de�ned by
(T → S) ⇒ T ′ ≻fst T → (S ⇒ T ′) and we always onsider the types of ΛSup to this ongruene relation. We show in �gure 4 the type system ΛS for
Λµ-alulus. INRIA



Stream Assoiative Nets and Λµ-alulus. 11
V arT

x : Tx ⊢ x : Tx|

V arT
y : Sα ⇒ A ⊢ y : Sα ⇒ A|

AppS
y : Sα ⇒ A ⊢ (y)α : A|α : Sα

AbsS
y : Sα ⇒ A ⊢ µβ.(y)α : Sβ ⇒ A|α : Sα

AbsT
⊢ λy.µβ.(y)α : (Sα ⇒ A) → (Sβ ⇒ A)|α : Sα

AppT
x : ((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B) ⊢ (x)λy.µβ.(y)α : Sα ⇒ B|α : Sα

AppS
x : ((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B) ⊢ ((x)λy.µβ.(y)α)α : B|α : Sα

AbsS
x : ((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B) ⊢ µα.((x)λy.µβ.(y)α)α : Sα ⇒ B|

AbsT
⊢ call/cc : (((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B)) → (Sα ⇒ B)|with Tx = ((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B).Figure 5: ΛS type derivation for all/.In the typed ase, appliation of the fst rule to term t requires that t has atype in relation with a type of shape (T1 → S) ⇒ T2 (this requirement is similarto the ondition on the η-expansion appliation in simply typed λ-alulus).Moving from ⇒ to O. Contrarily to what the notation ⇒ may suggest, noduality is involved with this onnetive. The rule AbsS would rather suggestthe ⇒ onnetive to be related with the O onnetive of linear logi. This ispreisely what we evidene in the present work: when translating ΛS into (akind of) polarized proof nets, T1 → T2 beomes as usual ?T⊥

1 OT2 while S ⇒ Tis translated into SOT . The ≡fst is thus an assoiativity property (namely
(?T⊥

OS)OT ≡fst ?T⊥
O(SOT )) of O whih is perfetly sound logially.Typing all/ in ΛS . The Λµ-alulus enoding of all/ is the term

λx.µα.((x)λy.µβ.(y)α)α. In the lassial type system presented in �gure 3, thisterm is typed by the Peire's Law: ((A → B) → A) → A. In ΛS , all/an be assigned type (((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B)) → (Sα ⇒ B) asshown by the type derivation in �gure 5. One may notie that the struture ofthe the Peire's Law is now to be found in the stream type (see the alternationof Sα and Sβ types).

RR n° 6431



12 Mihele Pagani Alexis Saurin3 Stream assoiative netsFormulas. In order to embed Λµ-alulus is proof nets, we de�ne the followingfragment of linear logi formulas, designed thanks to type system ΛS :
T -formulas T,A,B, . . . := o | ?QOT | SOT

Q,D,E, . . . := o⊥ | !T ⊗Q | P ⊗Q

S-formulas S,M,N, . . . := s | ?QOS
P,R,U, . . . := s⊥ | !T ⊗ SSine we want to onsider pure Λµ-alulus, we introdue the following re-ursive equations (in the same spirit as pure-nets [Dan90℄, [Reg92℄):

o = ?o⊥Oo o = sOo s = ?o⊥Os

o⊥ = !o⊗ o⊥ o⊥ = s⊥ ⊗ o⊥ s⊥ = !o⊗ s⊥This gives exatly three pairs of dual formulas:negatives: o ?o⊥ spositives: o⊥ !o s⊥We shall see that the formulas o, o⊥, !o, ?o⊥ behave as in Danos and Reg-nier's pure proof-nets (i.e. o, o⊥ are linear and !o, ?o⊥ manage dupliation anderasing), but the formulas s, s⊥ are of a di�erent nature and they behave as inpolarized linear logi (i.e. s, s⊥ allow free strutural rules on negatives). Theformulas s, s⊥ will be used to type streams.4In the sequel we will use n to denote without distintion ourrenes of s or
?o⊥.SANE. Stream assoiative nets, or simply nets, are made of ells and wires.Eah ell has a type, whih is a symbol belonging to the set {⊗,O, c, !, ?d}, and anumber of ports, exatly one of whih is alled prinipal, or onlusion, while theothers (if any) are alled auxiliary, or premises. Cells are pitured as triangles,and ports are drawn on the border of these triangles: the prinipal port of a ellis seen as one of the �tips� of the triangle representing it.A net is a ombination of ells, onneted with eah other by wires, asdesribed in [Laf95℄. More preisely, any net has a �nite set of free ports, alsoalled onlusions of the net, and has therefore a set of ports made of its freeports and of the ports of its ells (these sets of ports are assumed to be pairwisedisjoint). The wiring of the net an be seen as a partition of this set of portsinto sets of ardinality 2 or 0 (these latter wires are loops, they an appearduring the redution of a net).The ells are given in �gure 6, together with their typing rules. The gener-alized ontration has a variable arity n ≥ 0, in ase n = 0 it orresponds tothe usual weakening rule, in ase n = 1 we adopt the onvention to onsider ita simple wire, if n > 1 then it orresponds to a tree of usual binary ontration4One ould be tempted to set the equation ?o⊥ = s, so reduing to only two pairs offormulas: o, o⊥ and s, s⊥ � in this manner however it would be allowed lashes (i.e. bad typeduts), suh as a ut between a stream O and a promotion. INRIA
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o

?o⊥ o

O

o

o

O

s s

O

?o⊥

s

!o

⊗

o⊥

o⊥

⊗

o⊥s⊥

o⊥

!o s⊥

⊗

s⊥

?o⊥

o⊥

?d

. . .

?o⊥

?o⊥ ?o⊥

c

. . .

s

s s

c(i) generalized ontration
· · ·
?o⊥ s

!π

!o

?o⊥ s
· · ·

where π is of the form: ��
��
��

��
��
��

· · ·
?o⊥ s?o⊥ s

· · ·

o(j) promotion ellFigure 6: Cells of SANErules modulo assoiativity. The promotion ell is a speial kind of ell parame-terized by a net: if π is a net with n + 1 free ports, then !π is a ell with oneprinipal port and n auxiliary ports. The net π may itself ontain promotionells. The (exponential) depth of a net π is the maximum number of nestedpromotion ells in π5; one de�nes as well exponential depth of a ell or a port ina given net Π. Sometimes we will piture the net assoiated with a promotionell inside the ell itself, as for example in �gure 9.A typing of a net π is mapping from the oriented wires6 of π to the formulae
o, o⊥, s, s⊥, ?o⊥, !o, in suh a way that the onstraints of �gure 6 be satis�ed andin suh a way that, if an oriented wire w is mapped to a formula A, then theoriented wire w′ obtained by reversing the orientation of w be mapped to A⊥.Eah free port of π is equipped with a type: the type assoiated to the wireonneted to this port, this wire being onsidered as oriented towards the portunder onsideration. An axiom is a wire between two ports whih are auxiliary(but not of a promotion ell) or free, a ut is a wire between two ports whihare prinipal or auxiliary7 of a promotion ell.5To be pedanti, one should de�ne nets by indution on the depth.6An oriented wire is a wire equipped with an orientation, that is, an ordered pair of itsending ports.7A ut with one extremity auxiliary port of a promotion ell is sometimes alled ommu-tative exponential.RR n° 6431



14 Mihele Pagani Alexis Saurin3.1 Rewriting rulesA rewriting rule  x on nets is a graph transformation π  x π
′, onsisting intaking a subnet α of π, alled redex, and substituting it with a net α′, alledontratum, whih has the same (number and type of) free ports of α:

α

ω

··
·

··
·

π =  x

ω

··
·

··
·

α′

π′ =In the sequel we de�ne the rewriting rules just by pituring their redexesand ontrata (i.e. without mentioning the �ontext� ω).If  x is on�uent and normalizing then we denote with NF
x (π) the uniqueand always de�ned  x-normal form of π.The rewriting rule we will study in this paper is denoted by  SANE andit is the union of four more spei� rules: the ut-redution  cut, the Retoréredution  r, the wire expansion  w and the assoiativity redution  a. Theselast two are the keystone of SANE, the ones whih make stream and exponentialto ommuniate.Cut-redution. We start by realling ut-redution cut, whih is the usualone of polarized linear logi (see [Lau03℄). We set  cut as the union of tworedutions  o and  s, de�ned below.The relation  o redues uts labelled by a formula o. It is de�ned by thefollowing steps:

O
?/⊗! :

o o⊥
⊗O

o

o⊥?o⊥

!o

 o

o

?o⊥ o⊥

!o

O
s/⊗s⊥

:
o o⊥

⊗O

s⊥o

s o⊥
 o

o

s

s⊥

o⊥Notie that the above rules do not redue two kinds of o labelled uts, pi-tured in �gure 7: these uts play a ruial role in SANE, sine they set a om-muniation between ports labelled by exponential formulas and ports labelledby stream formulas. This ommuniation is indeed only potential: so far thoseuts stay irreduible, the two kinds of ports annot be wired.The relation s redues uts labelled by a formula s or ?o⊥. It is de�ned byfour kinds of steps: O
?s/⊗!s⊥ , !/?d, S/! and S/c. The �rst two are as follows:

O
?s/⊗!s⊥

: ⊗O

?o⊥

!os
s s⊥

s⊥
 s

s

?o⊥

!o

s⊥INRIA
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O

?/⊗s⊥

: ⊗O

?o⊥

o
o o⊥

o⊥

s⊥

O
s/⊗! : ⊗O

o
o o⊥

o⊥s

!oFigure 7: irreduible uts
⊗

!π1

⊗

!πn
n n

n

s

n

s⊥
s⊥

s⊥

!o !oFigure 8: A generi ⊗!s⊥-tree
!/?d : ?d!π

s

s

?o⊥

?o⊥

?o⊥!o

··
·

··
·

o⊥  s

��
��
��

��
��
��

o⊥

s

s

?o⊥

?o⊥

··
·

··
·

π

oNotie that the step !/?d swithes the polarities of the redued ut, i.e. itreates a wire where the positive and negative extremities are swithed.In order to de�ne the remained steps S/! and S/c, we need to introduethe notion of ⊗!s⊥-tree (whih is a straight adjustment to our framework of the
⊗-tree de�ned in [Lau03℄). A ⊗!s⊥-tree is a onneted and ayli net whihontains (at depth 0) only ells of type ⊗!s⊥ or promotion and whih has nouts. Note that any wire of a ⊗!s⊥-tree is typable only by n (or equivalently n⊥)and not by o, o⊥. Given a port p of type n⊥ of a net π, we all the ⊗!s⊥-tree of
p the maximal ⊗!s⊥-tree whih is a subnet of π and whih has p as a free port.One an prove by indution on the size of a ⊗!s⊥-tree σ that the onlusions of
σ are exatly one of type n⊥, alled the root of σ, and m ≥ 0 of negative types
?o or s, alled the leaves of σ. The general shape of a ⊗!s⊥-tree is pitured in�gure 8.Let now 〈p, q〉 be a ut labelled by a formula n (n ∈ {s, ?o⊥}), let p be itsextremity labelled by n⊥, σ be the ⊗!s⊥-tree of p. The ut 〈p, q〉 an be of twotypes depending on q: if q is an auxiliary port of a promotion, then we say that
〈p, q〉 has type S/!, and we redue it as follows:
RR n° 6431
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S/! : ��

��
��

��
��
��

!π′
!o

s

s

··
·?o⊥

?o⊥
··
· σ

?o⊥ ··
·?o⊥

s

n
s

··
·

n⊥

 s

?o⊥ ··
·?o⊥

s ··
· !o

!π′′

··
·

··
·

s

s
?o⊥

?o⊥
swhere π′′ is:

��
��
��

��
��
��

��
��
��

��
��
��

s

s

··
·?o⊥

?o⊥

··
· σ

n
n⊥

?o⊥

s

··
·?o⊥

s ··
· o

π′

If q is a prinipal port of a ontration, then we say that 〈p, q〉 has type S/c,and we redue it as follows:
S/c :

��
��
��

��
��
��

c

s

s

?o⊥

?o⊥

··
·

··
·

σ

··
·

n

n

nn⊥

 s

��
��
��

��
��
��
��
��
��

��
��
��

s

s

?o⊥

?o⊥

σ

n

n

σ

··
···
·

··
·

··
·

··
·

n⊥

n⊥

··
·

··
·

··
·

c

c

c

cRetoré redution. The rule  r is de�ned by two steps, fusion and pull :it essentially amounts to onsider the ontration links as assoiative operatorsthat an �oat freely out of a promotion ell. Di�erent solutions have beenadopted for linear logi proof nets, see for example [CK97℄ or [CG99℄.
fusion : n

n

n
h{

l{ c
nc

n

··
·

··
·

 r
n

n

n

n
nc

··
·

··
·

l + h{ INRIA



Stream Assoiative Nets and Λµ-alulus. 17where if l = 0, h = 1, then on the right-side we have a ontration ell ofarity 1, that is a wire.
pull :

c ··
·

··
·

π′ !π
n

n

s
!o

 r
c ··

·
··
·

π′ !π
n

n

s
!oWire expansions. The wire expansion  w orresponds to an orientation ofthe extensional equivalene. We de�ne  w by four rules wo?, wos, w? and ws:

wo? : o⊥ o  wo?

!o

⊗o⊥ O o

o

o⊥ ?o⊥

wos : o⊥ o  wos O⊗
s

o
oo⊥

w? : !o ?o⊥  w? !π ?d ?o⊥!o

ws : ss⊥  ws

!o

⊗s⊥ O s

s

s⊥ ?o⊥We underline that  w an be applied on every wire of type o or s, and notonly on axioms as sometimes it is the ase (for example in [Dan90℄). Observethat ws is the only step of  SANE that reates ells of type O
?s and ⊗!s⊥ .Assoiativity redution. Until now, everything is quite standard, followingthe lines of polarized proof-nets ([Lau03℄). Here we introdue the real noveltyof SANE, whih is the rewriting rule  a, based on the assoiativity between

O's (and dually between ⊗'s). This rule orresponds to the relation ≻fst of thetype system ΛS de�ned in setion 2:RR n° 6431
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O

O
o

o

s
s?o⊥

 a
O

O o
o

s

?o⊥The same holds for the orresponding ells of type ⊗.Promotion losure. The presene of promotion ells requires to lose everyrewriting rule until now de�ned to the promotion ells. That is, to every rule
 x, we add the following ase:

· · ·
?o⊥ s

!π

!o

?o⊥ s
· · ·

 x

· · ·
?o⊥ s

!o

?o⊥ s
· · ·

!π′

where π  x π
′.Commutativity equivalene. Moreover, we add an equivalene ∼comm onnets generating by the following basi equation, for every permutation σ:

c n
n

n

··
· ∼comm c··
·

n
n

n

··
·

σNotie that this equation does not interat with the previous rewriting re-lations: let π1, π
′
1 and π2 be nets suh that π1 ∼comm π2 and π1  SANE π′

1,then there is a net π′
2 s.t. π′

1 ∼comm π′
2 and π2  SANE π′

2. This means that
 SANE is ompatible with the ∼comm equivalene: from now on we will thusonsider nets up to ∼comm.Conluding remark on assoiativity. The key point with the assoiativityredution is that  a +  ws transforms the irreduible uts of �gure 7 toreduible ones, for example:

INRIA
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⊗O

?o⊥

o
o o⊥

o⊥

s⊥

 w ⊗O
o o⊥

O

?o⊥
⊗s⊥

o⊥

o
s

?o⊥

s

 
a

⊗

⊗O
o o⊥

O

o⊥

o
s

?o⊥

?o⊥

o⊥

!o sIn the sequel it will be usefull to onsider the following derived rule  g:
⊗O

?o⊥

o
o o⊥

o⊥

s⊥

 g
O

⊗o

s
?o⊥

s
s⊥

o⊥

⊗O

o
o o⊥

o⊥s

!o

 g
⊗

s

o⊥s

o

o

!oONotie that g is derivable from SANE , preisely g= w a o. There-fore  SANE + g has the same transitive losure as  SANE.3.2 Corretness riterionA path in a net is a sequene of ports 〈p1, . . . , pn〉 at exponential depth 0, suhthat:� for every i, j ≤ n, i 6= j implies pi 6= pj ;� for every i ≤ n− 1, pi, pi+1 are ports of the same ell or of the same wire;� for every i ≤ n− 2, pi, pi+1, pi+2 are not ports of the same ell;Paths will be denoted by Greek letters φ, ψ . . .A path φ rosses an oriented wire 〈p, q〉 (p, q being the two ports of the wire))if 〈p, q〉 is a subsequene of φ. A path φ is negative whenever every orientedwire rossed by φ has a negative type (i.e. type o, ?o⊥ or s). A negative yle isa negative path 〈p1, . . . , pn〉 s.t. 〈p1+n1, . . . , pn+n1, 〉 is a negative path (where
+n denotes the sum modulo n).De�nition 1 (Corretness, [Lau03℄) A net is orret if:� it does not ontain negative yles;RR n° 6431



20 Mihele Pagani Alexis Saurin� the number of positive onlusions plus ?d-ells at depth 0 is one;� and reursively the nets assoiated with the promotion ells are orret.Proposition 2 (Stability of orretness) Corretness of nets is preservedby  SANE: for every orret net π, if π  SANE π′ then π′ is orret.Proof. Completely standard, see [Lau03℄. �The following proposition 3 states that  s,r,a is strong normalizing on or-ret nets. This property is false for generalized MELL pure nets (see [PTdF07℄)but it holds for pure SANE (as well as for the pure nets fragment enoding the
λ-alulus), beause of the reursive types we have de�ned, spei�ally beausewe avoid formulas of type !n or ?n⊥, for n ∈ {s, ?o⊥}. Proposition 3 will play aruial role in the proof of SANE on�uene (theorem 10, preisely see lemma6), and in the proof of the simulation theorem (theorem 26).Proposition 3 (SN of  s,r,a) Let π be a orret net, every sequene of s,r,a-steps starting from π is �nite.Proof. Under the hypothesis that π is orret, we de�ne a degree8 of π andwe hek that this degree dereases (w.r.t. a well-founded ordering) after a
 s,r,a-step: this of ourse proves proposition 3. More preisely, the degree of
π will be a triplet of multisets 〈|π|cut, s(π), c(π)〉: the multiset |π|cut plays themost deliate role, dereasing under  s; the other two multisets s(π) and c(π)instead derease under  a and  r respetively. We onsider multisets orderedby the multiset order, and triplets ordered lexiographially.We start de�ning |π|cut: to ahieve this goal we introdue a partial order≥n⊥on ports, whih is the keystone of |π|cut de�nition, and two numbers #π(p), lπ(p)assoiated with every port at depth 0 of π.An n⊥-path is a path whih rosses only wires of type n⊥. Given two ports
p, q, we write p ≥n⊥ q whenever there is an n⊥-path from p to q. Notie that
≥n⊥ is a partial order when π is orret. Given a port p we de�ne the set Pred(p)of the immediate predeessors of p as the set of those ports q, s.t. p >n⊥ q andthere is no q′, p >n⊥ q′ >n⊥ q.For every port at depth 0 of π, we simultaneously de�ne lπ(p) and #π(p),by indution on the depth of π and on ≥n⊥ , whih is a well-order:
(#π(p), lπ(p)) =







































(1, 1) −If Pred(p) = ∅.
−If p is an auxiliary port of a

(#ρ(pρ)#π(q), promotion !ρ with prinipal
lρ(pρ) + lπ(q) + 1) port q, and pρ is the free portof ρ orresponding to p.
(
∑

q∈Pred(p) #π(q), −Otherwise.
1 +maxq∈Pred(p){l

π(q)})Often we will simply write l(p) or #(p), when it is lear whih net π theyrefer to. As the reader will onvine himself in the progress of the proof, for8This degree is indeed very general and an be adapted to other net-based systems, suh aslinear logi proof-nets (see [PTdF07℄) and di�erential interation nets (see [Pag07℄, [Tra07℄).Its de�nition is the result of several disussions of the �rst author with Paolo Tranquilli.INRIA



Stream Assoiative Nets and Λµ-alulus. 21
��
��
��

��
��
��

��
��
��

��
��
��

σ

··
·

· · ·

u

q

ω

p
!π′

v π′

pπ′

 S/!

��
��
��

��
��
��

��
��
��

��
��
��

··
· q

ω

p

π′

pπ′

· · ·

!π′′

σ
u

v
u

Figure 9: Redution π  S/! πevery port p of type n⊥, #π(p) is a maximum to the number of times p an bedupliated by a sequene of  s,r steps starting from π. Notie that if p is aport of an ⊗!s⊥-tree of π with root r, then either p is a leaf, or #π(p) = #π(r).We now de�ne |π|cut by indution on the depth of π. Let S(π) (resp. !(π))be the set of roots of the maximal ⊗!s⊥-trees (resp. of promotions) at depth 0of π; for every promotion !ρ ∈!(π) let p!ρ be the prinipal port of !ρ; we set:
|π|cut =

∑

r∈S(π)

[l(r)] +
∑

!ρ∈!(π)

#(p!ρ) · |ρ|cutAs for  a and  r: we de�ne s(π) to be the number of ell of O
s? or ⊗!s⊥in π and we denote by c(π) the multiset of the depths of the ells of type c in

π. Finally we de�ne:
|π| = 〈|π|cut, s(π), c(π)〉We thus prove that π  s,r,a π implies |π| < |π|. The proof is by indutionon the depth of the net π. What we exatly prove is: i) |π| < |π|, ii) for everyfree-port of π, lπ(p) = lπ(p),#π(p) = #π(p).Base of indution. If the step π  s,r,a π is not a promotion losure, i.e.the redex redued is not in a promotion of π, then we split in several ases,depending on the type of the  s,r,a step applied to π.Case S/!. If the step π  s,r,a π redues a ut 〈v, p〉 of type S/!, let v be theroot of the maximal ⊗!s⊥-tree σ involved in the redution, p be the auxiliaryport of the promotion !π′ wired to v, and let q be the prinipal port of !π′ (see�gure 9). We will prove that |π|cut < |π|cut, whih implies |π| < |π|.RR n° 6431



22 Mihele Pagani Alexis SaurinWe set S(π) = {v} ∪ Sω(π) (notie every root in Sω(π) is a root in ω or itis q) and we split !(π) in three disjoint disjoint sets: the set !σ(π) of the !(π)promotions whih are in σ, the set !ω(π) of the !(π) promotions whih are in ωand {!π′}. Observe that:
S(π) = {v} ∪ Sω(π)

S(π) = Sω(π)

!(π) = {!π′}∪!σ(π)∪!ω(π)

!(π) = {!π′′}∪!ω(π)We start omputing |π′′|cut. As an easy onsequene of the de�nition wehave: |π′′|cut = |π′|cut+
[

lπ
′′

(v)
]

+
∑

!ρ∈!σ(π) #π′′

(p!ρ)|ρ|cut. For every !ρ ∈!σ(π),
v is the root of the (maximal) ⊗!s⊥-tree ontaining p!ρ, so (as we notied before)
#π′′

(p!ρ) = #π′′

(v). Moreover, remark that #π′′

(v) = #π′

(pπ′

), thus:
|π′′|cut = |π′|cut +

[

lπ
′′

(v)
]

+ #π′

(pπ′

)





∑

!ρ∈!σ(π)

|ρ|cut



Now we prove that for every port t in ω, #π(t) = #π(t). In fat, for every leaf uof σ, let u be the orresponding auxiliary port of !π′′ in π (see �gure 9): we provethat #π(u) = #π(u). This easily implies ∀t ∈ ω, #π(t) = #π(t). By de�nition
#π(u) = #π′′

(u)#π(q); of ourse, #π(q) = #π(q), sine no predeessor of q isinvolved in the redution step π  s π. As for #π′′

(u), we set x = #γ(uγ) if uis an auxiliary port of a promotion !γ, otherwise let x = 1: in this way we ansay #π′′

(u) = x#π′′

(v). Sine #π′′

(v)#π′

(pπ′

), we have: #π′′

(u) = x#π′

(pπ′

).To sum up: #π(u) = #π′′

(u)#π(q) = x#π′

(pπ′

)#π(q) = x#π(p) = #π(u).In a similar way, we prove that for every port t in ω, lπ(t) = lπ(t). Thisredues to verify lπ(u) = lπ(u). By de�nition lπ(u) = lπ
′′

(u) + lπ(q) + 1. Set
lπ

′′

(u) = x + lπ
′′

(pπ′

), where x only depends on the ⊗!s⊥-tree σ; notie that
lπ

′′

(pπ′

) = lπ
′

(pπ′

). So we have: lπ(u) = lπ
′′

(u) + lπ(q) + 1 = x + lπ
′

(pπ′

) +
lπ(q) + 1 = x+ lπ(p) = lπ(u).I hanged the two ourrenes of inequality: #π(q)

[

lπ
′′

(v)
]

< lπ(v) into
#π(q)

[

lπ
′′

(v)
]

< [lπ(v)].℄We onlude that ondition ii) holds: for every free port t of π, lπ(t) = lπ(t),
#π(t) = #π(t). As for the ondition i): by olleting all the results, the readeran hek that the inequality |π|cut < |π|cut an be redued to #π(q)

[

lπ
′′

(v)
]

<

[lπ(v)]. By de�nition of l, we have: lπ(v) = 1 + lπ(p) = 2 + lπ
′

(pπ′

) + lπ(q) =
1 + lπ

′′

(v) + lπ(q), i.e lπ′′

(v) < lπ(v). This implies, by de�nition of the multisetorder: #π(q)
[

lπ
′′

(v)
]

< [lπ(v)]. We onlude |π|cut < |π|cut, whih implies
|π| < |π|.Case S/c. If the step π  s,r,a π redues a ut 〈v, p〉 of type S/c, let vbe the root of the maximal ⊗!s⊥-tree σ involved in the redution, let p be theprinipal port of the ell of type c wired to v, and p1, . . . , pn (n = 0 or n > 1)INRIA
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Figure 10: Redution π  S/c πbe its auxiliary ports. Moreover let σ1, . . . , σn (resp. v1, . . . , vn) be the opiesof σ (resp. of the root v) in π (see �gure 10). As in the former ase we shallshow that |π|cut < |π|cut, whih implies |π| < |π|.We set S(π) = {v} ∪ Sω(π), and we split !(π) in two disjoint sets: theset !σ(π) of the !(π) promotions whih are in σ, and the set !ω(π) of the !(π)promotions whih are in ω. Notie that:
S(π) = {v} ∪ Sω(π)

S(π) = {v1, . . . , vn} ∪ Sω(π)

!(π) = !σ(π)∪!ω(π)

!(π) = !σ1(π) ∪ · · · ∪!σn(π)∪!ω(π)where !σi(π) denotes the set of the !(π) promotions whih are in the i-th opyof σ.We start notiing that #π(v) = #π(p1) + · · · + #π(pn) = #π(v1) + · · · +
#π(vn), and lπ(v) > lπ(vi) for every i ≤ n.As in the former ase, we prove that for every port t in ω, #π(t) = #π(t) aswell as lπ(t) = lπ(t). We hek only #π(t) = #π(t), the other veri�ation beinga straightforward variant. Indeed it is enough to prove that: for every leaf u of
σ, by denoting with u the orresponding prinipal port of the ell c reated in
π (see �gure 10), we have #π(u) = #π(u). By de�nition one easily infers that:
#π(u) = #π(u1) + · · ·+ #π(un). As in the former ase, we set x = #γ(uγ) if uis an auxiliary port of a promotion !γ, otherwise let x = 1; in this way we ansay #π(ui) = x#π(vi), so that #π(u) = x(#π(v1) + · · ·+ #π(vn)) = x#π(v) =
#π(u).We onlude that ondition ii) holds: for every free port t of π, lπ(t) =
lπ(t), #π(t) = #π(t). As for the ondition i): by olleting all the results,the reader an hek that the inequality |π|cut < |π|cut an be redued to
[

lπ(v1) + · · · + lπ(vn)
]

< [lπ(v)]. Sine we have notied lπ(v) > lπ(vi) for every
i ≤ n, the inequality holds by de�nition of the multiset order.Case !/?d. The ase where π  s,r,a π redues a ut of type !/?d, is an easiervariant of the preeding ones, and we left it to the reader.RR n° 6431



24 Mihele Pagani Alexis SaurinCase  r or  a. The ases where π  r π or π  a π
′ an be easily solvedby showing that |π|cut = |π|cut and, for  a simply by proving s(π) < s(π), for

 r by proving s(π) = s(π) and c(π) < c(π).Indutive step. If the step π  s,r,a π is a promotion losure, then π isobtained by replaing in π a promotion !π′ with a promotion !π′, and π  s,r π
′.By indution hypothesis we know that i) |π′| < |π′|, ii) for every free-port of π′,

lπ
′

(p) = lπ
′

(p),#π′

(p) = #π′

(p). This easily implies i), ii) for π, π. �

INRIA



Stream Assoiative Nets and Λµ-alulus. 254 Con�uene theoremIn this setion we prove the on�uene of  SANE (theorem 10). The prooffollows these points. First, we onsider  SANE,g and not  SANE: indeed theon�uene of the former implies that of the latter, sine the two redutionshave the same transitive losure. Seond, we split  SANE,g in three disjointsubredutions,  o,g,  w and  s,r,a and we prove the on�uene of eah ofthem (lemmas 4, 5 and 6). Then, we prove the ommutation of o,g and s,r,a(lemma 7), whih implies the on�uene of  cut,g,r,a (proposition 8). Finally,we prove the ommutation of  cut,g,r,a and  w (lemma 9), so onluding theon�uene of  SANE,g (theorem 10).Lemma 4 The rule  o,g is on�uent.Lemma 5 The rule  w is on�uent.Proof. The above lemmas are immediate, sine there are no ritial pairs. �Lemma 6 Any union of the rules  a, s, r is on�uent on orret nets.Proof. It is known that  s,r is loal on�uent on orret nets: there are sev-eral ritial pairs that we omitted here beause their solution is standard (see[PTdF07℄ for the details). It is then straight to dedue the loal on�uene ofany union of the rules  a, s, r. Sine  s,r,a is also strong normalizing onorret nets (see proposition 3), the statement follows by the Newman lemma. �Lemma 7 The two rules  o,g and  s,r,a ommute.Proof. The reader an hek that if π  o,g π
′ and π  s,r,a π

′′ then there is
π′′′ s.t. π′ =

 s,r,a π
′′′ and π′′

 
∗
o,g π

′′′. Preisely the only ritial pairs are thoseprodued by  o,g and  a, whih are four, two produed by applying  a to
⊗ ells, and other two ompletely symmetri, produed by applying  a to Oells. In �gure 11 you �nd the solution for these last ones. �Notie that the topmost diagram of �gure 11 shows that rule  o does notommute with  a (and in general with  s,r,a). This is the main reason weintrodue the redution  g.Proposition 8 The rule  cut,g,r,a is on�uent on orret nets.Proof. This is an immediate onsequene of Lemmas 4, 6, 7 and the Hindley-Rosen lemma. �The last step to ahieve the on�uene of SANE is to add w. For this taskit is onvenient introduing the parallel  w: we de�ne π  w‖ π

′ by indutionon the size of π, as follows.
α

ω

··
·

··
·

π =  w‖

··
·

··
·

π′ =
α′

ω′RR n° 6431
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Figure 11: Critial pairs for lemma 7
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Stream Assoiative Nets and Λµ-alulus. 27where α w α′ and either ω = ω′ or ω  w‖ ω
′ (whih is de�ned, sine the sizeof ω is less than that of π). As expeted, the relations  w‖ and  w have thesame transitive losure.Lemma 9 The rule  w ommutes with  cut,a,g,r.Proof. The reader an hek that if π  cut,a,g,r π

′ and π  w‖ π
′′ then thereis π′′′ s.t. π′ =

 w‖ π
′′′ and π′′

 
∗
cut,a,g,r π

′′′. This implies by a simple diagramhase that  cut,a,g,r and  w‖ ommute. Hene  cut,a,g,r and  w ommute,sine  w and  w‖ have the same transitive losure. �Theorem 10 (Con�uene theorem) The redution SANE (as well as SANE,g)is on�uent on orret nets.Proof. The on�uene of  SANE,g is an immediate onsequene of Lemmas9, 5 and the Hindley-Rosen lemma. The on�uene of  SANE follows, sine
 SANE,g and  SANE have the same transitive losure. �
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28 Mihele Pagani Alexis Saurin5 Separation theoremDe�nition 11 (SANE Value) A net is a value when it does not ontain utsnor redexes for any rules but the axiom expansion rules.The SANE values orrespond in this framework to Λµ-alulus anonialnormal forms de�ned in [Sau05℄.De�nition 12 (Nets 0 and 1) We de�ne two partiular values, 1 and 0, thatwill be used to separate nets. The values will be de�ned modulo a ertain numberof 0-ary ontration ells, playing the role of garbage:
1 =

c

c

c

?o⊥

?o⊥ ?d

s

sgarbage
o

··
·

0 =

c

c

c

?o⊥

?o⊥ ?d

s

s

··
·garbage

o

In the sequel the garbage of 1 and 0 will never disturb the proof of separationtheorem, hene we will omit to mention.De�nition 13 (φn) Let n be an integer, one de�nes the net φn as follows:
φn = ?o⊥?d

o⊥

o

s⊥ s⊥

O

⊗ ⊗

o
o

O
O

o

s
s

o⊥

o

n

De�nition 14 (Contexts) The ontexts of type I are de�ned as nets with anadditional ell, namely [] whih has ports I. Corret nets are simply orret netswith this additional ell.Let π be a net of onlusions I, then C(π) is de�ned to be the net obtained from
C by replaing all ourrenes of [] in C by π. The orretion of π and C impliesthe orretion of C(π) (notie that the onverse is not true).A partiularly important lass of orret ontexts are the head ontexts: H =<
[]|x1 : Ψ1, . . . , xn : Ψn > where x1, . . . xn are onlusions of the hole (when itwill not be ambiguous we shall often write simply H =< []|Ψ1, . . . ,Ψn >). Inthe ase of head ontexts, one also writes H(π) as π~Ψ.De�nition 15 (A (−,−)) Let n be an integer, we de�ne the net A (

O
?, n

) asthe tree omposed by n ells of type O
?:

O oO
o

?o⊥
o o

?o⊥ ··
·Similarly one has A (x, n), for x ∈ {Os,O?,s,⊗!,⊗s⊥

,⊗!,s⊥

}. INRIA
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⊗

s⊥/!o
s⊥/!o

s
s/?o⊥

O
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O
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?o⊥Figure 12: klmn-nets
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30 Mihele Pagani Alexis SaurinDe�nition 16 (klmn-nets) klmn-nets are the orret nets suh that one �ndsthe subnet in �gure 12 starting from their o onlusion.One assoiates a mesure (k, l,m, n) to these nets as follows: entering theonlusion o, there is one maximal o⊥-path: it rosses O ells and then ⊗ ellsand �nally reahes the derelition at depth 0:(i) k is the number of O
s ells that are rossed on the o⊥-path;(ii) l is the number of O
? ells that are rossed after the last O

s ell is passedand before reahing the O
? onneted to the derelition;(iii) n is the number of ⊗! that are rossed before the �rst ⊗s⊥ is reahed;(iv) m is the number of ⊗s⊥ that are rossed before reahing the derelition.Lemma 17 Given two klmn-nets π and π′ having measures (k, l,m, n) and

(k′, l′,m′, n′) respetively, if (k, l,m, n) 6= (k′, l′,m′, n′) then there is a headontext C suh that C(π) ⋆
SANE 0 and C(π′) ⋆

SANE 1.Proof. (i) if k < k′. Let C be the ontext in �gure 13.where π1 and π2 are respetively:
A

(

O
?, l′ + 1

)

?d

c

cc

?o⊥

· · ·

cc

s
· · ·

A (Os,m+ k′ − k)

o⊥

?o⊥

?o⊥

?o⊥ s

o

oand

cc

?o⊥

· · ·

c

?d

cc

s
· · ·

?o⊥

?o⊥

?o⊥

o⊥

A
(

O
?, n′

)

s

o

A (Os,m′) oOne an hek that if one ut C with π on onlusion of type respetively
o⊥ − o, one gets C(π) ⋆

SANE 0 and C(π′) ⋆
SANE 1.(ii) if k = k′ and l < l′. This ase is solved similarly by using slight variantsof C, π1 and π2.(iii) if k = k′, l = l′ and m < m′. Let C be the following ontext (reall that

φm′ is the net de�ned in de�nition 13):
!o

o⊥

?o⊥ ?o⊥

· · ·

o⊥

· · ·

s s

!φm′

A
(

⊗!, l
)

A
(

⊗s⊥

, k
)

oo⊥then C(π) and C(π′) redue to nets π0 and π′
0 whih are klmn-nets with

kπ0
6= kπ′

0
and one an onlude thanks to (i).(iv) if k = k′, l = l′, m = m′ and n < n′. The ase is treated similarly to ase(iii) with a ontext di�ering from the above C by an easy variant of φn whihredues the problem to ase (ii). �INRIA
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o⊥Figure 13: Context used in ase (i) of lemma 17.
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32 Mihele Pagani Alexis SaurinLemma 18 If π and π′ are non equivalent values with the same onlusionsand suh that there are O ells at depth 0, then there is a orret head ontext
C suh that C(π)  ⋆

SANE π1 and C(π′)  ⋆
SANE π′

1 where π1 and π′
1 are nonequivalent values with the same depths as π and π′ and suh that π1 and π′

1 haveno O ell at depth 0.Proof. The proof is easy by an easy indution on the number of O ells atdepth 0. One studies the negative onlusions of π and π′ that have ells O
?, O

sor O
?s at depth 0, those onlusions are neessarily of type o or s. The removalof ells of kind O is done by repeatedly utting π and π′ with ells of type ⊗(⊗!, ⊗s⊥ or ⊗!s⊥) depending on what in π, π′ is above the onlusion. We onlystudy one ase whih is the most omplex: there is a onlusion of type o abovewhih there is a O

? in π and a O
s in π′. Then one uts this onlusion of thenets with a ⊗!. The ut in π is reduible but the one in π′ is not. We reduethe ut in π and obtain a net for whih the number of O ells has dereased byone. Conerning π′ one �rst expand (thanks to  ws) the wire of type s whihis auxiliary port of the ell O

s, then applies an assoiativity rule whih replaesan irreduible ut O
s/⊗! by a reduible ut O

?/⊗!. After reduing the ut, weobtain a pair of nets having one O ell less than then original nets.The proess ends only when there is no O ell a depth 0 anymore and it doesterminate sine eah of these steps redues the number of O ells at depth 0 by atleast one. The proess preserves equivalene as well as the depths of the nets. �De�nition 19 (Maximal positive sub-nets) Let π be a orret net. Onede�nes π+, the maximal positive subnet of π, and we distinguish a partiularonlusion of the net, xπ, as follows:� If π has a positive onlusion x, then xπ = x and π+ is the maximal ⊗-treewhih is a sub-net of π with onlusion x.� If π has a derelition at depth 0, then xπ is the unique onlusion whih isbelow the derelition and π+ is the sub-net ontaining the ells from xπ to thederelition and the maximal ⊗-tree.Theorem 20 (Separation for SANE) Let π and π′ be two orret nets withthe same onlusions that are non equivalent values (π 6∼SANE π′). There existsa (head) ontext C suh that C(π
~φ) ⋆

SANE 0 and C(π′~φ) ⋆
SANE 1.Proof. Atually, we prove the following stronger statement:(*) let π and π′ be two orret nets with the same onlusions I = {xt1

1 , . . . , x
tk

k }that are non equivalent values (π 6∼SANE π′).For any J = {x? o⊥

i1
, . . . , x? o⊥

il
} ⊆ I, if N = {n1, . . . , nl} is a family ofdistint integers that are large enough and if ~φ =< []|xi1 : φn1 , . . . , xil

:

φnl >, then, there exists a head ontext C suh that C(π
~φ) ⋆

SANE 0 and
C(π′~φ) ⋆

SANE 1.We do not provide a fully detailed proof whih would be too long but wetried to treat the main and most omplex ases. The proof goes by indution onthe sum of the depth of π and π′. Let J be a subset of the onlusions of typeINRIA
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?o⊥. Thanks to lemma 18, one may suppose that neither π nor π′ have any Oells at depth 0: there is a ontext in whih the nets redue to non-equivalentvalues of idential the depths and with no O ells at depths 0. Let xi = xπ and
xj = xπ′ .One shall reason on the struture of the maximal positive subnets π+ and
π′

+:1. If there is a positive onlusion x (and thus x = xi = xj), we reasonon the type of x.(a) If the positive onlusion is of type ! o, we have:
π/π′ =

π1/π
′
1

c c

o

!o

. . .

∼r

π1/π
′
1

cc o

. . . !o

= π̃/π̃′We an thus apply the indution hypothesis to nets π1/π
′
1 withthe appropriate ontration so that they have the same onlusionexept for the !o whih is now an o. One �nds a separating ontext for

π1
~φ/π′

1
~φ: C =< []|ψn⊥

1 , . . . , ψn⊥

l′ , ψo⊥

l′+1 > and adding a derelitionell to the onlusion of type o⊥ of ψo⊥

l′+1 makes a separating ontextfor π̃~φ/π̃′
~φ and thus for π~φ/π′~φ.(b) If the positive onlusion is of type o⊥, we study the shape of the

⊗-trees rooted in x and ompare the trees, proving separation byindution on the number of ⊗s⊥ in the tree. The �rst ase is whenboth ⊗ trees ontain ⊗s⊥ :
π =

π1

πk

⊗

⊗

⊗

s⊥

!o

!o

π0

s o⊥

o⊥

o⊥

π′ =

π′
l

⊗

⊗

s⊥

!o

!o

s o⊥

o⊥
π′

1

π′
0

⊗
o⊥
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34 Mihele Pagani Alexis SaurinIf π0 6∼ π′
0, one separates π0

~φ and π′
0

~φ, with C =< []|ψo
0 , ψ

n⊥

1 , ψn⊥

l′ >and by hanging ψ0 into O

o

os
c ψ0 , we separate π~φ and π′~φ.If π0 ∼ π′

0, either there is i ≤ k, l suh that πi 6∼ π′
i or k 6= l or thewires typed by s reah two di�erent onlusions of I. In any of theseases, one an separate: by using indution in the �rst ase or byusing a wire expansion of the onlusions of type s, an assoiativityredution and then the method of the �rst ase.The ases when some of the trees only ontain ⊗! ells or when thereis an axiom link but no ⊗ at all are treated fairly similarly.() If the positive onlusion is of type s⊥, we proeed essentially as inthe previous ase by indution on the number of ⊗!s⊥ on the ⊗-trees.2. If there is a derelition at depth 0 and xi, xj 6∈ J . We know that

xi and xj are of type ? o⊥ (indeed, we supposed that there is no O ell atdepth 0).(a) if i 6= j, one de�nes two ontexts ψi and ψj as follows:
ψi = π⊥

+
?d

?o⊥ !o?o⊥

c
ψj = π′⊥

+

?o⊥ !o

c

?o⊥

?dwhere π⊥
+ is an O tree dual to the ⊗-tree omposing the maximalpositive subnet of π where all left auxiliary ports are weakened9.Thus one has < π

~φ|ψi, ψj > 
⋆
SANE 0 and < π′~φ|ψi, ψj > 

⋆
SANE 1.(b) if i = j, then we are essentially in the same ase as with a positiveonlusion, however there is a slight subtility beause the onlusion

xi is of type ? o⊥ and thus it an be ontrated. This ontrationould interfere with an indution step and to ope with this problem,we shall use the nets φn.Let p, q be the numbers of⊗s⊥ in the⊗-trees of π and π′ respetively.One uts the onlusion xi of π/π′ with φn with n > p, q (and n beingdistint from all the indies in N ).9This subnet π⊥
+

plays the role of an eraser of nets.
INRIA
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n⊥

⊗
o⊥

?d

o⊥
⊗

n⊥

x′i x′′i o

φn

!o

φn

!o

. . .

c

< π
~φ|φn >∼

 
⋆
SANE

O

O

⊗

O

φn

!o

o

⊗

⊗

⊗

...n⊥

n⊥

s⊥

s⊥

= π̃
~φ,φn

x′i

c

. . .

o⊥

?d

The net pitured as equivalent to < π
~φ|φn > is indeed equivalentsine they both redue to the same net when reduing the ut S/c.

π̃
~φ,φn is obtained by reduing the ut on the derelited onlusion
x′′i in the above �gure. π̃~φ,φn (and its ounterpart π̃′

~φ,φn) are klmn-nets.If p 6= q then the lemma 17 an be applied (sine k = n − p and
k′ = n − q) in order to have separation. Otherwise, by utting theonlusion of type o with a net of shape:

⊗
!o

A
(

⊗s⊥

, k
)

s
. . .
s?o⊥ o⊥ o

s⊥
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36 Mihele Pagani Alexis SaurinAfter redution we obtain a net with derelition as onlusion ell(there is no ontration anymore). If we onsider the nets withoutthe derelitions, then they have a positive onlusion, have the samedepth as the original nets and now J has beome J ∪ x′i (the headontext ~φ is replaed by ~φ, φn), this an be separated by head ontext
C =< []|ψ0, ψ1, . . . , ψl′ >. Let ψo

0 be the element of the separatingontext whih is ut with the onlusion of type o⊥. ψo
0 has a on-lusion of type o its other onlusions have type n, as a onsequene

ψo
0 an be enlosed in a promotion box leading to net ψ′

0
!o and to aseparating ontext for π~φ/π′~φ.3. Finally, if there is a derelition at depth 0 and if {xi, xj} ∩ J 6= ∅.Let k, k′ be the numbers of ⊗s⊥ in the ⊗ maximal positive trees of π/π′.(a) if i 6= j, there are two ases: either xi ∈ J and xj 6∈ J or {xi, xj} ⊆

J . We only onsider the ase when they both are in J sine theother ase an be treated similarly as we shall see.By hypothesis, we know that we have ni 6= nj and that we anhoose ni and nj to be as large as we want. Consider ni > k and
nj > k′. π~φ/π′~φ have the following struture:

xj
oxi

n⊥

φnj

φni

!o

!o

?o⊥?o⊥

⊗
o⊥

. . .

π
~φ =

n⊥

⊗
o⊥

?d

c

oxi

n⊥

φni

!o

⊗
o⊥

o⊥
⊗

n⊥

π′~φ =

. . .
?d

xj

φnj

!o

?o⊥

c

?o⊥
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Stream Assoiative Nets and Λµ-alulus. 37And thus we have:
φni

!o

φnj

!o

φni

!o

n⊥

⊗
o⊥

?d

o⊥
⊗

n⊥

ox′i xx′j

c

. . .

π
~φ ∼

 
⋆
SANE

φnj

!o
O

O

⊗

x′i x′j

O

φni

!o

o

⊗

⊗

⊗

...n⊥

n⊥

s⊥

s⊥

o⊥
= π̃

~φ

?d

c c

. . .. . .

By renaming xj as x′j and xi as x′i or x in π̃~φ (we do the same thingwith π′~φ: xi beomes x′i and xj beomes x′j or x in π̃′
~φ).And if k = k′ then ni − k 6= nj − k′ so that the lemma 17 an beapplied and if k 6= k′ then the lemma an also be applied sine the

m = ni and m′ = nj so that we an �nd a separating ontext.The ase where xj ∈ J and xi 6∈ J is treated similarly: in this asewe an hoose what to ut xi with and in partiular we an hoosea φni .
RR n° 6431



38 Mihele Pagani Alexis Saurin(b) if {xi, xj} ⊆ J and i = j. In that ase, let us onsider ni > k, k′.Then we have:
n⊥

⊗
o⊥

?d

o⊥
⊗

n⊥π
~φ ∼

x′i x′′i o

φni

!o

φni

!o

. . .

c

 
⋆
SANE

O

O

⊗

O

φni

!o

o

⊗

⊗

⊗

...n⊥

n⊥

s⊥

s⊥

= π̃
~φ

x′i

c

. . .

o⊥

?d

If k 6= k′ we an again onlude thanks to lemma 17.If k = k′, then it is possible to ut the onlusion of type o of π̃~φwith:
⊗

⊗

⊗

s⊥

s⊥

!o...
?o⊥ s o⊥ o
z

s

. . .

α1αni−k
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Stream Assoiative Nets and Λµ-alulus. 39and it redues to:
!o

φni

⊗

⊗

⊗

s⊥

o
zα1

?o⊥

s⊥

. . .
αni−k

x′i

c

. . . ⊗
o⊥

?dThese π̃0/π̃′
0 have same depths as π/π′ and have now onlusionsin J ∪{z?o⊥

, αs
1, . . . , α

s
ni−k} and a derelition at depth 0 with xπ̃0

=
xπ̃′

0
6∈ J , whih is treated by the seond ase of the proof, whihensure that there exists a separating ontext for π~φ/π′~φ and whihonludes the proof.

�
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40 Mihele Pagani Alexis Saurin6 Simulation theoremWe now give a translation, denoted by ( )◦, of Λµ-terms into orret stream nets.Atually what we translate is a triplet (t, L,M), where t is a term, L is a set of λ-variables,M is a set of µ-variables and FV (t) ⊆ L∪M ; moreover the translationbrings a one-to-one orrespondene between the onlusions of the net (t, L,M)◦and the set L ∪M ∪ {t}, in suh a way that: i) t is assoiated with the uniqueonlusion of type o, ii) every variable of L is assoiated with a onlusion oftype ?o⊥ and iii) every variable of M is assoiated with a onlusion of type s.For the purpose of the translation, we label the free ports of (t, L,M)◦ of type
?o⊥ or s with the orresponding variable in L ∪M .Let L = {x1, . . . , xl} and M = {α1, . . . , αm}, then:� (x, L ∪ {x},M)◦

· · · · · ·

?o⊥ ?o⊥ ?o⊥ s s

o

x1 xl α1x αm

?w ?w ?d w w� (λx.t, L,M)◦

���������
���������
���������

���������
���������
���������· · ·

?o⊥ ?o⊥

x1 xlx

o

?o⊥ o

O

αm· · ·α1

s s

(t, L ∪ {x},M)◦

� (µα.t, L,M)◦

���������
���������
���������

���������
���������
���������· · ·

?o⊥ ?o⊥

x1 xl αm· · ·α1

s s

o

O

o

α

s

(t, L,M ∪ {α})◦

� ((t)u, L,M)◦, let π be the following net:
�����
�����
�����

�����
�����
�����

o

xl

?c ?c

· · ·

?o⊥ ?o⊥

x1 α1

· · ·· · ·

o o⊥ !o

cc

· · ·

s s
αm

⊗

· · · · · ·

(t, L,M)◦
!(u, L,M)◦
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Stream Assoiative Nets and Λµ-alulus. 41then ((t)u, L,M)◦ = NF
r (π).� ((t)α,L,M ∪ {α})◦, let π be the following net:
���������
���������
���������

���������
���������
���������· · ·

?o⊥ ?o⊥

x1 xl

⊗

c

o

o o⊥

α

αm· · ·α1

s s

s

s⊥

(t, L,M ∪ {α})◦

then ((t)α,L,M ∪ {α})◦ = NF
r (π).Proposition 21 (Injetivity of ( )◦) The translation ( )◦ is injetive: if t 6= uthen t◦ 6= u◦.Proof. By indution on t. �With the following de�nition we haraterize those nets whih translate Λµ-terms (theorem 23):De�nition 22 (Λµ-net) A Λµ-net is a net π s.t.:1. π is orret;2. π does not ontain ells of type O

?,s or ⊗!,s⊥ ;3. π is a normal form w.r.t.  s,r,a;4. every free port of π is negative;5. and reursively the nets assoiated with promotion ells are Λµ-nets.Theorem 23 (Sequentialization) Let π be a net, π is a Λµ-net i� there is a
Λµ-term t s.t. π = t◦.Moreover, there is a natural 1 − 1 orrespondene between the uts of t◦and the Λµ-uts of t s.t. a ut of type O

?/⊗! (resp. O
?/⊗s⊥

,Os/⊗!,Os/⊗s⊥)orresponds to a Λµ-ut of type (T )T (resp. (T )S, (S)T , (S)S). In partiular,
t◦ is ut-free (hene a  cut,g,a,r normal form) i� t is anonial.Proof. The diretion ⇒ is an easy inspetion of the ase de�nition of thetranslation ( )◦. The diretion ⇐ is a simple variant of the proof of the sequen-tialization theorem, see [Dan90℄,[Reg92℄,[Lau03℄. �Let us turn our attention to the dynamis of  Λµ. In what follows we willprove that  SANE simulates  Λµ: if t Λµ u, then t◦  Λµ u

◦ (theorem 26).The following two lemmas are easy variants of the orresponding ones in[Lau03℄.RR n° 6431



42 Mihele Pagani Alexis SaurinLemma 24 (λ-substitution) Let π be the following net:
π =

o

· · · · · ·

!o

?o⊥ · · · · · ·x

xl

?c ?c

· · ·

?o⊥ ?o⊥

x1

cc

· · ·

s s
αmα1

!(v, L,M)◦

(u, L ∪ {x},M)◦then NF
s,r (π) = (u[v/x], L,M)◦.Proof. By indution on u. �Lemma 25 (µ-substitution) Let π be the following net:

π =

⊗

xl

?c ?c

· · ·

?o⊥ ?o⊥

x1

cc

· · ·

s s
αmα1

o

s

β

· · · · · ·

· · · · · ·

s⊥s

α

!o

!(v, L,M)◦

(u, L,M ∪ {α})◦then NF
s,r,a (π) = (u[(t)vβ/(t)α], L,M ∪ {β})◦.Proof. By indution on u. We onsider only one ase (the one where  a playa ruial role), leaving the other ases to the reader.If u = (w)α, then π is the  r-normal form of this net:
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Stream Assoiative Nets and Λµ-alulus. 43
xl

?c ?c

· · ·

?o⊥ ?o⊥

x1

cc

· · ·

s s
αmα1

s

β

· · · · · ·

!o

⊗

⊗

c

o

o o⊥ s⊥

s⊥s

α· · ·· · ·

!(v, L,M)◦

(w,L,M ∪ {α})◦

Whih by one  s step and one  a step redues to the following net π′

c ccc

xl

?c ?c

· · ·

?o⊥ ?o⊥

x1

cc

· · ·

s s
αmα1

c

⊗
⊗

o o⊥

· · ·· · ·

· · ·· · ·

!o

⊗
s⊥

· · ·· · ·

· · · · · ·

β

s

s
α

γ

o

!o

s

!(v, L,M)◦

(w,L,M ∪ {α})◦

!(v, L,M)◦

By indution hypothesis NF
s,r,a (γ) = (w[(t)vβ/(t)α], L,M ∪ {β})◦, so weonlude that NF

s,r,a (π) = ((w[(t)vβ/(t)α])vβ, L,M ∪ {β})◦. �Theorem 26 (Simulation) Let t, u be two Λµ-terms, then:1. t→βT
u implies t◦  o · ∗

s,r u
◦2. t→βS

u implies t◦  o u
◦3. t→fst u implies t◦  ws · ∗

s,r,a u
◦4. t→ηT

u implies u◦  wo? · w? t
◦RR n° 6431



44 Mihele Pagani Alexis Saurin5. t→ηS
u implies u◦  wos · w? t

◦Proof. One an restrit to the ase the redex redued in t  Λµ u is thehead-redex of t, the more general ase will follow by a straight indution on theomplexity of t.If t  βT
u, then the redex redued orresponds to a ut of type O

?/⊗! of
t◦ (theorem 23): by reduing this redex we obtain a net π as that pitured inlemma 24; by this lemma we onlude NF

s,r (π) = u◦.If t βS
u, then the redex redued orresponds to a ut of type O

s/⊗s⊥ of
t◦ (theorem 23): by reduing this redex we obtain straight u◦.If t fst u, let t = µα.v. We have:

t◦  ws · w?

O

O

⊗

?o⊥
!π ?d

!o

s

s

oα

o

s

v◦

 a

O

⊗

O

!π ?d
!o

s oα

o

v◦

o
?o⊥

γ
s

then by lemma 25 we have that NF
s,r,a (γ) = v[(w)xβ/(w)α]◦ , so we on-lude: λx.µβ.v[(w)xβ/(w)α].The ases t η u and t ηs

u are diretly simulated by  w.
�Conluding remark. The relationships between Λµ-alulus and SANE aredeep as the previous simulation theorem makes it lear. We lose this �nalsetion by few additional remarks related with the question of simulation.INRIA



Stream Assoiative Nets and Λµ-alulus. 45� Other Λµ-based rules an be simulated, in partiular the µ rule ((µα.t)u →
µα.t[(v)uα/(v)α]) whih is simulated by  g ·  ∗

s,r,a. Sine µ rule anitself be simulated by Λµ-alulus rules, there is no surprise about sim-ulating it in SANE, but it is interesting to see that µ an be simulatedusing  g.� There seems to be another interesting underlying alulus in SANE thatwe would hope to simulate thanks to SANE: this would be a real streamlanguage where the main struture would not orrespond to O
? and ⊗! butto O

?s and ⊗!s⊥ . This would probably be the stream-alulus ΛS alreadysuggested in [Sau05℄.� A notion of expliit substitutions seems to be underlying in the proofof simulation. This would orrespond toredutions  s,r in SANE. Thisexpliit substitution has good properties sine it is strongly normalizing(proposition 3) and on�uent (lemma 6).� Beyond simulation, bisimulation: we guess that one an have even a bisim-ulation result: if t◦  ∗
SANE u◦ then t  ∗

Λµ u. However the proof ofbisimulation is very deliate, sine  ∗
SANE allows muh more redutionsbetween t◦ and u◦, than those used to simulate  Λµ.
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46 Mihele Pagani Alexis Saurin7 ConlusionWe introdued SANE, a new lass of nets whih lies in between usual linear logiproof-nets and polarized proof-nets for whih we proved strong normalizationfor the exponential ut-elimination, on�uene and separation:� The strong normalization is proved by indution on a mesure whih isindeed very general and an be adapted to other net-based systems.� The on�uene proof is original in the sense it is not a diret onsequene ofthe proof of on�uene for MELL proof-nets, in fat  SANE has  a and
 w in addition to  cut,r (on�uene is already hard to prove even in themultipliative fragment in presene of  a). Moreover, it is an interestingresult sine we were able to prove on�uene for all kinds of orret nets,whereas in Λµ-alulus on�uene holds only for µ-losed terms.� We were espeially interested in having separation sine we onsidered it asa design requirement for our nets and sine this is one of the few separationresults that exist for proof-nets (other know results are [MP07, MP94℄).Our initial aim was to study Λµ-alulus thanks to the powerful tehniquesof proof-nets. In partiular we obtained a simulation of Λµ-alulus. More-over we have, as a by-produt of the simulation theorem, a notion of expliitsubstitutions for Λµ-alulus whih is the one simulated by the  s,r of SANE.This expliit substitution has good properties sine it is strongly normalizing(proposition 3) and on�uent (lemma 6). The enoding of Λµ-alulus in SANEand the way Λµ-alulus redution rules are simulated shed an interesting lighton the redution rules, in partiular with respet to the fst-rule that relates

λ-variables with µ-variables.In addition, the simulation result suggests that there exists another alulushidden in SANE in whih the assoiativity rule would go in the other diretion.For this reason we are optimisti about SANE being a platform in whih tostudy ontinuation aluli.Future works. This work is being pursued in two diretions:� We are investigating an extension of the simulation result in the form ofa bisimulation. Indeed, in addition to the simulation of Λµ-alulus bySANE we hope to obtain a onverse result.� A natural developement of the study of separation would be to look for atyped result sine our theorem only deals with pure nets.
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