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ontinuations that provides the
al
ulus with a 
onstru
tion of streams.Based on the Curry-Howard paradigm Laurent has de�ned a translation of
λµ-
al
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SANE: des réseaux pour le Λµ-
al
ul.Résumé : Le Λµ-
al
ul a été introduit 
omme une extension non-typée du λµ-
al
ul de Parigot, re manière à retrouver la propriété de séparation (ou théorèmede Böhm) dont on savait qu'elle était fausse en λµ-
al
ul. Un élément essentielen Λµ-
al
ul pour que la séparation soit valide est l'utilisation sans restri
tiond'abstra
tion sur les 
ontinuations qui donnent au 
al
ul une 
onstru
tion destreams.Fondé sur le paradigme de Curry-Howard, Olivier Laurent a dé�ni une tra-du
tion du λµ-
al
ulus dans les réseaux de preuve polariés. Malheureusement,
ette tradu
tion ne peut pas être étendue au Λµ-
al
uls: le système de typagesur lequel elle est basée désa
tive le mé
anisme de stream du Λµ-
al
ul.Nous introduisons les stream asso
iative nets (SANE), une variante de ré-seaux qui se situe entre les réseaux polarisées de Laurent et les réseaux habituelsde la logique linéaire. Les SANE ont deux types de O (et don
 de ⊗): l'un estlinéaire tandis que l'autre admet librement des règles stru
turelles 
omme dansles réseaux polarisés.Nous prouvons la 
on�uen
e pour SANE et présentons une rédu
tion qui pré-serve l'en
odage du Λµ-
al
ul dans SANE. Cette rédu
tion, fondée sur un nou-veau système de typage introduit par le se
ond auteur. On s'aperçoit que le mé-
anisme de stream à l'÷uvre en Λµ-
al
uls peut être expliqué par l'asso
iativitédes deux types de O des SANE.Finalement, on montre un théorème de Böhm pour les SANE. Le résultatsuit le programme de Girard visant à donner une pla
e 
lé à la séparation parmiles propriétés des systèmes logiques.Mots-
lés : λµ-
al
ul, logique linéaire, théorème de Böhm, réseaux de preuve,logique 
lassique, asso
iativité en logique, 
ontinuations.
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al
ulus: the type system on whi
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al
ulus's stream me
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e stream asso
iative nets (SANE), a notion of nets whi
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 proof-nets.SANE have two kinds of O (hen
e of ⊗), one is linear while the other one allowsfree stru
tural rules (as in polarized proof-nets). We prove 
on�uen
e for SANEand give a redu
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oding of Λµ-
al
ulus in SANE, based on anew type system introdu
ed by the se
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4 Mi
hele Pagani Alexis Saurin1 Introdu
tionCurry-Howard in 
lassi
al logi
. Curry-Howard isomorphism states a 
or-responden
e between programs and proofs. Basi
ally, it expresses (i) that a type
an be seen as a logi
al formula, and 
onversely, and (ii) that a program 
anbe seen as a proof, s.t. the exe
ution of the program 
orresponds to applyingthe 
ut-elimination pro
edure to the asso
iated proof, and 
onversely. Indeed,this 
orresponden
e was at �rst limited to intuitionisti
 logi
 on the one handand to fun
tional programming (λ-
al
ulus) on the other hand. Extending the
orresponden
e to 
lassi
al logi
 resulted in strong 
onne
tions with 
ontrol op-erators in fun
tional programming languages as �rst noti
ed by Gri�n [Gri90℄.In parti
ular, λµ-
al
ulus [Par92℄ was introdu
ed by Mi
hel Parigot as an exten-sion of λ-
al
ulus isomorphi
 to an alternative presentation of 
lassi
al naturaldedu
tion (known as free dedu
tion) in whi
h one 
an en
ode usual 
ontrol op-erators and in parti
ular the 
all/

 operator.Polarized linear logi
. Based on the extension of the Curry-Howard isomor-phism to 
lassi
al logi
, Laurent de�nes a translation of Parigot's λµ-
al
ulus inpolarized linear logi
: a variant of linear logi
 (LL), allowing free stru
tural ruleson negative formulas [Lau02℄. Laurent's translation enlarges the 
omparison be-tween LL and usual λ-
al
ulus, started from Girard [Gir87℄, Danos [Dan90℄ andRegnier [Reg92℄. In parti
ular polarized LL provides a 
lass of proof-nets (thegraph-theoreti
al representation of LL proofs) 
orresponding to the λµ-terms,so sheding new light into the 
omputation of λµ-
al
ulus.
λµ-
al
ulus and Separation. λµ-
al
ulus be
ame one of the most standardways to examine 
lassi
al lambda-
al
uli. As a result, the 
al
ulus has been moreand more studied and more fundamental questions arose. Among them, one ofthe most important is separation. The best known example of separation resultis Böhm's theorem for the pure λ-
al
ulus [B�68℄: if t, t′ are two distin
t 
losed
βη-normal terms, then there exist terms u1, . . . , un, su
h that (t)u1 . . . un →β xand (t′)u1 . . . un →β y. This result has 
onsequen
es both at the semanti
al levelas well as at the synta
ti
al one: on the one hand it entails that a model of the
λ-
al
ulus 
annot identify two di�erent βη-normal forms without being trivial;on the other hand it establishes a balan
e between synta
ti
al 
onstru
ts and
β-redu
tion: any di�eren
e in the stru
ture of a βη-normal form implies a di�er-en
e in the value of that normal form on suitable arguments. In 2001 David &Py addressed the question of separation to Parigot's λµ-
al
ulus and they gave anegative answer by exhibiting a 
ounter-example [DP01℄. In a previous work of2005, the se
ond author introdu
ed an extension to λµ-
al
ulus, Λµ-
al
ulus, forwhi
h he 
ould prove that separation holds [Sau05℄. Λµ-
al
ulus is fairly 
loseto standard presentations of λµ-
al
ulus (see [dG94, dG98℄ for instan
e), but isde�nitely a di�erent 
al
ulus. In parti
ular, an essential 
omputational featureof Λµ-
al
ulus for separation to hold is the unrestri
ted use of abstra
tions over
ontinuations that provides the 
al
ulus with a 
onstru
tion of streams.The logi
 of Λµ-
al
ulus. We pursue an investigation of the logi
 behind
Λµ-
al
ulus. Our feeling is that the rules of 
lassi
al logi
 imposes a too stri
tdis
ipline over the use of streams: in Parigot's λµ-
al
ulus streams representonly 
hannels through whi
h terms 
an be sent, these 
hannels 
an be pluggedINRIA
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iative Nets and Λµ-
al
ulus. 5to ea
h other, they 
an be ex
hanged, but they do not really 
ommuni
ate withthe terms in the 
ourse of a 
omputation. Streams and terms live in di�erentworlds, in parti
ular the former ones are not �rst 
lass 
itizens in the early ver-sions of λµ-
al
ulus. We think that the Curry-Howard isomorphism at the baseof Parigot's λµ-
al
ulus restri
ts too mu
h the 
omputational power of streams,a 
onsequen
e of whi
h is the failure of the separation property, as proved byDavid & Py. If we forget the Curry-Howard isomorphisms and start to buildmore freely the programs in Λµ-
al
ulus, then we get ba
k the separation prop-erty and in the same time we move away from 
lassi
al logi
.Stream Asso
iative NEts: from the rules of 
lassi
al logi
 to the logi
of Λµ-
al
ulus rules. This turning-point indu
es a 
hange of the en
oding of
λµ-
al
ulus into proof-nets: indeed Laurent's translation is based on the Curry-Howard isomorphism with 
lassi
al logi
. We follow another dire
tion, in orderto have an en
oding of Λµ-
al
ulus whi
h is more faithfull to the stream behaviorat the base of the separation property. We believe that it is by departing fromthe rules of 
lassi
al logi
 that we will understand the real logi
 of Λµ-
al
ulusrules.We thus de�ne a new 
lass of nets, Stream Asso
iative NEts (SANE). SANElies in between usual linear logi
 proof-nets and polarized proof-nets: we havetwo kinds of O (and dually of ⊗), one 
oming from LL (asso
iated with the λ-variables) and the other one 
oming from polarized LL (and asso
iated with the
µ-variables). The essential ingredient is the asso
iativity property between thesetwo kinds of multipli
atives, whi
h makes possible the 
ommuni
ation betweenstreams and λ-variables mu
h in the same way as fst rule does in Λµ-
al
ulus.Better be in SANE to study Λµ-
al
ulus. The 
orresponden
e between
Λµ-
al
ulus and SANE will allow for 
onsiderable �transfers of te
hnologies� be-tween the two domains, in parti
ular proof-nets will provide powerful geometri-
al abstra
tions and a deeply symmetri
al framework as well as strong dualities.In addition to a �ner-grained study of the redu
tion rules of Λµ-
al
ulus (as em-phasized by our simulation result), SANE redu
tions will provide Λµ-
al
uluswith a notion of expli
it substitution. Moreover, SANE should help studyingthe relationships of Λµ-
al
ulus with other 
ontinuation-based 
al
uli.Proof-nets with separation property. SANE have been designed in orderto study Λµ-
al
ulus, but separation property plays a key role in the theory ofSANE. As in Ludi
s [Gir01℄ where Girard 
hose separation to be a requirementfor his elementary obje
ts, the designs, the nets we introdu
e in the presentwork have been designed with separation property to be at the heart of thetheory, mu
h in the same way as 
on�uen
e does.Stru
ture of the Paper. The following se
tion is dedi
ated to a short intro-du
tion to Parigot's λµ-
al
ulus to separation related topi
s and to Λµ-
al
ulus.A new type system for Λµ-
al
ulus is provided whi
h serves as a basis to de-�ne, in se
tion 3, the pure Stream asso
iative nets, their redu
tions, state the
orre
tness 
riterion for SANE and prove an original strong normalization re-sult of  s,r,a whi
h implies the strong normalization of exponential redu
tionRR n° 6431



6 Mi
hele Pagani Alexis Saurinin SANE1. The following se
tion is dedi
ated to proving 
on�uen
e of SANEbefore going to the question of the separation property in se
tion 5. Finally, wesimulate Λµ-
al
ulus in SANE in se
tion 6.

1This gives as a 
orollary the SN of the impli
it expli
it substitution system INRIA
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iative Nets and Λµ-
al
ulus. 72 Λµ-
al
ulus2.1 λµ-
al
ulus, streams and Separation: Λµ-
al
ulusDavid & Py 
ounter-example to Separation in λµ-
al
ulus. In their2001 paper [DP01℄, David & Py addressed the question of separation prop-erty in λµ-
al
ulus by exhibiting a 
ounter-example to separation, the λµ-term
W = λx.µα.[α]((x) µβ.[α](x) U0 y) U0 with U0 = µδ.[α]λz1.λz2.z2. Separationproperty fails in this setting be
ause there is no way to put the variable y inhead position. The key point is that the entire appli
ative 
ontext in whi
h thisterm is pla
ed is transmitted through µα to subterms; as a 
onsequen
e, theusual te
hnique (whi
h 
onsists in building a 
ontext that shall explore the partof the term we want) 
annot be applied.Re
overing Separation in λµ-
al
ulus: relaxing impli
it (underlying)typing 
onstraints. What we do by introdu
ing Λµ-
al
ulus is pre
isely tobe more liberal with the 
onstru
tion of terms in order to provide the 
al
uluswith more appli
ative 
ontexts and retrieve the ability to realize the neededexploration paths. In parti
ular, Parigot's λµ-
al
ulus syntax has a 
onstraintof naming a term right before it is µ-abstra
ted (terms have the form µα.[β]_)whi
h 
an a
tually be seen as a typing 
onstraint dire
tly built in the syntaxof the untyped 
al
ulus. Λµ-
al
ulus is basi
ally the result of removing this
onstraint. By doing so, we obtain a 
al
ulus whi
h is 
lose to de Groote'spresentation of λµ-
al
ulus but it is not equivalent to this 
al
ulus sin
e deGroote's presentation also 
ontains a typing 
onstraint whi
h is built in thesyntax, namely the ǫ rule that is absent from Λµ-
al
ulus2.

Λµ-
al
ulus was introdu
ed in [Sau05℄ as an untyped extension of Parigot's
λµ-
al
ulus in whi
h separation holds. Given two in�nite disjoint sets Vt (ofterm variables, denoted by x, y, z . . . ) and Vs (of stream variables, denoted by
α, β, γ . . . ), Λµ-
al
ulus is de�ned by the following grammar:

t, u... ::= x | λx.t | (t)u | µα.t | (t)αAn abstra
tion is a term of shape λx.t or µα.t and an appli
ation is a termof shape (t)u or (t)α. We refer to the appli
ation of an abstra
tion as a 
ut.There are four kinds of 
uts in Λµ-
al
ulus as shown in �gure 1: (T )T , (T )S,
(S)T , (S)S .
Λµ-
al
ulus redu
tions.Cuts of type (T )T and (S)S are redexes for the following rules:

(λx.t)u →βT
t[u/x] (1)

(µα.t)β →βS
t[β/α] (2)But 
uts of type (S)T and (T )S are not redexes for these rules.2The result of the ǫ rule in Λµ-
al
ulus would a
tually be to 
an
el multiple stream ab-stra
tions whi
h would be problemati
 with respe
t to separation.RR n° 6431
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(T )T : (λx.t)u (T )S : (λx.t)α

(S)T : (µα.t)u (S)S : (µα.t)βFigure 1: Cuts in Λµ-
al
ulus.
⊲ (λx.t)u −→βT

t[u/x]
⊲ λx.(t)x −→ηT

t
⊲ (µα.t)β −→βS

t[β/α]
⊲ µα.(t)α −→ηS

t
⊲ µα.t −→fst λx.µβ.t[(U)xβ/(U)α]Proviso:In η, fst , x 6∈ FVt(t); in ηs, α 6∈ FVs(t)Figure 2: Λµ-
al
ulus redu
tion rulesThe following fst-rule relates term variables with stream variables, it is away to a

ess the �rst term of the stream and it will allow to redu
e the lasttwo types of 
uts:
µα.t →fst λx.µβ.t[(U)xβ/(U)α] (3)� Indeed the fst-rule makes redu
ible the 
uts of type (S)T :

(µα.t)u →fst (λx.µβ.t[(U)xβ/(U)α])u →βT
µβ.t[(U)uβ/(U)α]� as well as those of type (T )S, whenever subterms of a 
losed term:

µβ. . . . (λx.t)β · · · →fst λx.µβ. . . . (λx.t)xβ · · · →β λx.µβ. . . . (t)β . . .The following rules de�nes extensional equivalen
es (with the usual proviso
x /∈ FVT (t) and α /∈ FVS(t)):

λx.(t)x →ηT
t (4)

µα.(t)α →ηS
t (5)

Λµ-
al
ulus redu
tion rules are summarized in �gure 2.In Λµ-
al
ulus, µ 
an be seen as an abstra
tion over streams of terms3.For instan
e, while λx.λy.λz.((z)(t)xy)(t′)xy may dupli
ate two terms passed3Streams as �rst-
lass 
itizens are 
onsequen
es of more extensionality in Λµ-
al
ulus thanin λµ-
al
ulus, due to the fa
t that it is possible to use the extensionality rules η and ηs where
λµ-
al
ulus syntax forbids to do so, for instan
e: µα.(t)β →η µα.(λx.(t)x)β. INRIA
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V arT

Γ, x : T ⊢ x : T |∆

Γ, x : T ⊢ t : T ′|∆
AbsT

Γ ⊢ λx.t : T → T ′|∆

Γ ⊢ t : T → T ′|∆ Γ ⊢ u : T |∆
AppT

Γ ⊢ (t)u : T ′|∆

Γ ⊢ t : ⊥|∆, α : A
µAbs

Γ ⊢ µα.t : A|∆

Γ ⊢ t : A|∆, α : A
µApp

Γ ⊢ (t)α : ⊥|∆, α : AFigure 3: Λµ-
al
ulus Classi
al Type System.through x and y, Λµ-term µα.µβ.λz.((z)(t)αβ)(t′)αβ 
an dupli
ate two streamsof terms, these streams being for instan
e applied through the appli
ative 
on-text: []t1 . . . tkγu1 . . . ulδ.Compared to λµ-
al
ulus where the e�e
t of µ is only to redire
t the 
ompu-tation �ow, in Λµ-
al
ulus, one 
an manage to deal with streams as �rst-
lass
itizens: for instan
e, µα.µβ.λx.λy.x is a term that erases two streams of termsand returns the boolean value true. As previously said, Λµ-
al
ulus has been de-signed in order to re
over the separation property. The original 
ounter-exampleto separation by David & Py [DP01℄, W , is solved by the following Λµ-
ontext:
C = []Px0x1α0α1α where P = λz0, z1.µγ.λu.((u)µβ.z1)z0: C(W ) →⋆ y (see[Sau05℄ for more details).2.2 Typing Λµ-
al
ulusTyping Λµ-
al
ulus as λµ-
al
ulus. One 
ould think of typing Λµ using astandard type system for 
lassi
al lambda-
al
uli as shown in �gure 3. However,this approa
h is not satisfa
tory 
onsidering our motivations in developping thenew 
al
ulus, that is from the point of view of separation. Indeed, the mainstru
tures used in [Sau05℄ in order to obtain separation would not be typable inthe system of �gure 3 and for very fundamental reasons. Any term of the form
µα.λx.t would be untypable whereas this is the typi
al term used in the proof ofseparation for Λµ-
al
ulus. In fa
t, the typing system originally introdu
ed inorder to 
onne
t the 
al
ulus with free dedu
tion [Par92℄ pre
isely forbids su
hterms: λx.t is a λ-abstra
ted term and thus shall be of an →-type whereas thefa
t that it is µ-abstra
ted through stream variable α for
es the term to be oftype ⊥ whi
h is in
ompatible (see rule µAbs in �gure 3).Making streams �rst-
lass 
itizens in the typed setting. The streamme
hanism that was used in the untyped 
al
ulus in order to obtain separationis thus desa
tivated when 
lassi
al types are reintrodu
ed. We shall look for avariant of this type system that would re�e
t in types the stream 
onstru
tion.In parti
ular, sin
e µ is seen as a stream abstra
tion, one might think of afun
tional type for streams: if the term t is of type T when stream α is ofstream type S, then µα.t would be of the type of a stream fun
tion from S to
T (that we write S ⇒ T ). We 
an thus think of the following typing rules for
RR n° 6431
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V arT

Γ, x : T ⊢ x : T |∆

Γ, x : T ⊢ t : T ′|∆
AbsT

Γ ⊢ λx.t : T → T ′|∆

Γ ⊢ t : T → T ′|∆ Γ ⊢ u : T |∆
AppT

Γ ⊢ (t)u : T ′|∆

Γ ⊢ t : T |∆, α : S
AbsS

Γ ⊢ µα.t : S ⇒ T |∆

Γ ⊢ t : S ⇒ T |∆, α : S
AppS

Γ ⊢ (t)α : T |∆, α : SFigure 4: ΛS : a type system for Λµ-
al
ulus.
µ-abstra
ted terms in Λµ-
al
ulus:

Γ ⊢ t : T |∆, α : S
AbsS

Γ ⊢ µα.t : S ⇒ T |∆

Γ ⊢ t : S ⇒ T |∆, α : S
AppS

Γ ⊢ (t)α : T |∆, α : SA type mismat
h. Rule fst does 
ompli
ate the de�nition of a type systemfor Λµ that would take streams into a

ount: whereas µα.t is of a stream type,say S ⇒ T , the term resulting from µα.t by applying the fst rule on
e (namely
λx.µβ.t[(U)xβ/(U)α]) should be of a standard fun
tion type A → B (morepre
isely A → (S′ ⇒ T ′)). Moreover, things should not be as simple as in theprevious paragraph sin
e streams are streams of terms and thus they should berelated to ea
h other and they should not leave in distin
t worlds: one shouldbe allowed to apply a term to a stream fun
tion (for instan
e (µα.t)u) and 
on-versely, one might want to apply a stream to a λ-abstra
ted term (for instan
e
(λx.t)α). ⇒-types and →-types should be related in some way. fst gives thekey to this 
onne
tion; we thus analyze more 
arefully this rule in the followingparagraph.A relation over stream types. We re
all that fst synthesized in Λµ-
al
ulusas the result of a η-expansion and a µ-redu
tion. In the typed 
ase, the η-expansion 
an o

ur only on →-type terms. This restri
tion adapted to Λµ-
al
ulus results in the 
ondition that µα.t is of a stream type of the form
(T → S) ⇒ T ′. After an appli
ation of fst, we have term λx.µβ.t[(U)xβ/(U)α]that should be of type T → (S ⇒ T ′).Simply typed streams: ΛS . We now de�ne more formally the type system
ΛS for Λµ-
al
ulus. The types are produ
ed by the following grammar of simpletypes: Term types: T , A,B, . . . ::= o | A→ B | S ⇒ TStream types: S, P,Q, . . . ::= ⊥ | T → SIn addition, we 
onsider the 
ongruen
e relation ≡fst over Term types whi
his the symmetri
, re�exive and transitive 
losure of relation ≻fst de�ned by
(T → S) ⇒ T ′ ≻fst T → (S ⇒ T ′) and we always 
onsider the types of ΛSup to this 
ongruen
e relation. We show in �gure 4 the type system ΛS for
Λµ-
al
ulus. INRIA



Stream Asso
iative Nets and Λµ-
al
ulus. 11
V arT

x : Tx ⊢ x : Tx|

V arT
y : Sα ⇒ A ⊢ y : Sα ⇒ A|

AppS
y : Sα ⇒ A ⊢ (y)α : A|α : Sα

AbsS
y : Sα ⇒ A ⊢ µβ.(y)α : Sβ ⇒ A|α : Sα

AbsT
⊢ λy.µβ.(y)α : (Sα ⇒ A) → (Sβ ⇒ A)|α : Sα

AppT
x : ((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B) ⊢ (x)λy.µβ.(y)α : Sα ⇒ B|α : Sα

AppS
x : ((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B) ⊢ ((x)λy.µβ.(y)α)α : B|α : Sα

AbsS
x : ((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B) ⊢ µα.((x)λy.µβ.(y)α)α : Sα ⇒ B|

AbsT
⊢ call/cc : (((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B)) → (Sα ⇒ B)|with Tx = ((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B).Figure 5: ΛS type derivation for 
all/

.In the typed 
ase, appli
ation of the fst rule to term t requires that t has atype in relation with a type of shape (T1 → S) ⇒ T2 (this requirement is similarto the 
ondition on the η-expansion appli
ation in simply typed λ-
al
ulus).Moving from ⇒ to O. Contrarily to what the notation ⇒ may suggest, noduality is involved with this 
onne
tive. The rule AbsS would rather suggestthe ⇒ 
onne
tive to be related with the O 
onne
tive of linear logi
. This ispre
isely what we eviden
e in the present work: when translating ΛS into (akind of) polarized proof nets, T1 → T2 be
omes as usual ?T⊥

1 OT2 while S ⇒ Tis translated into SOT . The ≡fst is thus an asso
iativity property (namely
(?T⊥

OS)OT ≡fst ?T⊥
O(SOT )) of O whi
h is perfe
tly sound logi
ally.Typing 
all/

 in ΛS . The Λµ-
al
ulus en
oding of 
all/

 is the term

λx.µα.((x)λy.µβ.(y)α)α. In the 
lassi
al type system presented in �gure 3, thisterm is typed by the Peir
e's Law: ((A → B) → A) → A. In ΛS , 
all/


an be assigned type (((Sα ⇒ A) → (Sβ ⇒ A)) → (Sα ⇒ B)) → (Sα ⇒ B) asshown by the type derivation in �gure 5. One may noti
e that the stru
ture ofthe the Peir
e's Law is now to be found in the stream type (see the alternationof Sα and Sβ types).

RR n° 6431



12 Mi
hele Pagani Alexis Saurin3 Stream asso
iative netsFormulas. In order to embed Λµ-
al
ulus is proof nets, we de�ne the followingfragment of linear logi
 formulas, designed thanks to type system ΛS :
T -formulas T,A,B, . . . := o | ?QOT | SOT

Q,D,E, . . . := o⊥ | !T ⊗Q | P ⊗Q

S-formulas S,M,N, . . . := s | ?QOS
P,R,U, . . . := s⊥ | !T ⊗ SSin
e we want to 
onsider pure Λµ-
al
ulus, we introdu
e the following re-
ursive equations (in the same spirit as pure-nets [Dan90℄, [Reg92℄):

o = ?o⊥Oo o = sOo s = ?o⊥Os

o⊥ = !o⊗ o⊥ o⊥ = s⊥ ⊗ o⊥ s⊥ = !o⊗ s⊥This gives exa
tly three pairs of dual formulas:negatives: o ?o⊥ spositives: o⊥ !o s⊥We shall see that the formulas o, o⊥, !o, ?o⊥ behave as in Danos and Reg-nier's pure proof-nets (i.e. o, o⊥ are linear and !o, ?o⊥ manage dupli
ation anderasing), but the formulas s, s⊥ are of a di�erent nature and they behave as inpolarized linear logi
 (i.e. s, s⊥ allow free stru
tural rules on negatives). Theformulas s, s⊥ will be used to type streams.4In the sequel we will use n to denote without distin
tion o

urren
es of s or
?o⊥.SANE. Stream asso
iative nets, or simply nets, are made of 
ells and wires.Ea
h 
ell has a type, whi
h is a symbol belonging to the set {⊗,O, c, !, ?d}, and anumber of ports, exa
tly one of whi
h is 
alled prin
ipal, or 
on
lusion, while theothers (if any) are 
alled auxiliary, or premises. Cells are pi
tured as triangles,and ports are drawn on the border of these triangles: the prin
ipal port of a 
ellis seen as one of the �tips� of the triangle representing it.A net is a 
ombination of 
ells, 
onne
ted with ea
h other by wires, asdes
ribed in [Laf95℄. More pre
isely, any net has a �nite set of free ports, also
alled 
on
lusions of the net, and has therefore a set of ports made of its freeports and of the ports of its 
ells (these sets of ports are assumed to be pairwisedisjoint). The wiring of the net 
an be seen as a partition of this set of portsinto sets of 
ardinality 2 or 0 (these latter wires are loops, they 
an appearduring the redu
tion of a net).The 
ells are given in �gure 6, together with their typing rules. The gener-alized 
ontra
tion has a variable arity n ≥ 0, in 
ase n = 0 it 
orresponds tothe usual weakening rule, in 
ase n = 1 we adopt the 
onvention to 
onsider ita simple wire, if n > 1 then it 
orresponds to a tree of usual binary 
ontra
tion4One 
ould be tempted to set the equation ?o⊥ = s, so redu
ing to only two pairs offormulas: o, o⊥ and s, s⊥ � in this manner however it would be allowed 
lashes (i.e. bad typed
uts), su
h as a 
ut between a stream O and a promotion. INRIA
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o

?o⊥ o

O

o

o

O

s s

O

?o⊥

s

!o

⊗

o⊥

o⊥

⊗

o⊥s⊥

o⊥

!o s⊥

⊗

s⊥

?o⊥

o⊥

?d

. . .

?o⊥

?o⊥ ?o⊥

c

. . .

s

s s

c(i) generalized 
ontra
tion
· · ·
?o⊥ s

!π

!o

?o⊥ s
· · ·

where π is of the form: ��
��
��

��
��
��

· · ·
?o⊥ s?o⊥ s

· · ·

o(j) promotion 
ellFigure 6: Cells of SANErules modulo asso
iativity. The promotion 
ell is a spe
ial kind of 
ell parame-terized by a net: if π is a net with n + 1 free ports, then !π is a 
ell with oneprin
ipal port and n auxiliary ports. The net π may itself 
ontain promotion
ells. The (exponential) depth of a net π is the maximum number of nestedpromotion 
ells in π5; one de�nes as well exponential depth of a 
ell or a port ina given net Π. Sometimes we will pi
ture the net asso
iated with a promotion
ell inside the 
ell itself, as for example in �gure 9.A typing of a net π is mapping from the oriented wires6 of π to the formulae
o, o⊥, s, s⊥, ?o⊥, !o, in su
h a way that the 
onstraints of �gure 6 be satis�ed andin su
h a way that, if an oriented wire w is mapped to a formula A, then theoriented wire w′ obtained by reversing the orientation of w be mapped to A⊥.Ea
h free port of π is equipped with a type: the type asso
iated to the wire
onne
ted to this port, this wire being 
onsidered as oriented towards the portunder 
onsideration. An axiom is a wire between two ports whi
h are auxiliary(but not of a promotion 
ell) or free, a 
ut is a wire between two ports whi
hare prin
ipal or auxiliary7 of a promotion 
ell.5To be pedanti
, one should de�ne nets by indu
tion on the depth.6An oriented wire is a wire equipped with an orientation, that is, an ordered pair of itsending ports.7A 
ut with one extremity auxiliary port of a promotion 
ell is sometimes 
alled 
ommu-tative exponential.RR n° 6431



14 Mi
hele Pagani Alexis Saurin3.1 Rewriting rulesA rewriting rule  x on nets is a graph transformation π  x π
′, 
onsisting intaking a subnet α of π, 
alled redex, and substituting it with a net α′, 
alled
ontra
tum, whi
h has the same (number and type of) free ports of α:

α

ω

··
·

··
·

π =  x

ω

··
·

··
·

α′

π′ =In the sequel we de�ne the rewriting rules just by pi
turing their redexesand 
ontra
ta (i.e. without mentioning the �
ontext� ω).If  x is 
on�uent and normalizing then we denote with NF
x (π) the uniqueand always de�ned  x-normal form of π.The rewriting rule we will study in this paper is denoted by  SANE andit is the union of four more spe
i�
 rules: the 
ut-redu
tion  cut, the Re
toréredu
tion  r, the wire expansion  w and the asso
iativity redu
tion  a. Theselast two are the keystone of SANE, the ones whi
h make stream and exponentialto 
ommuni
ate.Cut-redu
tion. We start by re
alling 
ut-redu
tion cut, whi
h is the usualone of polarized linear logi
 (see [Lau03℄). We set  cut as the union of tworedu
tions  o and  s, de�ned below.The relation  o redu
es 
uts labelled by a formula o. It is de�ned by thefollowing steps:

O
?/⊗! :

o o⊥
⊗O

o

o⊥?o⊥

!o

 o

o

?o⊥ o⊥

!o

O
s/⊗s⊥

:
o o⊥

⊗O

s⊥o

s o⊥
 o

o

s

s⊥

o⊥Noti
e that the above rules do not redu
e two kinds of o labelled 
uts, pi
-tured in �gure 7: these 
uts play a 
ru
ial role in SANE, sin
e they set a 
om-muni
ation between ports labelled by exponential formulas and ports labelledby stream formulas. This 
ommuni
ation is indeed only potential: so far those
uts stay irredu
ible, the two kinds of ports 
annot be wired.The relation s redu
es 
uts labelled by a formula s or ?o⊥. It is de�ned byfour kinds of steps: O
?s/⊗!s⊥ , !/?d, S/! and S/c. The �rst two are as follows:

O
?s/⊗!s⊥

: ⊗O

?o⊥

!os
s s⊥

s⊥
 s

s

?o⊥

!o

s⊥INRIA
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O

?/⊗s⊥

: ⊗O

?o⊥

o
o o⊥

o⊥

s⊥

O
s/⊗! : ⊗O

o
o o⊥

o⊥s

!oFigure 7: irredu
ible 
uts
⊗

!π1

⊗

!πn
n n

n

s

n

s⊥
s⊥

s⊥

!o !oFigure 8: A generi
 ⊗!s⊥-tree
!/?d : ?d!π

s

s

?o⊥

?o⊥

?o⊥!o

··
·

··
·

o⊥  s

��
��
��

��
��
��

o⊥

s

s

?o⊥

?o⊥

··
·

··
·

π

oNoti
e that the step !/?d swit
hes the polarities of the redu
ed 
ut, i.e. it
reates a wire where the positive and negative extremities are swit
hed.In order to de�ne the remained steps S/! and S/c, we need to introdu
ethe notion of ⊗!s⊥-tree (whi
h is a straight adjustment to our framework of the
⊗-tree de�ned in [Lau03℄). A ⊗!s⊥-tree is a 
onne
ted and a
y
li
 net whi
h
ontains (at depth 0) only 
ells of type ⊗!s⊥ or promotion and whi
h has no
uts. Note that any wire of a ⊗!s⊥-tree is typable only by n (or equivalently n⊥)and not by o, o⊥. Given a port p of type n⊥ of a net π, we 
all the ⊗!s⊥-tree of
p the maximal ⊗!s⊥-tree whi
h is a subnet of π and whi
h has p as a free port.One 
an prove by indu
tion on the size of a ⊗!s⊥-tree σ that the 
on
lusions of
σ are exa
tly one of type n⊥, 
alled the root of σ, and m ≥ 0 of negative types
?o or s, 
alled the leaves of σ. The general shape of a ⊗!s⊥-tree is pi
tured in�gure 8.Let now 〈p, q〉 be a 
ut labelled by a formula n (n ∈ {s, ?o⊥}), let p be itsextremity labelled by n⊥, σ be the ⊗!s⊥-tree of p. The 
ut 〈p, q〉 
an be of twotypes depending on q: if q is an auxiliary port of a promotion, then we say that
〈p, q〉 has type S/!, and we redu
e it as follows:
RR n° 6431
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S/! : ��

��
��

��
��
��

!π′
!o

s

s

··
·?o⊥

?o⊥
··
· σ

?o⊥ ··
·?o⊥

s

n
s

··
·

n⊥

 s

?o⊥ ··
·?o⊥

s ··
· !o

!π′′

··
·

··
·

s

s
?o⊥

?o⊥
swhere π′′ is:

��
��
��

��
��
��

��
��
��

��
��
��

s

s

··
·?o⊥

?o⊥

··
· σ

n
n⊥

?o⊥

s

··
·?o⊥

s ··
· o

π′

If q is a prin
ipal port of a 
ontra
tion, then we say that 〈p, q〉 has type S/c,and we redu
e it as follows:
S/c :

��
��
��

��
��
��

c

s

s

?o⊥

?o⊥

··
·

··
·

σ

··
·

n

n

nn⊥

 s

��
��
��

��
��
��
��
��
��

��
��
��

s

s

?o⊥

?o⊥

σ

n

n

σ

··
···
·

··
·

··
·

··
·

n⊥

n⊥

··
·

··
·

··
·

c

c

c

cRe
toré redu
tion. The rule  r is de�ned by two steps, fusion and pull :it essentially amounts to 
onsider the 
ontra
tion links as asso
iative operatorsthat 
an �oat freely out of a promotion 
ell. Di�erent solutions have beenadopted for linear logi
 proof nets, see for example [CK97℄ or [CG99℄.
fusion : n

n

n
h{

l{ c
nc

n

··
·

··
·

 r
n

n

n

n
nc

··
·

··
·

l + h{ INRIA
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ulus. 17where if l = 0, h = 1, then on the right-side we have a 
ontra
tion 
ell ofarity 1, that is a wire.
pull :

c ··
·

··
·

π′ !π
n

n

s
!o

 r
c ··

·
··
·

π′ !π
n

n

s
!oWire expansions. The wire expansion  w 
orresponds to an orientation ofthe extensional equivalen
e. We de�ne  w by four rules wo?, wos, w? and ws:

wo? : o⊥ o  wo?

!o

⊗o⊥ O o

o

o⊥ ?o⊥

wos : o⊥ o  wos O⊗
s

o
oo⊥

w? : !o ?o⊥  w? !π ?d ?o⊥!o

ws : ss⊥  ws

!o

⊗s⊥ O s

s

s⊥ ?o⊥We underline that  w 
an be applied on every wire of type o or s, and notonly on axioms as sometimes it is the 
ase (for example in [Dan90℄). Observethat ws is the only step of  SANE that 
reates 
ells of type O
?s and ⊗!s⊥ .Asso
iativity redu
tion. Until now, everything is quite standard, followingthe lines of polarized proof-nets ([Lau03℄). Here we introdu
e the real noveltyof SANE, whi
h is the rewriting rule  a, based on the asso
iativity between

O's (and dually between ⊗'s). This rule 
orresponds to the relation ≻fst of thetype system ΛS de�ned in se
tion 2:RR n° 6431



18 Mi
hele Pagani Alexis Saurin
O

O
o

o

s
s?o⊥

 a
O

O o
o

s

?o⊥The same holds for the 
orresponding 
ells of type ⊗.Promotion 
losure. The presen
e of promotion 
ells requires to 
lose everyrewriting rule until now de�ned to the promotion 
ells. That is, to every rule
 x, we add the following 
ase:

· · ·
?o⊥ s

!π

!o

?o⊥ s
· · ·

 x

· · ·
?o⊥ s

!o

?o⊥ s
· · ·

!π′

where π  x π
′.Commutativity equivalen
e. Moreover, we add an equivalen
e ∼comm onnets generating by the following basi
 equation, for every permutation σ:

c n
n

n

··
· ∼comm c··
·

n
n

n

··
·

σNoti
e that this equation does not intera
t with the previous rewriting re-lations: let π1, π
′
1 and π2 be nets su
h that π1 ∼comm π2 and π1  SANE π′

1,then there is a net π′
2 s.t. π′

1 ∼comm π′
2 and π2  SANE π′

2. This means that
 SANE is 
ompatible with the ∼comm equivalen
e: from now on we will thus
onsider nets up to ∼comm.Con
luding remark on asso
iativity. The key point with the asso
iativityredu
tion is that  a +  ws transforms the irredu
ible 
uts of �gure 7 toredu
ible ones, for example:

INRIA
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⊗O

?o⊥

o
o o⊥

o⊥

s⊥

 w ⊗O
o o⊥

O

?o⊥
⊗s⊥

o⊥

o
s

?o⊥

s

 
a

⊗

⊗O
o o⊥

O

o⊥

o
s

?o⊥

?o⊥

o⊥

!o sIn the sequel it will be usefull to 
onsider the following derived rule  g:
⊗O

?o⊥

o
o o⊥

o⊥

s⊥

 g
O

⊗o

s
?o⊥

s
s⊥

o⊥

⊗O

o
o o⊥

o⊥s

!o

 g
⊗

s

o⊥s

o

o

!oONoti
e that g is derivable from SANE , pre
isely g= w a o. There-fore  SANE + g has the same transitive 
losure as  SANE.3.2 Corre
tness 
riterionA path in a net is a sequen
e of ports 〈p1, . . . , pn〉 at exponential depth 0, su
hthat:� for every i, j ≤ n, i 6= j implies pi 6= pj ;� for every i ≤ n− 1, pi, pi+1 are ports of the same 
ell or of the same wire;� for every i ≤ n− 2, pi, pi+1, pi+2 are not ports of the same 
ell;Paths will be denoted by Greek letters φ, ψ . . .A path φ 
rosses an oriented wire 〈p, q〉 (p, q being the two ports of the wire))if 〈p, q〉 is a subsequen
e of φ. A path φ is negative whenever every orientedwire 
rossed by φ has a negative type (i.e. type o, ?o⊥ or s). A negative 
y
le isa negative path 〈p1, . . . , pn〉 s.t. 〈p1+n1, . . . , pn+n1, 〉 is a negative path (where
+n denotes the sum modulo n).De�nition 1 (Corre
tness, [Lau03℄) A net is 
orre
t if:� it does not 
ontain negative 
y
les;RR n° 6431
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hele Pagani Alexis Saurin� the number of positive 
on
lusions plus ?d-
ells at depth 0 is one;� and re
ursively the nets asso
iated with the promotion 
ells are 
orre
t.Proposition 2 (Stability of 
orre
tness) Corre
tness of nets is preservedby  SANE: for every 
orre
t net π, if π  SANE π′ then π′ is 
orre
t.Proof. Completely standard, see [Lau03℄. �The following proposition 3 states that  s,r,a is strong normalizing on 
or-re
t nets. This property is false for generalized MELL pure nets (see [PTdF07℄)but it holds for pure SANE (as well as for the pure nets fragment en
oding the
λ-
al
ulus), be
ause of the re
ursive types we have de�ned, spe
i�
ally be
ausewe avoid formulas of type !n or ?n⊥, for n ∈ {s, ?o⊥}. Proposition 3 will play a
ru
ial role in the proof of SANE 
on�uen
e (theorem 10, pre
isely see lemma6), and in the proof of the simulation theorem (theorem 26).Proposition 3 (SN of  s,r,a) Let π be a 
orre
t net, every sequen
e of s,r,a-steps starting from π is �nite.Proof. Under the hypothesis that π is 
orre
t, we de�ne a degree8 of π andwe 
he
k that this degree de
reases (w.r.t. a well-founded ordering) after a
 s,r,a-step: this of 
ourse proves proposition 3. More pre
isely, the degree of
π will be a triplet of multisets 〈|π|cut, s(π), c(π)〉: the multiset |π|cut plays themost deli
ate role, de
reasing under  s; the other two multisets s(π) and c(π)instead de
rease under  a and  r respe
tively. We 
onsider multisets orderedby the multiset order, and triplets ordered lexi
ographi
ally.We start de�ning |π|cut: to a
hieve this goal we introdu
e a partial order≥n⊥on ports, whi
h is the keystone of |π|cut de�nition, and two numbers #π(p), lπ(p)asso
iated with every port at depth 0 of π.An n⊥-path is a path whi
h 
rosses only wires of type n⊥. Given two ports
p, q, we write p ≥n⊥ q whenever there is an n⊥-path from p to q. Noti
e that
≥n⊥ is a partial order when π is 
orre
t. Given a port p we de�ne the set Pred(p)of the immediate prede
essors of p as the set of those ports q, s.t. p >n⊥ q andthere is no q′, p >n⊥ q′ >n⊥ q.For every port at depth 0 of π, we simultaneously de�ne lπ(p) and #π(p),by indu
tion on the depth of π and on ≥n⊥ , whi
h is a well-order:
(#π(p), lπ(p)) =







































(1, 1) −If Pred(p) = ∅.
−If p is an auxiliary port of a

(#ρ(pρ)#π(q), promotion !ρ with prin
ipal
lρ(pρ) + lπ(q) + 1) port q, and pρ is the free portof ρ 
orresponding to p.
(
∑

q∈Pred(p) #π(q), −Otherwise.
1 +maxq∈Pred(p){l

π(q)})Often we will simply write l(p) or #(p), when it is 
lear whi
h net π theyrefer to. As the reader will 
onvin
e himself in the progress of the proof, for8This degree is indeed very general and 
an be adapted to other net-based systems, su
h aslinear logi
 proof-nets (see [PTdF07℄) and di�erential intera
tion nets (see [Pag07℄, [Tra07℄).Its de�nition is the result of several dis
ussions of the �rst author with Paolo Tranquilli.INRIA
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Figure 9: Redu
tion π  S/! πevery port p of type n⊥, #π(p) is a maximum to the number of times p 
an bedupli
ated by a sequen
e of  s,r steps starting from π. Noti
e that if p is aport of an ⊗!s⊥-tree of π with root r, then either p is a leaf, or #π(p) = #π(r).We now de�ne |π|cut by indu
tion on the depth of π. Let S(π) (resp. !(π))be the set of roots of the maximal ⊗!s⊥-trees (resp. of promotions) at depth 0of π; for every promotion !ρ ∈!(π) let p!ρ be the prin
ipal port of !ρ; we set:
|π|cut =

∑

r∈S(π)

[l(r)] +
∑

!ρ∈!(π)

#(p!ρ) · |ρ|cutAs for  a and  r: we de�ne s(π) to be the number of 
ell of O
s? or ⊗!s⊥in π and we denote by c(π) the multiset of the depths of the 
ells of type c in

π. Finally we de�ne:
|π| = 〈|π|cut, s(π), c(π)〉We thus prove that π  s,r,a π implies |π| < |π|. The proof is by indu
tionon the depth of the net π. What we exa
tly prove is: i) |π| < |π|, ii) for everyfree-port of π, lπ(p) = lπ(p),#π(p) = #π(p).Base of indu
tion. If the step π  s,r,a π is not a promotion 
losure, i.e.the redex redu
ed is not in a promotion of π, then we split in several 
ases,depending on the type of the  s,r,a step applied to π.Case S/!. If the step π  s,r,a π redu
es a 
ut 〈v, p〉 of type S/!, let v be theroot of the maximal ⊗!s⊥-tree σ involved in the redu
tion, p be the auxiliaryport of the promotion !π′ wired to v, and let q be the prin
ipal port of !π′ (see�gure 9). We will prove that |π|cut < |π|cut, whi
h implies |π| < |π|.RR n° 6431



22 Mi
hele Pagani Alexis SaurinWe set S(π) = {v} ∪ Sω(π) (noti
e every root in Sω(π) is a root in ω or itis q) and we split !(π) in three disjoint disjoint sets: the set !σ(π) of the !(π)promotions whi
h are in σ, the set !ω(π) of the !(π) promotions whi
h are in ωand {!π′}. Observe that:
S(π) = {v} ∪ Sω(π)

S(π) = Sω(π)

!(π) = {!π′}∪!σ(π)∪!ω(π)

!(π) = {!π′′}∪!ω(π)We start 
omputing |π′′|cut. As an easy 
onsequen
e of the de�nition wehave: |π′′|cut = |π′|cut+
[

lπ
′′

(v)
]

+
∑

!ρ∈!σ(π) #π′′

(p!ρ)|ρ|cut. For every !ρ ∈!σ(π),
v is the root of the (maximal) ⊗!s⊥-tree 
ontaining p!ρ, so (as we noti
ed before)
#π′′

(p!ρ) = #π′′

(v). Moreover, remark that #π′′

(v) = #π′

(pπ′

), thus:
|π′′|cut = |π′|cut +

[

lπ
′′

(v)
]

+ #π′

(pπ′

)





∑

!ρ∈!σ(π)

|ρ|cut



Now we prove that for every port t in ω, #π(t) = #π(t). In fa
t, for every leaf uof σ, let u be the 
orresponding auxiliary port of !π′′ in π (see �gure 9): we provethat #π(u) = #π(u). This easily implies ∀t ∈ ω, #π(t) = #π(t). By de�nition
#π(u) = #π′′

(u)#π(q); of 
ourse, #π(q) = #π(q), sin
e no prede
essor of q isinvolved in the redu
tion step π  s π. As for #π′′

(u), we set x = #γ(uγ) if uis an auxiliary port of a promotion !γ, otherwise let x = 1: in this way we 
ansay #π′′

(u) = x#π′′

(v). Sin
e #π′′

(v)#π′

(pπ′

), we have: #π′′

(u) = x#π′

(pπ′

).To sum up: #π(u) = #π′′

(u)#π(q) = x#π′

(pπ′

)#π(q) = x#π(p) = #π(u).In a similar way, we prove that for every port t in ω, lπ(t) = lπ(t). Thisredu
es to verify lπ(u) = lπ(u). By de�nition lπ(u) = lπ
′′

(u) + lπ(q) + 1. Set
lπ

′′

(u) = x + lπ
′′

(pπ′

), where x only depends on the ⊗!s⊥-tree σ; noti
e that
lπ

′′

(pπ′

) = lπ
′

(pπ′

). So we have: lπ(u) = lπ
′′

(u) + lπ(q) + 1 = x + lπ
′

(pπ′

) +
lπ(q) + 1 = x+ lπ(p) = lπ(u).I 
hanged the two o

urren
es of inequality: #π(q)

[

lπ
′′

(v)
]

< lπ(v) into
#π(q)

[

lπ
′′

(v)
]

< [lπ(v)].℄We 
on
lude that 
ondition ii) holds: for every free port t of π, lπ(t) = lπ(t),
#π(t) = #π(t). As for the 
ondition i): by 
olle
ting all the results, the reader
an 
he
k that the inequality |π|cut < |π|cut 
an be redu
ed to #π(q)

[

lπ
′′

(v)
]

<

[lπ(v)]. By de�nition of l, we have: lπ(v) = 1 + lπ(p) = 2 + lπ
′

(pπ′

) + lπ(q) =
1 + lπ

′′

(v) + lπ(q), i.e lπ′′

(v) < lπ(v). This implies, by de�nition of the multisetorder: #π(q)
[

lπ
′′

(v)
]

< [lπ(v)]. We 
on
lude |π|cut < |π|cut, whi
h implies
|π| < |π|.Case S/c. If the step π  s,r,a π redu
es a 
ut 〈v, p〉 of type S/c, let vbe the root of the maximal ⊗!s⊥-tree σ involved in the redu
tion, let p be theprin
ipal port of the 
ell of type c wired to v, and p1, . . . , pn (n = 0 or n > 1)INRIA
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Figure 10: Redu
tion π  S/c πbe its auxiliary ports. Moreover let σ1, . . . , σn (resp. v1, . . . , vn) be the 
opiesof σ (resp. of the root v) in π (see �gure 10). As in the former 
ase we shallshow that |π|cut < |π|cut, whi
h implies |π| < |π|.We set S(π) = {v} ∪ Sω(π), and we split !(π) in two disjoint sets: theset !σ(π) of the !(π) promotions whi
h are in σ, and the set !ω(π) of the !(π)promotions whi
h are in ω. Noti
e that:
S(π) = {v} ∪ Sω(π)

S(π) = {v1, . . . , vn} ∪ Sω(π)

!(π) = !σ(π)∪!ω(π)

!(π) = !σ1(π) ∪ · · · ∪!σn(π)∪!ω(π)where !σi(π) denotes the set of the !(π) promotions whi
h are in the i-th 
opyof σ.We start noti
ing that #π(v) = #π(p1) + · · · + #π(pn) = #π(v1) + · · · +
#π(vn), and lπ(v) > lπ(vi) for every i ≤ n.As in the former 
ase, we prove that for every port t in ω, #π(t) = #π(t) aswell as lπ(t) = lπ(t). We 
he
k only #π(t) = #π(t), the other veri�
ation beinga straightforward variant. Indeed it is enough to prove that: for every leaf u of
σ, by denoting with u the 
orresponding prin
ipal port of the 
ell c 
reated in
π (see �gure 10), we have #π(u) = #π(u). By de�nition one easily infers that:
#π(u) = #π(u1) + · · ·+ #π(un). As in the former 
ase, we set x = #γ(uγ) if uis an auxiliary port of a promotion !γ, otherwise let x = 1; in this way we 
ansay #π(ui) = x#π(vi), so that #π(u) = x(#π(v1) + · · ·+ #π(vn)) = x#π(v) =
#π(u).We 
on
lude that 
ondition ii) holds: for every free port t of π, lπ(t) =
lπ(t), #π(t) = #π(t). As for the 
ondition i): by 
olle
ting all the results,the reader 
an 
he
k that the inequality |π|cut < |π|cut 
an be redu
ed to
[

lπ(v1) + · · · + lπ(vn)
]

< [lπ(v)]. Sin
e we have noti
ed lπ(v) > lπ(vi) for every
i ≤ n, the inequality holds by de�nition of the multiset order.Case !/?d. The 
ase where π  s,r,a π redu
es a 
ut of type !/?d, is an easiervariant of the pre
eding ones, and we left it to the reader.RR n° 6431



24 Mi
hele Pagani Alexis SaurinCase  r or  a. The 
ases where π  r π or π  a π
′ 
an be easily solvedby showing that |π|cut = |π|cut and, for  a simply by proving s(π) < s(π), for

 r by proving s(π) = s(π) and c(π) < c(π).Indu
tive step. If the step π  s,r,a π is a promotion 
losure, then π isobtained by repla
ing in π a promotion !π′ with a promotion !π′, and π  s,r π
′.By indu
tion hypothesis we know that i) |π′| < |π′|, ii) for every free-port of π′,

lπ
′

(p) = lπ
′

(p),#π′

(p) = #π′

(p). This easily implies i), ii) for π, π. �

INRIA
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al
ulus. 254 Con�uen
e theoremIn this se
tion we prove the 
on�uen
e of  SANE (theorem 10). The prooffollows these points. First, we 
onsider  SANE,g and not  SANE: indeed the
on�uen
e of the former implies that of the latter, sin
e the two redu
tionshave the same transitive 
losure. Se
ond, we split  SANE,g in three disjointsubredu
tions,  o,g,  w and  s,r,a and we prove the 
on�uen
e of ea
h ofthem (lemmas 4, 5 and 6). Then, we prove the 
ommutation of o,g and s,r,a(lemma 7), whi
h implies the 
on�uen
e of  cut,g,r,a (proposition 8). Finally,we prove the 
ommutation of  cut,g,r,a and  w (lemma 9), so 
on
luding the
on�uen
e of  SANE,g (theorem 10).Lemma 4 The rule  o,g is 
on�uent.Lemma 5 The rule  w is 
on�uent.Proof. The above lemmas are immediate, sin
e there are no 
riti
al pairs. �Lemma 6 Any union of the rules  a, s, r is 
on�uent on 
orre
t nets.Proof. It is known that  s,r is lo
al 
on�uent on 
orre
t nets: there are sev-eral 
riti
al pairs that we omitted here be
ause their solution is standard (see[PTdF07℄ for the details). It is then straight to dedu
e the lo
al 
on�uen
e ofany union of the rules  a, s, r. Sin
e  s,r,a is also strong normalizing on
orre
t nets (see proposition 3), the statement follows by the Newman lemma. �Lemma 7 The two rules  o,g and  s,r,a 
ommute.Proof. The reader 
an 
he
k that if π  o,g π
′ and π  s,r,a π

′′ then there is
π′′′ s.t. π′ =

 s,r,a π
′′′ and π′′

 
∗
o,g π

′′′. Pre
isely the only 
riti
al pairs are thoseprodu
ed by  o,g and  a, whi
h are four, two produ
ed by applying  a to
⊗ 
ells, and other two 
ompletely symmetri
, produ
ed by applying  a to O
ells. In �gure 11 you �nd the solution for these last ones. �Noti
e that the topmost diagram of �gure 11 shows that rule  o does not
ommute with  a (and in general with  s,r,a). This is the main reason weintrodu
e the redu
tion  g.Proposition 8 The rule  cut,g,r,a is 
on�uent on 
orre
t nets.Proof. This is an immediate 
onsequen
e of Lemmas 4, 6, 7 and the Hindley-Rosen lemma. �The last step to a
hieve the 
on�uen
e of SANE is to add w. For this taskit is 
onvenient introdu
ing the parallel  w: we de�ne π  w‖ π

′ by indu
tionon the size of π, as follows.
α

ω

··
·

··
·

π =  w‖

··
·

··
·

π′ =
α′

ω′RR n° 6431



26 Mi
hele Pagani Alexis Saurin

⊗O
o o⊥

o⊥

s⊥

O s
?o⊥

o

s

a ��

o
//

O s
?o⊥

o

s

o⊥

s⊥

O ⊗O
o o⊥

o⊥

s⊥o

s
o

?o⊥
g

//______

O ⊗ O

o⊥

s⊥o

s
o

?o⊥
s

s⊥

o
OO�
�

�

⊗O
o o⊥

o⊥

!o

O s
?o⊥

o

s

a ��

g
//

⊗ O o⊥

!o

O

?o⊥

o

s

s s⊥ s⊥ s

s ���
�

�

O ⊗O
o o⊥

o⊥

!oo

s
o

?o⊥
o

//_________

O s
?o⊥

o

s

o⊥

s⊥

Figure 11: Criti
al pairs for lemma 7
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ulus. 27where α w α′ and either ω = ω′ or ω  w‖ ω
′ (whi
h is de�ned, sin
e the sizeof ω is less than that of π). As expe
ted, the relations  w‖ and  w have thesame transitive 
losure.Lemma 9 The rule  w 
ommutes with  cut,a,g,r.Proof. The reader 
an 
he
k that if π  cut,a,g,r π

′ and π  w‖ π
′′ then thereis π′′′ s.t. π′ =

 w‖ π
′′′ and π′′

 
∗
cut,a,g,r π

′′′. This implies by a simple diagram
hase that  cut,a,g,r and  w‖ 
ommute. Hen
e  cut,a,g,r and  w 
ommute,sin
e  w and  w‖ have the same transitive 
losure. �Theorem 10 (Con�uen
e theorem) The redu
tion SANE (as well as SANE,g)is 
on�uent on 
orre
t nets.Proof. The 
on�uen
e of  SANE,g is an immediate 
onsequen
e of Lemmas9, 5 and the Hindley-Rosen lemma. The 
on�uen
e of  SANE follows, sin
e
 SANE,g and  SANE have the same transitive 
losure. �
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28 Mi
hele Pagani Alexis Saurin5 Separation theoremDe�nition 11 (SANE Value) A net is a value when it does not 
ontain 
utsnor redexes for any rules but the axiom expansion rules.The SANE values 
orrespond in this framework to Λµ-
al
ulus 
anoni
alnormal forms de�ned in [Sau05℄.De�nition 12 (Nets 0 and 1) We de�ne two parti
ular values, 1 and 0, thatwill be used to separate nets. The values will be de�ned modulo a 
ertain numberof 0-ary 
ontra
tion 
ells, playing the role of garbage:
1 =

c

c

c

?o⊥

?o⊥ ?d

s

sgarbage
o

··
·

0 =

c

c

c

?o⊥

?o⊥ ?d

s

s

··
·garbage

o

In the sequel the garbage of 1 and 0 will never disturb the proof of separationtheorem, hen
e we will omit to mention.De�nition 13 (φn) Let n be an integer, one de�nes the net φn as follows:
φn = ?o⊥?d

o⊥

o

s⊥ s⊥

O

⊗ ⊗

o
o

O
O

o

s
s

o⊥

o

n

De�nition 14 (Contexts) The 
ontexts of type I are de�ned as nets with anadditional 
ell, namely [] whi
h has ports I. Corre
t nets are simply 
orre
t netswith this additional 
ell.Let π be a net of 
on
lusions I, then C(π) is de�ned to be the net obtained from
C by repla
ing all o

urren
es of [] in C by π. The 
orre
tion of π and C impliesthe 
orre
tion of C(π) (noti
e that the 
onverse is not true).A parti
ularly important 
lass of 
orre
t 
ontexts are the head 
ontexts: H =<
[]|x1 : Ψ1, . . . , xn : Ψn > where x1, . . . xn are 
on
lusions of the hole (when itwill not be ambiguous we shall often write simply H =< []|Ψ1, . . . ,Ψn >). Inthe 
ase of head 
ontexts, one also writes H(π) as π~Ψ.De�nition 15 (A (−,−)) Let n be an integer, we de�ne the net A (

O
?, n

) asthe tree 
omposed by n 
ells of type O
?:

O oO
o

?o⊥
o o

?o⊥ ··
·Similarly one has A (x, n), for x ∈ {Os,O?,s,⊗!,⊗s⊥

,⊗!,s⊥

}. INRIA



StreamAsso
iativeNetsand
Λ
µ-
al
ulus.

29

s/?o⊥

o
O

o

?o⊥

o⊥

?do⊥
o⊥

o oo o o o

!o
!o

⊗

s⊥/!o
s⊥/!o

s
s/?o⊥

O
O

O
O⊗ ⊗ ⊗ ⊗

s⊥

?o⊥Figure 12: klmn-nets
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30 Mi
hele Pagani Alexis SaurinDe�nition 16 (klmn-nets) klmn-nets are the 
orre
t nets su
h that one �ndsthe subnet in �gure 12 starting from their o 
on
lusion.One asso
iates a mesure (k, l,m, n) to these nets as follows: entering the
on
lusion o, there is one maximal o⊥-path: it 
rosses O 
ells and then ⊗ 
ellsand �nally rea
hes the dereli
tion at depth 0:(i) k is the number of O
s 
ells that are 
rossed on the o⊥-path;(ii) l is the number of O
? 
ells that are 
rossed after the last O

s 
ell is passedand before rea
hing the O
? 
onne
ted to the dereli
tion;(iii) n is the number of ⊗! that are 
rossed before the �rst ⊗s⊥ is rea
hed;(iv) m is the number of ⊗s⊥ that are 
rossed before rea
hing the dereli
tion.Lemma 17 Given two klmn-nets π and π′ having measures (k, l,m, n) and

(k′, l′,m′, n′) respe
tively, if (k, l,m, n) 6= (k′, l′,m′, n′) then there is a head
ontext C su
h that C(π) ⋆
SANE 0 and C(π′) ⋆

SANE 1.Proof. (i) if k < k′. Let C be the 
ontext in �gure 13.where π1 and π2 are respe
tively:
A

(

O
?, l′ + 1

)

?d

c

cc

?o⊥

· · ·

cc

s
· · ·

A (Os,m+ k′ − k)

o⊥

?o⊥

?o⊥

?o⊥ s

o

oand

cc

?o⊥

· · ·

c

?d

cc

s
· · ·

?o⊥

?o⊥

?o⊥

o⊥

A
(

O
?, n′

)

s

o

A (Os,m′) oOne 
an 
he
k that if one 
ut C with π on 
on
lusion of type respe
tively
o⊥ − o, one gets C(π) ⋆

SANE 0 and C(π′) ⋆
SANE 1.(ii) if k = k′ and l < l′. This 
ase is solved similarly by using slight variantsof C, π1 and π2.(iii) if k = k′, l = l′ and m < m′. Let C be the following 
ontext (re
all that

φm′ is the net de�ned in de�nition 13):
!o

o⊥

?o⊥ ?o⊥

· · ·

o⊥

· · ·

s s

!φm′

A
(

⊗!, l
)

A
(

⊗s⊥

, k
)

oo⊥then C(π) and C(π′) redu
e to nets π0 and π′
0 whi
h are klmn-nets with

kπ0
6= kπ′

0
and one 
an 
on
lude thanks to (i).(iv) if k = k′, l = l′, m = m′ and n < n′. The 
ase is treated similarly to 
ase(iii) with a 
ontext di�ering from the above C by an easy variant of φn whi
hredu
es the problem to 
ase (ii). �INRIA
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o⊥Figure 13: Context used in 
ase (i) of lemma 17.
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32 Mi
hele Pagani Alexis SaurinLemma 18 If π and π′ are non equivalent values with the same 
on
lusionsand su
h that there are O 
ells at depth 0, then there is a 
orre
t head 
ontext
C su
h that C(π)  ⋆

SANE π1 and C(π′)  ⋆
SANE π′

1 where π1 and π′
1 are nonequivalent values with the same depths as π and π′ and su
h that π1 and π′

1 haveno O 
ell at depth 0.Proof. The proof is easy by an easy indu
tion on the number of O 
ells atdepth 0. One studies the negative 
on
lusions of π and π′ that have 
ells O
?, O

sor O
?s at depth 0, those 
on
lusions are ne
essarily of type o or s. The removalof 
ells of kind O is done by repeatedly 
utting π and π′ with 
ells of type ⊗(⊗!, ⊗s⊥ or ⊗!s⊥) depending on what in π, π′ is above the 
on
lusion. We onlystudy one 
ase whi
h is the most 
omplex: there is a 
on
lusion of type o abovewhi
h there is a O

? in π and a O
s in π′. Then one 
uts this 
on
lusion of thenets with a ⊗!. The 
ut in π is redu
ible but the one in π′ is not. We redu
ethe 
ut in π and obtain a net for whi
h the number of O 
ells has de
reased byone. Con
erning π′ one �rst expand (thanks to  ws) the wire of type s whi
his auxiliary port of the 
ell O

s, then applies an asso
iativity rule whi
h repla
esan irredu
ible 
ut O
s/⊗! by a redu
ible 
ut O

?/⊗!. After redu
ing the 
ut, weobtain a pair of nets having one O 
ell less than then original nets.The pro
ess ends only when there is no O 
ell a depth 0 anymore and it doesterminate sin
e ea
h of these steps redu
es the number of O 
ells at depth 0 by atleast one. The pro
ess preserves equivalen
e as well as the depths of the nets. �De�nition 19 (Maximal positive sub-nets) Let π be a 
orre
t net. Onede�nes π+, the maximal positive subnet of π, and we distinguish a parti
ular
on
lusion of the net, xπ, as follows:� If π has a positive 
on
lusion x, then xπ = x and π+ is the maximal ⊗-treewhi
h is a sub-net of π with 
on
lusion x.� If π has a dereli
tion at depth 0, then xπ is the unique 
on
lusion whi
h isbelow the dereli
tion and π+ is the sub-net 
ontaining the 
ells from xπ to thedereli
tion and the maximal ⊗-tree.Theorem 20 (Separation for SANE) Let π and π′ be two 
orre
t nets withthe same 
on
lusions that are non equivalent values (π 6∼SANE π′). There existsa (head) 
ontext C su
h that C(π
~φ) ⋆

SANE 0 and C(π′~φ) ⋆
SANE 1.Proof. A
tually, we prove the following stronger statement:(*) let π and π′ be two 
orre
t nets with the same 
on
lusions I = {xt1

1 , . . . , x
tk

k }that are non equivalent values (π 6∼SANE π′).For any J = {x? o⊥

i1
, . . . , x? o⊥

il
} ⊆ I, if N = {n1, . . . , nl} is a family ofdistin
t integers that are large enough and if ~φ =< []|xi1 : φn1 , . . . , xil

:

φnl >, then, there exists a head 
ontext C su
h that C(π
~φ) ⋆

SANE 0 and
C(π′~φ) ⋆

SANE 1.We do not provide a fully detailed proof whi
h would be too long but wetried to treat the main and most 
omplex 
ases. The proof goes by indu
tion onthe sum of the depth of π and π′. Let J be a subset of the 
on
lusions of typeINRIA
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?o⊥. Thanks to lemma 18, one may suppose that neither π nor π′ have any O
ells at depth 0: there is a 
ontext in whi
h the nets redu
e to non-equivalentvalues of identi
al the depths and with no O 
ells at depths 0. Let xi = xπ and
xj = xπ′ .One shall reason on the stru
ture of the maximal positive subnets π+ and
π′

+:1. If there is a positive 
on
lusion x (and thus x = xi = xj), we reasonon the type of x.(a) If the positive 
on
lusion is of type ! o, we have:
π/π′ =

π1/π
′
1

c c

o

!o

. . .

∼r

π1/π
′
1

cc o

. . . !o

= π̃/π̃′We 
an thus apply the indu
tion hypothesis to nets π1/π
′
1 withthe appropriate 
ontra
tion so that they have the same 
on
lusionex
ept for the !o whi
h is now an o. One �nds a separating 
ontext for

π1
~φ/π′

1
~φ: C =< []|ψn⊥

1 , . . . , ψn⊥

l′ , ψo⊥

l′+1 > and adding a dereli
tion
ell to the 
on
lusion of type o⊥ of ψo⊥

l′+1 makes a separating 
ontextfor π̃~φ/π̃′
~φ and thus for π~φ/π′~φ.(b) If the positive 
on
lusion is of type o⊥, we study the shape of the

⊗-trees rooted in x and 
ompare the trees, proving separation byindu
tion on the number of ⊗s⊥ in the tree. The �rst 
ase is whenboth ⊗ trees 
ontain ⊗s⊥ :
π =

π1

πk

⊗

⊗

⊗

s⊥

!o

!o

π0

s o⊥

o⊥

o⊥

π′ =

π′
l

⊗

⊗

s⊥

!o

!o

s o⊥

o⊥
π′

1

π′
0

⊗
o⊥
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34 Mi
hele Pagani Alexis SaurinIf π0 6∼ π′
0, one separates π0

~φ and π′
0

~φ, with C =< []|ψo
0 , ψ

n⊥

1 , ψn⊥

l′ >and by 
hanging ψ0 into O

o

os
c ψ0 , we separate π~φ and π′~φ.If π0 ∼ π′

0, either there is i ≤ k, l su
h that πi 6∼ π′
i or k 6= l or thewires typed by s rea
h two di�erent 
on
lusions of I. In any of these
ases, one 
an separate: by using indu
tion in the �rst 
ase or byusing a wire expansion of the 
on
lusions of type s, an asso
iativityredu
tion and then the method of the �rst 
ase.The 
ases when some of the trees only 
ontain ⊗! 
ells or when thereis an axiom link but no ⊗ at all are treated fairly similarly.(
) If the positive 
on
lusion is of type s⊥, we pro
eed essentially as inthe previous 
ase by indu
tion on the number of ⊗!s⊥ on the ⊗-trees.2. If there is a dereli
tion at depth 0 and xi, xj 6∈ J . We know that

xi and xj are of type ? o⊥ (indeed, we supposed that there is no O 
ell atdepth 0).(a) if i 6= j, one de�nes two 
ontexts ψi and ψj as follows:
ψi = π⊥

+
?d

?o⊥ !o?o⊥

c
ψj = π′⊥

+

?o⊥ !o

c

?o⊥

?dwhere π⊥
+ is an O tree dual to the ⊗-tree 
omposing the maximalpositive subnet of π where all left auxiliary ports are weakened9.Thus one has < π

~φ|ψi, ψj > 
⋆
SANE 0 and < π′~φ|ψi, ψj > 

⋆
SANE 1.(b) if i = j, then we are essentially in the same 
ase as with a positive
on
lusion, however there is a slight subtility be
ause the 
on
lusion

xi is of type ? o⊥ and thus it 
an be 
ontra
ted. This 
ontra
tion
ould interfere with an indu
tion step and to 
ope with this problem,we shall use the nets φn.Let p, q be the numbers of⊗s⊥ in the⊗-trees of π and π′ respe
tively.One 
uts the 
on
lusion xi of π/π′ with φn with n > p, q (and n beingdistin
t from all the indi
es in N ).9This subnet π⊥
+

plays the role of an eraser of nets.
INRIA
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n⊥

⊗
o⊥

?d

o⊥
⊗

n⊥

x′i x′′i o

φn

!o

φn

!o

. . .

c

< π
~φ|φn >∼

 
⋆
SANE

O

O

⊗

O

φn

!o

o

⊗

⊗

⊗

...n⊥

n⊥

s⊥

s⊥

= π̃
~φ,φn

x′i

c

. . .

o⊥

?d

The net pi
tured as equivalent to < π
~φ|φn > is indeed equivalentsin
e they both redu
e to the same net when redu
ing the 
ut S/c.

π̃
~φ,φn is obtained by redu
ing the 
ut on the dereli
ted 
on
lusion
x′′i in the above �gure. π̃~φ,φn (and its 
ounterpart π̃′

~φ,φn) are klmn-nets.If p 6= q then the lemma 17 
an be applied (sin
e k = n − p and
k′ = n − q) in order to have separation. Otherwise, by 
utting the
on
lusion of type o with a net of shape:

⊗
!o

A
(

⊗s⊥

, k
)

s
. . .
s?o⊥ o⊥ o

s⊥
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36 Mi
hele Pagani Alexis SaurinAfter redu
tion we obtain a net with dereli
tion as 
on
lusion 
ell(there is no 
ontra
tion anymore). If we 
onsider the nets withoutthe dereli
tions, then they have a positive 
on
lusion, have the samedepth as the original nets and now J has be
ome J ∪ x′i (the head
ontext ~φ is repla
ed by ~φ, φn), this 
an be separated by head 
ontext
C =< []|ψ0, ψ1, . . . , ψl′ >. Let ψo

0 be the element of the separating
ontext whi
h is 
ut with the 
on
lusion of type o⊥. ψo
0 has a 
on-
lusion of type o its other 
on
lusions have type n, as a 
onsequen
e

ψo
0 
an be en
losed in a promotion box leading to net ψ′

0
!o and to aseparating 
ontext for π~φ/π′~φ.3. Finally, if there is a dereli
tion at depth 0 and if {xi, xj} ∩ J 6= ∅.Let k, k′ be the numbers of ⊗s⊥ in the ⊗ maximal positive trees of π/π′.(a) if i 6= j, there are two 
ases: either xi ∈ J and xj 6∈ J or {xi, xj} ⊆

J . We only 
onsider the 
ase when they both are in J sin
e theother 
ase 
an be treated similarly as we shall see.By hypothesis, we know that we have ni 6= nj and that we 
an
hoose ni and nj to be as large as we want. Consider ni > k and
nj > k′. π~φ/π′~φ have the following stru
ture:

xj
oxi

n⊥

φnj

φni

!o

!o

?o⊥?o⊥

⊗
o⊥

. . .

π
~φ =

n⊥

⊗
o⊥

?d

c

oxi

n⊥

φni

!o

⊗
o⊥

o⊥
⊗

n⊥

π′~φ =

. . .
?d

xj

φnj

!o

?o⊥

c

?o⊥

INRIA
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ulus. 37And thus we have:
φni

!o

φnj

!o

φni

!o

n⊥

⊗
o⊥

?d

o⊥
⊗

n⊥

ox′i xx′j

c

. . .

π
~φ ∼

 
⋆
SANE

φnj

!o
O

O

⊗

x′i x′j

O

φni

!o

o

⊗

⊗

⊗

...n⊥

n⊥

s⊥

s⊥

o⊥
= π̃

~φ

?d

c c

. . .. . .

By renaming xj as x′j and xi as x′i or x in π̃~φ (we do the same thingwith π′~φ: xi be
omes x′i and xj be
omes x′j or x in π̃′
~φ).And if k = k′ then ni − k 6= nj − k′ so that the lemma 17 
an beapplied and if k 6= k′ then the lemma 
an also be applied sin
e the

m = ni and m′ = nj so that we 
an �nd a separating 
ontext.The 
ase where xj ∈ J and xi 6∈ J is treated similarly: in this 
asewe 
an 
hoose what to 
ut xi with and in parti
ular we 
an 
hoosea φni .
RR n° 6431



38 Mi
hele Pagani Alexis Saurin(b) if {xi, xj} ⊆ J and i = j. In that 
ase, let us 
onsider ni > k, k′.Then we have:
n⊥

⊗
o⊥

?d

o⊥
⊗

n⊥π
~φ ∼

x′i x′′i o

φni

!o

φni

!o

. . .

c

 
⋆
SANE

O

O

⊗

O

φni

!o

o

⊗

⊗

⊗

...n⊥

n⊥

s⊥

s⊥

= π̃
~φ

x′i

c

. . .

o⊥

?d

If k 6= k′ we 
an again 
on
lude thanks to lemma 17.If k = k′, then it is possible to 
ut the 
on
lusion of type o of π̃~φwith:
⊗

⊗

⊗

s⊥

s⊥

!o...
?o⊥ s o⊥ o
z

s

. . .

α1αni−k

INRIA
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al
ulus. 39and it redu
es to:
!o

φni

⊗

⊗

⊗

s⊥

o
zα1

?o⊥

s⊥

. . .
αni−k

x′i

c

. . . ⊗
o⊥

?dThese π̃0/π̃′
0 have same depths as π/π′ and have now 
on
lusionsin J ∪{z?o⊥

, αs
1, . . . , α

s
ni−k} and a dereli
tion at depth 0 with xπ̃0

=
xπ̃′

0
6∈ J , whi
h is treated by the se
ond 
ase of the proof, whi
hensure that there exists a separating 
ontext for π~φ/π′~φ and whi
h
on
ludes the proof.

�
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40 Mi
hele Pagani Alexis Saurin6 Simulation theoremWe now give a translation, denoted by ( )◦, of Λµ-terms into 
orre
t stream nets.A
tually what we translate is a triplet (t, L,M), where t is a term, L is a set of λ-variables,M is a set of µ-variables and FV (t) ⊆ L∪M ; moreover the translationbrings a one-to-one 
orresponden
e between the 
on
lusions of the net (t, L,M)◦and the set L ∪M ∪ {t}, in su
h a way that: i) t is asso
iated with the unique
on
lusion of type o, ii) every variable of L is asso
iated with a 
on
lusion oftype ?o⊥ and iii) every variable of M is asso
iated with a 
on
lusion of type s.For the purpose of the translation, we label the free ports of (t, L,M)◦ of type
?o⊥ or s with the 
orresponding variable in L ∪M .Let L = {x1, . . . , xl} and M = {α1, . . . , αm}, then:� (x, L ∪ {x},M)◦

· · · · · ·

?o⊥ ?o⊥ ?o⊥ s s

o

x1 xl α1x αm

?w ?w ?d w w� (λx.t, L,M)◦

���������
���������
���������

���������
���������
���������· · ·

?o⊥ ?o⊥

x1 xlx

o

?o⊥ o

O

αm· · ·α1

s s

(t, L ∪ {x},M)◦

� (µα.t, L,M)◦

���������
���������
���������

���������
���������
���������· · ·

?o⊥ ?o⊥

x1 xl αm· · ·α1

s s

o

O

o

α

s

(t, L,M ∪ {α})◦

� ((t)u, L,M)◦, let π be the following net:
�����
�����
�����

�����
�����
�����

o

xl

?c ?c

· · ·

?o⊥ ?o⊥

x1 α1

· · ·· · ·

o o⊥ !o

cc

· · ·

s s
αm

⊗

· · · · · ·

(t, L,M)◦
!(u, L,M)◦

INRIA
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iative Nets and Λµ-
al
ulus. 41then ((t)u, L,M)◦ = NF
r (π).� ((t)α,L,M ∪ {α})◦, let π be the following net:
���������
���������
���������

���������
���������
���������· · ·

?o⊥ ?o⊥

x1 xl

⊗

c

o

o o⊥

α

αm· · ·α1

s s

s

s⊥

(t, L,M ∪ {α})◦

then ((t)α,L,M ∪ {α})◦ = NF
r (π).Proposition 21 (Inje
tivity of ( )◦) The translation ( )◦ is inje
tive: if t 6= uthen t◦ 6= u◦.Proof. By indu
tion on t. �With the following de�nition we 
hara
terize those nets whi
h translate Λµ-terms (theorem 23):De�nition 22 (Λµ-net) A Λµ-net is a net π s.t.:1. π is 
orre
t;2. π does not 
ontain 
ells of type O

?,s or ⊗!,s⊥ ;3. π is a normal form w.r.t.  s,r,a;4. every free port of π is negative;5. and re
ursively the nets asso
iated with promotion 
ells are Λµ-nets.Theorem 23 (Sequentialization) Let π be a net, π is a Λµ-net i� there is a
Λµ-term t s.t. π = t◦.Moreover, there is a natural 1 − 1 
orresponden
e between the 
uts of t◦and the Λµ-
uts of t s.t. a 
ut of type O

?/⊗! (resp. O
?/⊗s⊥

,Os/⊗!,Os/⊗s⊥)
orresponds to a Λµ-
ut of type (T )T (resp. (T )S, (S)T , (S)S). In parti
ular,
t◦ is 
ut-free (hen
e a  cut,g,a,r normal form) i� t is 
anoni
al.Proof. The dire
tion ⇒ is an easy inspe
tion of the 
ase de�nition of thetranslation ( )◦. The dire
tion ⇐ is a simple variant of the proof of the sequen-tialization theorem, see [Dan90℄,[Reg92℄,[Lau03℄. �Let us turn our attention to the dynami
s of  Λµ. In what follows we willprove that  SANE simulates  Λµ: if t Λµ u, then t◦  Λµ u

◦ (theorem 26).The following two lemmas are easy variants of the 
orresponding ones in[Lau03℄.RR n° 6431



42 Mi
hele Pagani Alexis SaurinLemma 24 (λ-substitution) Let π be the following net:
π =

o

· · · · · ·

!o

?o⊥ · · · · · ·x

xl

?c ?c

· · ·

?o⊥ ?o⊥

x1

cc

· · ·

s s
αmα1

!(v, L,M)◦

(u, L ∪ {x},M)◦then NF
s,r (π) = (u[v/x], L,M)◦.Proof. By indu
tion on u. �Lemma 25 (µ-substitution) Let π be the following net:

π =

⊗

xl

?c ?c

· · ·

?o⊥ ?o⊥

x1

cc

· · ·

s s
αmα1

o

s

β

· · · · · ·

· · · · · ·

s⊥s

α

!o

!(v, L,M)◦

(u, L,M ∪ {α})◦then NF
s,r,a (π) = (u[(t)vβ/(t)α], L,M ∪ {β})◦.Proof. By indu
tion on u. We 
onsider only one 
ase (the one where  a playa 
ru
ial role), leaving the other 
ases to the reader.If u = (w)α, then π is the  r-normal form of this net:

INRIA



Stream Asso
iative Nets and Λµ-
al
ulus. 43
xl

?c ?c

· · ·

?o⊥ ?o⊥

x1

cc

· · ·

s s
αmα1

s

β

· · · · · ·

!o

⊗

⊗

c

o

o o⊥ s⊥

s⊥s

α· · ·· · ·

!(v, L,M)◦

(w,L,M ∪ {α})◦

Whi
h by one  s step and one  a step redu
es to the following net π′

c ccc

xl

?c ?c

· · ·

?o⊥ ?o⊥

x1

cc

· · ·

s s
αmα1

c

⊗
⊗

o o⊥

· · ·· · ·

· · ·· · ·

!o

⊗
s⊥

· · ·· · ·

· · · · · ·

β

s

s
α

γ

o

!o

s

!(v, L,M)◦

(w,L,M ∪ {α})◦

!(v, L,M)◦

By indu
tion hypothesis NF
s,r,a (γ) = (w[(t)vβ/(t)α], L,M ∪ {β})◦, so we
on
lude that NF

s,r,a (π) = ((w[(t)vβ/(t)α])vβ, L,M ∪ {β})◦. �Theorem 26 (Simulation) Let t, u be two Λµ-terms, then:1. t→βT
u implies t◦  o · ∗

s,r u
◦2. t→βS

u implies t◦  o u
◦3. t→fst u implies t◦  ws · ∗

s,r,a u
◦4. t→ηT

u implies u◦  wo? · w? t
◦RR n° 6431



44 Mi
hele Pagani Alexis Saurin5. t→ηS
u implies u◦  wos · w? t

◦Proof. One 
an restri
t to the 
ase the redex redu
ed in t  Λµ u is thehead-redex of t, the more general 
ase will follow by a straight indu
tion on the
omplexity of t.If t  βT
u, then the redex redu
ed 
orresponds to a 
ut of type O

?/⊗! of
t◦ (theorem 23): by redu
ing this redex we obtain a net π as that pi
tured inlemma 24; by this lemma we 
on
lude NF

s,r (π) = u◦.If t βS
u, then the redex redu
ed 
orresponds to a 
ut of type O

s/⊗s⊥ of
t◦ (theorem 23): by redu
ing this redex we obtain straight u◦.If t fst u, let t = µα.v. We have:

t◦  ws · w?

O

O

⊗

?o⊥
!π ?d

!o

s

s

oα

o

s

v◦

 a

O

⊗

O

!π ?d
!o

s oα

o

v◦

o
?o⊥

γ
s

then by lemma 25 we have that NF
s,r,a (γ) = v[(w)xβ/(w)α]◦ , so we 
on-
lude: λx.µβ.v[(w)xβ/(w)α].The 
ases t η u and t ηs

u are dire
tly simulated by  w.
�Con
luding remark. The relationships between Λµ-
al
ulus and SANE aredeep as the previous simulation theorem makes it 
lear. We 
lose this �nalse
tion by few additional remarks related with the question of simulation.INRIA
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al
ulus. 45� Other Λµ-based rules 
an be simulated, in parti
ular the µ rule ((µα.t)u →
µα.t[(v)uα/(v)α]) whi
h is simulated by  g ·  ∗

s,r,a. Sin
e µ rule 
anitself be simulated by Λµ-
al
ulus rules, there is no surprise about sim-ulating it in SANE, but it is interesting to see that µ 
an be simulatedusing  g.� There seems to be another interesting underlying 
al
ulus in SANE thatwe would hope to simulate thanks to SANE: this would be a real streamlanguage where the main stru
ture would not 
orrespond to O
? and ⊗! butto O

?s and ⊗!s⊥ . This would probably be the stream-
al
ulus ΛS alreadysuggested in [Sau05℄.� A notion of expli
it substitutions seems to be underlying in the proofof simulation. This would 
orrespond toredu
tions  s,r in SANE. Thisexpli
it substitution has good properties sin
e it is strongly normalizing(proposition 3) and 
on�uent (lemma 6).� Beyond simulation, bisimulation: we guess that one 
an have even a bisim-ulation result: if t◦  ∗
SANE u◦ then t  ∗

Λµ u. However the proof ofbisimulation is very deli
ate, sin
e  ∗
SANE allows mu
h more redu
tionsbetween t◦ and u◦, than those used to simulate  Λµ.
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46 Mi
hele Pagani Alexis Saurin7 Con
lusionWe introdu
ed SANE, a new 
lass of nets whi
h lies in between usual linear logi
proof-nets and polarized proof-nets for whi
h we proved strong normalizationfor the exponential 
ut-elimination, 
on�uen
e and separation:� The strong normalization is proved by indu
tion on a mesure whi
h isindeed very general and 
an be adapted to other net-based systems.� The 
on�uen
e proof is original in the sense it is not a dire
t 
onsequen
e ofthe proof of 
on�uen
e for MELL proof-nets, in fa
t  SANE has  a and
 w in addition to  cut,r (
on�uen
e is already hard to prove even in themultipli
ative fragment in presen
e of  a). Moreover, it is an interestingresult sin
e we were able to prove 
on�uen
e for all kinds of 
orre
t nets,whereas in Λµ-
al
ulus 
on�uen
e holds only for µ-
losed terms.� We were espe
ially interested in having separation sin
e we 
onsidered it asa design requirement for our nets and sin
e this is one of the few separationresults that exist for proof-nets (other know results are [MP07, MP94℄).Our initial aim was to study Λµ-
al
ulus thanks to the powerful te
hniquesof proof-nets. In parti
ular we obtained a simulation of Λµ-
al
ulus. More-over we have, as a by-produ
t of the simulation theorem, a notion of expli
itsubstitutions for Λµ-
al
ulus whi
h is the one simulated by the  s,r of SANE.This expli
it substitution has good properties sin
e it is strongly normalizing(proposition 3) and 
on�uent (lemma 6). The en
oding of Λµ-
al
ulus in SANEand the way Λµ-
al
ulus redu
tion rules are simulated shed an interesting lighton the redu
tion rules, in parti
ular with respe
t to the fst-rule that relates

λ-variables with µ-variables.In addition, the simulation result suggests that there exists another 
al
ulushidden in SANE in whi
h the asso
iativity rule would go in the other dire
tion.For this reason we are optimisti
 about SANE being a platform in whi
h tostudy 
ontinuation 
al
uli.Future works. This work is being pursued in two dire
tions:� We are investigating an extension of the simulation result in the form ofa bisimulation. Indeed, in addition to the simulation of Λµ-
al
ulus bySANE we hope to obtain a 
onverse result.� A natural developement of the study of separation would be to look for atyped result sin
e our theorem only deals with pure nets.
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