
Acyclicity and Coherence in Multiplicative
Exponential Linear Logic

(Extended abstract with appendix)

Michele Pagani?

Dipartimento di Filosofia – Università Roma Tre
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Abstract. We give a geometric condition that characterizes MELL
proof structures whose interpretation is a clique in non-uniform coherent
spaces: visible acyclicity.
We define the visible paths and we prove that the proof structures which
have no visible cycles are exactly those whose interpretation is a clique.
It turns out that visible acyclicity has also nice computational properties,
especially it is stable under cut reduction.

1 Introduction

Proof nets are a graph-theoretical presentation of linear logic proofs, that gives
a more geometric account of logic and computation. Indeed, proof nets are in
a wider set of graphs, that of proof structures. Specifically, proof nets are those
proof structures which correspond to logically correct proofs, i.e. sequent calculus
proofs.

A striking feature of the theory of proof nets is the characterization by ge-
ometric conditions of such a logical correctness. In multiplicative linear logic
(MLL) Danos and Regnier give (see [1]) a very simple correctness condition,
which consists in associating with any proof structure a set of subgraphs, called
switchings, and then in characterizing the proof nets as those structures whose
switchings are connected and acyclic.

Later Fleury and Retoré relax in [2] Danos-Regnier’s condition, proving that
acyclicity alone characterizes those structures which correspond to the proofs of
MLL enlarged with the mix rule (Figure 4). More precisely, the authors define
the feasible paths as those paths which are ”feasible” in the switchings, then they
prove that a proof structure is associated with a proof of MLL plus mix if and
only if all its feasible paths are acyclic.

Proof structures are worthy since cut reduction is defined straight on them,
not only on proof nets. We can thus consider a concrete denotational semantics
for proof structures, as for example the relational semantics. Here the key notion
is that of experiment, introduced by Girard in [3]. Experiments allow to associate
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with any proof structure (not only proof net) π a set of points JπK invariant under
the reduction of the cuts in π.

In [4] Bucciarelli and Ehrhard provide a notion of coherence between the
points of the relational semantics, so introducing non-uniform coherent spaces
and non-uniform cliques. Such spaces are called non-uniform since the web of
their exponentials does not depend on the coherence relation, as it does instead
in case of usual (uniform) coherent spaces (see [3]).1

Hence we have a geometrical notion – feasible acyclicity – dealing with logical
correctness, and a semantical one – clique – defined in the framework of coherent
spaces. Such notions are deeply related in MLL: from [3] it is known that for any
proof structure π, if π is feasible acyclic then its interpretation JπK is a clique;
conversely Retoré proves in [5] that for any cut-free π, if JπK is a clique then π
is feasible acyclic.

Such results tighten the link between coherent spaces and multiplicative proof
nets: as a corollary we derive in [6] the full-completeness of coherent spaces for
MLL with mix.

What happens to this correspondence in presence of the exponentials, i.e. in
multiplicative exponential linear logic (MELL)?

The notion of feasible path can be easily extended to MELL (Definition
6). In this framework feasible acyclicity characterizes the proof structures which
correspond to the proofs of MELL sequent calculus (Figure 3) enlarged with the
rules of mix and daimon (Figure 4). However the link between feasible acyclicity
and coherent spaces fails: there are proof structures which are associated with
cliques even if they have feasible cycles (for example Figure 5).

The main novelty of our paper is to find out a geometrical condition on
MELL proof structures, which recovers the missed link with coherent spaces.
In Definition 7 we introduce the visible paths, which are an improvement of the
feasible paths in presence of exponentials. Then we prove in Theorems 9 and 10:

– for any MELL proof structure π, if π is visible acyclic, then JπK is a non-
uniform clique;

– for any MELL cut-free proof structure π, if JπK is a non-uniform clique then
π is visible acyclic.

Finally, it turns out that visible acyclicity has also nice computational proper-
ties, especially it is stable under cut reduction (Theorem 18), moreover it assures
confluence and strong normalization.

Acknowledgments. I would like to thank Lorenzo Tortora de Falco for his invalu-
able support and Paolo Di Giamberardino, whose Mémoire de D.E.A. has been
the starting point of this work.

1 Actually the difference between uniform and non-uniform spaces has a relevance only
in presence of exponentials: in MLL we can speak simply of coherent spaces and
cliques.



2 Proof structures

The formulas of MELL are defined by the following grammar:

F ::= X | X⊥ | FOF | F ⊗ F | ?F | !F

As usual we set (AOB)⊥ = A⊥ ⊗ B⊥, (A ⊗ B)⊥ = A⊥OB⊥, (?F )⊥ =!F⊥

and (!F )⊥ =?F⊥. We denote by capital Greek letters Σ,Π, . . . the multisets of
formulas. We write A1 � . . .�An−1 �An for A1 � (. . .� (An−1 �An) . . .), where
� is O or ⊗.

Proof structures are directed graphs with boxes – highlighted subgraphs –
and pending edges – edges without target. Edges are labeled by MELL formulas
and nodes (called links) are labeled by MELL rules. Links are defined together
with both an arity (the number of incident edges, called the premises of the link)
and a coarity (the number of emergent edges, called the conclusions of the link).
The links of MELL are ax, cut, ⊗, O, !, ?d, ?c, ?w, as defined in Figure 1. The
orientation of the edges will be always from top to bottom, so that we may omit
the arrows of the edges.
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A A⊥ cut
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A ⊗ B
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!
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Fig. 1. MELL links.

Definition 1 (Proof structure, [3]). A proof structure π is a directed graph
whose nodes are MELL links and such that:

1. every edge is conclusion of exactly one link and premise of at most one link.
The edges which are not premise of any link are the conclusions of the proof
structure;

2. with every link ! o is associated a unique subgraph of π, denoted by πo,
satisfying condition 1 and such that one conclusion of πo is the premise of o
and all further conclusions of πo are labeled by ?-formulas. πo is called the
exponential box of o (or simply the box of o) and it is represented by a dash
frame. The conclusion of o is called the principal door of πo, the conclusions
of πo labeled by ?-formulas are called the auxiliary doors of πo;



3. two exponential boxes are either disjoint or included one in the other.

The depth of a link in π is the number of boxes in which it is contained. The
depth of an edge a is 0 in case a is a conclusion of π, otherwise it is the depth
of the link of which a is premise.

The depth of π is the maximum depth of its links, the size of π is the number
of its links, the cosize of π is the number of its links ?c.

A link l is terminal when either l is a ! and all the doors of πl are conclusions
of π, or l is not a ! and all the conclusions of l are conclusions of π.

Proof structures are denoted by Greek letters: π, σ, . . ., edges by initial Latin
letters: a, b, c . . . and links by middle-position Latin letters: l,m, n, o . . .. We write
a : A if a is an edge labeled by the formula A.

A proof structure without cuts is called cut-free. The cut reduction rules
are graph rewriting rules which modify a proof structure π, obtaining a proof
structure π′ with the same conclusions as π. We do not give here the cut reduction
rules, which are completely standard (see [3]). However we remark that at the
level of proof structures there exist cuts, called deadlocks, which are irreducible.
These are the cuts between the two premises of an axiom, and the cuts between
two doors of an exponential box (see Figure 2).

cut

ax

A A⊥

!

cut
!A

. . .
?Γ

?A⊥

πo

Fig. 2. Examples of deadlocks.

We denote by π  β π′ whenever π′ is the result of the reduction of a cut
in π. As always, →β is the reflexive and transitive closure of  β and =β is the
symmetrical closure of →β .

3 Non-uniform coherent spaces

We recall that a multiset v is a set of elements in which repetitions can occur.
We denote multisets by square brackets, for example [a, a, b] is the multiset
containing twice a and once b. The plus symbol + denotes the disjoint union of
multisets, whose neutral element is the empty multiset ∅. If n is a number and v
a multiset, we denote by nv the multiset v + . . .+ v

︸ ︷︷ ︸

n times

. The support of v, denoted

by Supp(v), is the set of elements of v, for example Supp([a, a, b]) = {a, b}.



If C is a set, by M(C) (resp. Mfin(C)) we mean the set of all multisets (resp.
finite multisets) of C.

Definition 2 (Non-uniform coherent space, [4]). A non-uniform coherent

space X is a triple (|X |, a

`
,≡), where |X | is a set, called the web of X , while a

`

and ≡ are two binary symmetric relations on |X |, such that for every x, y ∈ X ,

x ≡ y implies x a

`
y. a

`
(resp. ≡) is called the coherence (resp. the neutrality)

of X .
A clique of X is a subset C of |X | such that for every x, y ∈ C, x a

`
y.

Remark the difference from Girard’s (uniform) coherent spaces: we do not

require the relation a

`
to be also reflexive.

We will write x a

`
y [X ] and x ≡ y [X ] if we want to state explicitly which

coherent space a

`
and ≡ refer to. We introduce the following notation, well-

known in the framework of coherent spaces:

strict coherence: x ay [X ], if x a

`
y [X ] and x 6≡ y [X ];

incoherence: x `

a
y [X ], if not x ay [X ];

strict incoherence: x `y [X ], if x `

a
y [X ] and x 6≡ y [X ].

Notice that we may define a non-uniform coherent space by specifying its
web and two well chosen relations among ≡, a

`
, a, `

a
, `.

Let X be a non-uniform coherent space, the non-uniform coherent model on
X (nuCohX ) associates with formulas non-uniform coherent spaces, by induction
on the formulas, as follows:

– with X it associates X ;
– with A⊥ it associates the following A⊥: |A⊥| = |A|, the neutrality and

coherence of A⊥ are as follows:
• a ≡ a′

[
A⊥

]
iff a ≡ a′ [A],

• x a

`
y

[
A⊥

]
iff x `

a
y [A];

– with A⊗B it associates the following A⊗B: |A⊗B| = |A|×|B|, the neutrality
and coherence of A⊗B are as follows:
• < a, b >≡< a′, b′ > [A⊗B] iff a ≡ a′ [A] and b ≡ b′ [B],

• < a, b > a

`
< a′, b′ > [A⊗B] iff a a

`
a′ [A] and b a

`
b′ [B];

– with !A it associates the following !A: |!A| = Mfin(|A|), the strict incoher-
ence and neutrality of !A are as follows:
• v `u [!A] iff ∃a ∈ v and ∃a′ ∈ u, s.t. a `a′ [A],
• v ≡ u [!A] iff not v `u [!A] and there is an enumeration of v (resp. of u)
v = [a1, . . . , an] (resp. u = [a′1, . . . , a

′

n]), s.t. for each i ≤ n, ai ≡ a′i [A].

Of course the space AOB is defined by (A⊥ ⊗B⊥)⊥ as well as ?A is defined
by (!A⊥)⊥.

Remark that !A may have elements strictly incoherent with themselves, i.e.
a

`
is not reflexive. For example, suppose a, b are two elements in A such that



a `b [A], then the multiset [a, b] is an element of !A such that [a, b]
`

[a, b] [!A].

For each proof structure π, we define the interpretation of π in nuCohX ,
denoted by JπKX , where the index X is omitted in case it is clear which coherent
space is associated with X . JπK is defined by using the notion of experiment,
introduced by Girard in [3].

We define an experiment e on π by induction on the exponential depth of π.2

Definition 3 (Experiment). A nuCohX experiment e on a proof structure π,
denoted by e : π, is a function which associates with every link ! o at depth 0 a
multiset [eo

1, . . . , e
o
k] (for k ≥ 0) of experiments on πo, and with every edge a : A

at depth 0 an element of A, s.t.:

– if a, b are the conclusions (resp. the premises) of a link ax (resp. cut) at
depth 0, then e(a) = e(b);

– if c is the conclusion of a link O or ⊗ at depth 0 with premises a, b, then
e(c) =< e(a), e(b) >;

– if c is the conclusion of a link ?d with premise a, then e(c) = [e(a)]; if c is
the conclusion of a link ?c with premises a, b, then e(c) = e(a) + e(b); if c is
the conclusion of a link ?w, then e(c) = ∅;

– if c is a door of a box associated with a link ! o at depth 0, let a be the
premise of o and e(o) = [eo

1, . . . , e
o
k]. If c is the principal door then e(c) =

[eo
1(a), . . . , e

o
k(a)], if c is an auxiliary door then e(c) = eo

1(c) + . . .+ eo
k(c);

If c1, . . . , cn are the conclusions of π, then the result of e, denoted by |e|, is
the element < e(c1), . . . , e(cn) >. The interpretation of π in nuCohX is the set
of the results of its experiments:

JπKX =
{
|e| s.t. e is a nuCohX experiment on π

}

The interpretation of a proof structure is invariant under cut reduction:

Theorem 4 (Soundness of nuCohX). For every proof structures π, π′, π =β π
′

implies JπKX = Jπ′KX .

Proof (Sketch). It is a straightforward variant of the original proof given by
Girard in [3] for proof nets. ut

For concluding we explain why we choose the non-uniform variant of coherent
spaces for proving our result.

The main difference between uniform and non-uniform coherent spaces is in
the definition of the web of !A. The non-uniform web of !A contains all finite
multisets of elements in A, while the uniform web of !A contains only those finite
multisets whose support is a clique in A (see [3]).

2 Definition 3 is slightly different from the usual one (see for example [7]), namely e is
defined only on the edges at depth 0 of π. Such a difference however does not play
any crucial role in the proof of our result.



Uniform webs thus have less elements than the non-uniform ones. Less ele-
ments means less experiments for proof structures. Indeed uniform experiments
must satisfy besides the conditions of Definition 3 also a uniformity condition,
namely the elements associated with edges of type !A (or ?A⊥) have to be in the
uniform web of !A (see [7]).

Concerning our result, we believe that the experiment eφ, defined in the proof
of Lemma 16, satisfies also the uniformity condition, but we haven’t proved yet.
Thus we conjecture that Theorem 10 holds also for uniform coherent spaces, but
the proof should be quite harder. 3

4 Paths and acyclicity

ax

` X, X⊥
` Γ, A ` ∆, A⊥

cut

` Γ, ∆

`?Γ, A
!

`?Γ, !A

` Γ, A
d

` Γ, ?A

` Γ, A ` ∆, B
⊗

` Γ, ∆, A ⊗ B

` Γ, A, B
O

` Γ, AOB

` Γ
w

` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

Fig. 3. MELL sequent calculus

In Figure 3 we present the sequent calculus for MELL. As we noticed in the
Introduction, sequent proofs can be translated into proof structures (see [3]).
Such a translation is the gate to a geometry of logic and computation, since it
makes possible to describe several properties of proofs by means of paths and
graph-theoretical conditions such as connectivity or acyclicity.

In this paper, in particular, we consider paths with the following features:

orientation: a path is oriented, i.e. it crosses an edge a either upward, from
the link a is conclusion to the link a is premise, or downward, from the link
a is premise to the link a is conclusion;

black-box principle: a path never crosses the frame of an exponential box,
i.e. for a path a box is a node, whose emergent edges are the doors of the
box.

Definition 5 (Path). An oriented edge is an edge a together with a direction
upward, denoted by ↑ a, or downward, denoted by ↓ a. We write l a in case we

3 Uniform coherent spaces are special cases of non-uniform spaces, where ≡ coin-
cides with the identity. Denote by JπKCohX (resp. JπKnuCohX ) the uniform (resp.
non-uniform) interpretation of π based on a space X . One can prove JπKCohX ⊆

JπKnuCohX . This means that if JπKnuCohX is a clique so is JπKCohX , while the vice-
versa does not hold in general. Hence remark that Theorem 10 (resp. Theorem 9) is
stronger (resp. weaker) when it refers to CohX instead of nuCohX .



do not want to specify if we mean ↑ a or ↓ a. An oriented path (or simply path)
from l a0 to l an is a sequence of oriented edges <l a0, . . . , l an > such that for
any i < n, l ai, l ai+1 have the same depth and:

– if l ai =↑ ai and l ai+1 =↑ ai+1, then ai is conclusion of a link l and ai+1

is premise of l;
– if l ai =↑ ai and l ai+1 =↓ ai+1, then either ai and ai+1 are different

conclusions of the same link ax l, or they are different doors of the same
exponential box associated with a link ! l;

– if l ai =↓ ai and l ai+1 =↓ ai+1, then ai is the premise of a link l and ai+1

is conclusion of l;
– if l ai =↓ ai and l ai+1 =↑ ai+1, then ai and ai+1 are different premises of

the same link l.

In any case we say that the path <l a0, . . . , l an > crosses the edges ai, ai+1

and the link l. We denote by ∗ the concatenation of sequences of oriented edges.
A cycle is a path in which occurs twice l a for an edge a.

Remark that ai and ai+1 must be different edges, i.e. we do not consider
bouncing paths as <↑ a, ↓ a >.

We denote paths by Greek letters φ, τ, ψ, . . .. We write l a ∈ φ to mean that
l a occurs in φ.

4.1 Feasible paths

Feasible paths have been introduced by Fleury and Retoré in [2] as the paths
”feasible” in a switching of a proof structure.

Definition 6 (Feasible path, [2]). A path is feasible whenever it does not
contain two premises of the same link O or ?c.

A proof structure is feasible acyclic whenever it does not contain any feasible
cycle.

Feasible acyclicity characterizes the proof structures which corresponds to
the proofs of MELL sequent calculus enlarged by the rules of mix and daimon
of Figure 4. The proofs of standard MELL instead are not easily characterizable
by a geometrical condition, because of the weakening link. We do not enter in
the details of the problem, for which we refer to [7].

` Γ ` ∆
mix

` Γ, ∆
dai

`

Fig. 4. Mix and daimon rules

Let us compare feasible acyclicity and coherent spaces. As written before,
they are tightly related in MLL by the following results:



Girard’s Theorem, [3]: let π be an MLL proof structure, X be a (uniform)
coherent space. If π is feasible acyclic, then JπKX is a clique.

Retoré’s Theorem, [5]: let π be a cut-free MLL proof structure, X be a (uni-
form) coherent space with x, y, z ∈ |X | s.t. x ay [X ] and x `z [X ]. If JπKX
is a clique, then π is feasible acyclic.

However the situation changes in MELL: it is still true that any feasible
acyclic proof structure is interpreted with a clique, but there are proof structures
associated with cliques even if they have feasible cycles. For example take the
proof structure π of Figure 5.

ax

O

?d

ax

O

?d

⊗

!

?w

X X

?I⊗?I !?X

I I

?X

X⊥ X⊥

a

d

b

c

o

Fig. 5. Example of feasible cycle invisible by coherent spaces.

π has the feasible cycle <↑ a, ↓ b, ↑ a >, nevertheless JπKX is a clique for
any coherent space X . In fact, let e1, e2 be two experiments on π, we show that
|e1|

a

`
|e2| [(?I⊗?I)O!?X ], where I = XOX⊥. Suppose e1(o) =

[
e11, . . . , e

n
1

]
and

e2(o) =
[
e12, . . . , e

m
2

]
. Remark that for any experiments el

i, e
h
j , el

i(a)
a

`
eh

j (a) [?I]

as well as el
i(b)

a

`
eh

j (b) [?I]. We split in two cases. In case n = m, then we

deduce e1(a)
a

`
e2(a) and e1(b)

a

`
e2(b), hence e1(c)

a

`
e2(c). Of course e1(d) ≡

e2(d), thus |e1|
a

`
|e2| [(?I⊗?I)O!?X ]. In case n 6= m, then e1(d)

ae2(d), thus

|e1|
a

`
|e2| [(?I⊗?I)O!?X ]. We conclude that JπK is a clique.4

The failure of the correspondence between feasible acyclicity and coherent
spaces shows that these latter read the exponential boxes in a different way than
feasible paths do. Indeed the cycle <↑ a, ↓ b, ↑ a > is due to the box associated
with o: if we erase o and the frame of its box, we would get a feasible acyclic
proof structure. Coherent spaces do not read the boxes as feasible paths do, but
it is not true that they do not read the boxes at all. For example, consider the
proof structure π′ in figure 6.

π′ has the feasible cycle <↑ a, ↓ b, ↑ a >, which is due to the box of o, as in
the example before. However in this case the cycle is visible by coherent spaces,

4 Remark that the same argument applies for usual Girard’s coherent spaces.



ax

O

?d

!

?w

⊗

X

I

?X

X⊥

o

?I⊗!?X

b
a

c

Fig. 6. Example of feasible cycle visible by coherent spaces.

i.e. Jπ′K is not a clique. In fact, let e1, e2 be two experiments on π′, s.t. e1(o) = ∅
and e2(o) = [e′], for an experiment e′ on the box of o. Clearly e1(a)

`e2(a) [?I],
which implies e1(c)

`e2(c) [?I⊗!?X ].

4.2 Visible paths

Here is our main definition, that of visible paths (Definition 7).
Let φ be a path, πo be a box associated with a link ! o. A passage of φ through

πo is any sequence <↑ a, ↓ b > in φ, for a, b doors of πo.
Notice that a feasible path can pass through an exponential box by means

of any pair of its doors; the following definition forbids instead some of such
passages:

Definition 7 (Visible path). Let π be a proof structure. By induction on the
depth of π, we define its visible paths:

– if π has depth 0, then the visible paths of π are exactly the feasible paths;
– if π has depth n+ 1, let πo be a box associated with a link ! o, a, b be doors

of πo, we say that:

• a is in the orbit of o if either a is the principal door or there is a visible
path in πo from the premise of o to a;

• a leads to b if either b is in the orbit of o or there is a visible path in πo

from a to b;

then a visible path in π is a feasible path s.t. for any passage <↑ a, ↓ b >
through an exponential box, a leads to b.

A proof structure is visible acyclic whenever it does not contain any visible
cycle.

Visible paths introduce two noteworthy novelties with respect to the feasible
paths:



1. they partially break the black box principle: the admissible passages through
an exponential box depend on what is inside the box, i.e. changing the con-
tents of a box may alter the visible paths outside it;

2. they are sensitive to the direction: if φ is visible from a to b, the same path
done in the opposite direction from b to a may be no longer visible. For
example recall the proof structure of Figure 6: the path <↑ a, ↓ b, ↑ a > is
visible, but <↓ a, ↑ b, ↓ a > isn’t, since b does not lead to a.

Of course if π is feasible acyclic then it is visible acyclic, but the converse
does not hold. For example recall the proof structure of Figure 5, which is visible
acyclic although it contains a feasible cycle. However it is remarkable that the two
notions match in the polarized fragment of MELL, as we show in the following
subsection.

4.3 Feasible and visible paths in polarized linear logic

The formulas of the polarized fragment of MELL are of two kinds, negatives
(N) and positives (P ), and are defined by the following grammar:

N ::= X | NON | ?P
P ::= X⊥ | P ⊗ P | !N

A proof structure π is polarized whenever all its edges are labeled by polarized
formulas. An edge of π is called positive (resp. negative) if it is labeled by a
positive (resp. negative) formula.

The notion of polarization has a key role in proof theory since it is at the
core of the translations of intuitionistic and classical logic into linear logic. We
do not enter in the details, for which we refer to [8]. We limit ourself to notice
the following proposition:

Proposition 8. Let π be a polarized proof structure. π is visible acyclic iff π is
feasible acyclic.

5 Visible acyclicity and coherent spaces

In this section we present the main theorems of the paper, stating the link
between visible acyclicity and coherent spaces:

Theorem 9. Let π be a MELL proof structure, X be a non-uniform coherent
space.

If π is visible acyclic, then JπKX is a clique.

Theorem 10. Let π be a cut-free MELL proof structure, X be a non-uniform
coherent space with x, y, z ∈ |X | s.t. x ay [X ], x `z [X ] and x ≡ x [X ].

If JπKX is a clique, then π is visible acyclic.

Subsection 5.1 (resp. 5.2) gives a sketch of the proof of Theorem 9 (resp.
Theorem 10).



5.1 Proof of Theorem 9

Theorem 9 is an immediate consequence of the following lemma:

Lemma 11. Let π be a visible acyclic proof structure. If d : D is a conclusion
of π and e1, e2 are two experiments s.t. e1(d)

`e2(d) [D], then there is a visible
path φ from ↑ d to a conclusion of π ↓ d′ : D′ s.t. e1(d

′) ae2(d
′) [D′].

Proof (Sketch). Let e1(d)
`e2(d) [D]. The lemma is proved by induction on the

depth of π. The proof provides a procedure which defines a sequence of visible
paths φ1 ⊂ φ2 ⊂ φ3 ⊂ . . ., such that φ1 is exactly <↑ d >, and for each φj :

1. φj is a visible path at depth 0;
2. for every edge c : C, if ↑ c ∈ φj then e1(c)

`e2(c) [C], if ↓ c ∈ φj then
e1(c)

ae2(c) [C].

Since π is visible acyclic, no φj is a cycle. Hence the sequence φ1, φ2, φ3, . . .
will meet eventually a conclusion d′ of π, so terminating in a path φk satisfying
the lemma. ut

A straight consequence of Lemma 11 is that whenever π is visible acyclic,
the results of the experiments on π are pairwise coherent, i.e. JπK is a clique.

We underline that the proof of Lemma 11 is a generalization in the framework
of visible paths of the proof of the Compatibility Lemma (Lemma 3.18.1 in [3]).

5.2 Proof of Theorem 10

The proof of Theorem 10 is based on the key Lemma 16. In some sense Lemma
16 is the converse of Lemma 11: Lemma 11 associates with two experiments
e1, e2 a visible path proving |e1|

a

`
|e2|; Lemma 16 instead is used in the proof

of Lemma 17 to associate with a visible cycle (morally) two experiments s.t.
|e1| `|e2|.

However Lemma 16 has to take care of a typical difficulty of the links ?c.
In order to prove the lemma we need to manage the coherence/incoherence
relationship between the values of e1 and e2. Unfortunately the links ?c soon
make such a relationship unmanageable. In fact, if l is a link ?c with conclusion
c and premises a, b, the incoherence e1(c)

`

a
e2(c) holds if and only if e1(a)

`

a
e2(a),

e1(a)
`

a
e2(b), e1(b)

`

a
e2(a) and e1(b)

`

a
e2(b) hold: such an exponential explosion

of the number of incoherences soon becomes unmanageable.
Luckily there is a solution that avoids this problem. Namely we noticed that

one of the two experiments e1, e2 can be chosen to be very simple, i.e. e1 can
be a (x, n)-simple experiment (see Definition 14). The key property of a (x, n)-
simple experiment is that all of its possible values on an arbitrary edge of type
A are semantically characterized, precisely they are (x, n)-simple elements of A
with degree less or equal to wnd, where d is the depth of π and w is the cosize
of π (Definition 13 and Proposition 15). In this way we may define the second
experiment e2 not by looking at the particular value that e1 takes on an edge of



type A, but by referring in general to the (x, n)-simple elements of A with degree
less or equal to wnd. So whenever we consider the premises a :?A, b :?B of a link
?c, instead of taking care of the four incoherences e1(a)

`

a
e2(a), e1(a)

`

a
e2(b),

e1(b)
`

a
e2(a) and e1(b)

`

a
e2(b), we will check only that for each (x, n)-simple el-

ement v ∈?A with degree less or equal to wnd, v `

a
e2(a) and v `

a
e2(b).

Definition 12 ([7]). Let C be the nuCohX interpretation of a formula C and
v ∈ C. For every occurrence of a subformula A of C we define the projection of
v on A (denoted as |v|A) as the multiset defined by induction as follows:

– if C = A, then |v|A = [v];
– if C = DOE or C = D ⊗ E, v =< v′, v′′ > and A is a subformula of D

(resp. of E), then |v|A = |v′|A (resp. |v|A = |v′′|A);
– if C =?D or C =!D, v = [v1, . . . , vn] and A is a subformula of D, then

|v|A = |v1|A + . . .+ |vn|A.

Definition 13. Let n ∈ N, x be an element of a non-uniform coherent space
X and C be the nuCohX interpretation of a formula C. An element v ∈ C is a
(x, n)-simple element if:

1. for any atomic subformula X, X⊥ of C, Supp(|v|X) = Supp(|v|X⊥) = {x};
2. for any !-subformula !A of C, if u ∈ |v|!A then u = n [u′];

Moreover v is stable if also:

3. for any ?-subformula ?A of C, if u ∈ |v|?A then u = n [u′].

The degree of a (x, n)-simple element v, denoted by d(v), is the number:

d(v) = max {m | ∃?A subform. of C, ∃u ∈ |v|?A s.t. u = [u1, . . . , um]}

Remark that an element is (x, n)-simple in both C and C⊥ only if it is also
stable. Moreover, notice that for any formula C, there is only one stable (x, n)-
simple element in C.

Definition 14 ([7]). Let π be a proof structure, n ∈ N, x be an element of a
non-uniform coherent space X . The (x, n)-simple experiment on π, denoted by
eπ
(x,n), is defined as follows (by induction on the depth of π):

– for each conclusion a : A of an axiom at depth 0, eπ
(x,n)(a) = s, where s is

the stable (x, n)-simple element of A;

– for each link ! o at depth 0, let πo be the box of o, eπ
(x,n)(o) = n

[

eπo

(x,n)

]

.

Proposition 15. Let π be a proof structure of depth d and cosize w. Let eπ
(x,n)

be the (x, n)-simple experiment on π. For any edge c : C at depth 0, eπ
(x,n)(c) is

a (x, n)-simple element of C with degree at most wnd.



Lemma 16. Let nuCohX be defined from a coherent space X s.t. ∃x, y, z ∈ X ,
x ≡ x [X ], x ay [X ] and x `z [X ].

Let π be a cut-free proof structure, k be the maximal number of doors of a
box of π. Let φ be a visible path at depth 0 from a conclusion ↑ a to a conclusion
↓ b, s.t. φ is not a cycle.

For any n,m ∈ N, m ≥ n ≥ k, there is an experiment eφ : π, s.t. for any
edge c : C at depth 0 and any (x, n)-simple element v in C with degree less or
equal m:

1. if there is c′ equal or above c s.t. l c′ ∈ φ, then eφ(c) 6≡ v [C];

2. if ↓ c /∈ φ, then eφ(c) `

a
v [C].

Proof (Sketch). The lemma is proved by induction on the depth of π. The proof
is divided in two steps: firstly, eφ is defined by giving its values on the links ax
and ! at depth 0; secondly, eφ is proved to satisfy conditions 1, 2 for any edge c,
by induction on the number of edges at depth 0 above c. ut

Lemma 17. Let nuCohX be defined from a coherent space X s.t. ∃x, y, z ∈ X ,
x ≡ x [X ], x ay [X ] and x `z [X ].

Let π be a cut-free proof structure with conclusions Π, k be the maximal
number of doors of an exponential box in π. If π has a visible cycle, then for
any n,m ∈ N, m ≥ n ≥ k, there is an experiment e : π, such that for any
(x, n)-simple element v in OΠ with degree less or equal to m, |e| `v [OΠ ].

Proof (Sketch). The proof is by induction on the size of π. The induction step
splits in seven cases, one for each type of link (except cut). The crucial case deals
with the link ⊗, since removing it may erase visible cycles. In this case Lemma
16 will be used. ut

The proof of Theorem 10 is straight once we have Lemma 17. Let π be a
cut-free proof structure with conclusions Π , depth d, cosize w and let k be the
maximal number of doors of a box of π. If π has a visible cycle then by Lemma
17 there is an experiment e : π such that for any (x, n)-simple element v in OΠ
with degree less or equal to m, |e| `v [OΠ ], where n = k, m = wnd.

Let eπ
(x,n) be the (x, n)-simple experiment on π. By Proposition 15, |eπ

(x,n)| is a

(x, n)-simple element in OΠ with degree less or equal to m. So |e| `|eπ
(x,n)| [OΠ ],

i.e. JπKX is not a clique in OΠ .

6 Visible acyclicity and cut reduction

It turns out that visible acyclicity has also nice computational properties, espe-
cially it is stable under cut reduction:

Theorem 18 (Stability). Let π, π′ be MELL proof structures. If π →β π
′ and

π is visible acyclic then π′ is visible acyclic.



Proof (Sketch). Indeed if π  β π
′, then every visible cycle in π′ is the ”residue”

of a visible cycle in π. ut

Remark that a proof structure with deadlocks is not visible acyclic, hence
Theorem 18 assures that the cut reduction of visible acyclic proof structures
never produces deadlocks.

Moreover, visible acyclicity guarantees also confluence and strong normaliza-
tion of →β . Here we give only the statements of the theorems, which will be
treated in details in a forthcoming paper:

confluence: let π be a visible acyclic MELL proof structure, if π →β π1 and
π →β π2 then there is π3 s.t. π1 →β π3 and π2 →β π3;

strong normalization: let π be a visible acyclic MELL proof structure, there
is no infinite sequence of proof structures π0, π1, π2, . . . s.t. π0 = π and
πi  β πi+1.

! !

cut

cut

l

m

π′
π′′

Fig. 7. Counter-example of confluence of cut reduction on proof structures.

!

cut

!

cut

?c

l

m

π′
π′′

Fig. 8. Counter-example of strong normalization of cut reduction on proof structures.

Remark that both confluence and strong normalization are false on proof
structures with visible cycles. For example consider the proof structure π in
Figure 7. If you reduce the cut link l, then m becomes a deadlock, while if you
reduce the cut link m then l becomes a deadlock: i.e. π is a counter-example to
the confluence. Concerning strong normalization, consider the proof structure
π in Figure 8 and notice that reducing m, then l, then a residue of m, then a
residue of l and so on . . . we get an infinite sequence of cut reductions.
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A Omitted proofs

A.1 Proof of Proposition 8

Proof (of Proposition 8). The difficult part is the ”only if” part. Suppose that π
has a feasible cycle, the proof that π has also a visible cycle is an easy consequence
of the following fact:

(*) if π is a polarized proof structure with feasible cycles, then π has a feasible
cycle φ s.t.:
1. if ↑ a ∈ φ, then a is positive;
2. if ↓ a ∈ φ, then a is negative.

Let us prove (*). Suppose π has a switching cycle φ. Notice that φ must
contain a positive edge b, since it must cross a link ⊗ or cut. Since φ is a cycle,
we can suppose it starts and arrives in b. Moreover, since the feasible paths are
independent of the direction of the path, we can suppose φ starts from ↑ b.

Let l a ∈ φ, we prove the conditions 1,2 of (*), by induction on the length
of the subpath <↑ b, . . . , l a > of φ. Let l a′ be the preceding edge of l a in φ.

1. if l a =↑ a, we prove that a is positive. The proof splits in two cases:

– if l a′ =↑ a′, then a′ is conclusion of a link l and a is premise of l. By
induction a′ is positive, hence l can be a link ⊗ or !. Since a, a′ have the
same depth, l is not a link !, hence a is a premise of a link ⊗, i.e. it is
positive;

– if l a′ =↓ a′, then a′ and a are different premises of the same link l. By
induction a′ is negative, hence l can be a link among cut, O, ?c. Since
φ is switching, l is not a link O or ?c, hence a is the positive premise of
the cut whose negative premise is a′.

2. if l a =↓ a, we prove that a is negative. The proof splits in two cases:

– if l a′ =↑ a′, then either a′ and a are different conclusions of the same ax-
iom l, or they are different doors of the same exponential box associated
with a link ! l. By induction a′ is positive, thus either it is the positive
conclusion of an axiom or it is the principal door of an exponential box.
In both cases we deduce that a is negative;

– if l a′ =↓ a′, then a′ is the premise of a link l and a is conclusion of l.
By induction a′ is negative, hence l can be a link O, ?c, ?d or !. Since
a, a′ have the same depth, l is not a link !, hence a is negative.

Once we have proved (*), let us suppose π is a polarized feasible cyclic struc-
ture, let us prove that π is visible cyclic.

Let φ be a feasible cycle satisfying 1,2 of (*). Let φ∗ be the path obtained
by reversing the direction of φ. Of course φ is still feasible, we prove that it is
indeed visible. Let <↑ a, ↓ b > be a passage of φ∗ through a box πo. Since φ
satisfies 1,2 then b is positive, hence it is the principal door of πo, that means a
leads to b. We conclude that φ∗ is a visible cycle of π. ut



A.2 Proof of Lemma 11

Proof (of Lemma 11). Let e1(d)
`e2(d) [D]. We prove the lemma by induction

on the exponential depth of π.
We define a sequence of visible paths φ1 ⊂ φ2 ⊂ . . . ⊂ φk, such that φ1 is

exactly <↑ d >, φk starts from ↑ d and ends in ↓ d′, for a conclusion of π d′, and
for each φj among φ1, . . . , φk:

1. φj is a visible path at depth 0;
2. for every edge c : C, if ↑ c ∈ φj then e1(c)

`e2(c) [C], if ↓ c ∈ φj then
e1(c)

ae2(c) [C].

Let us define φj+1 from φj , this last one supposed satisfying conditions 1 and
2. Let c : C be the last edge of φj . Then:

– in case ↓ c ∈ φj , by hypothesis c is an edge of π at depth 0 and e1(c)
ae2(c) [C]:

• if c is a premise of a link O with conclusion b : B, then e1(b)
ae2(b) [B].

We define φj+1 = φj∗ <↓ b >;
• if c is a premise of a link ⊗ with conclusion b : B and premises c :
C, a : A, in case e1(b)

ae2(b) [B], we define φj+1 = φj∗ <↓ b >; otherwise
e1(a)

`e2(a) [A], in this case we define φj+1 = φj∗ <↑ a >;
• if c is the premise of a link ?d with conclusion b :?C, then e1(b)

ae2(b) [?C].
We define φj+1 = φj∗ <↓ b >;

• if c is a premise of a link ?c with conclusion b, then both c, b are of type ?B
for a formula B, and e1(c) ⊆ e1(b), e2(c) ⊆ e2(b). Since e1(c)

ae2(c) [?B],
we deduce e1(b)

ae2(b) [?B]. We define φj+1 = φj∗ <↓ b >;
• if c is a premise of a link cut with premises c : C, b : C⊥, then e1(b)

`e2(b)
[
C⊥

]
,

so let φj+1 = φj∗ <↑ b >;
• if c is a conclusion of π, then we define φj as φk .

Notice that c cannot be the premise of a link !, since c is at depth 0.
Clearly φj+1 satisfies condition 2. Let us prove that it is visible.
At first, we prove that φj+1 is a switching path. Let b be the edge added to
φj for defining φj+1. If b is a switching edge of a link l, then we prove that
φj contains no premise of l. In fact suppose by absurdity that φj contains
a premise of l, then it contains the conclusion c of l (recall φj is switching
and l is a link O or ?c). Since e1(b)

ae2(b) we deduce e1(c)
ae2(c). Since φj

meets condition 2, ↓ c ∈ φj . That is, φj+1 has the following shape:

φj+1 = φ′j∗ <↓ c > ∗φ′′j ∗ <↓ b >

where no premise of l is in φ′′i . Hence <↓ c > ∗φ′′j ∗ <↓ b ↓ c > is a visible
cycle of π, which contradicts the visible acyclicity of π. We conclude that b
is not a switching edge of a link crossed by φj , thus φj+1 is switching.
At second, we prove that φj+1 is a visible path, i.e. that all its passages
though exponential boxes are allowed to visible paths. Actually remark that
φj+1 has the same passages though exponential boxes as φj , thus the asser-
tion is immediate from the visibility of φj .



– in case ↑ c ∈ φj , by hypothesis c is an edge of π at depth 0 and e1(c)
`e2(c) [C]:

• if c is the conclusion of a link ax with conclusions c : C, b : C⊥, then
e1(b)

ae2(b)
[
C⊥

]
. We define φj+1 = φj∗ <↓ b >;

• if c is the conclusion of a link O or ⊗, then there is a premise b : B s.t.
e1(b)

ae2(b) [B]. We define φj+1 = φj∗ <↑ b >;
• if c is the conclusion of a link ! o, let C =!A, a : A be the premise of
o and πo be the box of o. Since e1(c)

`e2(c) [!A], there are eo
1 ∈ e1(o),

eo
2 ∈ e2(o) such that eo

1(a)
`eo

2(a) [A]. By induction hypothesis on πo and
eo
1, e

o
2, there is a conclusion b :?B of πo (i.e. an auxiliary door of πo) and

a visible path in πo from ↑ a to ↓ b, s.t. eo
1(b)

aeo
2(b) [?B].

Since eo
1(b) ⊆ e1(b) and eo

2(b) ⊆ e2(b), we deduce e1(b)
ae2(b) [?B]. We

define φj+1 = φj∗ <↓ b >. Remark that c leads to b;
• if c is an auxiliary door of a box πo associated with a link ! o, let b :!B

be the conclusion of o and a : B be its premise. We split in two cases:

∗ in case e1(b) 6≡ e2(b) [!B], then either e1(b)
ae2(b) or e1(b)

`e2(b).
If e1(b)

ae2(b) [!B], we set φj+1 = φj∗ <↓ b >. Remark that c leads
to b, being this last one in the orbit of o.
If e1(b)

`e2(b) [!B], then there is eo
1 ∈ e1(o), e

o
2 ∈ e2(o) s.t. eo

1(a)
`eo

2(a) [B].
By induction hypothesis on πo and eo

1, e
o
2, there is a conclusion b′ :?B′

of πo and a visible path in πo from ↑ a to ↓ b′, s.t. eo
1(b

′) aeo
2(b

′) [?B′].
Since eo

1(b
′) ⊆ e1(b

′) and eo
2(b

′) ⊆ e2(b
′), we deduce eo

1(b
′) aeo

2(b
′) [?B′].

Remark that since by hypothesis e1(c)
`e2(c) [C], we are sure that b′

and c are different auxiliary doors of πo. Moreover, notice that c leads
to b′, being this last one in the orbit of o. Define φj+1 = φj∗ <↓ b′ >.

∗ in case e1(b) ≡ e2(b) [!B], then by definition of the neutrality there
is an enumeration e11, . . . , e

l
1 (resp. e12, . . . , e

l
2) of the experiments of

πo associated with o by e1 (resp. by e2), s.t. for each i ≤ l, ei
1(a) ≡

ei
2(a) [B]. Remark that l > 0, otherwise e1(c) ≡ e2(c).

On the other hand, since e1(c)
`e2(c) [C] and e1(c) = e11(c)+. . . e

l
1(c),

e2(c) = e12(c) + . . . el
2(c), there is an h ≤ l s.t. eh

1 (c) `eh
2 (c) [C].

Now we apply the induction hypothesis on πo, eh
1 , e

h
2 , so obtaining

a conclusion b′ : B′ of πo and a visible path from ↑ c to ↓ b′ s.t.
eh
1 (b′) aeh

2(b′) [B′]. Remark that b′ 6= a, since we are in the hypothesis
that eh

1(a) ≡ eh
2 (a) [B]. Thus in particular B′ =?D for a formula D.

By eh
1 (b′) aeh

2 (b′) [?D], we deduce e1(b
′) ae2(b

′) [?D]. Hence we set
φj+1 = φj∗ <↓ b′ >. Remark that c leads to b′, since there is a
visible path from c to b′.

• if c is the conclusion of a link ?d with premise b : B at depth 0, then
e1(b)

`e2(b) [B]. We define φj+1 = φj∗ <↑ b >;
• if c is the conclusion of a link ?c with premises at depth 0, then there is

a premise b : B s.t. e1(b)
ae2(b) [B]. We define φj+1 = φj∗ <↑ b >;

Remark that c cannot be conclusion of link ?w, since e1(c)
`e2(c) [C].

Of course φj+1 meets condition 2, let us prove that it is a visible path.
At first, remark that the proof that φj+1 is a switching path is similar to the
preceding case of ↓ c ∈ φj .



At second, notice that any time we have added to φj+1 a passage though an
exponential box (i.e. in the subcases where c was a door of an exponential
box) we have also proved that such a new passage is allowed to visible paths.
From that we conclude that φj+1 is a visible path.

Since π is visible acyclic, no φj is a cycle. Hence the sequence φ1, φ2, φ3, . . .
will meet eventually a conclusion d′ of π, so terminating in a path φk satisfying
the lemma. ut

A.3 Proof of Lemma 16

Before proving Lemma 16 let us state the following proposition:

Proposition 19. Let X be a non-uniform coherent space, x ∈ X s.t. x ≡ x [X ],
C be the nuCohX interpretation of a formula C. For any n ∈ N and (x, n)-simple

elements v, v′ of C, v `

a
v′ [C].

Proof. By induction on C. ut

Now we prove Lemma 16:

Proof (of Lemma 16). Let X , π, k, φ, n,m be as in the hypotheses of the lemma.
Notice that if ∃x, y, z ∈ X , s.t. x ≡ x [X ], x ay [X ] and x `z [X ], then for any

formula C, ∃yC , zC ∈ C s.t. yC = zC⊥ and for any (x, n)-simple element v in C
with degree less or equal m: v ayC [C] and v `zC [C] (it can be easily proved by
induction on C). From now on we fix for any formula C such yC and zC .

The proof of the lemma is by induction on the depth of π.
At first we define eφ by giving its values on the links ax and ! at depth 0:

links ax: let a : A be a conclusion of an axiom at depth 0, then:

– if ↑ a ∈ φ, eφ(a) = zA;
– if ↓ a ∈ φ, eφ(a) = yA;
– otherwise eφ(a) = s, where s is the stable (x, n)-simple element of A.

Notice that such a definition is consistent since φ is not a cycle, that is, if
↑ a ∈ φ then ↓ a /∈ φ, and vice-versa if ↓ a ∈ φ then ↑ a /∈ φ.

links !: let o be a link ! at depth 0, πo be the box of o and <↑ a1, ↓ b1 >, . . . ,
<↑ ah, ↓ bh > be the passages of φ through πo (for h ≥ 0). Remark that
h ≤ k ≤ n, since k is the maximal number of doors of a box of π and φ is
not a cycle.
Since φ is visible, for each i ≤ h, ai leads to bi. We associate with each
passage <↑ ai, ↓ bi > an experiment eo

φi
on πo as follows:

– if ↓ bi is the principal door, then eo
φi

= eπo

(x,n);
– if ↓ bi is an auxiliary door in the orbit of o, then let φi be a visible

path in πo from the premise of o to ↓ bi. By induction we may define an
experiment eφi

on πo satisfying conditions 1,2 with respect to πo and φi;



– if ↓ bi is an auxiliary door not in the orbit of o, then let φi be a visible
path in πo from ↑ ai to ↓ bi. By induction we may define an experiment
eφi

on πo satisfying condition 1,2 with respect to πo and φi.

Finally we define eφ on o as follows:

– if φ does not pass through the orbit of o:

eφ(o) = [eφ1
, . . . , eφh

] + (n− h)
[

eπo

(x,n)

]

– if φ passes through the orbit of o:

eφ(o) = [eφ1
, . . . , eφh

] + (m+ 1 − h)
[

eπo

(x,n)

]

At second we prove that eφ satisfies the conditions 1, 2 of the theorem. Let
c : C be an edge of π at depth 0, we prove 1, 2 by induction on the number of
edges at depth 0 above c (we write c′ ≥ c whenever c′ is above or equal c).

Base of induction: if above c there are no edges at depth 0, then c is conclusion
of a link among ax, ?w, or it is a door of a box:

– if c is conclusion of a link ax, then conditions 1, 2 are an immediate
consequence of the definition of eφ and propositions 19, 15;

– if c is conclusion of a link ?w, then notice that l c /∈ φ, since φ is a path
between two conclusions of the proof structure π, i.e. φ neither starts
nor stops in c. Hence condition 1 is immediately proved. For condition 2
remark that eφ(c) = ∅ and ∅ `

a
v [?B] for any element v ∈ B;

– if c is a principal door of a box πo associated with a link ! o, let b : B be
the premise of o (i.e. C =!B) and v = n [v′] be a (x, n)-simple element
of !B with degree less or equal m:

1. if ∃c′ ≥ c, l c′ ∈ φ, then clearly c = c′ (recall that φ is a path crossing
only edges at depth 0). In this case φ passes through the orbit of o,
so eφ(c) has m+ 1 elements. Since v has n elements and n ≤ m, we
deduce eφ(c) 6≡ v;

2. if ↓ c /∈ φ, we split in two cases, depending if φ passes or not through
the orbit of o:

• in case φ passes through the orbit of o, then it exists a visible
path φi associated with a passage of φ through the orbit of o.
Remark that ↑ b ∈ φi (since ↓ c /∈ φ), hence by definition of the
experiment eφi

associated with φi, we have both eφi
(b) 6≡ v′ (by

1) and eφi
(b) `

a
v′ (by 2), i.e. eφi

(b) `v′. Since eφi
(b) ∈ eφ(c), we

deduce eφ(c) `v;
• in case φ does not pass through the orbit of o, then let φ1, . . . ,
φh (h ≥ 0) be the visible paths associated with the passages
of φ through o. Since φ does not pass through the orbit of o,
for each i ≤ h, l b /∈ φi. Hence by definition of the experiment

eφi
associated with φi, we have eφi

(b) `

a
v′. Moreover recall that

eπo

(x,n) is the (x, n)-simple experiment on πo. By proposition 15,



eπo

(x,n)(b) is a (x, n)-simple element of B, hence by proposition 19,

eπo

(x,n)(b)
`

a
v′. Finally, since eφ(c) = [eφ1

(b), . . . , eφh
(b)] + (n −

h)
[

eπo

(x,n)(b)
]

, we deduce eφ(c) `

a
v.

– if c is an auxiliary door of a box πo associated with a link ! o, let v be a
(x, n)-simple element of C with degree less or equal m:
1. if ∃c′ ≥ c, l c′ ∈ φ, then clearly c′ = c (recall that φ is a path

crossing only edges at depth 0). In this case there is a door d of πo

s.t. <↑ c, ↓ d > or <↑ d, ↓ c > is a passage of φ through o. We split
in two cases, depending if φ passes or not through the orbit of o:
• in case φ passes through the orbit of o, then eφ(c) has at least
m+1 elements, while v has at most m elements, being of degree
less or equal m. Thus eφ(c) 6≡ v;

• in case φ does not pass through the orbit of o, let φi be the visible
path in πo between c and d. Of course l c ∈ φi, thus eφi

(c) 6≡ v′,
for any (x, n)-simple element v′ of C with degree less or equal m.
Now, suppose eφ(c) ≡ v and let us prove a contradiction. Since
eφi

(c) ⊆ eφ(c), there should be a subset v′ ⊆ v s.t. eφi
(c) ≡ v′,

but we have just proven eφi
(c) 6≡ v′, for any (x, n)-simple element

v′ of C with degree less or equal m. Hence we conclude eφ(c) 6≡ v;
2. if ↓ c /∈ φ, let φ1, . . . , φh (for h ≥ 0) be the visible paths in πo

associated with the passages of φ through o. Since ↓ c /∈ φ, then
for each i ≤ h, ↓ c /∈ φi, thus by the definition of eφi

, eφi
(c) `

a
v.

Moreover recall that eπo

(x,n) is the (x, n)-simple experiment on πo.

By proposition 15, eπo

(x,n)(c) is a (x, n)-simple element of C, hence

by proposition 19, eπo

(x,n)(c)
`

a
v. Finally, since eφ(c) = eφ1

(c) + . . .+

eφh
(c) + (n− h)

[

eπo

(x,n)(c)
]

, we deduce eφ(c) `

a
v.

Induction step: if above c there are edges at depth 0, then c is conclusion of
a link among O, ⊗, ?d, ?c:

– if c is conclusion of a link O with premises a : A, b : B, let v =< v′, v′′ >
be a (x, n)-simple element of C with degree less or equal m:
1. if ∃c′ ≥ c, l c′ ∈ φ, then ∃a′ ≥ a, l a′ ∈ φ or ∃b′ ≥ b, l b′ ∈ φ, thus

by induction eφ(a) 6≡ v′ or eφ(b) 6≡ v′′. In both cases eφ(c) 6≡ v;

2. if ↓ c /∈ φ, then ↓ a /∈ φ and ↓ b /∈ φ, thus by induction eφ(a) `

a
v′ and

eφ(b) `

a
v′′. Hence we deduce eφ(c) `

a
v.

– if c is conclusion of a link ⊗ with premises a : A, b : B, let v =< v′, v′′ >
be a (x, n)-simple element of C with degree less or equal m:
1. if ∃c′ ≥ c, l c′ ∈ φ, then eφ(c) 6≡ v by the same argument as in the

case of the link O;
2. if ↓ c /∈ φ, we split in three cases.

In case ↓ a ∈ φ, then ↑ b ∈ φ. Of course ↓ b /∈ φ, hence by induction
hypothesis 2, eφ(b) `

a
v′′. Moreover, by induction hypothesis 1 eφ(b) 6≡

v′′, thus eφ(b) `v′′. By symmetrical arguments, if ↓ b ∈ φ, we deduce
eφ(a) `v′. In both cases we have eφ(c) `v.



In case ↓ a, ↓ b /∈ φ, then by induction eφ(a) `

a
v′ and eφ(b) `

a
v′′,

which implies eφ(c) `

a
v.

– if c is conclusion of a link ?d then conditions 1,2 follow immediately by
induction;

– if c is conclusion of a link ?c with premises a, b, let v be a (x, n)-simple
element of C with degree less or equal m:

1. if ∃c′ ≥ c, l c′ ∈ φ, then ∃a′ ≥ a, l a′ ∈ φ or ∃b′ ≥ b, l b′ ∈ φ, thus
by induction eφ(a) 6≡ v′ or eφ(b) 6≡ v′, for any (x, n)-simple element
v′ of C with degree less or equal m. From that we conclude eφ(c) 6≡ v
by the same argument as in the case of c auxiliary door of a box;

2. if ↓ c /∈ φ, then ↓ a /∈ φ and ↓ b /∈ φ, thus by induction eφ(a) `

a
v and

eφ(b) 6≡ v. That is eφ(c) `

a
v.

ut

A.4 Proof of Lemma 17

Proof (of Lemma 17). Let X , π, k, n,m be as in the hypotheses of the lemma.
We prove the lemma by induction on the size of π.

Base of induction: if π has only links ax and ?w, then π is visible acyclic,
which is contrary to the hypotheses;

Induction step: if π has a terminal link l among O, ⊗, ?d, ?c, !, then we split
in five cases:

– if l is a link O with conclusion c : AOB and premises a : A, b : B, define
π′ from π by erasing l and its conclusion. Suppose Π = AOB,Π ′′, hence
Π ′ = A,B,Π ′′ are the conclusions of π′. Of course π′ has a visible cycle,
thus by induction hypothesis there is an experience e′ : π′, s.t. for any
(x, n)-simple element v′ in OΠ ′ with degree less or equal m, |e′| `v′.
We define e : π as the straightforward extension of e′ : π′ to the missing
edge c, i.e. for any π edge d at depth 0:

e(d) =

{
e′(d) if d ∈ π′

< e′(a), e′(b) > if d = c

Let now v be a (x, n)-simple element in OΠ with degree less or equal to
m. Since Π = AOB,Π ′′, we may write v =< v1, v2, v3 >, where v1, v2
and v3 are (x, n)-simple elements resp. in A, B and Π ′′ with degree less
or equal to m. By hypothesis |e′| `v, hence of course |e| `v;

– if l is a link ⊗ with conclusion c : A⊗B and premises a : A, b : B, define
π′ from π by erasing l and its conclusion. Suppose Π = A⊗B,Π ′′, hence
Π ′ = A,B,Π ′′ are the conclusions of π′.
In case π′ has a visible cycle, then the assertion follows by induction
hypothesis like in the case l is a O.
In case π′ is visible acyclic, then all the visible cycles of π crosses the
link l erased in π′. In this case there is a visible path φ in π′ from ↑ a to
↓ b or from ↑ b to ↓ a, s.t. φ is not a cycle. Let us suppose φ is from ↑ a



to ↓ b (the other case is symmetric). By lemma 16 there is an experiment
e′ : π′ s.t. for any (x, n)-simple elements v1 and v3 resp. in A and OΠ ′

with degree less or equal m: e′(a) `v1, and < e′(c1), . . . , e
′(ck) > `

a
v3

(where c1, . . . , ck are the conclusions of π′ different from a, b).
We define e : π as the straightforward extension of e′ : π′ to the missing
edge c, i.e. for any π edge d at depth 0:

e(d) =

{
e′(d) if d ∈ π′

< e′(a), e′(b) > if d = c

Let now v be a (x, n)-simple element in OΠ with degree less or equal to
m. Since Π = A⊗B,Π ′′, we may write v =<< v1, v2 >, v3 >, where v1,
v2 and v3 are (x, n)-simple elements resp. in A, B and Π ′′ with degree
less or equal to m. By the hypothesis on e′ and the incoherence definition
in the ⊗ space, we deduce |e| `v;

– if l is a link ?d, then the case follows straightforwardly by induction
hypotheses;

– if l is a link ?c with conclusion c :?B and premises a :?B, b :?B, define
π′ from π by erasing l and its conclusion. Suppose Π =?B,Π ′′, then π′

has conclusions Π ′ =?B, ?B,Π ′′.
Of course π′ has a visible cycle, hence by induction there is an experiment
e′ : π′, s.t. for any (x, n)-simple element v′ in OΠ ′ with degree less or
equal to m, |e′| `v′.
We define e : π as the immediate extension of e′ : π′ to the missing edge
c, i.e. for any π edge d at depth 0:

e(d) =

{
e′(d) if d ∈ π′

e′(a) + e′(b) if d = c

Let now v be a (x, n)-simple element in OΠ with degree less or equal to
m. Since Π =?B,Π ′′, we may write v =< v1, v2 >, where v1 (resp. v2)
is a (x, n)-simple element in ?B (resp. in OΠ ′) with degree less or equal
to m.
Firstly, let us prove |e| `

a
v [OΠ ]. Define v′ =< v1, v1, v2 >, which is a

(x, n)-simple element in OΠ ′ with degree less or equal to m. By hypoth-

esis |e′| `v′. Hence we deduce |e| `

a
v.

Secondly, let us prove |e| 6≡ v. Suppose |e| ≡ v and let us prove a con-
tradiction. Under such a supposition, ∃va, vb ⊆ v1, e

o(a) ≡ va and
eo(b) ≡ vb. Define v′ =< va, vb, v2 > and remark that v′ is a (x, n)-
simple element in OΠ ′ with degree less or equal m. By the definition of
the neutrality, |e′| ≡ v′, which is contrary to the hypothesis on |e′|. Thus
we conclude |e| 6≡ v;

– if l is a link !, then let πl be the box of l, a :!A (resp. a′ : A) be the
conclusion (resp. premise) of l, b1 :?B1, . . . bh :?Bh be the auxiliary doors
of πl, c1 : C1, . . . , ct : Ct be the conclusions of π which are not doors of
πl, i.e. Π =!A, ?B1, . . .?Bh, C1, . . . , Ct.
Define π′ from π by substituting the link l with its box πl. Of course π′

has conclusions Π ′ = A, ?B1, . . . , ?Bh, C1, . . . , Ct.



Remark that π′ has a visible cycle, since no visible cycle of π passes
through the box of l, being l terminal. By induction there is an experi-
ment e′ : π′, s.t. for any (x, n)-simple element v′ in OΠ ′ with degree less
or equal m, |e′| `v′.
We define e : π′ be the extension of e′ taking value n [e′] on the link ! l,
i.e. for any edge d if π at depth 0:

e(d) =







e′(d) if d is not a door of πl

n [e′(a′)] if d = a
ne′(bi) if d = bi

Remark that:

|e′| =< e′(a′), e′(b1), . . . , e
′(bh), e′(c1), . . . , e

′(ct) >

|e| =< n [e′(a′)] , ne′(b1), . . . , ne
′(bh), e′(c1), . . . , e

′(ct) >

Let now v be a (x, n)-simple element in OΠ with degree less or equal m.
We may write:

v =< n [v0] , v1, . . . , vh, w1, . . . , wt >

where v0, vi for each i ≤ h and wj for each j ≤ t are (x, n)-simple
elements resp. in A, ?Bi and Cj with degree less or equal to m.

Firstly, let us prove |e| `

a
v [OΠ ]. Define v′ =< v0, v1, . . . , vh, w1, . . . , wt >

and remark that v′ is a (x, n)-simple element in OΠ ′ with degree less or

equal tom. Thus by hypothesis |e′| `

a
v′ [OΠ ′], which implies |e| `

a
v [OΠ ].

Secondly, let us prove |e| 6≡ v. Suppose |e| ≡ v and let us prove a
contradiction. Under such a supposition, e′(a) ≡ v0, for each j ≤ t,
e′(cj) ≡ wj , and for each i ≤ h, ∃v′i ⊆ vi, e

o(bi) ≡ v′i. Define v′ =<
v0, v

′

1, . . . , v
′

h, w1, . . . , wt > and remark that v′ is a (x, n)-simple element
in OΠ ′ with degree less or equal m. By the definition of the neutrality,
|e′| ≡ v′, which is contrary to the hypothesis on |e′|. Thus we conclude
|e| 6≡ v.

ut

A.5 Proof of Theorem 18

A cut l can be of the following type:

(ax): if one premise of l is conclusion of an axiom;
(O/⊗): if the premises of l are conclusions of resp. a O and a ⊗;
(!/?d): if the premises of l are conclusions of resp. a ! and a ?d at the same depth

as l;
(!/?w): if the premises of l are conclusions of resp. a ! and a ?w at the same

depth as l;
(!/?c): if the premises of l are conclusions of a ! and a ?c at the same depth as l;



(!/!): if one premise of l is conclusion of a ! and the other is an auxiliary door
of an exponential box at the same depth as l.

The cut reduction rules are defined in Figure 9 (see [3] for the details).

Definition 20. Let π  β π′, any edge a′ : A of π′ comes from at most two
(resp. at least one) edges of π, that we call the ancestors of a′. Remark that a′

has more than one ancestor only in case π′ is the result of a cut reduction (ax)
and a′ is the superposition of a conclusion of the erased axiom and a premise of
the erased cut.

Conversely, we define the residues of a as those edges of π′ which have a as
ancestor. Remark that a can have 0, 1 or 2 residues, since the cut reduction can
erase or duplicate part of π.

Proof (of Theorem 18). Let π  β π
′, we prove that any visible cycle in π′ is the

”residue” of a visible cycle in π. From that the theorem easily follows.
The proof splits in six cases, depending on which is the cut reduction step

applied in π  β π
′. We treat only the case of a (!/!)-reduction, being the others

straightforward.
Let π′ be the result of a (!/!)-reduction of π, <l a′1, . . . , l a

′

n > be a path of
π′ which does not cross the cut m, an−1, an be the (unique) ancestors in π of
resp. a′n−1. We define by recursion on n a path α(<l a′1, . . . , l a

′
n >) of π, as

follows:

– if l a′n−1 =↑ a′n−1 and l a′n =↑ a′n, then a′n−1 is conclusion of a link l and
an is premise of l. Define:

α(<l a′1, . . . , l a
′

n >) = r(<l a′1, . . . , l a
′

n−2, ↑ a
′

n−1 >)∗ <↑ an >

– if l a′n−1 =↑ a′n−1 and l a′n =↓ a′n, then either a′n−1 and a′n are different
conclusions of the same link l, or they are different doors of the same expo-
nential box associated with a link ! l. Let o be the link ! whose box has been
modified by the (!/!)-reduction, as in Figure 9. We split in two cases:

• if l 6= o, define:

α(<l a′1, . . . , l a
′

n >) = α(<l a′1, . . . , l a
′

n−2, ↑ a
′

n−1 >)∗ <↓ an >

• if l = o, then we split further in two subcases:
∗ if an−1, an are doors of the same box in π, define:

α(<l a′1, . . . , l a
′

n >) = α(<l a′1, . . . , l a
′

n−2, ↑ a
′

n−1 >)∗ <↓ an >

∗ if an−1 (resp. an) is a door of the box πo (resp. πu) associated with
the link ! o (resp. u) in π, define:

α(<l a′1, . . . , l a
′

n >) = α(<l a′1, . . . , l a
′

n−2, ↑ a
′

n−1 >)∗ <↓ b, ↑ c, ↓ an >
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. . . . . .
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Fig. 9. Cut reduction of MELL



∗ if an−1 (resp. an) is a door of the box πu (resp. πo) associated with
the link ! u (resp. o) in π, define:

α(<l a′1, . . . , l a
′

n >) = α(<l a′1, . . . , l a
′

n−2, ↑ a
′

n−1 >)∗ <↓ c, ↑ b, ↓ an >

– if l a′n−1 =↓ a′n−1 and l a′n =↓ a′n, then a′n−1 is the premise of a link l and
a′n is conclusion of l. Define:

α(<l a′1, . . . , l a
′

n >) = α(<l a′1, . . . , l a
′

n−2, ↓ a
′

n−1 >)∗ <↓ an >

– if l a′n−1 =↓ a′n−1 and l a′n =↑ a′n, then a′n−1 and a′n are different premises
of the same link l. Remark that by hypothesis l cannot be the cut m. Define:

α(<l a′1, . . . , l a
′

n >) = α(<l a′1, . . . , l a
′

n−2, ↓ a
′

n−1 >)∗ <↑ an >

It is simple to prove that if <l a′1, . . . , l a
′

n > is a (visible) cycle of π′, then
α(<l a′1, . . . , l a

′
n >) is a (visible) cycle of π, from which follows the theorem.

ut


