Volume of multiplicative formulas and
provability

Francois Métayer*

Abstract

In [Met], we introduced a homological condition of correctness for
paired-graphs. As an application of this result, we establish here new
conditions of provability in multiplicative linear logic, by defining the
volume of a formula. We also extend the complexity results of [Kan]
and [LW] to abstract graphs.

1 Introduction

This paper introduces a correspondance between modules with a given border
(see sect.2) and subspaces of an euclidian space, in such a way that the
correct pasting of two modules My and M, along their common border can
be expressed by an equation

a(X1, X3) =X

Here X; denotes the subspace associated with M;, a is a geometrical invariant
of a pair of subspaces, and A is a constant depending on M; and M, as
separate modules, not on the way they are pasted together.

Since this interpretation stems from the homological correctness criterion
we introduced in [Met], we first recall the main definitions and results of this
paper. Let G be a graph. A pair of G is a pair of edges having a unique
vertex in common. A paired-graph (pg) is an ordered pair (G, P) where (i is a
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graph and P = P((G) is a set of mutually disjoint pairs of G. The motivation
for considering this notion is that proof-structures in multiplicative linear
logic (see [Girl]) can be seen as pg’s, where pairs correspond to par-links.
We denote by V(G) (resp. E((G)) the set of vertices (resp. edges) of GG. We
call an edge a paired-edge if it belongs to a pair, and a free edge otherwise.
Now a morphism f: G — G’ is a map V(G) — V(G'), x — ', such that,
if uv is a free edge, u'v’ is free, or v’ = o', and, if {uw,vw} is a pair, then
{v'w',v'w'} is a pair, or v’ = v/ = w'. Abstract proof-nets can be defined
in this setting: let Gy, G5 be pg’s, u € V(G4), v € V(G3). We denote by
t(Gh, Ga,u,v) = Gy 11 G2 /u ~ v the graph obtained by identifying v and v
in the disjoint reunion of Gy and G;. Likewise, if GG is a pg with distinct
vertices u and v, we denote by p(G, u,v) the graph obtained by adjoining a
new vertex w, and a new pair {uw,vw} (fig.1).

G Gy G

fig.1

The smallest class of pg’s containing trees (connected, acyclic graphs,
without pairs), and closed by t and p is the class of proof-nets. The starting
point of [Met] is the following remark: a paired-graph (7, just like an ordinary
one, gives rise to a complex of abelian groups:

0 — (@) L C(@) = Z — 0
where Co(() = Z[V(G)] and C1(G) is the subgroup of Z[E(G)] generated by

the free edges and the elements e+ e* where e runs over paired edges. J is the
restriction to C1(() of the boundary morphism defined by d(uv) = v—u, and
¢ is the augmentation morphism defined by €(u) = 1 for each vertex u. Notice
that edges have to be oriented in order to define 9. The only requirement is
that, in each pair, both edges point towards their common vertex, or both in
the opposite direction. Since ed = 0 we can define homology groups Ho(G) =
kere/imd and H,(G) = ker d. Morphisms have been defined such that each
f: G — @' determines morphisms of groups f¢ : H;(G) — H;(G'"), for
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1 = 1,2, making H; a functor from paired-graphs to abelian groups. As an
example, the reader may check that if V(G) = {u,v,w}, E(G) = {uw,vw,uv}
and P(G) = {{vw,vw}}, then H1(G) =0 and Ho(G) = Z /27 (fig.2).

w
fig.2

The relevance of this homology lies in the fact that it characterizes proof-
nets among arbitrary paired-graphs, as shown by the main result of [Met]:

Theorem 1.1 G is a proofnet if and only if H\(G)) = 0 and card Hy(G) = 27,
where p = card P(G).

It should be pointed out that, for each graph G, not necessarily a proof-
net, satisfying H;(G) = 0 and Ho(G) finite, the cardinal of Ho(G) cannot be
greater than 2°2%(%) Finally, if G is a paired-graph and K a subgraph of @
we may define relative homology groups H;,(G, F') for i = 1, 2, as usual: with
the above notations, we denote by C;(G, K) the factor group C;(G)/C;(K).
Now 4 induces J:

0 — (G K) L Co(G.K) —s 0
so that Ho(G, K) = Co(G, K)/imd and H,(G, K) = ker 0.

2 Modules

Let M, N, and F be paired-graphs, and F-ZsM, F-"+N be injective mor-
phisms. M *p N is defined, up to isomorphism, by the following pushout
diagram:

r = M
Lo L
N - MxpN
We only consider the case where (1) M NN = F (as subgraphs of M *p
N) and (2) F' is a set of vertices. As in [Tro], we say that M and N are
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connectable along F' if M xp N is a proofnet (fig.3). We are asking under
which conditions two graphs M and N are connectable.

In fact, we can restrict our attention to modules, in the following sense:

Definition 2.1 A module is an ordered pair (M, F') where M is a graph and
F is a subgraph of M consisting of vertices only, such that Hi(M) = 0 and
Ho(M, F) is a finite group. We call F' the border of the module.

It should be noticed that 2.1 is not strictly equivalent with the definition
of [Tro] but it is better suited to our homological approach. Now the above
injections m and n give rise to morphisms

and

Ho(F)-=sHo(N)

If F' has k + 1 vertices, we get Ho(F) = Z* and a Mayer-Vietoris exact
sequence

0 — ZF % Hy(M)e H(N) % HyG@) — 0 (1)

By using the homological correctness criterion of [Met]|, we can show:

Proposition 2.2 Let (M, F') and (N, F') be two modules, and was (resp. wn)
the number of pairs in M (resp. N ). They are connectable if and only if

card Ho(M, F) x card Hy(N, F) x [Ho(F) : ker m, @ kern,] = 2™ %™~ (2)

Notice that (2) implicitely contains the conditions: kerm, Nkern, = 0
and: rank(ker m, & kern,) = rank Ho(F).
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To each multiplicative formula A we associate as usual a binary tree M,
which can be seen as a paired-graph where pairs represent the par connectives
of A. The vertices of M correspond to the subformulas: in particular, vertices
of degree 1 are associated to the atomic subformulas, and form a subgraph
F. There is a unique vertex of degree 2, which is associated to the whole
formula and is the root of M. Then (M, F') is a module. Such an M will be
called a graph of formula (gf). The number of vertices in the border F'is the
size of M and will be denoted by 73s. Clearly, if A is provable, then 7y = 2k.

Let M be a gf of size 2k. 1t is called provable if and only if we can obtain
a proofnet by adjoining k disjoint edges having their vertices in F'. In other
words, if Ny denotes the graph of & disjoint edges, M is provable if and
only if there is an injection n : ' — Ny such that (M, F) and (Ng, F) are
connectable. As a consequence of the finiteness of [Ho(F') : ker m, & ker n,|
in (2), we find again a well-known condition of provability:

Proposition 2.3 If M is provable, Tpy = 2mps.

Before we turn to more interesting conditions, we briefly investigate the
complexity of the decision problem for gf’s.

3 Complexity
We sketch here the proof of the following result:
Theorem 3.1 The decision problem for graphs of formulas is NP-complete.

Kanovich has proved NP-completeness for the full propositional fragment
of multiplicative linear logic [Kan], and the same is true for the neutral
fragment, as shown by Lincoln and Winkler [LW]. We reduce our problem
to the latter in two steps.

Step 1: encoding of the neutrals in the fragment L(a), whose formulas are
builded with literals a and a* only. We translate neutrals in L(a) as follows:

o 1° = czpaL and 1°=a® at.
e For all formulas A and B, (ApB)° = A°pB° and (A® B)° = A°® B°.
o For each sequent I' = Ay,... A, I'° = A5, ... A’

p

Then

Lemma 3.2 The translation A — A° is sound and faithful.
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Step 2: encoding of L(a) in (abstract) gf’s.

For each formula A € L(a), we denote its graph by M4. Let B =
(apa)p(apa) and A* = A[B/a; B*/a*]. Then we define T4y = Mas. Re-
call that a formula is balanced if it has the same number of occurences of a
and at. We can prove

Lemma 3.3 A balanced formula A is provable in L(a) if and only if the gf
Ty is provable.

Proof. Suppose first that A is provable (hence balanced). Then A* is prov-
able, as well as its gf, which is precisely T'4.

Suppose conversely that A is a balanced formula such that 7' = T4 is
provable.

If M = My, 7af = 2k hence 77 = 8k. Let ' = Fg; be the border of
T and N' = Ny,. By hypothesis, there is an injection F'-2sN' such that
G =T #¢ N'is a proofnet.

Thus 277 = 77 = 8k but 7y = mp — 3k = k hence Ho(M) = Z*. On the
other hand G = M *z N where F'is the border of M and N = G\ M, which
is obtained by pasting together N' with & copies of Mg and k copies of Mz
along F''. If we now chose a switching ¢ of N we know that G7 = M xp N°
is again a proofnet. By (1) we get

rank(Ho(M)) 4 rank(Ho(N?)) = rank(Ho(F)) = 2k — 1
hence also rank(Ho(N?)) = k — 1. Then N7 is an ordinary graph having k

connected components.

Now the vertices of F'' are distibuted in sets of four vertices, according

to the graphs Mp or Mz where they belong. We denote these sets by

X; =A{an,aiz,a;3,a;4} for i=1,...k

Y; = {aﬁ,aﬁ,a%,a]ﬂ} for 7=1,...,k
where X; (resp. Y)) is the border of M; = Mp (resp. ZWJ.L >~ Mz). s; (resp.
S]J‘) will be the root of M; (resp. M]-L).

Let X = U; X; and Y = |J;Y;. The edges of N' induce a partition of
X UY in pairs. Two vertices of Y cannot belong to the same pair, otherwise
(¢ has a cycle in contradiction with H;(G) = 0.

By card(X) = card(Y) = 4k, all pairs consist of a vertex of X and a
vertex of Y. This gives a bijective mapping ¢ : X — Y. Consider now
¢ : {l,....,k} — P({1,...,k}) which associates to each index i the set
{j/¢*(Xi)NY; #0}. Let I be any subset of {1,...,k}, we verify that

card(U (1)) > card(])

el
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Indeed, if C' = U;c; (4):

*(UX)c Uy

€l JjeC

Since X; and Y; are pairwise disjoint sets of four elements and ¢ is bijective,
the cardinals in the above inclusion are respectively 4 x card(/) and 4 x
card(C). This proves the inequality.

Now the wedding lemma (see [Hal, p.48]) applies, giving an injective—
hence bijective— from {1,...,k} in itself such that, for all ¢, ¥(i) € ®(s).
We can chose in each X; a vertex z; such that ¢(z;) € Yy). Take in each
M, the switching connecting s; to x; (in M;). It induces a switching oo of
N such that for all 7 € {1,...,k}, s; and Si‘(i) are in the same connected
component of N?°. But this graph has k connected components; each one
can be replaced by a unique edge sisi(i) (fig.4). The result is a proof of A.o

Si Sy(i)
fig.4

We get 3.1 as an immediate consequence. The problem belongs to NP:
given (M, F') of size 2k and F-25 Ny, the correctness of Mg N}, is decidable in
polynomial time (in k). As regards completeness, the composition of the two
translations A — A° — T'4o reduces polynomially the decision problem
for neutrals to the problem for gf’s. But the former is already NP-complete.

4 Volume of modules and formulas

The complexity result we have just proved opposes a simple characterization
of provable gf’s. It is however possible to improve 2.3, as we shall see. Let
(M, F) be a module, with F' = {s;,...,s} and F-"+M the inclusion mor-
phism. Recall that Ho(F) = Z'™", and if rank Ho(M) = p, then kerm, = Z"
where r =1 —1— p.
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Now A = (s1,...,5) can be seen as the canonical basis of £ = R’ so that
Ho(F') becomes a discrete subgroup of the hyperplane:

L: x4 4+2=0

If e, = s; — s, then B = (€;)1<i<i—1 is a basis of L. If we provide F with
its canonical (w.r.t A) scalar product (,), the volume of a family of vectors
v1,...,0, is well defined: it will be denoted by |[v,...,v,| (see [Ber]). In
particular, if (my,...,m,) is a Z-basis of kerm., ||m1,...,m,|| only depends
on M and F', so that we may define:

Definition 4.1 The volume of M, denoted by || M| is the volume of any
Z-basis of ker m,.

Let M; and M; be two modules with common border F' = {sy,...,s;} and
FsM; the inclusion morphism. Let p; = mys, and d; = card(Ho(M;, F)).
By 2.2 M; and M3 are connectable if and only if

P12
[Ho(F) : kerm] & kerm?] = (3)
dydy
If (my,...,m} ) and (m?,...,m?2)) are Z-bases of kerm, and kerm? re-

spectively, then r; 4+ ro =1 — 1 and the left member of (3) is

M5

I1B]

ml ... m
ilam%,...,mQ) — ” 13 s

‘detg(mi, c,m

and we may rewrite (3) as

2P1+p2 \/Z
did,

1

Hmi,...,mm,m%,...,méﬂ =

On the other hand

[y, .o mp,my, . ome || = a | M[]| Ma||

where a only depends on the vector spaces X; and X, generated in L by
kerm! and ker m! respectively.

The precise value of a is defined as follows: if Y and Z are subspaces of
an euclidian space and if py denotes the orthogonal projector on Y, we may
consider py o py as an endomorphism u of Y—by restriction to Y. Then

detu > 0 and if
a(Y,7Z) = Vdetu

we have

a= a(XlaXQJ_) = a(X%XlL)

Thus, with the above notations
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Theorem 4.2 The correctness of My g My is expressed by an equation:
a(Xl,XQL) =\
where X only depends on My and My separately.

We now apply the previous results to the particular case of formulas.
Here My, = M is a gf of size [ = 2k and My = Ny = N. Then p; = mpyy—and
we may suppose that p; = k by 2.3—p; =0, d; = 2" and d, = 1. We also
denote m = my, n = my, Xy = X and X; =Y.

A few calculations show that, with the above notations,

Proposition 4.3 A gf (M, F') is provable if and only if there is ann : F' —»
N such that
a(Xi, X3)| M| = (V2)* 7" VE (4)

Any bound a(X,Y*) < A independent of n gives a necessary condition
of provability for M of the form:

(\/ﬁ)k—Qh-}—l\/E

M| >
) =

Consider for instance

A= (((apla® a)) ® a)p(a @ a))p(((atpat)p(atpat)) @ (a* @ a'))

For M = My, according to 4.1, | M| = 4v/33. Now formulas of the form
@' o®" where @ (resp. ®”) has k atoms of type a (resp. a') verify

Thus M can be provable only if
1M > 2"V

but here k = 6 and h = 2, so that 257"k = 1616 > 41/33. Hence M is not
provable, although it satisfies 7yy = 2myy.

Let us examine more generally the problem of finding a proof of a given
gf M of size 2k, if it exists. In the euclidian space L, M defines a subspace X
generated by ker m,. Each partition p of F' in pairs determines an injection
n? 1 ' — Ni, and consequently a subspace Y? generated by kern?. Now
every correct choice (i.e. giving an actual proof) mazimizes a(X*,Y?) over
all possible p’s. Therefore, the decision problem for M amounts to calculate

max a( X+, Y?)
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and verify that this maximum satisfies (4) in 4.3.

The group Sy; of permutations of F' can be seen as the subgroup Ajx_q
(see [Hum, p.5]) of isometries of L generated by the reflections associated to
tranpositions of vertices. It acts transitively on the above set of subspaces Y”.
If we chose an arbitrary Yy = Y”, we must solve the optimization problem
for

g a(X*, gYp)

over Agp—1. We may then ask if there is any small set of generators of Agp_y
for which successive approximations provide the right answer, at least for a
wide class of formulas.
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