Volume of multiplicative formulas and provability

François Métayer*

Abstract

In [Met], we introduced a homological condition of correctness for paired-graphs. As an application of this result, we establish here new conditions of provability in multiplicative linear logic, by defining the volume of a formula. We also extend the complexity results of [Kan] and [LW] to abstract graphs.

1 Introduction

This paper introduces a correspondence between modules with a given border (see sect.2) and subspaces of an euclidian space, in such a way that the correct pasting of two modules M_1 and M_2 along their common border can be expressed by an equation

$$a(X_1, X_2^{\perp}) = \lambda$$

Here X_i denotes the subspace associated with M_i , a is a geometrical invariant of a pair of subspaces, and λ is a constant depending on M_1 and M_2 as separate modules, not on the way they are pasted together.

Since this interpretation stems from the homological correctness criterion we introduced in [Met], we first recall the main definitions and results of this paper. Let G be a graph. A pair of G is a pair of edges having a unique vertex in common. A paired-graph (pg) is an ordered pair (G, \mathcal{P}) where G is a

^{*}Équipe de Logique, Université Paris VII–CNRS, 45-55, 5ème étage, 2 place Jussieu 75251 PARIS Cedex 05 FRANCE. e-mail: metayer@logique.jussieu.fr

graph and $\mathcal{P} = \mathcal{P}(G)$ is a set of mutually disjoint pairs of G. The motivation for considering this notion is that proof-structures in multiplicative linear logic (see [Gir1]) can be seen as pg's, where pairs correspond to par-links. We denote by $\mathcal{V}(G)$ (resp. $\mathcal{E}(G)$) the set of vertices (resp. edges) of G. We call an edge a paired-edge if it belongs to a pair, and a free edge otherwise. Now a $morphism\ f: G \longrightarrow G'$ is a map $\mathcal{V}(G) \longrightarrow \mathcal{V}(G'), \ x \mapsto x'$, such that, if uv is a free edge, u'v' is free, or u' = v', and, if $\{uw, vw\}$ is a pair, then $\{u'w', v'w'\}$ is a pair, or u' = v' = w'. Abstract proof-nets can be defined in this setting: let G_1, G_2 be pg's, $u \in \mathcal{V}(G_1), v \in \mathcal{V}(G_2)$. We denote by $t(G_1, G_2, u, v) = G_1 \coprod G_2/u \sim v$ the graph obtained by identifying u and v in the disjoint reunion of G_1 and G_2 . Likewise, if G is a pg with distinct vertices u and v, we denote by p(G, u, v) the graph obtained by adjoining a new vertex w, and a new pair $\{uw, vw\}$ (fig.1).

fig.1

The smallest class of pg's containing trees (connected, acyclic graphs, without pairs), and closed by t and p is the class of *proof-nets*. The starting point of [Met] is the following remark: a paired-graph G, just like an ordinary one, gives rise to a complex of abelian groups:

$$0 \longrightarrow C_1(G) \stackrel{\partial}{\longrightarrow} C_0(G) \stackrel{\epsilon}{\longrightarrow} \mathbf{Z} \longrightarrow 0$$

where $C_0(G) = \mathbf{Z}[\mathcal{V}(G)]$ and $C_1(G)$ is the subgroup of $\mathbf{Z}[\mathcal{E}(G)]$ generated by the free edges and the elements $e + e^*$ where e runs over paired edges. ∂ is the restriction to $C_1(G)$ of the boundary morphism defined by $\partial(uv) = v - u$, and ϵ is the augmentation morphism defined by $\epsilon(u) = 1$ for each vertex u. Notice that edges have to be oriented in order to define ∂ . The only requirement is that, in each pair, both edges point towards their common vertex, or both in the opposite direction. Since $\epsilon \partial = 0$ we can define homology groups $H_0(G) = \ker \epsilon / \operatorname{im} \partial$ and $H_1(G) = \ker \partial$. Morphisms have been defined such that each $f: G \longrightarrow G'$ determines morphisms of groups $f_*^i: H_i(G) \longrightarrow H_i(G')$, for

i = 1, 2, making H_i a functor from paired-graphs to abelian groups. As an example, the reader may check that if $\mathcal{V}(G) = \{u, v, w\}, \mathcal{E}(G) = \{uw, vw, uv\}$ and $\mathcal{P}(G) = \{\{uw, vw\}\}$, then $H_1(G) = 0$ and $H_0(G) = \mathbb{Z}/2\mathbb{Z}$ (fig.2).

fig.2

The relevance of this homology lies in the fact that it characterizes proofnets among arbitrary paired-graphs, as shown by the main result of [Met]:

Theorem 1.1 G is a proofnet if and only if $H_1(G) = 0$ and card $H_0(G) = 2^p$, where $p = \operatorname{card} \mathcal{P}(G)$.

It should be pointed out that, for each graph G, not necessarily a proofnet, satisfying $H_1(G) = 0$ and $H_0(G)$ finite, the cardinal of $H_0(G)$ cannot be greater than $2^{\operatorname{card} \mathcal{P}(G)}$. Finally, if G is a paired-graph and K a subgraph of G we may define relative homology groups $H_i(G, F)$ for i = 1, 2, as usual: with the above notations, we denote by $C_i(G, K)$ the factor group $C_i(G)/C_i(K)$. Now ∂ induces $\overline{\partial}$:

$$0 \longrightarrow C_1(G,K) \stackrel{\overline{\partial}}{\longrightarrow} C_0(G,K) \longrightarrow 0$$

so that $H_0(G, K) = C_0(G, K) / \operatorname{im} \overline{\partial}$ and $H_1(G, K) = \ker \overline{\partial}$.

2 Modules

Let M, N, and F be paired-graphs, and $F \xrightarrow{m} M$, $F \xrightarrow{n} N$ be injective morphisms. $M *_F N$ is defined, up to isomorphism, by the following pushout diagram:

$$\begin{array}{ccc}
F & \xrightarrow{m} & M \\
\downarrow^{n} & & \downarrow^{i} \\
N & \xrightarrow{j} & M *_{F} N
\end{array}$$

We only consider the case where (1) $M \cap N = F$ (as subgraphs of $M *_F N$) and (2) F is a set of vertices. As in [Tro], we say that M and N are

connectable along F if $M *_F N$ is a proofnet (fig.3). We are asking under which conditions two graphs M and N are connectable.

In fact, we can restrict our attention to modules, in the following sense:

Definition 2.1 A module is an ordered pair (M, F) where M is a graph and F is a subgraph of M consisting of vertices only, such that $H_1(M) = 0$ and $H_0(M, F)$ is a finite group. We call F the border of the module.

It should be noticed that 2.1 is not strictly equivalent with the definition of [Tro] but it is better suited to our homological approach. Now the above injections m and n give rise to morphisms

$$H_0(F) \xrightarrow{m_*} H_0(M)$$

and

$$H_0(F) \xrightarrow{n_*} H_0(N)$$

If F has k+1 vertices, we get $H_0(F) \cong \mathbf{Z}^k$ and a Mayer-Vietoris exact sequence

$$0 \longrightarrow \mathbf{Z}^k \stackrel{\phi}{\longrightarrow} H_0(M) \oplus H_0(N) \stackrel{i_*+j_*}{\longrightarrow} H_0(G) \longrightarrow 0 \qquad (1)$$

By using the homological correctness criterion of [Met], we can show:

Proposition 2.2 Let (M, F) and (N, F) be two modules, and π_M (resp. π_N) the number of pairs in M (resp. N). They are connectable if and only if

$$\operatorname{card} H_0(M, F) \times \operatorname{card} H_0(N, F) \times [H_0(F) : \ker m_* \oplus \ker n_*] = 2^{\pi_M + \pi_N} \quad (2)$$

Notice that (2) implicitely contains the conditions: $\ker m_* \cap \ker n_* = 0$ and: $\operatorname{rank}(\ker m_* \oplus \ker n_*) = \operatorname{rank} H_0(F)$.

To each multiplicative formula A we associate as usual a binary tree M, which can be seen as a paired-graph where pairs represent the par connectives of A. The vertices of M correspond to the subformulas: in particular, vertices of degree 1 are associated to the atomic subformulas, and form a subgraph F. There is a unique vertex of degree 2, which is associated to the whole formula and is the root of M. Then (M, F) is a module. Such an M will be called a graph of formula (gf). The number of vertices in the border F is the size of M and will be denoted by τ_M . Clearly, if A is provable, then $\tau_M = 2k$.

Let M be a gf of size 2k. It is called *provable* if and only if we can obtain a proofnet by adjoining k disjoint edges having their vertices in F. In other words, if N_k denotes the graph of k disjoint edges, M is provable if and only if there is an injection $n: F \longrightarrow N_k$ such that (M, F) and (N_k, F) are connectable. As a consequence of the finiteness of $[H_0(F): \ker m_* \oplus \ker n_*]$ in (2), we find again a well-known condition of provability:

Proposition 2.3 If M is provable, $\tau_M = 2\pi_M$.

Before we turn to more interesting conditions, we briefly investigate the complexity of the decision problem for gf's.

3 Complexity

We sketch here the proof of the following result:

Theorem 3.1 The decision problem for graphs of formulas is NP-complete.

Kanovich has proved NP-completeness for the full propositional fragment of multiplicative linear logic [Kan], and the same is true for the neutral fragment, as shown by Lincoln and Winkler [LW]. We reduce our problem to the latter in two steps.

Step 1: encoding of the neutrals in the fragment L(a), whose formulas are builded with literals a and a^{\perp} only. We translate neutrals in L(a) as follows:

- $1^{\circ} = a \wp a^{\perp}$ and $\perp^{\circ} = a \otimes a^{\perp}$.
- For all formulas A and B, $(A\wp B)^{\circ} = A^{\circ}\wp B^{\circ}$ and $(A \otimes B)^{\circ} = A^{\circ} \otimes B^{\circ}$.
- For each sequent $\Gamma = A_1, \dots, A_p, \Gamma^{\circ} = A_1^{\circ}, \dots, A_p^{\circ}$.

Then

Lemma 3.2 The translation $A \longrightarrow A^{\circ}$ is sound and faithful.

Step 2: encoding of L(a) in (abstract) gf's.

For each formula $A \in L(a)$, we denote its graph by M_A . Let $B = (a\wp a)\wp(a\wp a)$ and $A^* = A[B/a; B^{\perp}/a^{\perp}]$. Then we define $T_A = M_{A^*}$. Recall that a formula is balanced if it has the same number of occurrences of a and a^{\perp} . We can prove

Lemma 3.3 A balanced formula A is provable in L(a) if and only if the gf T_A is provable.

Proof. Suppose first that A is provable (hence balanced). Then A^* is provable, as well as its gf, which is precisely T_A .

Suppose conversely that A is a balanced formula such that $T = T_A$ is provable.

If $M = M_A$, $\tau_M = 2k$ hence $\tau_T = 8k$. Let $F^1 = F_{8k}$ be the border of T and $N^1 = N_{4k}$. By hypothesis, there is an injection $F^1 \xrightarrow{n} N^1$ such that $G = T *_{F^1} N^1$ is a proofnet.

Thus $2\pi_T = \tau_T = 8k$ but $\pi_M = \pi_T - 3k = k$ hence $H_0(M) \cong \mathbf{Z}^k$. On the other hand $G = M *_F N$ where F is the border of M and $N = G \setminus M$, which is obtained by pasting together N^1 with k copies of M_B and k copies of M_B^{\perp} along F^1 . If we now chose a switching σ of N we know that $G^{\sigma} = M *_F N^{\sigma}$ is again a proofnet. By (1) we get

$$\operatorname{rank}(H_0(M)) + \operatorname{rank}(H_0(N^{\sigma})) = \operatorname{rank}(H_0(F)) = 2k - 1$$

hence also rank $(H_0(N^{\sigma})) = k - 1$. Then N^{σ} is an ordinary graph having k connected components.

Now the vertices of F^1 are distibuted in sets of four vertices, according to the graphs M_B or M_B^{\perp} where they belong. We denote these sets by

$$X_i = \{a_{i1}, a_{i2}, a_{i3}, a_{i4}\}$$
 for $i = 1, \dots, k$

$$Y_j = \{a_{j1}^{\perp}, a_{j2}^{\perp}, a_{j3}^{\perp}, a_{j4}^{\perp}\}$$
 for $j = 1, \dots, k$

where X_i (resp. Y_j) is the border of $M_i \cong M_B$ (resp. $M_j^{\perp} \cong M_B^{\perp}$). s_i (resp. s_i^{\perp}) will be the root of M_i (resp. M_i^{\perp}).

Let $X = \bigcup_i X_i$ and $Y = \bigcup_i Y_i$. The edges of N^1 induce a partition of $X \cup Y$ in pairs. Two vertices of Y cannot belong to the same pair, otherwise G has a cycle in contradiction with $H_1(G) = 0$.

By $\operatorname{card}(X) = \operatorname{card}(Y) = 4k$, all pairs consist of a vertex of X and a vertex of Y. This gives a bijective mapping $\phi: X \longrightarrow Y$. Consider now $\Phi: \{1, \ldots, k\} \longrightarrow \mathcal{P}(\{1, \ldots, k\})$ which associates to each index i the set $\{j/\phi^{\bullet}(X_i) \cap Y_j \neq \emptyset\}$. Let I be any subset of $\{1, \ldots, k\}$, we verify that

$$\operatorname{card}(\bigcup_{i \in I} \Phi(i)) \ge \operatorname{card}(I)$$

Indeed, if $C = \bigcup_{i \in I} \Phi(i)$:

$$\phi^{\bullet}(\bigcup_{i\in I}X_i)\subset\bigcup_{j\in C}Y_j$$

Since X_i and Y_j are pairwise disjoint sets of four elements and ϕ is bijective, the cardinals in the above inclusion are respectively $4 \times \operatorname{card}(I)$ and $4 \times \operatorname{card}(C)$. This proves the inequality.

Now the wedding lemma (see [Hal, p.48]) applies, giving an injective—hence bijective— ψ from $\{1,\ldots,k\}$ in itself such that, for all $i, \psi(i) \in \Phi(i)$. We can chose in each X_i a vertex x_i such that $\phi(x_i) \in Y_{\psi(i)}$. Take in each M_i the switching connecting s_i to x_i (in M_i). It induces a switching σ_0 of N such that for all $i \in \{1,\ldots,k\}$, s_i and $s_{\psi(i)}^{\perp}$ are in the same connected component of N^{σ_0} . But this graph has k connected components; each one can be replaced by a unique edge $s_i s_{\psi(i)}^{\perp}$ (fig.4). The result is a proof of $A.\diamond$

We get 3.1 as an immediate consequence. The problem belongs to NP: given (M, F) of size 2k and $F \xrightarrow{n} N_k$, the correctness of $M *_F N_k$ is decidable in polynomial time (in k). As regards completeness, the composition of the two translations $A \longrightarrow A^{\circ} \longrightarrow T_{A^{\circ}}$ reduces polynomially the decision problem for neutrals to the problem for gf's. But the former is already NP-complete.

4 Volume of modules and formulas

The complexity result we have just proved opposes a simple characterization of provable gf's. It is however possible to improve 2.3, as we shall see. Let (M, F) be a module, with $F = \{s_1, \ldots, s_l\}$ and $F \xrightarrow{m} M$ the inclusion morphism. Recall that $H_0(F) \cong \mathbf{Z}^{l-1}$, and if rank $H_0(M) = p$, then $\ker m_* \cong \mathbf{Z}^r$ where r = l - 1 - p.

Now $A = (s_1, \ldots, s_l)$ can be seen as the canonical basis of $E = \mathbf{R}^l$ so that $H_0(F)$ becomes a discrete subgroup of the hyperplane:

$$L: \quad x_1 + \cdots + x_l = 0$$

If $e_i = s_i - s_l$, then $\mathcal{B} = (e_i)_{1 \leq i \leq l-1}$ is a basis of L. If we provide E with its canonical (w.r.t A) scalar product \langle, \rangle , the *volume* of a family of vectors v_1, \ldots, v_p is well defined: it will be denoted by $||v_1, \ldots, v_p||$ (see [Ber]). In particular, if (m_1, \ldots, m_r) is a **Z**-basis of $\ker m_*$, $||m_1, \ldots, m_r||$ only depends on M and F, so that we may define:

Definition 4.1 The volume of M, denoted by ||M|| is the volume of any **Z**-basis of ker m_* .

Let M_1 and M_2 be two modules with common border $F = \{s_1, \ldots, s_l\}$ and $F \xrightarrow{m^i} M_i$ the inclusion morphism. Let $p_i = \pi_{M_i}$ and $d_i = \operatorname{card}(H_0(M_i, F))$. By 2.2 M_1 and M_2 are connectable if and only if

$$[H_0(F): \ker m_*^1 \oplus \ker m_*^2] = \frac{2^{p_1 + p_2}}{d_1 d_2}$$
(3)

If $(m_1^1, \ldots, m_{r_1}^1)$ and $(m_1^2, \ldots, m_{r_2}^2)$ are **Z**-bases of $\ker m_*^1$ and $\ker m_*^2$ respectively, then $r_1 + r_2 = l - 1$ and the left member of (3) is

$$\left| \det_{\mathcal{B}}(m_1^1, \dots, m_{r_1}^1, m_1^2, \dots, m_{r_2}^2) \right| = \frac{\|m_1^1, \dots, m_{r_1}^1, m_1^2, \dots, m_{r_2}^2\|}{\|\mathcal{B}\|}$$

and we may rewrite (3) as

$$\|m_1^1, \dots, m_{r_1}^1, m_1^2, \dots, m_{r_2}^2\| = \frac{2^{p_1 + p_2} \sqrt{l}}{d_1 d_2}$$

On the other hand

$$||m_1^1, \dots, m_{r_1}^1, m_1^2, \dots, m_{r_2}^2|| = a ||M_1|| ||M_2||$$

where a only depends on the vector spaces X_1 and X_2 generated in L by $\ker m^1_*$ and $\ker m^1_*$ respectively.

The precise value of a is defined as follows: if Y and Z are subspaces of an euclidian space and if p_Y denotes the orthogonal projector on Y, we may consider $p_Y \circ p_Z$ as an endomorphism u of Y—by restriction to Y. Then $\det u \geq 0$ and if

$$a(Y, Z) = \sqrt{\det u}$$

we have

$$a = a(X_1, X_2^{\perp}) = a(X_2, X_1^{\perp})$$

Thus, with the above notations

Theorem 4.2 The correctness of $M_1 *_F M_2$ is expressed by an equation:

$$a(X_1, X_2^{\perp}) = \lambda$$

where λ only depends on M_1 and M_2 separately.

We now apply the previous results to the particular case of formulas. Here $M_1 = M$ is a gf of size l = 2k and $M_2 = N_k = N$. Then $p_1 = \pi_M$ —and we may suppose that $p_1 = k$ by 2.3— $p_2 = 0$, $d_1 = 2^h$ and $d_2 = 1$. We also denote $m = m_1$, $n = m_2$, $X_1 = X$ and $X_2 = Y$.

A few calculations show that, with the above notations,

Proposition 4.3 A gf (M, F) is provable if and only if there is an $n : F \longrightarrow N$ such that

$$a(X_1, X_2^{\perp}) \|M\| = (\sqrt{2})^{k-2h+1} \sqrt{k}$$
(4)

Any bound $a(X, Y^{\perp}) \leq A$ independent of n gives a necessary condition of provability for M of the form:

$$||M|| \ge \frac{(\sqrt{2})^{k-2h+1}\sqrt{k}}{A}$$

Consider for instance

$$A = (((a\wp(a \otimes a)) \otimes a)\wp(a \otimes a))\wp(((a^{\perp}\wp a^{\perp})\wp(a^{\perp}\wp a^{\perp})) \otimes (a^{\perp} \otimes a^{\perp}))$$

For $M=M_A$, according to 4.1, $||M||=4\sqrt{33}$. Now formulas of the form $\Phi'\wp\Phi''$ where Φ' (resp. Φ'') has k atoms of type a (resp. a^{\perp}) verify

$$\mathrm{a}(X, Y^{\perp}) \leq \left(\frac{1}{\sqrt{2}}\right)^{k-1}$$

Thus M can be provable only if

$$||M|| \ge 2^{k-h} \sqrt{k}$$

but here k = 6 and h = 2, so that $2^{k-h}\sqrt{k} = 16\sqrt{6} > 4\sqrt{33}$. Hence M is not provable, although it satisfies $\tau_M = 2\pi_M$.

Let us examine more generally the problem of finding a proof of a given gf M of size 2k, if it exists. In the euclidian space L, M defines a subspace X generated by $\ker m_*$. Each partition p of F in pairs determines an injection $n^p: F \longrightarrow N_k$, and consequently a subspace Y^p generated by $\ker n^p$. Now every correct choice (i.e. giving an actual proof) maximizes $a(X^{\perp}, Y^p)$ over all possible p's. Therefore, the decision problem for M amounts to calculate

$$\max_p \mathrm{a}(X^\perp, Y^p)$$

and verify that this maximum satisfies (4) in 4.3.

The group S_{2k} of permutations of F can be seen as the subgroup A_{2k-1} (see [Hum, p.5]) of isometries of L generated by the reflections associated to transpositions of vertices. It acts transitively on the above set of subspaces Y^p . If we chose an arbitrary $Y_0 = Y^p$, we must solve the optimization problem for

$$g \mapsto \mathrm{a}(X^{\perp}, gY_0)$$

over A_{2k-1} . We may then ask if there is any *small* set of generators of A_{2k-1} for which successive approximations provide the right answer, at least for a wide class of formulas.

References

- [Ber] M.Berger Géométrie, vol.2. (Cedic/Nathan 1977)
- [Dan] V.Danos La Logique Linéaire appliquée à l'étude de certains processus de normalisation. (Thèse de Doctorat, Université Paris VII, 1990)
- [DR] V.Danos & L.Régnier The structure of multiplicatives. (Arch. Math.Logic 28, 1990)
- [Gir1] J.Y.Girard Linear Logic. (Theor.Comput.Sci.50, 1987)
- [Gir2] J.Y.Girard Quantifiers in Linear Logic II. (Prépublications Université Paris VII 19, 1991)
- [Hal] P.J.Hall Combinatorial Theory. (Wiley, 1986)
- [Hum] J.E.Humphreys Reflection groups and Coxeter groups. (Cambridge, 1990)
- [Kan] M.I.Kanovich The multiplicative fragment of Linear Logic is NP-complete. (TR X-91-14 University of Amsterdam, 1991)
- [LW] P.Lincoln & T.Winkler Constant only Multiplicative Linear Logic is NP-complete. (1992)
- [Met] F.Métayer Homology of proof-nets. (Arch.Math.Logic 33, 1994)
- [Tro] A.S.Troelstra Lectures on linear logic. (CSLI, 1992)