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Abstract

We investigate three fragments of cyclic linear logic, respectively LLNC
containing all propositional variables, LLNC, built on a single variable
and the constant-only fragment LLNCy.

By using non-commutative proofnets, we show that the decision prob-
lems of these fragments are polynomially equivalent.
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1 Cyclic linear logic

Recall the usual presentation of cyclic linear logic as a sequent calculus: the
formulas of LLNC are built on propositional variables aj, as, ... and ai,as, ...
with the connectives tensor (®) and par (p). The linear negation is extended

to formulas by
utt=u  (weu)t=(wtew!t  (up)t = ()t e @)?"

The rules are as follows ', where sequents are sequences of formulas:

. r LA
— 1 (axiom) A (cut)
xr,T F,A
I u v, A Tu,v
——  (tensor) par)
ruwv, A [ upv

Plus the rule of circular exchange:
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In fact we will be interested in two more fragments of LLNC: the formulas of
LLNC, (resp.LLNCy) are built on variables a and at only (resp. 1,L(= 11))
with the connectives tensor (®) and par (p). The atoms of a formula u are the
subformulas of u which are variables (resp. constants). The linear negation is
extended as above, and the logical rules are the same, but for LLNCy where
axiom and weakening look like

" (axiom) F’_J_ (w)

We will show that the decision problems of the three fragments are polynomially
equivalent.

Ca

Figure 1: Ty

To each formula A we associate a tree T4 where the leaves are labeled by the
atoms of A and the root by A itself. Each connective is represented by a pair
of convergent edges in T}y.

We see Ty as embedded in the euclidian plane in such a way that its leaves are
on a circle Cq, and T is exterior to Cy4 (figure 1). Then, to each pair of leaves
we may associate a chord of C'4. We know that A is provable if and only if there

is a pairing P of the leaves where each atom z is paired with an atom z* and:

e the reunion of T4 and the chords associated to P is a proofnet II.
e two distinct chords never intersect.

Of course these proofnets correspond to cut-free proofs in sequent calculus. The
latter condition is precisely non-commutativity. When such a proofnet P exists,
it is of course embedded in the plane, and delimits certain regions on it, exactly
one of them unbounded. For each connective par we put a mark () in the
region which has the two edges of this connective on its border (there is exactly
one region with this property). Then the following holds:

e Each bounded region contains exactly one mark ().
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Figure 2: ¢3

From now on, we simply call proof every proofnet obtained as explained above,
and we denote z ~ x’ when two leaves x and z’ of T4 are related by a chord
of Ca in P. Figure 1 represents a proof of A = (apb)p(bt @ at). We finally
recall that a formula A of LLNC is balanced when, for each variable v, v has the
same number of occurences as v+ in A. As regards LLNC and LLNC, we may
restrict to balanced formulas, since provable formulas are necessarily balanced.

2 Equivalence of LLNC and LLNCua

We first define a family of formulas ¢? of LLNC, which help encoding LLNC
in LLNC,. For each integer n,and each i € {1,...,n}, we define ¢} by:

é7 =(.. (. (zipz2)p...)pzj)p ... PTpya)

where z; = afor j #i+ 1 and z;41 = a*.
Let A € LLNC be a balanced formula with variables aq, ..., ay, af‘, . a,Jl‘ (we
suppose that the variables of all formulas are ordered, once and for all). To A

is associated A° € LLNC,defined by

A° = AlgY /a1, ..., 0 /an, (87)" /at, ..., (67)" /ax]

¢? will be simply denoted by ¢; or even ¢ when no confusion occurs. (¢3 is
shown on figure 2) The translation ()° is clearly sound. But we also have
Proposition 2.1 ()° is faithful.

Proof. Let A € LLNC be balanced and consider a proof of B = A° € LLNC,.
The central idea is that the chords of Cp joining the leaves of Tp necessar-
ily join all the leaves of a subtree of the form T, with the leaves of a sub-
tree of the form T¢f‘ (see figure 3). The vertices of Tp split in four classes:

a |at
6 |z |2t
QSJ' L mi_

For instance a leaf of type x corresponds to an atom a in a Ty. We denote

z(7) to point out that this leaf z belongs to a formula ¢;. The only possible

configurations are: = ~ l‘L, T~ :L‘i‘, . ~zt and z, ~ :L‘i‘
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Figure 3: T

e z ~ z't is impossible: the nodes of T which lie immediately under z and

x1 are par-nodes. Then we may chose a switching disconnecting the chord

zzl, a contradiction.

e As a consequence, every leaf z is related to a leaf - but we have the same
number of z and z}, because A is balanced. This reduces the possible

configurations to  ~ z} and z, ~ z*.

e We finally show that if z.(j) ~ z1(i), then i = j. We consider on Cp the
arc vy =]z.(j)zL(i)[. If it contains all the leaves of p subtrees T (distinct
from Tp,) it contains p leaves of type 21 hence also p leaves of type .
and therefore also p subtrees T+ distinct from T¢]+. ~ contains exactly

p(n + 1) 4 i leaves of type z, and p(n + 1) + j leaves of type z1. But the

leaves of type x are in bijection with those of type z1, such that

pln+1)+i=pn+1)+j
and clearly ¢ = j.

e We now easily construct a proof of A. We chose in each tree T} (resp.
Ty1) the only switching connecting the root to z*(i) (resp. to z.(i)).
The resulting graph is correct, and can be transformed into a proof by
retracting useless edges.

Proposition 2.2 The decision problems of LLNC and LLNC, are polynomially
equivalent.

Proof. Clearly every decision procedure for L applies to LLNC,. Conversely,
the translation ()° is polynomial: if [ is the length of the formula A, the length
of A® is O(I?). Tt is sound, and faithful by 2.1. Hence the result. o
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3 Equivalence of LLNCa and LLNC,
We first define a translation ()* of LLNCq in LLNC, by
A* = Alapat /1,a® a* /1]

Likewise, for each sequent I' = Ay ..., A, we define ['* = A7, ... A}, We
denote by F the provability in LLNCy and F, the provability in LLNC,.

Lemma 3.1 ()* is sound.

Proof. By induction of the height of a cut-free proof of T in LLNC,.

We first notice that weakening commutes with the rules for par and tensor. It
will be convenient to see successive applications of circular exchange as a single
rule:

Suppose then that a proof ends like

LA u,v

LA upv

— (e

A upy, T
— (W
A upy, T, L

The same endsequent is proved by:

(par)

Likewise, if a proof ends like:

A u v,_A
LA u®uv A
— (€
Au®v, AT
PR ()
Auuv, AT, L

The same endsequent is proved by:

(tensor)
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A u
€
Au, T
— W)
Au, T, L
) —
LA u v, A
(tensor)
LA u®u, A

— (e
Auuv, AT, L

Of course there is a symmetrical case where the weakening rule has to be per-
formed on the branch containing v.

Thus we may suppose that the weakenings come before the logical rules, which
amounts to suppose that the axioms are

F1,L,.., L

and that the only rules are tensor, par and e-exchange. It is now easy to con-
struct a proof of

L L L
1*, 1% ..., 1" =apa~,a®a—,...,a®a

which settles out the axiom case. The other rules are straightforward. o

On the other hand,
Lemma 3.2 ()* is faithful.

Proof. Let A € LLNCj such that F, A*. By substituting 1 for ¢ and L for at
in A*, we obtain a new formula (A*)" of LLNCy, clearly provable. We verify
that B = (A*)’ is equivalent to A, hence the result. o

The decision problem for LLNCy now reduces polynomially to the correspond-

ing problem in LLNC,. To prove the converse, we examine a certain class C
of formulas in LLNC,. We define u = (apat)p(apatl) and call C the set of
formulas of LLNC, of the form

B = Alu/a,u* /at]

for any balanced formula A of LLNC,. If B € C, the leaves of Tg split in groups
of four, according to the subformulas u and ul where they belong. We call
X1,.., Xq, ... (resp. Xi, ..., X]J—’ ...) the groups corresponding to subtrees 7T,
(resp. T, +). Let

Xi = {zi1, Tiz, Ti3, Tia}
and

XjL = {fﬁ,iﬁj‘g, xj_?,a mj_ll}

We suppose also that, when traveling clockwise on Cg, we encounter the z;;’s
in the order (1,2,3,4) and the :L‘j‘k’s in reverse order (4,3,2,1). We denote

X~ X}

when for each k € {1,2,3,4}, z;p ~ l‘ij. It is now possible to prove
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Lemma 3.3 Consider a proof of B € C. Then, for all i, there s a j such that
X;~ X+,
t J

Proof. The proof amounts to show that certain configurations of chords are
forbidden in a proof of B.

e We never have z;; ~ z;; because otherwise we would have a switching
disconnecting the graph. As a consequence, every z;j is related to a :L‘jJ‘l,
and conversely since A is balanced.

e Consider a chord milxj‘l, where I € {1,2,3,4} and let 4 be the one of the
two arcs ]Izll’ﬁ[ of C'p not containing the z;;’s. The leaves on ~ split in:
m groups of type X, n groups of type X+, plus CL‘J-Ll .. .CL‘jL(l_l). Thus it
contains 4m leaves of type « and 4n 4+ [ — 1 leaves of type z*. As chords
do not intersect, we must have 4m = 4n +1— 1, hence [ = 1.

e The same argument shows that if z;; ~ a:le, then k& = [.

e Suppose now that z;; ~ 1‘7*1 and that :L‘J-L2 ~ z;19 with i # i’. The region
R having both chords milrj‘l and ;L‘JJ»‘Q;L‘M on its border would contain two
marks p: contradiction (see fig.4). Therefore z;; ~ a:j‘l and 33]4‘2 ~ Zi9.

L L
The same argument shows that z;3 ~ T3 and z;4 ~ Tiy

il I‘j2

Figure 4: region R
We deduce, keeping the notations of (1):
Lemma 3.4 Ift, B thent, A.

Proof. By the result 3.3 we may transform a proof of B into a proof of A, by
collapsing each subtree T! (resp. T7 ) on its root s; (resp. sj‘) and by drawing
the chord sisj‘ if and only if X; ~ XJJ‘. S

Let us translate each formula A of LLNC, into the formula At of LLNC{ defined
by
Al = A[lpl/a, L® L/a*]

We show again that



F. Métayer

Lemma 3.5 A — Al is sound and faithful.

Proof. Soundness is clear. Suppose conversely that A is a balanced formula of
LLNC, such that - AT. B = (A!)* belongs to the class C and , B. But B is
also Au/a,ut/at] and 3.4 shows that I, A. o

Remarks Of course the exact complexity remains open while in the commuta-
tive case, the three corresponding fragments are known to be NP-complete (see
[7] and [6]) hence also polynomially equivalent; translations between the single-
variable and the constant-only fragment still work in that case. Precisely, 3.4
still holds, but not 3.3 (see [8]). On the other hand, we know no simple trans-
lation of the complete fragment into the single-variable one in the commutative
case.

Notice finally that the labels a, a* play no role in the previous arguments, so
that the decision problem reduces to a purely geometrical one.

Acknowledgement I am indebted to the referees for many helpful remarks.
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