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Proofnets may be seen as orientable surfaces with boundary. We investigate how the
topology of such nets relates to the number of exchange rules in corresponding proofs.

1. Proofstructures

Proofstructures in multiplicative linear logic first appear as ordinary graphs whose edges
and nodes are labeled by formulas and connectives. As soon as exchange is taken seriously,
the precise way these graphs are drawn in the plane becomes important. This gives rise
to several kinds of planar diagrams (Yetter, 1990; Abrusci, 1995; Nagayama and Okada,
1996; Bellin and Fleury, 1998). Here we consider proofnets as intrinsically 2-dimensional
objects.

The multiplicative formulas are built on a double list of propositional variables ay, as, . ..
and ai,as,... with binary connectives tensor (®) and par (p). The linear negation is
extended to formulas by

utt=u  (wev)t=(@)tew)t (et = ()" @ (u)t
Sequents are expressions of the form

kA

where I', A are sequences of formulas. As usual, proofs are built inductively from axioms
by using deduction rules:

axiom
ub u ( )
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Notice that no implicit exchange is hidden behind our rules. So far the system permits
no exchange at all. We recover the multiplicative fragment of linear logic by accepting:
A AZERTT ) kA ATLE )
———— (permutation |) ————— (permutation r)
A AERTT F'FATLAE
This amounts considering certain successions of transpositions of formulas as a single
rule. In fact the actual number of transpositions will be irrelevant from a geometrical
point of view.
Let us denote by S this particular system of rules. An important variant of S is obtained
by replacing the permutation rules by more restrictive circular permutations:
Luk FT,u

cycle 1
u,FI—( ) Fu,l

(cycle 1)

Remember that (cycle 1) and (cycle r) only apply to sequents where one side is empty.
The logic defined that way is of course cyclic linear logic, see (Yetter, 1990; Nagayama
and Okada, 1996).

Suppose now that in the sequent I' F A, T' and A denote sets of occurrences of formulas.
In particular, several occurrences of the same formulas are still distinguished, but the
information on their order is lost. In the previous table of rules, each of the pairs (cutl)
and (cut2), (negation Ir) and (negation rl) collapses to a single rule. Permutations become
identities. Let S* denote this new system of rules. To each proof P in S corresponds a
proof P* in S*: the map P — P* simply forgets order.

To each proof @ in S* we associate a 2-dimensional complex K(@): the rules of @
become 2-cells, the formulas become 1-cells (edges). We describe (1) the 2-cells of K and
(2) how they are glued together along some edges:

— There is exactly one 2-cell in K(Q) for each axiom, negation, tensor or par rule oc-
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axiom negation
uR@u
u v u v
u@o
tensor 1 tensor r
upPv
u v u v
UpPv
par 1 par r

Fig. 1. basic 2-cells

curring in (. Their edges carry the active formulas of the corresponding rule, with
positive orientation for conclusions and negative orientation for premisses (see fig-
ure 1).

— For each formula occuring in @) as a conclusion in one rule and a premiss in another,
the two corresponding edges must be identified in K(Q), and these are the only
identifications.

Here (tensor 1) and (par r) deserve special attention: suppose indeed that @ is a proof
of T'F Aju,v, A, K(Q) has been constructed, and we perform a par-rule on u and v.
There is no need for the edges u and v to follow each other in K (Q). Hence the adjunction
of a par-cell possibly creates an identification of two distinct vertices of K(Q). The same
phenomenon appears of course with the left tensor. Figure 2 shows an example where
K(Q) is a topological cylinder. Let us point out that K(Q) was already defined, in a
dual way, in (Bellin and Fleury, 1998), although the authors do not concentrate on this
point.
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Fig. 2. proof and associated complex

Lemma 1. K(Q) is an orientable surface with boundary.

The result holds in fact under very general hypotheses. Consider a set A of oriented
2-cells of type axiom, negation, tensor(l/r), par(l/r) defined above and let

L= H a
a€cA
the disjoint sum of the cells of A. Now any set B of pairs of 1-cells (edges) of L yields a
quotient complex L/B obtained by identifying edges belonging to the same pair. Define
a proofstructure as a 2-complex K = L/B where

— each edge of L belongs to at most one pair in B.

— 1in each pair of B, one edge has positive orientation with respect to the 2-cell containing
it in L, and the other edge has negative orientation.

— K is connected.

Clearly each K (@) is a proofstructure, and lemma 1 follows from:
Lemma 2. Each proofstructure is an orientable surface with boundary.

Proof. Let A and K = L/B as above, satisfying the proofstructure conditions. The cells
of A may be arranged in a sequence ag, ay, ..., aj, such that each a; (i > 0) has an edge
identified by B to an edge of a; for some j < ¢, because of connectedness. Pick such an
edge in each a;, and perform the k corresponding identifications: because no edge is used
twice, the resulting complex is topologically a disk D. Let B’ C B be the set of pairs
which have not been used in the construction of D: for each pair b € B’, the two edges of
b lie on the border of D, with opposite orientations because of the second condition. Now
K = D/B’ and the result is standard, see for example (Giblin, 1977, pages 62-69). Notice
that the boundary 0K of K is the reunion of the edges of D which belong to no pair;
of course they were already on the border of D. In case K = K (@) the corresponding
formulas are the hypotheses and conclusions of @. o

Proposition 1. If P is a cyclic proof, then K (P*) is topologically a disk.
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Proof. By induction on P. o

Let us point out that in case of a cyclic proof P with endsequent
ar,az,...,a; F bl,bg,...,bj

the order of the formulas on K (P*) is b1bs .. .bja; ...aza; when traveling positively. In
particular there is no possible interleaving of hypotheses and conclusions.

Notice also that the various correctness conditions for proofnets easily adapt to our
2-dimensional proofstructure. In fact such a structure K has a dual oriented graph G(K)
which becomes a 1-dimensional proofstructure . Conversely, given a 1-proofstructure G,
we may recover the 2-dimensional K such that G = G(K) as soon as we know the order
of the premises in the binary links of G. Call K correct if G(K) satisfies any of the usual,
equivalent, correctness conditions for multiplicative proofnets (Girard, 1987; Danos and
Regnier, 1989; Lafont, 1995), we may restate the sequentialization theorem as follows:

Theorem 1. For each 2-dimensional proofstructure K, the following statements are
equivalent:
(i) There is a proof ) € S* such that K = K(Q).

(i) K is correct.

2. The rank of a proof

By lemma 1, to each @ correspond integers p and ¢ such that topologically K(Q) is a
sphere with p handles and ¢ holes. In other terms ¢ is the number of connected com-
ponents in the boundary of K. Notice that the edges corresponding to hypotheses and
conclusions of @ lie on the boundary of K(Q). But the endsequent of @ is never empty,
so that K (@) cannot be a closed surface and H3(K(Q)) = 0. Thus the only non trivial
homology is in dimension 1:

H(K(Q)) = Zr+!

2p+ q— 1 is the rank of H1(K(Q)) and we simply call it the rank of @, denoted by rk Q.

We claim that the rank measures an implicit exchange complexity, in the following
sense: let ¢(P) denote the total number of left and right permutations used in a proof P
of S. We will prove that

Theorem 2. For each proof P, rk P* < 2¢(P).

In other words a proof @) in S* cannot be represented in S with less than rk @/2 permu-
tation rules.

Proof. Let P be a proof in S. We may associate to P a new complex J(P) with the
following property (J): suppose that P ends with the sequent

al,az,...,akl—bl,b2,...,bl

then the a;’s and b;’s are interpreted by edges «;, §; such that ajas...ar and 518 ... 05
are continuous paths in J(P). Unlike K (P*), J(P) translates exchanges explicitly as they
appear in P by suitable moves of edges and identifications of vertices: thus J(P) may
have singularities. Let us now define J(P) precisely, by induction on P.
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Fig. 3. permutation

— If P is an axiom, J(P) = K(P*) and (J) is obvious.
— Suppose P ends like
Py
A ®)
where (R) is a negation rule, or (tensor 1) or (par r) and J(P) satisfies (J). J(P)
is the amalgamated sum of J(P;) and the 2-cell for (R) along their corresponding

edges and (J) is preserved through this operation. In case (R) is a cyclic permutation,
J(P) = J(P1).
— If P ends like
P Py

re-A
J(P) is the amalgamated sum of J(Py), J(P2) and the 2-cell for (R) along their
corresponding edges, and (J) is preserved trough this operation.
— Suppose P ends with a permutation, for example:

F'EAATL

FEAILAE
and P; is the subproof of P ending with I' = A A TI, Z. J(P) is obtained from J(P;)
by two identifications of vertices, namely the end of A with the beginning of I, and

[11

(permutation r)

the end of TT with the beginning of A (see figure 3). Warning: some of these vertices
may be already identical in J(Py).

Then J(P) is simply a quotient of K(P*) by certain identifications of vertices. But
consider any complex X with reduced homology H;(X) = 0, except for H1(X) =Z", T
a pair of distinct vertices of X and Y = X/T the quotient of X by identification of the
two vertices of T. We get H1(Y) = 77t and H;(Y) = 0 otherwise. In fact

T X Y

gives rise to a long exact sequence in (reduced) homology where everything vanishes
except for

H1(X) —> Hy(X/T) —= Ho(T)

But Ho(T) = Z and H,(X) = Z" whence the result. By repeated application of this
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remark we see that
Hi(J(P))=0  (i#1) (1)
and the canonical surjection s : K (P*) — J(P) becomes an injection in homology:
Sx
Hy(K(P")) — H1(J(P))
so that first:
rk P* <rk H1(J(P)) (2)
We now prove by induction on P that
rk Hy(J(P)) < 2¢(P) (3)

— TIf P is an axiom, both members of (3) are zero.

— If P is obtained from P; satisfying (3) by a unary rule other than permutation,
then there is a retraction of J(P) on J(Py), so that Hi(J(P)) = Hi(J(P1)). Also
¢(P1) = ¢(P) which gives (3) for P.

— If P is obtained from P; and Ps satisfying (3) and (1) by a binary rule, we get

vk Hi(J(P)) <tk Hy(J(P1)) + tk Hy(J(P2)) (4)

Let us examine for instance a right tensor on formulas a, . Let X be the complex

obtained by identifying the end of @ with the beginning of b in J(Py) [[ J(P2). Clearly
Hy(X) = Hi(J(P1)) @ Hi(J(P2)) (5)

But there J(P) retracts on X: in fact the tensor cell may be collapsed such that a ®b
coincides with the path ab. hence

Hi(J(P)) = Hi(J(P1)) © Hi(J(P2)) (6)

and of course (4). The same argument applies if the rule is a left par, or a cut except
for the case where the edge for the cut-formula is a loop both in J(Py) and in J(Ps).
In this case J(P) is the result of gluing J(P;) and J(P2) along a common circle U,
and we may write a Mayer-Vietoris exact sequence:

Hy(J(P)) —> H1(U) — H1(J(P1)) & Hi(J(P2)) — Hi(J(P))
but Ha(J(P)) = 0 by (1) and Hy(U) = Z so that
vk H1(J(P)) = vk Hy (J(Py)) +rk Hy(J(Py)) — 1
which gives (4) again. Finally
((P) = (P) + c(Py)

so that (3) still holds for P.
— If P is obtained from P; satisfying (3) by application of an permutation rule, J(P) is
obtained from J(Py) by at most two successive identifications of two vertices, so that

rk Hy1(J(P)) <tk Hi(J(P1)) + 2
as we noticed above. But ¢(P) = ¢(P1) + 1 and we get (3) for P.
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Fig. 4. P and K(P")
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Fig. 5. Q and K(Q)

The bound obtained is the best possible, in the sense that, for some P,
rk P* = 2¢(P)

For example, figure 4 shows a proof P with associated complex a torus with a hole,
such that ¢(P) =1 and rk P* = 2.

Conversely, it seems unrealistic to search for a function f such that every proof @ of S$*
can be represented by P in S with ¢(P) < f(rk Q). Figure 5 shows a proof @ (of S*) with
associated complex K (Q). @ is easily seen to be of rank zero because K (Q) is a disk, but
we find the terminal formulas on the boundary in the order: a, a®@b®c, ¢, b, interleaving
hypotheses and conclusions, so that () cannot be represented by a cyclic proof as shown
by the remark after proposition 1. By considering an arbitrary large number M of copies
of @@ and tensoring together all conclusions of the form a ® b ® ¢, we can build a proof
@' which still has rank zero, but is not representable in .S with less than M permutation
rules. However, our counterexample strongly relies on the fact that we are dealing with
two-sided sequents: if we complete the proof () by two negation rules on a and ¢, the
resulting complex will be sequentializable in cyclic logic. The reason for this is that the
presence of formulas on both sides of the sequent restricts the conditions of application
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axiom

Fig. 6. axiom and cut for R

for negation, right-tensor and left-par in the cyclic fragment: these rules do not increase
the rank, but they only apply to certain well placed formulas. This restriction disappears
with one-sided sequents, where a cyclic permutation is sufficient to put any formulain a
position of premiss for such rules. The next section concentrates therefore on one-sided
sequents.

3. One-sided sequents
Let R be the following modification of the system S: the formulas are the same, the
sequents are of the form
FT
Axiom and cut are
_ (axiom) FT,u Fut A (out)

'_ a,a '_ 1-\’ A
and the rules are the right rules of S with empty left side. As before we get an obvious

map P — P* which forgets exchanges, and we denote by R* the corresponding system.
We still have a complex K (P*) , the only change being the new axiom cell, and the new
aspect of the cut-rule (figure 6). Recall that T F A is provable in S if and only if - T+ A
is provable in R. Clearly theorem 2 extends to proofs in R without change. On the other
hand, the restriction to R yields a partial converse to proposition 1:

Proposition 2. For each proof @ € R* with rk @ = 0, and without cut there isa P € R
such that @ = P* and ¢(P) = 0.
Proof.

First recall that if @ is in R* has rank zero, then K(Q) is a disk and dK(Q) is an
(oriented) circle which carries the conclusions of Q. Let us call a P € R adapted to Q
if and only if P* = @ and the conclusions appear in the same order on the end-sequent
of P as they do on dK(Q). Of course the order on dK(Q) is defined only up to cyclic
permutations.

We now show by induction on ) € R* that, if tk@ = 0, there is a P € R* which is
adapted to @ and ¢(P) = 0.
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— If @ is an axiom of R* any representative P of @) in R is adapted to @ and ¢(P) = 0.

— Suppose @ has rank zero and ends with a tensor rule:

FT,a FbA
FT,a®b, A

(tensor)

where ()1 and 5 are the proofs with conclusions F T', a and - b, A respectively. First,
rk @ = rk @1 + rk Q2 because if K(Q;) has p; handles and ¢; holes, then K(Q) has
p = p1 + p2 handles and ¢ = g1 + g2 — 1 holes, and tk Q) = 2p + ¢ — 1.

Hence rk @1 = rk @2 = 0 and by induction hypothesis for each i € {1, 2}, there is a P;
adapted to @; such that ¢(P;) = 0. Up to a cyclic permutation we may suppose that
the endsequents of Py, Py are - I'? a and F b, A™ where T'?, A7 are permutations of
T', A corresponding to the order of the formulas on K (Q1) and dK (Q2). Let P be

P P
FT% a@b, A"

Clearly P* = @ and ¢(P) = €(Py1)+€¢(P2) = 0. Finally, 0K (Q) contains the conclusions
in the order I'?,a ® b, A", whence again P is adapted to Q.

Suppose @ has rank zero and ends with a par rule:

(tensor)

FT,a,b
— P
FT,apb

Let @1 be the proof with endsequent - ', a, b. Clearly rk Q1 = 0. Also the formulas a
and b follow each other on the circle 3K (Q1), otherwise the adjunction of the par cell

ar

would increase the rank by 1, making rk @ > 0, a contradiction. Thus, by induction
hypothesis, there is a P; € R adapted to @1 such that ¢(P;) = 0. We may suppose
that P; ends with F T'?,a,b where T'? is the permutation of I' correponding to the
order of the conclusions on dK(Q1). Let P be

Py
F T, apb
P is adapted to @ and ¢(P) = ¢(Py) = 0.

(par)

An immediate consequence of proposition 2 and theorem 1 is a correctness criterion
for proofstructures in cyclic linear logic:

Theorem 3. For each 2-dimensional, cut-free, proofstructure K, the following statements
are equivalent:

(1) There is a cyclic proof P such that K = K(P*).

(i1) K is correct and rk K = 0.
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Fig. 7. tensor/par cut

Fig. 8. reduction

Let us point out that the condition rk K = 0 amounts exactly to the strong planarity

for G(K), as defined in (Nagayama and Okada, 1996).

4. Cut elimination

This section briefly investigates the effect of cut-elimination on the rank of proofs. We
still work in the system R of right-sided sequents and corresponding 2-dimensional proof-
structures. Clearly the reduction of an axiom-cut does not change the topology of K, and
we may concentrate on logical cuts. Let K be a proofstructure containing a cut between
u® v and vt put, as shown on figure 7. Let K’ be the complex obtained from K when
replacing the previous cells by the following sum of two cuts. Notice that the vertices a
and b collapse to a single vertex ¢, as shown on figure 8. First K’ is a retract of K, hence
rk K’ = tk K. On the other hand we have two possibilities:

1 At least one of the vertices a or b does not belong to K. In this case K’ is the
proofnet obtained by replacing the cut on u ® v with two cuts on u and v.

2 Both a and b belong to 9K, in which case K’ is no more a proofstructure because
OK' has now a singular vertex c¢. In fact the correct proofnet correponding to the
elimination of the cut is K" obtained from K by splitting ¢ in two vertices e and
f. This operation decreases the rank by 1, so that tk K’ = rk K’ — 1 = rk K — 1.
Figure 9 shows the transition from K’ to K”. Dotted lines represent boundaries.

Fig. 9. splitting
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Proposition 3. If P is a proof in R* with normal form Py, then

tk Pp <rk P

5. Conclusion

We hope the present work has clearly shown that the exchange rule makes sense, not
only in the representations of proofs, but in the proofs themselves, that is at the level
of proofnets. The general principle is that implicit exchanges involved in proofnets are
made explicit by various sequentializations.

Among many points which remain rather obscure to us, we would like to conclude by
two open questions:

— The previous discussion clearly leaves open whether proposition 2 may be extended
to R-complexes with positive rank. That is, to find an upper bound on the least
number of permutations in sequentializations of a given complex. This appears to be
a surprisingly difficult, but apparently well-posed question.

— At a more speculative level, connections of the present approach with works by Abr-
usci and Ruet (Abrusci and Ruet, 1999) should be investigated. Precisely, is there a
simple way to interpret the distinction between commutative and non-commutative
connectives in the geometry of our complexes?
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