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Abstract

This work defines homology groups for proof-structures in multiplicative linear logic (see [Girl],
[Gir2], [Dan]). We will show that these groups characterize proof-nets among arbitrary proof-
structures, thus obtaining a new correctness criterion and of course a new polynomial algorithm
for testing correctness. This homology also bears information on sequentialization. An unexpected
geometrical interpretation of the linear connectives is given in the last section. This paper exclu-
sively focuses on abstract proof-structures, i.e. paired-graphs. The relation with actual proofs is
investigated in [Girl], [Gir2], [Dan], [Ret] and [Tro].

1. Paired-graphs

By graph we mean a pair G = (V,£) where V is a finite set and £ is a set of unordered pairs of elements
of V. The elements of V are the vertices and the elements of £ are the edges of the graph . If v and v are
vertices, we denote the edge {u, v} by "uwv; oriented edges will be denoted by (uv) and (vu).”

Definition 1.1. A paired-graph is a pair (G, P) where G is a graph and P a set of pairs of edges such that:

o If {e, f} € P then e and f have a common vertex.
o If (p,p') € P? and p # p' then pNp’ = 0.
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(G, P) will be simply denoted by G whenever no confusion with the underlying graph is possible. We denote
as well P = P(G). A paired-graph (p.g.) G is a tree if P(G) = () and the underlying graph is connected
and acyclic. Let G be a p.g. A paired edge e of (G is an edge belonging to a pair p € P. We denote by e*
the unique edge such that {e,e*} € P. The remaining edges are called free and the set of free edges will be
denoted by &;(G). An orientation of (G,P) is an orientation of G such that for each pair {uw, vw} € P(G),
the corresponding pair of oriented edges is either {(uw), (vw)} or {(wu), (wv)}. Let G and G’ be p.g’s. A
morphism from G to G’ is a map g : V(G) — V(G') such that:

o If uv € &£;(G) then g(u)g(v) € E¢(G') or g(u) = g(v).
o If {uw, vw} € P(G) then {g(u)g(w), g(v)g(w)} € P(G') or g(u) = g(v) = g(w).
G is a subgraph of G' if and only if V(G) C V(G’) and the inclusion map is a morphism. If G; and G5 are

subgraphs of G, G1NG3 defined by V(G) = V(G1)NV(G2), £(G) = E(G1)NE(G3) and P(G) = P(G1)NP(G2)
is a subgraph of G.

2. Proofnets
Let us first introduce some useful notations (see figure 2.1):

e U is the p.g. defined by V(U) = {s} and E(U) = 0.

e D is the p.g. defined by V(D) = {s,¢} and £(D) = 0.
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e T is the p.g. defined by V(T') = {s,t,u} , E(T) = {su,tu} and P(T) = {{su,tu}}.

Let G and G be paired graphs. We can form their disjoint sum G; [[ Go. If s, ..., si, are distinct vertices of
G; for i = 1 and 2, the identifications s}, & s? in G4 [[ G2 define a new graph G1 [[ G2/{s] =~ s%,... s} ~ s},

provided s} 5]1» and s? sj2 are not simultaneously edges of G; and (G5 respectively.

Definition 2.1. TLet G; and G4 be p.g’s and s; (resp.sz) a vertex of G (resp.Ga).

We denote by t(G1, Ga, s1, s2) the graph Gy [[ G2/{s1 ~ s2}.

Let G4 be a p.g. and sq,s9 distinct vertices of G.

We denote by p(Gi, s1, s2) the graph G1[[T/{s1 = s, s2 = t} o

By the canonical maps from G; and G3 to t(G1,Ga,s1,52) these graphs can be seen as subgraphs of
t(G1,Ga, s1, s2), still denoted by G; and G3. Likewise G; and T become subgraphs of p(Gy,s1,s2). Of

course operations t and p correspond to the linear connectives tensor (®) and par (p) (see figure 2.2).

Definition 2.2. TI denotes the smallest class of paired-graphs containing trees and closed by the operations
t and p. Elements of IT are called proof-nets. o

3. Homology groups of paired-graphs

Homology groups can be defined for paired-graphs in the very same manner as for ordinary graphs. To every
oriented p.g. G we first associate the following complex of abelian groups

0 — 1(G) 5 (G = Z — 0

where Cy(G) = Z[V(G)] and C1(G) is the subgroup of Z[€(G)] generated by the free edges and the elements
e + e* where e runs over paired edges. The elements of C;(G) are the i-chains of G. 9 is the restriction
to C1(G) of the boundary morphism defined by d(uv) = v — u for each ”oriented edge (uv); ¢ is the
augmentation” morphism defined by €(u) = 1 for each vertex u. The elements of ker 9 (resp. kere) are the
1-cycles (resp. O-cycles).

By €0 = 0 we can define:

Definition 3.1. The homology groups of G are Hy(G) = kere/imd and Hy(G) = ker 0. o

If P(G) = 0 we get the groups of the ordinary graph G in reduced homology. In that case Ho(G) and Hy(G)
are free abelian groups of respective ranks ¢ and r; where 7o+ 1 is the number of connected components of
G and ry is the maximal number of independent cycles in G.

Returning now to the general case, we denote by {c}q the homology class of the i-chain ¢ in H;(G).
Notice that 9 depends on the orientation, though the groups do not. Let ¢ : G — G’ be a morphism. As
usual, ¢ induces morphisms ¢% from H;(G) to H;(G') such that

(60). = ¢lpl id, =id
Ezample 1. Define G by V(G) = {s1, 82,53}, E(G) = {5152, 5183, 5253} and P(G) = {{s153,s283}}. We
orient G by taking a; = (s183), a2 = (s2s3) and az = (s1s2) as oriented edges (see figure 3.1).
Co(G) = 73 with generators s1, s2 and sz and C1(G) = 72 with generators a; + as and as. For each
pair (m,n) of integers:

d(mas + n(a1 + az)) = m(s2 — s1) + n(2s3 — s1 — s2) = 2nsz — (m + n)s; + (m —n)sy

Hence 9 is injective—that is H1(G) = 0. On the other hand kere = 7?2 generated by ¢; = s3 — s; and
¢y = s3 — s2. But {ea}e = —{c1}¢ because

e+ ¢z =0(a1 + az)
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and 2{c;}¢ = 0 because
261 :283—281 2283—81 — 89 4+ 89 — 57 :3(&1 +£l2+113).

Now {e1}e # 0 because ¢; ¢ imd. Then Hg(G) is generated by a unique class {c¢1}g of order 2 and
Ho(G) = Z/22. o

Erample 2. The following table displays the homology groups of U, D and T

Ul D|T
Ho|O0|Z | Z
Hi|0]0]0

table 1

<&

Ezample 3. Let G be defined by V(G) = {s,t,u,v}, P(G) = {{us,ts}, {tu,vu}} with oriented edges (us),
(ts), (tu), (vu) and (vs) (see figure 3.2). The associated complex gives ker ¢ 2 Z” with generators s —u, s —
and s — v.

We compute the homology of G by writing down the matrix of 9—the range being restricted to ker e—
in the bases (a,b,c) = ((us) + (ts), (tu) + (vu), (vs)) of C1(G) and (s —u,s—t,s — v) of kere:

a b ¢
s—u {1 =2 0
s—t 1 1 0
s—v \0 1 1
It reduces to
1 0 0
0 1 0
0 0 3

by unimodular transformations. This gives the injectivity of 9, hence H1(G) = 0, and a presentation of
Ho(G) by generators and relations, hence Hq(G) = Z/3Z.
o

Let G be a graph and K a subgraph of G. By regarding C;(K) as a subgroup of C;(G) we define a new
complex _
0 — Ci(G.K) -5 (G K) — 0
where C;(G, K) = C;(G)/C;(K)—the group of relative i-chains modulo K— and d: C1(G,K) — Cy(G, K)
is induced by 0 on factor groups. Then

Definition 3.2. The relative homology groups of G modulo K are Ho(G,K) = Co(G,K)/imd and
H,(G,K) = ker 9. o

The excision theorem still holds, as well as the exact sequence of relative homology [Mun]. In order to apply
the excision property we denote by G\ K the graph obtained from G by removing all edges of K and the
vertices of K not belonging to a remaining edge.

Recall that the rank of a free finitely generated abelian group is its dimension as a Z-module. Now let
A be a finitely generated abelian group—mnot necessarily free— and T its torsion subgroup. We still call rank

of A the rank of the free group A/T. If
0—A4) — - — A —0

is a complex of abelian groups of finite type, the Euler characteristic of this complex is the integer

X = Z(—l)j rank A;.
J
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Then

Y = Z(—l)j rank H;.
J

hence y = 0 for any exact sequence.

4. The homology groups of proof-nets

We now compute the homology groups for the elements of TI.

Theorem 4.1. Let G be a graph and p = card P(G). If G € T, then H1(G) = 0 and Ho(G) is a finite
group of order 2P,

This immediately follows from two lemmas:

Lemma 4.2. Let G1 and G4 be graphs, s1 (resp. s2) a vertex of G1 (resp. G3). There are isomorphisms
Hi(t(G1,Ga, 51, 82)) = Hi(G1) © Hi(G2)

fori=1 and 2.
Proof. Let G be t(G1, G2, s1,82). G1 N Gy is isomorphic to U. We get a Mayer-Vietoris sequence

00— Hl(U) — Hl(Gl) D Hl(GQ) — Hl(G) — Ho(U) — HQ(Gl) D HO(GQ) — Ho(G) — 0
where Ho(U) = H1(U) = 0. This gives the desired isomorphisms. o

Lemma 4.3. Let G be a graph and sy, ss two distinct vertices of G.

o Hi(p(G1,s1,52)) = Hi(G1).
o If Ho(G1) is a finite group then card Ho(p(G1, s1,82)) = 2card Ho(G1).

Proof. Let G be p(G1, s1, s2). The isomorphism Gy N'T = D gives a Mayer-Vietoris exact sequence:
0 — H1(D) — H1(G1) ® Hi(T) — H1(G) — Ho(D) — Ho(G1) ® Ho(T) — Ho(G) — 0
which by table 1 reduces to
0 — Hi(G1) -5 H1(G) 257 55 — 51} p—>Ho(G1) @ Z{s5 — s1}7 — Ho(G) — 0

where
0({s2 — s1}p) = ({s2 — s1}a,, —{s2 — s1}7)

Since {sg — s1}7 does not vanish in Ho(T), 0 is injective. Hence imy = ker# = 0 and ¢ is an isomorphism.
This proves the first statement.
Suppose now that Hg(G1) is a finite group. Tt has a presentation
generators relations
Cl,...Cp ‘ nic; =0fori=1,...p
There is a relation:

P
{s2—si}a, = Yl
i=1

In T, {sy — s1}7 = 2¢q where ¢o = {s3 — s1}7.
On the other hand Ho(G1) @ Ho(T) is generated by the elements dy = (0,¢q) and d; = (¢;,0) for
i=1,...p. Therefore Hy(G) has a presentation :
generators relations
do,...d, nid; =0fori=1,...p
2dg — S Lidi = 0
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by exactness in the previous sequence.
This can be put in matrix form:

ni 0 —11
M = 0
np, —l
0 0 2
Finally
card Ho(G) = |det M| = |2n1 .. .np| = 2card Ho(Gh).
This proves the second statement. o

In fact we shall use a slight refinement of this result, namely that the conclusion still holds if we suppose
Hy(G) finite instead of Hg(G1). Indeed in the exact sequence

0 — Hy(G1) -5 Hi (G)25Z sy — 51} p—s Ho(G1) ® Z{s5 — s1}7 — Ho(G) — 0

the isomorphism between H;(G) and Hy(G1) does not depend on the finiteness of Hq(G1). Now the Euler
characteristic vanishes hence Hy(G) and Hg(G1) have the same rank. In particular if one of these groups is
finite, so 1s the other.

5. Simplification lemma

Let G be a graph and a be a paired-edge. G denotes the graph obtained from G by removing a* and making
a free. In this section we compare the homology groups of G and G®. Here the main result is

Lemma 5.1. Let G be a graph such that H1(G) = 0 and Ho(G) is a finite group of order g. For every
paired-edge a, there is a b € {a,a*} such that:

° Hl(Gb) =0.
o Ho(G") is a finite group with card Ho(G") > 9/2.

Proof. Let G be as in the lemma and a a paired-edge. We denote a = sy1s3, a* = sgs3, G = G and
Gy = G°. If we see T as the subgraph of G with vertices s1,s9,s3, we denote Go = G\ T, and T; = TN G;
for i =0, 1 and 2 (see figure 5.1).

e Hi(G) = H1(T) = 0 and Ho(T) = Z{s3 — s1}1 hence the exact sequence of relative homology is:

0 — Hy(G, T)25Z{s5 — 51 }7— Ho(G) — Ho(G,T) —> 0
But Ho(G) is finite and so is Ho(G, T'). Then the Euler-characteristic is rank H1 (G, T)—1 = 0 and H1(G,T) =
7.

Let A be the set of chains ¢ in C7(Go) such that dc € Co(Tp). A = H1(G,T) = Z is generated by a
unique element c¢q. Then H(G,T) is generated by

y={co}a .
On the other hand €dcg = 0 and there are integers m; and ms such that
360 = (m1 + m2)53 — M1851 — M3y Sy.

This implies:
Oy = {0cotr = (m1 — ma){s3 — s1}r = (m2 — m1){s3 — sa2}7
Consequently
card Ho(G) = |m1 — ma| x card Ho(G, T) (1)
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Notice also that |m; — ms| > 0 since otherwise d. cannot be injective, in contradiction with exactness in
H, (G, T).
o Likewise, for i = 1 and 2, H1(T;) = 0 and Ho(T;) = Z{s3 — si }1,

Then the exact sequence becomes

0 — Hi(Gy) — H1(Gy, T) 25T 55 — 81} 7,23 Ho(Gy) — Ho(Gy, Ti) — 0
Here again v; = {co}q, 7 generates Hy(G;, T;) and by definition:
Oy = {0co}r, = mi{ss — si}r,

Let m = max(|m1], |ma|): since |m; — mg| > 0, m # 0. We may suppose that m = |my|, by exchanging a
and a* if necessary. In that case 9! is injective and exactness implies

Hl(Gl) = 0

This proves the first assertion.
Now the sequence becomes:

0 — Hy(Gr, Tr) 25255 — 51} 12 Ho(G1) — Ho(Gr,Th) — 0
By excision theorem, Ho(G1,T1) = Ho(G,T) hence Ho(G1,Ty) is finite and
card Ho(G1) = |mq]| x card Ho(G, T) (2)
Finally
lmy — ma| < |my| + [ma| < 2|m| (3)

By (1), (2) and (3) we get
card Ho(G) < 2card Ho(G1)

and we are done. o
Tt is now possible to bound card Hy(G) when this group is finite and H;(G) = 0.
Proposition 5.2. Let G be a graph such that Ho(G) is finite and H1(G) = 0. Then

card Ho(G) < geard P(G)

Proof. By induction on card P(G). If card P(G) = 0, G is an ordinary graph and Hg(G) cannot be finite
unless Ho(G) = 0, which gives the result in this case.

Suppose that card P(G) = n > 0. We can choose a paired-edge a, and (5.1) gives b with card Ho(G) <
2 card Ho(G4). By induction hypothesis card Hqo(Gp) < 27! hence card Ho(G) < 27, which ends the proof.
o

Let (H) the conjunction of the following two conditions:

o Ho(G) is finite, of order 20214 (),
[ ] Hl(G) = 0

For graphs satisfying (H), the previous results have an important consequence:
Lemma 5.3. If G satisfies (H), then for each paired-edge a, G* still satisfies (H).

Proof. Let G be a graph satisfying (H) and @ a paired-edge. The essential point is that the inequalities (3)
in the proof of (5.1) are in fact equalities. Otherwise |mg — my| < 2 |my| and the same proof implies:

card Ho(G) < 2card Ho(G1)
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hence card Ho(G1) > 257471 in contradiction with (5.2) .
The equality in (3) then implies |m1| = |mg| and card Ho(G) = 2card Ho(G1) = 2card Ho(G3). This
gives the result. o

Let now G be a graph with card P(G) = p. A switching of G is aset 0 = {a1, ..., a,} obtained by the choice
of one edge a; in each pair of G. The—ordinary— graph (((G®'))%) will be denoted by G7. Clearly

Proposition 5.4. If G satisfies (H), then for every switching o, G° is a tree.

In other words (H) implies the correctness criterion ”found by Danos and Régnier (see [Gir2] or [Dan]);
thus” every graph satisfying (H) is a proof-net. We now give a direct proof of this result.

6. The sequentialization theorem

Let G be a p.g. The underlying ordinary graph (with same edges and vertices as (G, and no pair) will be
denoted by |G|. We denote by G° the graph obtained from G by removing all paired-edges. The connected
components of |G| are called G-blocks.

Let s1,..., sk be distinct vertices of G such that for every i € {1,...,k — 1} the edge s;s;41 belongs to
G. Then v = (s1,...,sg) is called a G-path from s; to s;. A G-path is simple if it contains no paired-edge,
in other words, if it belongs to a G-block.

If G is oriented, we associate to each y = (s1,...,s;) a chain Zfz_ll(sisHl) of Ci(|G|) (by using
(st) = —(ts)). We still denote this chain by v, and dy = sg — s1. For each pair (s,t) of vertices of GG the two
following assertions are clearly equivalent:

e s and ¢ belong to the same block.
e There is a simple path 4 such that 0y =¢ — s.

In particular, if s and ¢ are in the same G-block, {t — s}s = 0.
Lemma 6.1. If Ho(G) is finite, then |G| is connected.

Proof. Clearly Ho(|G]) is a quotient of Ho(G). In particular, if Ho(G) is finite, so is Hq(]G]), but since |G|
is an ordinary graph, Ho(|G|) = 0 and |G| is connected. °

Proposition 6.2. Let G be a graph with P(G) = {{s;u;, t;u; }/i € {1,...,p}}. If Ho(G) is a finite group,
then it is generated by the elements {u; — s;}a fori=1,...p.

Proof. We know that Hg(G) is generated by the homology classes of the z — y’s where (y, z) runs over the
set of pairs of distinct vertices in G.
Let (y,z) be such a pair. Since Ho(G) is finite, |G| is connected by (6.1) and there is a path v =

(z1,...,2g) from y to z, for which:
k-1

pmy= Y g1 —
i=1
By taking homology classes on both sides, we notice that {z;11 — 2z;}¢ vanishes when z;z;11 is a free edge
of G. Hence {z — y}¢ is a linear combination of the {u — 2}¢’s where zu runs over the set of paired edges.
But for each pair {zu,2'u}, {u — 2} = —{u — 2’} so that we can form a set of generators by choosing an
edge in each pair. o

Recall from [Dan] that a pair is splitting if it cuts |G| in two pieces, or more precisely:

Definition 6.3. Let G be a graph, p = {su,tu} € P(G) and G* = G \ p. p is splitting if and only if the
connected component of u in |G*| does not contain s or ¢. o

Splitting pairs have a nice characterization in terms of homology as we shall see. First of all the choice
of one edge in each pair p defines an element w, of Hy(G): if p = {su,tu} and su is the edge we choose,
wp, = {u — stg. Now wy is called irreducible if and only if it does not belong to the subgroup of H(G)
generated by the wp’s for p’ # p. This is clearly independent of the choice of the edges.
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Proposition 6.4. A pair p is splitting if and only if w, is irreducible.

Proof. Let us choose an edge syu, in each pair ”¢ of G; denote dy = uy — s and wy = {dg}a.”
Suppose that p = {su,tu} is not splitting. We get a G-path v = (z1,...,2x) from s (or ¢) to u not
containing su or tu and we may suppose that z; = s without loss of generality.

i=k—1

Uu—s= 2 Zi41 — Z4-
i=1

By taking homology classes on both sides, terms coming from free edges vanish so that {u — s} is a linear
combination of the {z; 411 —2; }g’s where z;z; 41 is a paired-edge not su or tu. Since for each pair ¢ = {s'u’, t'v'}
{v' —s'}g = —{u' —t'}q, wp is a linear combination of the w,’s for ¢ # p hence not irreducible.

Suppose conversely that p = {su,tu} is splitting. Let G’ obtained from G by removing su and tu. The
connected component of |G’| containing u determines a subgraph Gy of G. Let G; = G\ G3. Since p is
splitting, G1 and G2 have a unique vertex u in common, so that G = t(G1, G2, u,u). Let P1 = P(G1) \ p
and 7)2 = P(Gz)

If wy, is not irreducible,

{dpo}a = Z Agldgla + Z Agldgla

q€P: qeP>

hence

{dp - Z /\qdq}G =1 Z )‘qdq}G

q€P1 qeEP2

On the other hand
({e1}an, {e2ta,) = {an +ea}a

determines an isomorphism between Ho(G1) @ Ho(G2) and Hg(G) such that

({dp - Z )‘qdq}Gu —{ Z )‘qdq}Gz)

q€P qeP2

has image 0. Necessarily

{dp - Z )‘qdq}Gl =0

q€P1

and there is a 1-chain ¢ of GG; such that
dy — > Agdy = de.
q€EP1

Let us compare the coefficients of u on both sides: on the left-hand side it is 1 because d, = u—s and the other
terms do not contain u . On the right-hand side, the only terms containing u are du((su)+(tu)) = p(2u—s—t)
where the coefficient is even. This is a contradiction, and ends the proof. o

Lemma 6.5. Let G be a graph, p € P(G) and G* = G\ {p}:

rank Ho(G*) < rank Ho(G) + 1.

Proof. Hy(G) is the quotient of Ho(G*) by a single relation. o
We are now able to prove the following lemma, which is the crucial step in sequentialization.

Lemma 6.6. In each graph G satisfying (H) and P(G) # 0, there is a pair {su,tu} such that s and i
belong to the same block.



Proof. By induction on the cardinal n of P. If n = 1 let p = {su,tu} be the unique pair. We know by
(6.2) that {u — s} generates Ho(G), which is Z/2Z by (H). ”Consequently {u — s} # 0 and s, u belong
to distinct blocks; ” and the same holds for ¢ and u. But rank Hy(G°) < rank Hq(G) + 1 =1 by (6.5) hence
|G°| has at most two connected components. Therefore s and ¢ must belong to the same block.

Suppose now that the conclusion holds for n > 1 and let G be a graph with n 4+ 1 pairs. We choose a
pair {su,tu} for which w = {u — s} has mazimal order 2" in Ho(G) and denote a = su. By (5.3) G* still
satisfies (H), and card P(G®) = n hence by induction hypothesis there is a pair {s'u’,#'u'} in G® such that
s’ and ¢’ belong to the same G*-block.

We get a simple G*-path v such that

Oy =t -5

If 4 is already simple in G we are done. Otherwise it contains an edge which is free in G but not in G (see
figure 6.1), that is su. Then v =51 £ (su) where v; is in C1(G). Hence
t'— s =0y £ (u—s).
By taking homology classes we get:
{t' —s'}g = +w.

On the other hand {t’ — s'}¢ = 2w’ where w’ = {4’ — s'}. Hence
w =42

Then the order of w’ in Ho(G) is 2“1, This is a contradiction. o
We now turn to the existence of splitting pairs.
Lemma 6.7. FEach graph G satisfying (H) and P(G) # 0 has a splitting pair.

Proof. By induction on the number n of pairs. ”Let us first choose an edge in each pair ; if” ¢ = {su,tu}
and su is this edge, d, denotes the chain u — s € Cy(G) and qu = {dy}¢. If n = 1, the unique pair p is
splitting: wf # 0—Dbecause it has order 2—hence it is irreducible.

Suppose now that the property holds for n > 1 and let card P(G) = n + 1. By (6.6) There is a pair
p = {su,tu} such that s and ¢ belong to the same block and we get a simple G-path v from s to t. Let Gy
be the subgraph of G reunion of p and 4. By (5.3) G* (where a = su) still satisfies (H) and has a splitting
pair ¢ by induction hypothesis. Let us examine the commutative diagram

Ho(Go)EZ/QZ — Ho(G) — HQ(G,G()) — 0

lo )
Ho(G3) =0 — Ho(G*) — He(G*,GY) — 0

where horizontals are exact and ¢ is an isomorphism. It defines a morphism 6 ”from Ho(G) to Ho(G*) by
{c}& — {c}Ga; in particular ” H(pr) = 0. If ¢ is not splitting in G, there is a relation in Hq(G)

wf = ozpr + Z )\erG
ré{p,a}

that 6 takes to

G* _ G®
w, = E Arw,

r¢{p,q}

This shows that ¢ is not splitting in G*: contradiction. o
As a consequence of the previous results we finally deduce

Theorem 6.8. Every graph G satisfying (H) is a proof-net.

Proof. By induction on the size of G.



Case 1. P(G) = 0.

G is an ordinary graph such that Ho(G) = H1(G) = 0 hence a tree, and a proof-net.
Case 2. P(G) # 0.

By (6.7) , there is a splitting pair p = {su,?u}. Let G’ be the graph obtained from G by removing su
and tu : the connected component of |G’| containing u determines a subgraph G; of G. Let G2 = G\ G.
Since p is splitting, G; and G5 have a unique common vertex u hence G = t(G1, G2).

(2.1.) G reduces to u: in this case, G = G5 = p(Gs, s,t) where Gz = G\ p. By (4.3) and the subsequent
remark Hi(G3) = H1(G2) = H1(G) = 0 and the finiteness of Ho(G) implies card Hy(G2) = 2card Hy(G3).
This shows that G5 satisfies (H) hence is a proof-net by induction hypothesis and so is G.

(2.2.) G1 has at least one edge: in this case G; and G2 are strictly smaller than G. On the other hand,
by (42) Hl(Gl)@Hl(GQ) = Hl(G) = 0 hence Hl(Gl) = Hl(GQ) = 0. Likewise Ho(Gl) EBHQ(GQ) = HO(G)

But card Ho(G) = 2" hence card Hq(G1) = 2% and card Ho(G2) = 2° and we know by (5.2) that a (resp
b) cannot be greater than the number of pairs of Gy (resp. G2). Then G; and G2 satisfy (H) hence are
proof-nets by induction hypothesis. So is G = t(G1, G3). o

7. Cut-elimination

This section gives a homological proof that proofnets are closed under cut-elimination. In our abstract setting,
this amounts to verify that the conditions (H) are preserved under certain substitutions of subgraphs we
now describe.

Let G be a proofnet with n pairs and ¢, u, v, w, z five distinct vertices of G such that {ut, vt} is a pair
and wt, zt are free edges. Let K be the subgraph of G with vertices ¢, u, v, w, and z, free edges wt and
zt and one pair {ut,vt}. Let K (resp. K2) be the graph with vertices u, v, w, et z, free edges uw and vz
(resp. uz and vw) and no pair. We call G; the graph obtained by substituting K; for K in G: then G; has
n — 1 pairs.

We get exact sequences:

0 — Hi(K) — H(G) — Hi(GK) 2 H(K) — - )
: Ho( — Ho(G,K) — 0

and

0 — Hi(K:) — Hi(G) — Hi(GiK) 2  Ho(Ki) — - @
HO(GZ) — Ho(Gi,I{i) — 0

Clearly Hi(K) = Hy(K1) = H1(K2) = 0 and Ho(R) = Ho(K1) = Ho(K2) = Z. As G satisfies (H), (1)

reduces to
0 — Hi(GK) 2 2 — Hy(G) — Hy(G,K) — 0 (3)

hence H1(G, K) = Z because H(G) is finite.

Then there is a chain ¢ of G\ K such that {c¢}¢ x generates H1(G, K) and dc = au + bv + cw + dz
(hence a + b+ ¢+ d =0). By excision, {c}q, i, generates Hq(G;, K;) for i = 1 and 2. Let us precise 0y in
all three cases:

O{ctak ={au+bv+ cw +dz}g = (a — b){u— w}k 4)
Oi{cta, k, = {au+bv+cw+dz}g, = (a +c){u — v}k, (5)
Oi{cta, k, = {au+bv + cw+ dz} i, = (a + d){u — v}k, (6)

where {u —w}k, {u—v}k, and {u— v}k, are generators of Hy(K), Ho(K1) and Ho(K3) respectively. Also
la—bl=la—bt+a+bt+ct+d|=|la+c+a+d <|a+c|+|a+d (7)

Now |a — b] # 0, by (4) and injectivity of 0. in (3). Then we may assume without loss of generality that
|a + ¢| # 0, by (7). This together with (5) implies injectivity of d. in:

0 — Hi(G)) — Hi(G1, K1) 25 Ho(Ki) — ®)
.. Ho(Gl) — Ho(Gl,er) — 0

10



obtained from (2) in case i = 1. Therefore
card Ho(G1) = card Ho(G1, K1) X |a + ¢
Suppose now that |a — b| < 2|a + ¢|. We get
card Ho(G1) > (1/2) |a — b| x card Hy(G, K)

But |a — b| x card Ho(G, K) = card Ho(G) by (1) and (4). This implies card Hq(G1) > 2"~ in contradiction
with (5.2) .

Then 2|a+ ¢| < |a —b|. By (7), |a+ ¢| < |a + d| so that we also have |a 4+ d| > 0 and everything holds
for i = 2 as well as for i = 1. Hence |a —b| = 2|a + d| = 2|a + ¢| and

card Ho(G;) = (1/2) |a — b| x card Ho(G, K) = 2"~* (9)

for i = 1 and 2.
The injectivity of 0, in (8)—and its analogue for i=2—also yields

Hi(G) = Ho(G) = 0 (10)

By (9) and (10) G and G5 still satisfy (H).

”

8. Jordan-H*older decompositions of Hy(G) for proof nets”

In this section GG will be a proof-net and n its number of pairs. ”We shall see how the pairs of GG give Jordan-
H”older ” decompositions of Hy(G). We first choose one edge in each pair and resume the notations of
(6.7) . I X = {p,q,r...} is aset of pairs of G we denote by < p,q,7... >, or simply < X >¢ the subgroup
of Ho(G) generated by wf, qu, w% ... . Thisis clearly independent of the choice of the edges. By definition,
the order of p is the order of < p > and it will be denoted by vg(p) or simply v(p).

Let us first examine more closely the pairs ¢ = {su,tu} such that s and ¢ belong to the same block. We
call such a pair initial and @ the set of initial pairs. Let ¢ = {su,tu} be initial, and ¢ = su. In the proof

of (6.7) , we have defined a morphism 6 from Hq(G) to Ho(G®) by {c}a — {c}ga, for which the following

diagram commutes

Ho(Go) = Z/2Z -5 Ho(G) — Ho(G,Gy) — 0

lo Lo l¢
Ho(G3) =0 — Ho(G*) — He(G*,GY) — 0

where (G is any subgraph of GG obtained by the reunion of ¢ and ”a simple path from s to ¢; ¢ is the
isomorphism given” by excision. i, is non-zero otherwise card Ho(G®) = card Hg(G) in contradiction with
(5.2) and we get an exact sequence:

0 — Ho(Go) - Ho(G) - Ho(GY) —s 0

In particular imi, =< ¢ >¢ hence v(q) = 2. More generally,
Lemma 8.1. For each pair p, v(p) > 2.

Proof. By induction on n . If n = 0, there is nothing to prove. Otherwise (6.6) gives an initial pair
q = {a,a*}, of order 2 as we have just seen and G° satisfies the induction hypothesis. Let p be a pair. If
p = q we are done. If not, let § : Ho(G) — Ho(G*) as before, (< p >@) =< p >ga which is non-zero by
induction hypothesis and vg(p) > 2. o

We can now prove the

Lemma 8.2. Fach pair of order 2 s initial.

11



Proof. By induction on n. If n = 0, there is nothing to prove. Otherwise let ¢ = {a,a*} an initial pair—by
(6.6) —and ¢’ = {s'v/,t'v'} a pair of order 2. If ¢/ = q we are done, otherwise 8(< ¢’ >g) =< ¢’ >ga
hence v(¢')ga < 2 and by (8.1) , v(¢')ga > 2. Thus ¢’ has order 2 in G%, and it is initial by the induction
hypothesis.

Let v be a simple G%path from s’ to t': it cannot contain a otherwise

5, ,G G
qu, = {t’ - 5/}G = wy £ 0.
But this is a contradiction with vg(¢') = 2. o

Lemma 8.3. For each subset X 20 of Q, Y., o x w # 0.
Proof. By induction on n. If n = 0, there is nothing to prove. Otherwise let ¢ = {a, a*} be initial and 6 as
above. Notice that the set of initial pairs of G is exactly @ \ {q}, by the previous lemmas. Suppose that
there 1s a relation

O

reX
for a subset X # l of Q. By (8.1) we cannot have X = {q} and on the other hand 6 takes the above relation

to
Z w8 ‘=0
reX\{q}
where X \ {¢} is a non void subset of @\ {¢}, in contradiction with the induction hypothesis. o

As an easy consequence of this result we get card < @ >= 2°'9%. (Indeed the lemma asserts that
the canonical projector @4eq < ¢ >—< G > is injective.) Consider now a certain ordering q1, qs,...q, of
initial pairs. We denote ¢; = {a;,a}} and for every i € {1,...£}, G; = (((G*)?) )% with G = G,. We
define as above a morphism 6; : Ho(G;-1) — Ho(G;) by 0({c}a,_,) = {c}qg,. Let #=0,0 - 08 from
Ho(G) to Ho(Gy). Clearly f is surjective and < @ >¢ lies in the kernel of . But Gy is a proof-net with
n — ¢ pairs hence card Ho(Gy) = 27"~% Thus we get an exact sequence

0 — <Q>¢ — Ho(G) - Hy(G) — 0

We finally notice that the intersection of < p > (p € P(G)) with < @ > is never trivial. Precisely
Lemma 8.4. For every pair p, card(< p> N < Q >) = 2.

Proof. 1t suffices to prove that the intersection is not 0 because the elements of < ) > have order 2 and the
cyclic group < p >, of order 27, contains exactly one element of order 2. We prove this by induction on n. If
n = 0, there is nothing to prove. Otherwise let ¢ = {a, a*} and p be pairs, with ¢ initial. f < ¢ > C <p >4
we are done. Otherwise we get an exact sequence

0 — <g>c -5 HoG) -5 HyGY) — 0

By induction hypothesis there is a non-zero 7% in < p >5. N < Q \ {¢} >5a. Then there is a non-zero 7 in
< p >¢ such that (7) = 7*. On the other hand, (< @ >¢) =< @\ {¢} > and < Q > contains ker 8, so
that 071 (< Q\ {q} >qa) =< Q >gand T € < Q >4. o

The structure of the subgroups generated by sets of pairs can now be made precise. The key result is

Proposition 8.5. Let X be a set of pairs and p ¢ X.
If for every q € X, v(q) < v(p), then <p >F< X >.

Proof. Notice that the result is obvious if we suppose a strict inequality v(q) < v(p). The proof is now by
induction on n. If n = 0, there is nothing to prove. Otherwise the set @ of initial pairs is not empty and we
get as shown above an exact sequence

0 — <Q>¢ — Ho(G) -5 Ho(Gy) — 0.
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Let X be a set of pairs and p ¢ X a pair such that for every r € X, vg(r) < ve(p).
Case 1. p€ Q.
All elements of X have order 2 then belong to @ by (8.2) and < p >¢< @ > by (8.3) .

Case 2. p¢ Q.
For every pair ¢, card(< ¢ > N< @ >¢) = 2 by (8.4) . In particular for every r ¢ @,
<r>qg

<r>gN< @ >¢

<T’>G£E

hence vg,(r) = vg(r)/2 so that vg,(r) < vg,(p) for every r € X \ Q. Then the induction hypothesis holds
for G, with the pair p "and the set X \ @; therefore” < p >4, ¢ <X\ Q >4,

But (< p>g) =< p>g, and 0(< X >q) =< X\ Q >q, thus < p >4 ¢< X >q. o
Recall that the index of a subgroup B of a group A, which is denoted by [A : B] is card(A/B).

Theorem 8.6. Let p1,...,p, an ordering of the pairs of G such that v(p1) < v(pz) < ... <v(pn).
The subgroups Fy = 0 and F; =< p1,...p; > for "i = 1,...n build a Jordan-H”older sequence for” Hy(G),
in other words [F; : F;_1] = 2 for every i € {1,...n}.

Proof. By (8.5) , [F; : Fi—1] > 2 and on the other hand

card(Ho(G)) = 2" = [F, : Fo] = [J[Fi : Fiza.

i=1

9. A geometrical interpretation.

Let us point out a rather unsatisfactory feature of our Hg(G): it is finite and non trivial for proof-nets with
at least one pair. This of course never happens in topology. Nevertheless there is a geometrical reason for
this: indeed Ho(G) and H;(G) will be seen respectively as H1(X) and H(X) for a certain topological space
X which can be naturally associated with G.

Remark. All topological spaces we shall mention are CW-complexes: the homology of such a complex K
will be computed by using the complex of the C;(K)’s—the sets of formal linear combinations of i-cells with
integer coefficients.

Let G be a paired-graph with n pairs and V, a wedge of n circles (i.e. n copies of S; ”glued together
at a single point v.); to each pair p we associate ” one to one a circle ST of this wedge. We now consider a
map f from |G| to V},, having the following properties:

e If z is any point not interior to a paired edge, f(z) = v.
o if p = {su,tu} € P(G), f maps one to one—and of course continuously—the interior of su (resp.tu)
onto ST\ {v}.

e f(z) describes ST in opposite senses according as z goes from s to u or from ¢ to u.

Then f induces morphisms f;& from C;(|G]) to C;(Vy,). and we get an exact sequence
0 —K—>G—V—0

of complexes:
0 0
Lo
0 — kerf;}# == kerf% — 0
i)
0 — a(a) 5 c(G) — 0
v 8
0 — Cl(Vn) — (o

!
(
) )
0 0



We easily see that C1(K) = ker f# is exactly the subgroup of C1(]G|) generated by the free edges and the
(su) + (tu)’s where p = {su,tu} runs over P((G), in other words the group we previously called C;(G) (not
C1(|Gl) ). On the other hand Cy(V,) = Z hence Co(K) = ker f% is ker ¢ by resuming the notations of
section 4.

Finally Ok is the boundary morphism of the complex we have associated to G. Consequently the
homology groups H;(K) and Ho(K) of K are respectively Hy(G) and Ho(G). The above diagram gives a
long exact sequence

0 — H{(K) — H1(G) — H1(V) — Ho(K) — Ho(G) — Ho(V) — 0 (1)

Let now X¢ be the cone of f, which is the quotient space of the disjoint sum of I x |G|—where I = [0, 1]—
and V,, by the identifications (0, z) ~ (0,y) and (1,z) ~ f(z) for all z, y in |G].
We know that the homology groups of |G|, V,, and X¢ fit into an exact sequence:

— H(G) L5 H(V,) — HiXe) — Hia(G) — - (2)
Comparing (1) and (2) yields first
HQ(XG) Ekerf*l = Hl(G)

On the other hand, Hg(V,) = 0 so that we get two short exact sequences

0 — Hi(V,)/imf! — Hy(G) — Ho(lG)) — 0
0 — H(Vp)/imfl — Hi(Xg) — Ho(|G) — 0
Because Hg(|GY) is free abelian, both sequences split and

This proves

Theorem 9.1. H:(X¢g) = H1(G) and H1(Xg) = Ho(G).

Remark. There are of course many f’s satisfying the required properties. Yet the topology of the cone of
f 1s uniquely determined.

X¢g can be defined more intuitively by the 2-dimensional CW-complex K we now describe. There are
two O-cells (vertices) a and 3. For each vertex u of GG there is an open 1-cell n,. For each free edge a = uv
(resp. each pair p) there is an open 2-cell o, (resp. 7,). These cells fit together as pictured on figure 9.1
and figure 9.2. The topological space we get is in fact homeomorphic to X¢g.

Let GG be for instance the proof net of the example 1 of section 4, X is homeomorphic to the projective
plane P%(R) (see figure 9.3).
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