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Introduction

The topic of these talks is a technique called classical realizability,

which gives rise to new models of set theory, which I call realizability models.

It was made possible by the discovery by Tim Griffin, in 1990,

of the interpretation of the excluded middle by means of a control instruction.

I want to insist on the importance and strangeness of this discovery

which connects one of the oldest mode of mathematical reasoning

with a very sophisticated programming instruction.

What could Euclid know about the use of continuations in SCHEME ?

This is at least as surprising as the Gödel incompleteness theorem,

and like this theorem, it has certainly deep philosophical implications.
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Introduction

The realizability models of ZF are interesting for several reasons :

• They are the first new models of ZF, fifty years after Cohen’s forcing.

• They use thoroughly computer science methods :

λ-calculus and combinatory logic, virtual machines, environments,

technical programming instructions and methods, etc.

• Conversely, they give new insights about programming,

by extending the Curry-Howard correspondence to set-theoretical proofs.

We have to solve what I call the specification problem :

what is the specification associated with a given theorem ?

The aim is to obtain, in this way, useful secure programs.
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Introduction

• These models also give us new insights about set theory :

They emphasize the role of the extensionality axiom.

This axiom is, by far, the most difficult to handle,

much more than the excluded middle (given Griffin’s result).

Indeed, it is the only one for which no program can be found.

• They suggest that the only natural axiom of choice is dependent choice :

indeed, up to now, in every non trivial example, DC is true and AC is false.

Therefore, it is not wise to consider ZFC as the standard set theory.
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Introduction

Forcing is a particular (in fact degenerate) case of classical realizability.

The realizability models of ZF are much more complicated than forcing models :

they are not an extension of the ground model ;

the ordinals and even the integers are changed ;

the axiom of choice is not preserved, only dependent choice may be.

The main tools are :

• Syntax : ZFε set theory which is a conservative extension of ZF ;

we introduce a strong membership relation ε which lacks extensionality ;

indeed, extensionality axiom cannot be directly realized.

• Semantics : Realizability algebra which is a three-sorted extension

of the well known combinatory algebra ; indeed, we have to manage

not only programs, but also environments and machine execution.
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Realizability algebras
It is a 3-sorted first order structure, which consists of :

• Three sets : Λ the set of terms (programs), Π the set of stacks (environments),

Λ?Π the set of processes (executable).

• Six distinguished terms : B, C, I, K, W, cc (elementary combinators).

• Four operations :

Application : Λ×Λ→Λ denoted (ξ)η, (or often ξη) where ξ,η are terms ;

Push : Λ×Π→Π denoted ξ .π, where π is a stack ;

Continuation : Π→Λ denoted kπ ;

Process : Λ×Π→Λ?Π denoted ξ?π.

• A preorder on processes, denoted Â (execution)

• A distinguished subset ⊥⊥ of Λ?Π such that : p ∉⊥⊥, p Â p ′⇒ p ′ ∉⊥⊥.

• A distinguished subset PL of Λ (proof-like terms) such that :

B, C, I, K, W, cc ∈ PL ; ξ,η ∈ PL ⇒ ξη ∈ PL ; (∀ξ ∈ PL)(∃π ∈Π)(ξ?π ∉⊥⊥).
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Axioms of realizability algebra

The preorder Â represents execution in a weak head reduction machine :

ξη?πÂ ξ?η .π (push)

I?ξ .πÂ ξ?π (no operation)

K?ξ .η .πÂ ξ?π (delete)

W?ξ .η .πÂ ξ?η .η .π (duplicate)

C?ξ .η .ζ .πÂ ξ?ζ .η .π (swap)

B?ξ .η .ζ .πÂ ξ?ηζ .π (apply)

cc?ξ .πÂ ξ?kπ .π (save the stack)

kπ?ξ .$Â ξ?π (restore the stack).

Remark. The usual set {K,S} of combinators does not work to interpret

weak head reduction of λ-calculus.
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A Curry-style translation of λ-calculus
A c-term is a term of the language of realizability algebras
built with variables x, y, . . . , elementary combinators and application.
Each closed c-term has a value in Λ which is proof-like.
Examples : integers in combinatory logic.
σ= (BW)(B)B (the successor) ; 0 = KI ; n +1 = (σ)n

Let t be a c-term and x a variable ; define inductively a c-term written λx t :
• λx t = (K)t if x is not in t

• λx x = I
• λx tu = (C λx t )u if x is in t but not in u

• λx t x = t if x is not in t

• λx t x = (W) λx t if x is in t

• λx(t )(u)v = λx(B)tuv if x is in uv

We now define our translation of λ-calculus, by setting : λx t = λx(I)t .

8



A Curry-style translation of λ-calculus

The rewriting of λx t is finite because :

• no combinator is introduced inside t , but only in front of it ;

• the only changes in t are : moving parentheses, erasing occurrences of x ;

• each rule decreases the part of t which is under λx ;

• except for the last rule, this decrease is strict ;

• the last rule can be applied consecutively only finitely many times

because the length of the argument strictly decreases (from (u)v to v ).
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Weak head reduction

Theorem. Let t [x1, . . . , xn] be a c-term and ξ1, . . . ,ξn ∈Λ. Then

λx1 . . .λxn t ?ξ1 . . . . .ξn .πÂ t [ξ1/x1, . . . ,ξn/xn]?π.

Easily proved, by induction on the length of the rewriting of t .

The usual KS -translation does not satisfy the theorem. For instance :

λx(x)xx?ξ .π≡ ((S)(S)I I) I?ξ .πÂS I I?ξ . Iξ .πÂ ξ? Iξ . Iξ .π instead of (ξ)ξξ?π.

The above Curry-style translation gives :

λx(x)xx?ξ .π≡ (W)(W)(B)(B)I?ξ .πÂ B?BI .ξ .ξ .ξ .πÂ (ξ)ξξ?π

We use λ-calculus only as a convenient way of writing c-terms.

Combinatory algebra is a very low level programming language

(it compares with machine language)

λ-calculus is of somewhat higher level (it compares with assembly language).
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The formal system for ZFε
We use first order logic with the only connectives >,⊥,→,∀, some function symbols,

three binary relation symbols 6ε ,∉,⊆ and the usual rules of natural deduction :

• x1:A1, . . . , xn:An ` xi :Ai

• x1:A1, . . . , xn:An ` t :A → B , x1:A1, . . . , xn:An ` u:A ⇒ x1:A1, . . . , xn:An ` (t )u:B

• x1:A1, . . . , xn:An, x:A ` t :B ⇒ x1:A1, . . . , xn:An `λx t :A → B

• x1:A1, . . . , xn:An ` t :A ⇒ x1:A1, . . . , xn:An ` t :∀x A (x is not in A1, . . . , An)

• x1:A1, . . . , xn:An ` t :∀x A ⇒ x1:A1, . . . , xn:An ` t :A[τ/x]

(τ is a `-term of ZFε, i.e. a term built with variables and function symbols)

• x1:A1, . . . , xn:An ` cc:((A → B) → A) → A (law of Peirce)

• x1:A1, . . . , xn:An ` t :⊥ ⇒ x1:A1, . . . , xn:An ` t :A

Notation. We write F1, . . . ,Fk → F for F1 → (F2 →···→ (Fk → F ) · · ·)
and ∃x{F1, . . . ,Fk} for ∀x(F1, . . . ,Fk →⊥) →⊥.
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Axioms of ZFε set theory

The axioms of ZFε essentially say that ε is a well founded relation

and that its extensional collapse ∈ satisfies ZF.

• Foundation scheme : ∀~z (∀x
(
(∀y εx)F [y,~z] → F [x,~z]

)→∀a F [a,~z]
)

for every formula F [x,~z].

• Collapse : ∀x∀y
(
x ∈ y ↔ (∃z ε y){x ⊆ z, z ⊆ x}

)
; ∀x∀y

(
x ⊆ y ↔ (∀z εx)z ∈ y

)
• Comprehension scheme : ∀~z∀a∃b∀x(x εb ↔ (x εa ∧F [x,~z]))

• Pairing : ∀a∀b∃x{a εx,b εx}

• Union : ∀a∃b(∀x εa)(∀y εx) y εb

• Power set : ∀a∃b∀x(∃y εb)∀z(z ε y ↔ (z εa ∧ z εx))

• Collection scheme : ∀~z∀a∃b(∀x εa)
(∃y F [x, y,~z] → (∃y εb)F [x, y,~z]

)
• Infinity scheme : ∀~z∀a∃b

{
a εb , (∀x εb)

(∃y F [x, y,~z] → (∃y εb)F [x, y,~z]
)}

A conservative extension of ZF. But, unlike ZF, function symbols are essential.
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Realizability models of ZFε
We start with an ordinary model M of ZFC, called the ground model.

Its elements are called individuals (to avoid the word set, as far as possible).

The formulas of ZF (i.e. without 6ε ) are interpreted in M (true or false).

The realizability model N has the same domain as M .

The function symbols have the same interpretation as in M .

The formulas of ZFε are interpreted in N , but with truth values in P (Π).

Although M and N have the same domain (which means that

the quantifier ∀x describes the same domain for both)

N has more individuals than M because some of them are not named.

For instance, in the ”thread model” below, there are necessarily

non standard integers in N , i.e. integers which are not named in M .

Therefore, realizability models are not forcing models.
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Realizability models of ZFε
For each closed formula F of ZFε with parameters a1, . . . , an in M

we define its truth value |F | ⊂Λ and its falsity value ‖F‖ ⊂Π.
ξ ∈ |F | is read ξ realizes F and is written ξ ∥−F .
These values are connected by the relation : ξ ∈ |F | ⇔ (∀π ∈ ‖F‖)(ξ?π ∈⊥⊥)
so that we only need to define the falsity value ‖F‖, by induction :

• F is atomic ;
‖>‖=; ; ‖⊥‖=Π ; ‖a 6εb‖ = {π ∈Π; (a,π) ∈ b}

‖a ⊆ b‖,‖a ∉ b‖ are defined by induction on the ranks of a,b :
‖a ⊆ b‖ =⋃

c
{ξ .π; ξ ∈Λ, π ∈Π, (c,π) ∈ a, ξ ∥−c ∉ b} ;

‖a ∉ b‖ =⋃
c

{ξ .ξ′ .π; ξ,ξ′ ∈Λ, π ∈Π, (c,π) ∈ b, ξ ∥−a ⊆ c, ξ′ ∥−c ⊆ a}.

• F ≡ A → B ; then ‖F‖ = {ξ .π ; ξ ∥− A, π ∈ ‖B‖}

• F ≡∀x A ; then ‖F‖ =⋃
a
‖A[a/x]‖
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Realizability models of ZFε
The following adequacy lemma is an essential tool.
Theorem. If x1 : A1, . . . , xn : An ` t : A and ξ1 ∥− A1, . . . ,ξn ∥− An

then t [ξ1/x1, . . . ,ξn/xn] ∥− A. In particular, if ` t : A, then t ∥− A.

We say that the model N realizes F if there is a proof-like term θ s.t. θ ∥−F .
Notation : N ∥−F or even ∥−F .
By adequacy, the class of realized formulas is closed by classical deduction.
Moreover, it is coherent, i.e. ⊥ is not realized because :

For every proof-like term θ, there is a stack π such that θ?π ∉⊥⊥
Indeed, this is an axiom of realizability algebras.
Remark. If ⊥⊥ 6=; i.e. ξ?π ∈⊥⊥, then kπξ ∥−⊥ ; thus, any formula has realizers.

Theorem. The axioms of ZFε , and thus also the axioms of ZF, are realized.

Therefore, the realizability model gives an ordinary model of ZFε and ZF.
We can obtain, in this way, relative consistency results.
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Forcing and parallel or

The ordered sets used in forcing are degenerate cases of realizability algebras :

Λ=Π=Λ?Π is a meet-semi-lattice with a greatest element I ;

the binary operations application, push, process are all identical with the meet ;

the unary operation of continuation is the identity ;

the elementary combinators B, C, I, K, W, cc are all identical with I.

The corresponding realizability models are the forcing models,

which have been deeply investigated since 1963.

We will not consider them here, because they have no programming content.

They are characterized by the :

Theorem. A realizability algebra gives only forcing models iff there is a parallel or,

i.e. a proof-like term e such that :

ξ?π ∈⊥⊥ or η?π ∈⊥⊥ ⇒ e?ξ .η .π ∈⊥⊥.
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Equality

In the realizability model we have two notions of equality :

• The strong or Leibniz equality x = y which is ∀z(x 6εz → y 6εz).

We have ∥−∀x∀y(x = y,F [x] → F [y]) for every formula F of ZFε.

• The extensional equality x ' y , which is x ⊆ y, y ⊆ x .

We have ∥−∀x∀y(x ' y,F [x] → F [y]) for every formula F of ZF

(i.e. without the symbol 6ε ).

Each function symbol f on M extends immediately to N , with the same values

on named individuals. ZFε remains satisfied with the extended language.

On the other hand, to satisfy ZF, we must check that f is compatible with ' :

∥−∀x∀y(x ' y → f x ' f y)

or else ∥−∀x∀y(x ⊆ y, y ⊆ x → f x ⊆ f y)
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Equality

In order to compute more easily with Leibniz equality, we introduce the symbol 6= :

‖a 6= b‖ =Π= ‖⊥‖ if a = b ; ‖a 6= b‖ =;= ‖>‖ if a 6= b.

Then x = y is defined as x 6= y →⊥. It is equivalent with Leibniz equality ; indeed :

Theorem.

i) I ∥−∀z(a 6εz → b 6εz), a 6= b →⊥ ;

ii) λxλy(cc)λk(x)(k)y ∥− (a 6= b →⊥) →∀z(a 6εz → b 6εz).

i) Let ξ ∥−∀z(a 6εz → b 6εz),η ∥−a 6= b and π ∈Π. We must show ξ?η .π ∈⊥⊥.

If a 6= b, then ‖∀z(a 6εz → b 6εz)‖ = ‖>→⊥‖ (take z = {b}×Π).

Therefore ξ ∥−>→⊥ and we are done.

If a = b, then η ∥−⊥, thus η ∥−a 6εz ;

take z = {(b,π)}, then π ∈ ‖b 6εz‖ and η .π ∈ ‖a 6εz → b 6εz‖. Thus ξ?η .π ∈⊥⊥.
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Equality

ii) Let ξ ∥−a 6= b →⊥, η ∥−a 6εz and π ∈ ‖b 6εz‖.

We must show (cc)λk(ξ)(k)η?π ∈⊥⊥, i.e. ξ?kπη .π ∈⊥⊥.

If a 6= b, then ξ ∥−>→⊥ and we are done.

If a = b, then η?π ∈⊥⊥, and therefore kπη ∥−⊥. Thus kπη .π ∈ ‖⊥→⊥‖.

But ξ ∥−⊥→⊥, hence ξ?kπη .π ∈⊥⊥.

Q.E.D.
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Preservation of well-foundedness
Theorem. Let f be a function symbol such that the relation

f (y, x) = 1 is well founded in the ground model M . Then :

Y ∥−∀x
(∀y(F [y] → f (y, x) 6= 1),F [x] →⊥) →∀x(F [x] →⊥)

with Y = AA and A =λxλ f ( f )(x)x f (Turing fixed point combinator).

Therefore, the relation f (y, x) = 1 is well founded in the realizability model.

Proof. Let ξ ∥−∀x(∀y(F [y] → f (y, x) 6= 1),F [x] →⊥), η ∥−F [a] and π ∈Π.

We show Y?ξ .η .π ∈⊥⊥ by induction on a

following the well founded relation f (y, x) = 1.

Since Y?ξ .η .πÂ ξ?Yξ .η .π, we need to show ξ?Yξ .η .π ∈⊥⊥.

Now, ξ ∥−∀y(F [y] → f (y, a) 6= 1),F [a] →⊥, so that it suffices to show

Yξ ∥−∀y(F [y] → f (y, a) 6= 1), i.e. Yξ ∥−F [b] → f (b, a) 6= 1 for every b.

Let ζ ∥−F [b] and $ ∈ ‖ f (b, a) 6= 1‖. Thus, we have f (b, a) = 1

and therefore Y?ξ .ζ .$ ∈⊥⊥ by induction hypothesis. Q.E.D.
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The axioms of ZFε are realized

Foundation. Y ∥−∀x
(∀y(F [y] → y 6εx),F [x] →⊥) →∀x(F [x] →⊥)

.

In the ground model M , define a function symbol

f (y, x) = 1 iff rank(y) < rank(x).

We have ‖y 6εx‖ 6= ;⇒‖ f (y, x) 6= 1‖ =Π ; thus ‖y 6εx‖ ⊂ ‖ f (y, x) 6= 1‖.

Hence the result, by the theorem above. Q.E.D.

Collapse. ∥−∀x∀y[x ⊆ y ↔ (∀z εx)z ∈ y] ; ∥−∀x∀y[x ∈ y ↔ (∃z ε y){x ⊆ z, z ⊆ x}]

Indeed, we have :

‖a ⊆ b‖ = ‖∀z(z ∉ b → z 6εa)‖ and ‖a ∉ b‖ = ‖∀z(a ⊆ z, z ⊆ a → z 6εb)‖
This follows immediately from the definition of ‖a ⊆ b‖ and ‖a ∉ b‖ :

‖a ⊆ b‖ =⋃
c

{ξ .π; ξ ∈Λ, π ∈Π, (c,π) ∈ a, ξ ∥−c ∉ b} ;

‖a ∉ b‖ =⋃
c

{ξ .ξ′ .π; ξ,ξ′ ∈Λ, π ∈Π, (c,π) ∈ b, ξ ∥−a ⊆ c, ξ′ ∥−c ⊆ a}.
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The axioms of ZFε are realized
Pairing. If c = {a,b}×Π, then ‖a 6εc‖ = ‖b 6εc‖ = ‖⊥‖ ; thus I ∥−a εc , I ∥−b εc .
Warning. In N , c may have many other ε-elements than a,b.
An instance of a pair {a,b} is c ′= {(a,K .π); π ∈Π}∪ {(b,0 .π); π ∈Π}. Indeed :
λx xK ∥−a εc ′ ; λx x0 ∥−b εc ′ ; λxλyλz zx y ∥−∀x(x 6= a, x 6= b → x 6εc ′).

Comprehension.
Given a set a and a formula F [x], define b = {(u,ξ .π); (u,π) ∈ a, ξ ∥−F [u]} ;
then ‖u 6εb‖ = ‖F (u) → u 6εa‖ for every set u.
Therefore I ∥−∀x(x 6εb → (F (x) → x 6εa)) and I ∥−∀x((F (x) → x 6εa) → x 6εb).

and so on . . .

The axioms of ZFε have very simple realizers.
But it would be very difficult to realize directly the axioms of ZF,
because they have non trivial proofs in ZFε.
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Type-like sets in N

Define the function symbol ג by Eג = E×Π. Define the quantifier ∀xגE by :

‖∀xגE A[x]‖ = ⋃
a∈E

‖A[a/x]‖ ; therefore |∀xגE A[x]| = ⋂
a∈E

|A[a/x]|.
Let us see that this quantifier has the intended meaning ∀x(x εגE → A[x]) :

Theorem.

i) λxλy y x ∥−∀xגE A[x] →∀x(¬A[x] → x 6εגE) ;

ii) cc ∥−∀x(¬A[x] → x 6εגE) →∀xגE A[x].

i) Let ξ ∥−∀xגE A[x], η ∥−¬A[a] and π ∈ ‖a 6εגE‖ i.e. a ∈ E .

Then ξ ∥− A[a] ; therefore λxλy y x?ξ .η .πÂ η?ξ .π ∈⊥⊥.

ii) Let ξ ∥−∀x(¬A[x] → x 6εגE), a ∈ E and π ∈ ‖A[a]‖ ;

then ξ ∥−¬¬A[a], kπ ∥−¬A[a] ; thus cc?ξ .πÂ ξ?kπ .π ∈⊥⊥. Q.E.D.

For every set E of M , the individual Eג represents the type associated with E .

For instance 2ג (resp. (Nג is the type of booleans (resp. integers).
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Type-like sets in N

Let f , g be some terms built with the function symbols in the ground model M .

If M |= f : E1×·· ·×Ek → E then N ∥− f : ··×E1ג Ekג×· → Eג

(in fact, I ∥−∀xגE1
1 · · ·∀x

Ekג
k [ f (x1, . . . , xk) 6εגE →⊥]).

Moreover, if M |= (∀x1 ∈ E1) · · · (∀xk ∈ Ek)[ f (x1, . . . , xk) = g (x1, . . . , xk)]

then I ∥−∀xגE1
1 · · ·∀x

Ekג
k [ f (x1, . . . , xk) = g (x1, . . . , xk)].

For instance, let ∧,∨,¬ be the (trivial) boolean operations on the set 2 = {0,1}.

They give a structure of boolean algebra on 2ג in the realizability model N .

Remarks about .2ג

• |∀x2גF [x]| = |F [1]|∩ |F [0]| ; thus ∀x2גF [x] behaves like an intersection type.

• Every ε-element of 2ג except 1 is empty ; indeed I ∥−∀x2ג∀y(x 6= 1 → y 6εx).

• The boolean algebra 2ג is trivial iff the realizability model is a forcing model.

• Only two ε-elements of 2ג are named : 0 and 1.

24



Integers
Define the function symbol s in M by s(a) = {a}×Π= ({a})ג and 0 =;.
s(a) represents some singleton of a in the realizability model N ;
The following formulas are realized in N :
∀x∀y(sx = s y → x = y) ; ∀x(sx 6' 0) ;
∀x∀y(x ' y → sx ' s y).
Let us define Ñ= {(sn0,n .π); n ∈N,π ∈Π} ;
Ñ is the set of integers of the realizability model N (see below).
Since we have =Nג {(sn0,π); n ∈N,π ∈Π}, it follows that I ∥−Ñ⊂ .Nג
This inclusion is strict, except in the degenerate case of forcing.

Consider a proof-like term ν such that ν ∥− sn0εÑ in every realizability model ;
for instance, ν comes from a proof that ZFε ` int(sn0).
Then ν is a program which computes the integer n. Indeed, we have :
ν?κ .πÂ κ?n .π for every term κ and stack π.
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Integers
Define the quantifier ∀x int by ‖∀x int F [x]‖ =⋃

{n .π; n ∈N,π ∈ ‖F [sn0]‖}.
Remark. ξ ∥−∀x int F [x] implies ξn ∥−F [sn0] for each n ∈N (Kleene realizability).
We see, as before, that the quantifier ∀x int has the intended meaning
which is ∀x(x εÑ→ F [x]).

Ñ represents the set of integers of the model N . Indeed :
Theorem. λx x0 ∥−0εÑ ; λ f λx( f )(σ)x ∥−∀x(sx 6εÑ→ x 6εÑ) ;
I ∥−∀x int(∀y(F [s y] → F [y]),F [x] → F [0]) for every formula F [x].

The following theorem gives a characteristic property of recursive functions :
the image of an integer is an integer and not only an element of .Nג
Theorem. Let f :Nk →N be a recursive function defined in M . Then :
θ f ∥−∀x int

1 . . .∀x int
k ( f (x1, . . . , xk)εÑ) for some proof-like term θ f .

θ f is a program which computes f . Indeed, if νi ∥−ni εÑ, we have :
θ f ?ν1 . . . . .νk .κ .πÂ κ?n .π with n = f (n1, . . . ,nk).
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Arithmetical formulas

Realizability models cannot change the truth of arithmetical formulas. :

Indeed, any arithmetical formula which is true in the ground model M ,

is realized (by a proof-like term). We have the following general result :

Theorem. Let f :N2k → 2 be an arbitrary function such that :

M |= (∀x1 ∈N)(∃y1 ∈N) · · · (∀xk ∈N)(∃yk ∈N)
(

f (x1, y1, . . . , xk , yk) 6= 0
)
.

Then, there is a proof-like term θk which depends only on k , such that :

θk ∥−∀xגN1 ∃y int
1 · · ·∀xגNk ∃y int

k

(
f (x1, y1, . . . , xk , yk) 6= 0

)
.

Note that the quantifiers ∀xi are restricted, not to int, but to ,Nג which is stronger.

Also, since f : N2kג → 2ג in the realizability model N ,

f (x1, y1, . . . , xk , yk) 6= 0 does not mean f (x1, y1, . . . , xk , yk) = 1

unless f is recursive and the quantifiers ∀xi are restricted to int.
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The submodel of constructible sets

In the particular case of forcing, the model N contains the ground model M

as a transitive submodel, with the same ordinals.

It follows that the constructible universe is the same for M and N .

Therefore, arithmetical truth is trivially preserved (absoluteness) ;

by a theorem of J. Shoenfield, it is the same for Σ1
2 and Π1

2 formulas.

In the general case of classical realizability, it was recently shown [12] that

the model N contains an elementary extension of the ground model M ,

again as a transitive submodel, with the same ordinals.

Therefore, the absoluteness result remains true for Σ1
2 and Π1

2 formulas.

This may seem disappointing, if we look for independence results.

But, on the other hand, this shows :

Theorem. Any true Σ1
3 formula is realized by some closed λ-term with cc.
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Some examples
As you know, there is a wide variety of forcing models.

The notion of realizability model being much more general,

there is a much greater variety of realizability models.

But their structure is also much more complicated

and we have to invent completely new techniques to understand them.

We already obtained relative consistency results impossible to get with forcing.

But we are far from knowing how to fully exploit the realizability technique.

In the following, I consider two kinds of examples :

• Realizability algebras of terms, which I call standard realizability algebras

and the particularly simple and interesting thread model.

• The usual models of λ-calculus (Scott domains, stable models, . . . )

are well known combinatory algebras.

But it appears that, in fact, they are realizability algebras.
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Standard realizability algebras

The terms and the stacks are words composed with the following alphabet :

• the elementary combinators B, C, I, K, W, cc, ς (this is a new one)

• the symbols k . ( ) [ ]

• a countable set Π0 of empty stacks.

The sets Λ of terms and Π of stacks are defined as follows :

• each elementary combinator is a term ; each empty stack is a stack ;

• if ξ,η are terms, then (ξ)η is a term (application, written also ξη) ;

• if ξ is a term and π a stack, then ξ .π is a stack (push) ;

• if π is a stack, then k[π] is a term (continuation, written kπ).

A process is an ordered pair (ξ,π) with ξ ∈Λ,π ∈Π ; it is written ξ?π.

The four operations of application, push, continuation, process

are defined in the obvious way.
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Execution of processes
Define the preorder Â on processes (execution) by the following rules :

(ξ)η?πÂ ξ?η .π
I?ξ .πÂ ξ?π
K?ξ .η .πÂ ξ?π
W?ξ .η .πÂ ξ?η .η .π
C?ξ .η .ζ .πÂ ξ?ζ .η .π
B?ξ .η .ζ .πÂ ξ? (η)ζ .π
cc?ξ .πÂ ξ?kπ .π
kπ?ξ .$Â ξ?π
ς?ξ .η .πÂ ξ?nη .π
where η 7−→ nη is a fixed (not necessarily recursive) enumeration of terms.

⊥⊥ is any set of processes such that ξ?π ∈⊥⊥, ξ′?π′Â ξ?π ⇒ ξ′?π′ ∈⊥⊥.

The proof-like terms are generated with the seven combinators B, C, I, K, W, cc, ς.
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Non extensional and dependent choice

Standard realizability models satisfy a weak form of the axiom of choice.

Theorem. For each formula F [x, y], we can define a function symbol f such that :

N ∥−∀x(∃y F [x, y] →∃nintF [x, f (n, x)]).

The symbol f is not exactly a choice function,

but the choice is restricted to a sequence.

We obtain a true choice function φ (but no longer a function symbol) by setting :

φ(x) = f (n, x) for the first n such that F [x, f (n, x)] if there is one ; else 0. Then :

N ∥−∀x(∃y F [x, y] → F [x,φ(x)])

This gives the axiom of choice in the realizability model N for ZFε, but not for ZF,

because we cannot find a function φ which is compatible with '.

This axiom is much weaker than choice, we call it non extensional choice (NEC).

As we shall see below, it does not even imply the well ordering of R.
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Non extensional and dependent choice

Nevertheless, it implies the axiom of dependent choice (DC). The proof is easy :

from ∀x∃y F [x, y], using NEC, we get a function φ such that ∀x F [x,φx] ;

then, given a0, we have the sequence ai =φi (a0) such that F [ai , ai+1].

We prove the theorem in the following form :

Theorem. For each formula F [x, y], we can define a function symbol f such that :

λx(cc)(ς)x ∥−∀x(∀nintF [x, f (n, x)] →∀y F [x, y]).

Using the axiom of choice, define f in such a way that, for every individual a :

if there exists some b such that π ∈ ‖F [a,b]‖, then π ∈ ‖F [a, f (nkπ, a)]‖.

Now, let ξ ∥−∀nintF [a, f (n, a)] and π ∈ ‖∀y F [a, y]‖.

Then π ∈ ‖F [a, f (nkπ, a)]‖, thus ξ?nkπ .π ∈⊥⊥, by hypothesis on ξ,

and therefore ς?ξ .kπ .π ∈⊥⊥, by the execution rule of ς.

It follows that λx(cc)(ς)x?ξ .π ∈⊥⊥. Q.E.D.
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The Boolean algebra 2ג

The Boolean algebra 2ג is a very important object of the realizability model N .

We call it the characteristic Boolean algebra.

It is trivial if, and only if, N is a forcing model.

It is rather difficult to handle because it is, in general, infinite (even atomless)

but only its obvious elements 0 and 1 are named.

It may be not well-orderable (see the model of threads below)

but there is always an ultrafilter on ,2ג which is also a canonical object of N [12].
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The Boolean algebra 2ג

When the realizability algebra is standard, 2ג has a remarkable property :

2ג has a countable dense subset.

Theorem. There exists a function ∆ :N→ 2 such that

λxλy(ς)y xx ∥−∀x2ג(x 6= 0 →∃nint{∆(n) 6= 0, (∆(n)∨x) = x}).

∆ is defined as follows in M : let j 7−→ η j be the inverse of

the given enumeration of Λ, which is η 7−→ nη
(recall : the execution rule of the instruction ς is ς?ξ .η .πÂ ξ?nη .π). Then

∆( j ) = 0 ⇔ η j ∥−⊥.

In N , we have ∆ : →Nג 2ג ; in particular ∆ : Ñ→ .2ג

The theorem says that every element 6= 0 of 2ג has a lower bound ∆(n) 6= 0 with n εÑ.
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2ג has a countable dense subset (proof )

Proof. Let a ∈ {0,1}, η ∥−a 6= 0, ξ ∥−∀nint(∆(n) 6= 0 → a 6=∆(n)∨a) and π ∈Π.

We must show λxλy(ς)y xx?η .ξ .π ∈⊥⊥ i.e. ς?ξ .η .η .π ∈⊥⊥ that is :

ξ?nη .η .π ∈⊥⊥.

By hypothesis on ξ, it suffices to show nη .η .π ∈ ‖∀nint(∆(n) 6= 0 → a 6=∆(n)∨a)‖
i.e. by definition of the quantifier ∀nint : η .π ∈ ‖∆(nη) 6= 0 → a 6=∆(nη)∨a‖
This amounts to show : η ∥−∆(nη) 6= 0 and a =∆(nη)∨a

• Proof of η ∥−∆(nη) 6= 0 : trivial if ∆(nη) = 1 because ‖∆(nη) 6= 0‖ =; ;

if ∆(nη) = 0, then η ∥−⊥, by definition of ∆.

• Proof of a =∆(nη)∨a : obvious if a = 1 ; if a = 0, then η ∥−⊥ (hypothesis on η) ;

thus ∆(nη) = 0 by definition of ∆, hence the result. Q.E.D.
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The pseudo integers nג
In the ground model M , we put, for each integer n :

n = {0,1, . . . ,n −1} = {0, s0, . . . , sn−10}.

The functions n 7→ n and n 7→ nג are defined in the realizability model N

with domain .Nג

We define the function (m<n) from 2(Nג) into ,2ג by setting, in M , for m,n ∈N :

(m<n) = 1 if m < n else (m<n) = 0.

The relation (m<n) = 1 is a strict (well founded, partial) order on Nג
which is the usual order on the set Ñ of integers in N .

The following formulas are realized :

∀xגN∀mגN((x<m) = 1 ↔ x εגm)

∀mגN∀nגN((m<n) = 1 → mג ⊂ (nג

∀mגN∀nגN(the application (x, y) 7−→ my +x

is a bijection from nג×mג onto .((mn)ג
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Injection of nג into R

The application x 7−→ {n εÑ; ∆(n) ≤ x} is, in N , an injection of 2ג into P (Ñ)

(the real line of the model N ). Therefore :

N ∥− (∀nint)(∃ f : n(2ג) →R)( f is injective).

By recurrence on n, we see that n(2ג) is equipotent with .(2n)ג

Now, for each integer n, we have n < 2n and therefore nג ⊂ .(2n)ג Thus :

N ∥− (∀nint)(∃ f : nג →R)( f is injective).

We will now choose the set ⊥⊥ such that, in the realizability model N ,

2ג is infinite and the “cardinals” of nג form a strictly increasing sequence

(which means that there is no surjection of nג onto .((n+1)ג

Since nג×mג is equipotent with ,(mn)ג it follows that :

neither 2ג nor R are well ordered in N .
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The model of threads

Remark. If 2ג is non trivial, then there are non standard integers in the model N .

Indeed, let a ε2ג, a 6= 0,1 ; there is an integer n such that ∆(n) 6= 0 and ∆(n) ≤ a.

Thus ∆(n) 6= 0,1 ; n is non-standard because ∆(m) = 0 or 1 for each standard m.

Thus, the realizability model N we are looking for, has non-standard integers.

It cannot be a forcing model or an inner model.

We define now the simplest non trivial coherent realizability model. Let :

n 7−→πn be an enumeration of the empty stacks

n 7−→ θn be a (not necessarily recursive) enumeration of the proof-like terms.

The thread with number n is the set of processes ξ?π such that θn?πn Â ξ?π.

The only empty stack which appears in the terms of the n-th thread is πn .
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The model of threads

The simplest way to ensure a coherent model is to decide that θn?πn ∈⊥⊥c

(⊥⊥c is the complement of ⊥⊥). Then, every thread must be in ⊥⊥c . Thus, we decide :

⊥⊥c is the union of all threads

Therefore ξ?π ∈⊥⊥ iff ξ?π never appears in any thread.

ξ ∥−⊥ iff ξ never appears in head position in any thread.

Theorem. The following are satisfied in the model of threads :

i) There is a proof-like ω such that ωkπξ ∥−⊥ or ωkπξ′ ∥−⊥ for any π,ξ,ξ′ with ξ 6= ξ′.
ii) If ζ0,ζ1,ζ2 are distinct, then kπαζ0 ∥−⊥ or kπαζ1 ∥−⊥ or kπαζ2 ∥−⊥ for any α,π.

i) Take ω= (λx xx)λx xx or (WI)(W)I.

ii) If the process α?π appears twice in a thread, then the execution enters in a loop,

and there will be no third appearance.

Q.E.D.
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Consequences of (i)

We now consider any realizability model which satisfies properties (i) or (ii) (or both).

Theorem. If a realizability model N satisfies property (i), then :

• N ∥− 2ג is not countable

• N ∥− ∀mint∀nint(m < n → there is no surjection from mג onto .(nג

Since there is an injection of nג into R, it follows that :

there exists a sequence Xn(n ≥ 2) of infinite subsets of R such that

their “cardinals” are strictly increasing and Xm×Xn is equipotent with Xmn .

Dependent choice is true, but R is badly not well orderable.

The behaviour of cardinals of subsets of R is dramatically unusual ; for instance :

card(X5) < card(X6) < card(X7) and card(X5×X7) < card(X6×X6).

These relative consistency results are not obtainable with forcing.
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Consequences of (ii)

Theorem.

If a realizability model N satisfies property (ii), then it realizes the formulas :

• 2ג is an atomless Boolean algebra.

• ∀a2ג∀b2ג(a∧b = 0,b 6= 0 → there is no surjection from a2ג onto b2ג).

• ∀a2ג∀b2ג(a < b → there is no surjection from a2ג onto b2ג).

a2ג is the ideal {x ε2ג; x ≤ a} of the boolean algebra .2ג

We have an atomless Boolean algebra B of infinite subsets of R such that :

X ,Y ∈B, X ∩Y =; ⇒ card(X ) and card(Y ) are not comparable.

X ,Y ∈B, X ⊂ Y , X 6= Y ⇒ card(X ) < card(Y ).

Thus, there is a family (Xr )r∈R of subsets of R such that

r < s ⇒ card(Xr ) < card(Xs).

Very far from the continuum hypothesis and the well ordering of R.
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2ג is not equipotent with 4ג

This is the key property to prove that R is not well ordered.

Theorem. Suppose there is a proof-like ω such that ξ 6= ξ′ ⇒ ωkπξ ∥−⊥ or ωkπξ′ ∥−⊥.

Then λxλx′(cc)λk(x′)λz(xzz)(ω)kz ∥−
∀x∀y∀y ′

(
F (x, y),F (x, y ′), y 6= y ′→⊥)

,∀y4ג∃x2גF (x, y) →⊥.

The formula F being arbitrary, this tells us that there is no surjection from 2ג onto .4ג

A similar proof would show that there is no surjection from Ñ onto .2ג

Since 4ג is equipotent with 2(2ג) it follows that 2ג is not well ordered.

Proof. If this is false, there exist ξ,ξ′ ∈Λ,π ∈Π such that :

λxλx′(cc)λk(x′)λz(xzz)(ω)kz?ξ .ξ′ .π ∉⊥⊥ ;

ξ ∥−∀x∀y∀y ′
(
F (x, y),F (x, y ′), y 6= y ′→⊥)

;

ξ′ ∥−∀y4ג¬∀x2ג¬F (x, y).
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2ג is not equipotent with 4ג

Therefore, we have ξ′?η .π ∉⊥⊥ with η=λz(ξzz)(ω)kπz .

By hypothesis on ξ′, we have η 6∥−∀x2ג¬F (x, i ) for i < 4.

Thus, there exists δi ∈ {0,1} such that η 6∥−¬F (δi , i ).

Then, there exist ξi ∈Λ and πi ∈Π such that ξi ∥−F (δi , i ) and η?ξi .πi ∉⊥⊥.

By definition of η, we get ξ?ξi .ξi .ωkπξi .πi ∉⊥⊥.

By hypothesis on ξ, we have ωkπξi 6∥− i 6= i , i.e. ωkπξi 6∥−⊥ for every i < 4.

Now, the hypothesis of the theorem gives ξi = ξ j for every i , j < 4.

But, since δi < 2, there exist i , j < 4, i 6= j such that δi = δ j = δ.

Then, ξi = ξ j ∥−F (δ, i ),F (δ, j ) and ωkπξi ∥− i 6= j since ‖i 6= j‖ =;.

Thus, by hypothesis on ξ, we have ξ?ξi .ξi .ωkπξi .πi ∈⊥⊥, which is a contradiction.

Q.E.D.
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Denotational semantics and realizability algebra

In 1962, P. Cohen discovered his powerful method of forcing, which gives

a model of ZF set theory, from any ordered set P (the set of conditions).

D. Scott found that we can always take for P a complete Boolean algebra.

This gives the well known Boolean-valued models,

due also to P. Vopenka and R. Solovay.

Ten years later, the same D. Scott used complete lattices

to build models of λ-calculus and combinatory logic.

But complete lattices and complete Boolean algebras are very similar structures.

In this talk, we explain how to continue this story and close the loop :

starting with a model of λ-calculus, we can generally give it

a structure of realizability algebra, and thus obtain a model of ZF.
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Denotational semantics
There exists a lot of models of λ-calculus, such as Scott domains,

coherent and hypercoherent models, . . . They are all combinatory algebras.

Thus, the combinators B, C, I, K, W and the operation of application are defined.

In order to obtain realizability algebras, we should define :

• the sets Π of stacks and Λ?Π of processes ;

• the combinator cc and the operation of continuation π 7→ kπ ;

• the operations (ξ,π) 7→ ξ .π (push) and (ξ,π) 7→ ξ?π (process).

T. Ehrhard has found a simple and elegant way to do this.

The construction of stacks was also found by T. Streicher.

There is also a natural way to define the proof-like terms.

Thus, in the usual models of λ-calculus, a much richer structure is hidden :

they are, in fact, realizability algebras ; and it follows that

a model of set theory is associated with each of them.
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The coherent model

Since we don’t want to get forcing models, we need to avoid parallel or.

Thus, our example will be the simplest coherent model of λ-calculus.

Let us recall (one of ) its construction.

We first define the set F of (propositional) formulas as the smallest set such that :

o ∈F where o is a fixed symbol ;

if α ∈F and a is a finite subset of F , then (a →α) ∈F ;

moreover, we identify ;→ o with o.

Each α ∈F has a unique normal form α= (a1, . . . , ak → o)

with k ∈N and ak 6= ;. Then α= (a1, . . . , ak ,;, . . . ,;→ o).

The truth value |α| ∈ {0,1} of a formula α is defined by induction :

|o|= 0 ; |a1, . . . , ak → o| = 1 iff (∃β ∈ a1∪ . . .∪ak)(|β| = 0).
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The coherent model

If α= (a1, . . . , ak → o),β= (b1, . . . ,bk → o) we define

αuβ= (a1∪b1, . . . , ak ∪bk → o).

This operation is associative, commutative and idempotent ; o is neutral ;

it defines an order relation : α≤β ⇔ b1 ⊂ a1, . . . ,bk ⊂ ak .

Define a subset W of F (the web) by induction : (a1, . . . , ak → o) ∈W iff

for 1 ≤ i ≤ k , ai ⊂W and (∀β,γ ∈ ai )(β 6= γ⇒βuγ ∉W ) (ai is an antichain of W ).

W is a final segment of F :

let α= (a1, . . . , ak → o), β= (b1, . . . ,bk → o), α ∈W ,α≤β.

Then bi ⊂ ai and ai is an antichain of W , thus so is bi .

α,β ∈W are called compatible if αuβ ∈W ; in symbols α³β.

If α1, . . . ,αn are pairwise compatible, then α1u . . .uαn ∈W .
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The combinatory algebra

We first recall the well known structure of combinatory algebra :

• Λ is the set of antichains of W , i.e. t ⊂W is a term iff

(∀α,β ∈ t )(α³β→α=β).

• tu = {α ∈W ; (∃a ⊂ u)(a →α) ∈ t } ; it follows that :

tu1 . . .uk = {α ∈W ; (∃a1 ⊂ u1, . . . , ak ⊂ uk)(a1, . . . , ak →α) ∈ t }.

• I is the set of formulas {α} →α for α ∈W .

• K is the set of formulas {α},;→α for α ∈W .

• C is the set of formulas {b, a →α}, a,b →α where a and b are antichains.

• W is the set of formulas {a,b →α}, a ∪b →α where a ∪b is an antichain.

• B is the set of formulas {{α1, . . . ,αk} →α}, {(a1 →α1), . . . , (ak →αk)}, a1∪ . . .∪ak →α

where {α1, . . . ,αk} and a1∪ . . .∪ak are antichains.
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The realizability algebra
We now complete this structure to get a realizability algebra.
• Π is the set of filters of W , i.e. π⊂W is a stack iff

o ∈π ; (∀α,β ∈π)αuβ ∈π ; ∀α∀β(α ∈π,α≤β→β ∈π).
• t .π= {a →α ; a ⊂ t , α ∈π}.

Remark. Π can be identified with ΛN : a sequence of terms (t0, . . . , tk , . . .)

corresponds with the filter {(a0, . . . , ak → o) ; k ∈N, a0 ⊂ t0, . . . , ak ⊂ tk}.
Moreover, if π= (t0, . . . , tn, . . .), then t .π= (t , t0, . . . , tn, . . .).

• Λ?Π is {0,1} and ⊥⊥ is {1}.
• If t ∈Λ,π ∈Π then t ?π ∈⊥⊥ iff t ∩π 6= ; (i.e. t ∩π is a singleton).
• kπ is the set of formulas ({α} → o) for α ∈π ;
• cc is the set of formulas {a →α} →αuα1u . . .uαk

with a = {{α1} → o, . . . , {αk} → o} and αuα1u . . .uαk ∈W .
• PL is the set of t ∈Λ such that |t | = 1 i.e. (∀α ∈ t )(|α| = 1).
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The realizability algebra

Lemma 1. t ∥−>, . . . ,>→⊥ iff t = {o}.

Indeed, t ?; . . . . .; . {o} ∈⊥⊥ ⇒ t = {o} QED

Lemma 2. If t ∈ |>,⊥→⊥|∩|⊥,>→⊥| then t = {o}.

We have t ∩; . {o} . {o} 6= ; and t ∩ {o} .; . {o} 6= ; ; thus

(;, a → o) ∈ t and (b,;→ o) ∈ t with a,b ⊂ {o}.

But these two formulas are compatible and therefore equal ; thus a = b =;. QED

It follows that there is no parallel or in PL ; therefore :

The model of ZF associated with this realizability algebra is not a forcing model.

T. Streicher told me he has shown that it satisfies the dependent choice.

Problem : does this model satisfies the axiom of choice ? (probably not).
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Integers
In the sequel, we use truth values defined by subsets |V | of Λ.
They may be used in formulas only before a →.
If |V | ⊂Λ,‖A‖ ⊂Π, we define ‖V → A‖ = {t .π ; t ∈ |V |,π ∈ ‖A‖}.
In particular ‖¬V ‖ = {t .π ; t ∈ |V |,π ∈Π}.
Lemma 3. If (∀t ∈Λ)(t ∈ |V |⇒ θt ∈ |W |) then λx x◦θ ∥−¬W →¬V .
We shall sometimes write θ ∥−V →W in such a case.
Now, define the formulas :
ν0 = ({o} → o) ; ν1 = (;, {o} → o) ; . . . ; νn = (;, . . . ,;, {o} → o) ; . . . ;
and the terms n = {νn} ; suc = {({ν0} → ν1), . . . , ({νi } → νi+1), . . .}.
Define the unary predicate N by :
|N n| = {n} if n ∈N ; |N n| =; if n ∉N.
Then we have easily λx(x)0 ∥−¬¬N 0 ; suc ∥−N n → N (n +1) for every n ;
i.e. λx x◦ suc ∥−∀x(¬N (x +1) →¬N x).
We have shown : ∥−∀x int¬¬N x .
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Theorem 4. Let un(n ∈N) be any sequence of terms and define :

θ = {({νn} →α) ; n ∈N,α ∈ un}. Then θn = un for all n ∈N.

If every un is in PL, then θ ∈ PL.

We show that θ ∈ΛD : if ({νm} →α) ³ ({νn} →β) then {νm,νn} is an antichain

and therefore m = n ; thus α,β ∈ um ; but α³β and therefore α=β.

θ{νn} = un is obvious. QED

Define the unary predicate ent(x) by :

|ent(n)| = {n} (Church integer) for n ∈N ; |ent(n)| =; if n ∉N.

We already know (general theory) that ent(x) is equivalent to int(x).

Apply lemma 3 and theorem 4 above with un = {n}.

This gives θ ∥−N n → ent(n) and therefore λx x◦θ ∥−∀x(¬ent(x) →¬N x).

Finally we have shown that the predicates N x, int(x), ent(x) are equivalent.

In the following, we use N x which is the simplest.
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Corollary. If θn ∥−F (n), with θn ∈ PL for all n ∈N, then there exists

θ ∈ PL such that θ ∥−∀nintF (n).

Applying theorem 4, we get θn ∥−F (n) for all n ∈N, thus θ ∥−∀nintF (n). QED

By the above corollary, the set of formulas which are realized

by a proof-like term is closed by the ω-rule.

Thus there exists a realizability model which is an ω-model.

Let B =P (Π) be the Boolean algebra of truth values.

The order is defined by ‖A‖ ≤ ‖B‖⇔ (∃θ ∈PL)(θ ∥− A → B).

Theorem. B is a countably complete Boolean algebra :

If ‖B(n)‖n∈N is a sequence of truth values, then infn∈N‖B(n)‖ = ‖∀x intB(x)‖.

Let ‖A‖ ≤ ‖B(n)‖ for every n ∈N. Then θn ∥− A → B(n) for some sequence θn ∈ PL.

By the previous corollary, we get θ ∥−‖A →∀x intB(x)‖ i.e. ‖A‖ ≤ ‖∀x intB(x)‖.

Conversely, ‖∀x intB(x)‖ ≤ ‖B(n)‖ because λx(x)n ∥−∀x intB(x) → B(n). QED
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