
New Combinators on the Block

Vincent Danos & Jean-Louis Krivine.

Équipe PPS

1

Timeline

• CSL’00 “Disjunctive Tautologies as Synchronisation Schemes”:

interesting behaviours specified by distinguished tautologies (and

valid formulas)

• Now: independent decompilation resulting in language exten-

sions (going from mere descriptions to actual computation rules)

• Ongoing: a calculus of communication environments

2

Perspective

• Usual flow: from programming practice (objects, communica-

tions, exceptions) to theory/semantics/logic

• Theory should be more assertive and reverse the flow

• “Obstetrics is good, breeding is better . . . ”

• Get new/clean/abstract programming forms from logic (such

as unification, matching, λs, constraints) !

3

Summary

• Family of well-typed control/exception related combinators

(in a sequential cbn world)

• Introducing a creative piece of syntax: dynamic binders that

rescope themselves at run-time

• Potent suggestions of high-level synchronisation combinators

• Aside: introducing Krivine’s realizability —a powerful substi-

tute to subject reduction— derived from Tait-Girard-Plotkin’s

reducibility arguments

4

Krivine’s specification problem

• Needs a logic: second order (classical) predicate calculus (could
be ZF as well !)

• needs a language for realizing proofs: variant of Felleisein’s
λC, a cbn weak head evaluation with a stack-save-and-restore
mechanism

Is there any behavior common to all t : φ ?

• Needs a tool to read off behaviors from φ: Krivine’s classical
realizability

• Small specification vs big specification: instruction or pro-
gram?

5

Generating new programming forms

• Home in on a family of excluded-middle-like tautologies

(A → B) ∨ A
(A → B) ∨ (B → A)
· · ·

• Guess φ’s specification by trials, prove it by realizability

• Add in new combinators Cφ for φ decompiling the t : φ (don’t

have to prove the decompilation is correct)

• Prove adding in � Cφ : φ is all right by realizability again (a

perfectly modular argument)

6

The language λκ

• Λ the set of terms & Π the set of stacks

t = x, (t t), λx.t, κx.t, ∗t, ∗π

π = ε, t · π

• Usual CBN ‘call-with-current-continuation’ is λh.κk.(h k)

• Our variant just makes the analogy between λ and κ obvious:

one targets terms, the other stacks. Nothing deep here.

7

Evaluation

• executables ∈ Λ×Π — a pair of a term and a stack (fun/args)

• evaluation relation, written �, the smallest preorder such that:

t u, π � t, u · π
(λx.t), u · π � t[∗u/x], π
∗u, π � u, π
(κx.t), π � t[∗π/x], π
∗π, t · π′ � t, π

• set δ = κx.x, then for any π and get a loop:

δ δ, π � δ, δ · π � ∗δ · π, δ · π � δ, δ · π.

8

Logic or typing system

ax var
Γ, x : A � x : A

Γ, x : A � t : B→i abs
Γ � λx.t : A → B

Γ � t : A → B Γ � u : A→e app
Γ � (t u) : B

Γ � t : A∀i
Γ � t : ∀XA

Γ � t : ∀XA∀e
Γ � t : A[B/X]

Γ, x : A → B � t : A
peirce cc

Γ � κx.t : A

• First five rules: natural deduction for intuitionistic logic

• Sixth rule: Peirce’s law makes it one *possible* presentation

of second order classical logic

9

Truth Values

• Formulas are valued by particular sets of terms

• ⊥⊥ a given set of executables ‘good ones’ closed by �−1

• For any set of stacks Z, set Z → ⊥⊥ to be the largest set of

terms X such that X ×Z ⊂ ⊥⊥: a truth value.

• Largest truth value Λ = ∅ → ⊥⊥, smallest ⊥ = Π → ⊥⊥.

(for any t, π ∈ ⊥⊥, (∗π)t ∈ ⊥, so ⊥ is empty iff ⊥⊥ is).

10

Models

• Intuition: |A|− is the set of stacks all t : A get on well with, and
. . . dually |A| is the set of terms that will form nice executables
when paired with |A|−.

• |.| : Form(2Π) → TruthValues ⊂ 2Λ is defined as: |F | = |F |− → ⊥⊥.

• Given ⊥⊥ we can inductively extend any |.|− : Var → 2Π to a
map |.|− : Form(2Π) → 2Π:

|Z|− = Z
|X|− = |X|−
|A → B|− = (|A|− → ⊥⊥) · |B|−
|∀XA|− = ∪Z|A[Z/X]|−

(In the last clause, the union ranges over all subsets Z of Π).

• |∀XX|− = ∪|Z|− = ∪Z = Π, so |∀XX| = ⊥.

11

Adequacy

• If F is closed, |F | only depends on the choice of ⊥⊥.

• Valuations of classical formulas via a ¬¬-translation.

• If ⊥⊥ = ∅, |.| takes only two values: ∅ and Λ, and for any closed

F , |F | = Λ iff F is valid. Ie the model collapses to the usual

notion of two-valued model.

• adequacy property for any ⊥⊥ ⊂ Λ × Π:

� t : F ∧ π ∈ |F |− ⇒ t, π ∈ ⊥⊥.

12

Consistency Check

• Take a first-order language L with two constants 0 and 1:

Bx = ∀X [X0 → (X1 → Xx)]

• Suppose � t : B0, set ⊥⊥ = {e|e � a, π}, X0− = {π} and X1 = Λ:

a ∈ X0 and b ∈ X1, so t, a · b · π ∈ ⊥⊥, and hence tab, π ∈ ⊥⊥ � a, π.

• The system is computationally consistent

• Adequacy gives a means of decoding the behavior specified by

a given formula with respect to a given language

13

A formula

• Coding disjunction to implication (intuitionistic).

(A → B) ∨ (B → A)

∀X[((A → B) → X) → ((B → A) → X) → X]

(¬A ∨ B) ∨ (¬B ∨ A).

• Let G be the closure of the second formula.

14

Example of a new instruction: CG

• Extend λκ with a new combinator CG:

CG , σ1 · σ2 · π � σ1 , α · π
α , a · π′ � σ2 , λd.κα.a · π

• α is a fresh variable defined by CG memoizing σ2 and π
(a better/heavier notation is ∗σ2, π)

• When α makes it to head position, it rebinds itself in a !

• Informally: call α an exception; call pushing α to head position
‘raising’ the exception (the exception is trapped *once* for all)

• Clean local exception handling; no heavier than the usual mech-
anism, just sound.

15

Other Solutions

• a ‘lefthanded’ CG: could have taken a right-handed one of

course; even a concurrent=both-handed one, more about this

later.

16

Typing CG

Subject to a few natural additional conditions on ⊥⊥:

CG ∈ |∀X.[((A → B) → X) → ((B → A) → X) → X]|

(1) e � e′ ⇒ (e ∈ ⊥⊥ ⇔ e′ ∈ ⊥⊥) (it’s closed by �−1 and � as well);

(2) if e[t/x] ∈ ⊥⊥ and e �� x , . . . then for any u, e[u/x] ∈ ⊥⊥ (that’s

when x never makes it to head position in e);

(3) λx.t , π0 /∈ ⊥⊥ if π0 is an end-stack (ε).

17

Proof

Take σ1 ∈ (A → B) → X, σ2 ∈ (B → A) → X and π ∈ X− (we
drop the |.|s everywhere).

We want CG , σ1 · σ2 · π ∈ ⊥⊥, or by (1) σ1 , α · π ∈ ⊥⊥.

There are three cases.

1– σ1 , α · π �� α ,

If t ∈ A → B, σ1 , t · π ∈ ⊥⊥, and by (2) σ1 , α · π ∈ ⊥⊥.

2– σ1 , α · π � α , π0 with π0 an end-stack.

If t ∈ B then λx.t ∈ A → B, so σ1 , λx.t · π ∈ ⊥⊥, and λx.t , π0 ∈ ⊥⊥
by (1), which contradicts (3).

18

Proof (2)

3– σ1 , α · π � α , a · π′.

For any πA ∈ A−, one has: ∗πA ∈ A → ⊥ ⊂ A → B, hence

σ1 , ∗πA · π ∈ ⊥⊥, but

σ1 , ∗πA · π � ∗πA , (a · π′)[∗πA/α] � a[∗πA/α] , πA,

(because α is fresh in the first step) so everything above is in ⊥⊥
by (1)− and therefore κα.a , πA ∈ ⊥⊥ by (1). This is true for any

πA ∈ A−, hence κα.a ∈ A, and λdκα.a ∈ B → A. Turning to σ2

we get σ2 , λdκα.a · π ∈ ⊥⊥, which is what we wanted, since:

CG , σ1 · σ2 · π � σ1 , α · π � α , a · π′ � σ2 , λdκα.a · π.

19

Peirce’s Anamorphosis

• CG smarter than its implementations in λκ but they’re equiva-

lent (horrible to prove). Such as:

((C)σ1)σ2 = κkX→B.(σ1)λxA.(k)(σ2)λyB.x

That’s the way we decompiled it !

• There should be a deadlock-free implementation of the con-

current version.

20

H = (A1 → C) ∨ (A2 → C) ∨ (A1 ∧ A2)

• H is classically equivalent to ¬A1 ∨ C ∨ ¬A2 ∨ C ∨ A1 ∧ A2

• Generates another new combinator CH:

CH , σ1 · σ2 · τ · π � σ1 , α1 · π
α1 , a1 · π1 � σ2 , α2 · π
α2 , a2 · π2 � τ , κα1.a1 · κα2.a2 · π

• Again there seems to be an obvious synchronisation interpre-
tation: run the two bobs, σ1 and σ2, handle them both (τ) if
they both raise an exception.

• But it’s not a join pattern because of the rescoping, or rebind-
ing, involved; vital to the consistency of the typing.

21

Conclusions

• What exactly is the family of tautologies for which this analysis

is relevant ? it contains our ‘disjunctive tautologies’.

• Work out a presentation of local exception handling that would

suit programmers.

• Rescoping or rebinding syntax: smarter instruction sets for

abstract/virtual machines

• Communication: closed communication contexts, ambients

with a handler; in development: a syntax for outs & ins.

22

