New Combinators on the Block

Vincent Danos & Jean-Louis Krivine.
Equipe PPS

e CSL’'00 "Disjunctive Tautologies as Synchronisation Schemes'':
interesting behaviours specified by distinguished tautologies (and
valid formulas)

® Now: independent decompilation resulting in language exten-
sions (going from mere descriptions to actual computation rules)

® Ongoing: a calculus of communication environments

e Usual flow: from programming practice (objects, communica-
tions, exceptions) to theory/semantics/logic

® T heory should be more assertive and reverse the flow

® “Obstetrics is good, breeding is better . ..

e Get new/clean/abstract programming forms from logic (such
as unification, matching, s, constraints) !

e Family of well-typed control/exception related combinators
(in a sequential cbn world)

® Introducing a creative piece of syntax: dynamic binders that
rescope themselves at run-time

® Potent suggestions of high-level synchronisation combinators

® Aside: introducing Krivine's realizability —a powerful substi-
tute to subject reduction— derived from Tait-Girard-PlotKkin’s
reducibility arguments

® Needs a logic: second order (classical) predicate calculus (could
be ZF as well 1)

® needs a language for realizing proofs: variant of Felleisein’s
AC, a cbn weak head evaluation with a stack-save-and-restore
mechanism

Is there any behavior common to all t: ¢ 7

® Needs a tool to read off behaviors from ¢: Krivine's classical
realizability

® Small specification vs big specification: instruction or pro-
gram?

® Home in on a family of excluded-middle-like tautologies
(A—- B)VA

(A—- B)Vv(B— A)

® Guess ¢’'s specification by trials, prove it by realizability

® Add in new combinators Cy for ¢ decompiling the t: ¢ (don't
have to prove the decompilation is correct)

e Prove adding in C¢ . ¢ is all right by realizability again (a
perfectly modular argument)

® /\ the set of terms & I the set of stacks

t =z, (t t), A\x.t, Kx.t, *¢, *1
T =€t T

e Usual CBN ‘call-with-current-continuation’ is Ah.xk.(h k)

e Our variant just makes the analogy between A\ and k obvious:
one targets terms, the other stacks. Nothing deep here.

® cxecutables € A x M — a pair of a term and a stack (fun/args)

® cvaluation relation, written =, the smallest preorder such that:

tu,m™=t,u-m
(Ax.t),u-m = t[xu/x], =
U, T >~ U, T

(kx.t), ™ = t[xm/x], =
*m,t-m =t

® set 0 = kx.x, then for any m and get a loop:

d6,m=0,0-m>=x%xd-m,6-m>=06,0-.

Xr,w:Al—w:Avar

,e: AFt: B I Ft:A— B I_I—u.AaIOIO
“TEAzt:A— B> Fr-(twu):B
i I =t A Fr-t: VXA
FHi:VXA T Ft: A[B/X]
I',xiA—-BFt. A
pelrce CC

kot A

® First five rules: natural deduction for intuitionistic logic

® Sixth rule: Peirce's law makes it one *possible* presentation
of second order classical logic

e Formulas are valued by particular sets of terms
e | a given set of executables ‘good ones’ closed by >—1

® For any set of stacks Z, set Z — 1 to be the largest set of
terms X such that X x Z2 C . a truth value.

® Largest truth value A=0 — 1, smallest L. =N — .
(for any t,m € 1, (xx)t € L, so L is empty iff I is).

10

e Intuition: |A|™ is the set of stacks all t : A get on well with, and
. dually |A] is the set of terms that will form nice executables
when paired with |A|™.

e |.| : Form(2™) — TruthValues C 2"\ is defined as: |F| = |F|” — L.

e Given I we can inductively extend any |.|” : Var — 2/ to a
map |.|” : Form(2') — 2T

Z- =2

X7 =[X]"

A— B|m=(Al” — 1) |B|~
VXA = Ug|AlZ/X]]"

(In the last clause, the union ranges over all subsets Z of).

o VXX|” =U|Z|- =UZ =10, so VXX|= L.

11

e If F' is closed, |F| only depends on the choice of L.
® Valuations of classical formulas via a ——-translation.

e If I =), |.| takes only two values: () and A, and for any closed
F, |F| = N iff F is valid. Ie the model collapses to the usual
notion of two-valued model.

® adequacy property for any 1. C A x I1:

Ft: FATE|F|” =tme L.

12

® Take a first-order language £ with two constants O and 1:

Br =VX [X0 — (X1 — Xz)]

® Supposett: BO, set I ={ele > a, 7}, X0~ = {n}and X1 = A:
ac X0and be X1,so0t,a-b-7me 1, and hence tab,m € I > a,.

® [he system is computationally consistent

® Adequacy gives a means of decoding the behavior specified by
a given formula with respect to a given language

13

e Coding disjunction to implication (intuitionistic).
(A—- B)Vv(B— A)

VX[((A—-B)—- X)—- (B—A) - X) — X]
(m—AV B)V (=BVA).

® Let G be the closure of the second formula.

14

e Extend Ak with a new combinator Cg:

Cq,01:-0p0-T = 01,0 T

a,a- 7 — 0o, Ad.Ka.a - T

® « is a fresh variable defined by C; memoizing oo and «
(a better/heavier notation is xoo,)

® \When o makes it to head position, it rebinds itself in a !

e Informally: call « an exception; call pushing a to head position
‘raising’ the exception (the exception is trapped *once* for all)

® Clean local exception handling; no heavier than the usual mech-
anism, just sound.

15

® a ‘lefthanded’ C.: could have taken a right-handed one of
course; even a concurrent=both-handed one, more about this
later.

16

Subject to a few natural additional conditions on :

Cae VX [((A—-B)—X)—-(B—A) - X) — X]|

(De=e = (ec Leeell)(it's closed by =~1 and > as well);

(2) ife[t/x] € IL and e ¥ x, ... then for any u, e[u/x] € IL (that's
when z never makes it to head position in e);

(3) M\x.t, mg ¢ 1L if mg is an end-stack (e).

17

Take o1 € (A—B) - X, 00 (B— A —- X and 7 € X~ (we
drop the |.|s everywhere).

We want Cg ,01-00-m€ 1 ,orby (1) o1,a-7m€e I.

There are three cases.

l—o01,a-mH# a,....

IftecA—B,oy,t-mre€ l,andby (2) o1,a-7m¢€ L.

2— o1 ,a-m > o, g With mg an end-stack.

Ifte Bthen \e.t € A —- B, sO o1, x.t-me 1, and \x.t, mg € I

by (1), which contradicts (3).

18

3—01,a-T>=a,a- 7.

For any m4 € A=, one has. xmy4y € A —- 1 C A — B, hence
o1 ,xmy-m e 1, but
o1, wmy g, (- w Al afary fa] | mg,

(because « is fresh in the first step) so everything above is in I
by (1)~ and therefore ka.a , w4 € AL by (1). This is true for any
mp € A7, hence ka.a € A, and Adka.a € B — A. Turning to oo
we get oo, AMddra.a -7 € 1, which is what we wanted, since:

Cq,01-00 - T>=01,0-T>a,a T = 0o, Adra.a - .
G 1 2 1 2

19

® C~ smarter than its implementations in Ak but they're equiva-
lent (horrible to prove). Such as:

((C)o1)o2 = kk* 7P (o) Azt (k) (02) My 2

That's the way we decompiled it !

® T here should be a deadlock-free implementation of the con-
current version.

20

® H is classically equivalent to “A1 VCV-A>vVCV A1 N As

® (Generates another new combinator Cg:

Cg,01:00-T - = 01,01 T
o1 ,0a1 T — 0D ,QD T
oo, a2 7o ~ T ,RKX1.01 " KO2.a4D - T

® Again there seems to be an obvious synchronisation interpre-
tation: run the two bobs, o1 and o5, handle them both (7) if
they both raise an exception.

e But it's not a join pattern because of the rescoping, or rebind-
ing, involved; vital to the consistency of the typing.

21

® \What exactly is the family of tautologies for which this analysis
IS relevant 7 it contains our ‘disjunctive tautologies’.

® \Work out a presentation of local exception handling that would
Suit programmers.

® Rescoping or rebinding syntax: smarter instruction sets for
abstract/virtual machines

e Communication: closed communication contexts, ambients
with a handler; in development: a syntax for outs & ins.

22

