New Combinators on the Block

Vincent Danos & Jean-Louis Krivine. Équipe PPS

Timeline

• CSL'00 "Disjunctive Tautologies as Synchronisation Schemes": interesting behaviours specified by distinguished tautologies (and valid formulas)

• Now: independent decompilation resulting in language extensions (going from mere descriptions to actual computation rules)

• Ongoing: a calculus of communication environments

Perspective

• Usual flow: from programming practice (objects, communications, exceptions) to theory/semantics/logic

- Theory should be more assertive and reverse the flow
- "Obstetrics is good, breeding is better ..."

• Get new/clean/abstract programming forms from logic (such as unification, matching, λ s, constraints) !

Summary

• Family of well-typed control/exception related combinators (in a sequential cbn world)

• Introducing a creative piece of syntax: dynamic binders that rescope themselves at run-time

• Potent suggestions of high-level synchronisation combinators

• Aside: introducing Krivine's realizability —a powerful substitute to subject reduction— derived from Tait-Girard-Plotkin's reducibility arguments

Krivine's specification problem

• Needs a logic: second order (classical) predicate calculus (could be ZF as well !)

• needs a language for realizing proofs: variant of Felleisein's λC , a cbn weak head evaluation with a stack-save-and-restore mechanism

Is there any behavior common to all $t:\phi$?

• Needs a tool to read off behaviors from ϕ : Krivine's classical realizability

 Small specification vs big specification: instruction or program? Generating new programming forms

• Home in on a family of excluded-middle-like tautologies

$$(A \rightarrow B) \lor A$$

 $(A \rightarrow B) \lor (B \rightarrow A)$
...

• Guess ϕ 's specification by trials, prove it by realizability

• Add in new combinators C_{ϕ} for ϕ decompiling the $t : \phi$ (don't have to prove the decompilation is correct)

• Prove adding in $\vdash C_{\phi}$: ϕ is all right by realizability again (a perfectly modular argument)

The language $\lambda \kappa$

• A the set of terms & Π the set of stacks

$$t = x, (t \ t), \lambda x.t, \kappa x.t, *_t, *_{\pi}$$
$$\pi = \epsilon, t \cdot \pi$$

• Usual CBN 'call-with-current-continuation' is $\lambda h.\kappa k.(h \ k)$

• Our variant just makes the analogy between λ and κ obvious: one targets terms, the other stacks. Nothing deep here.

Evaluation

- executables $\in \Lambda \times \Pi$ a pair of a term and a stack (fun/args)
- evaluation relation, written \succ , the smallest preorder such that:

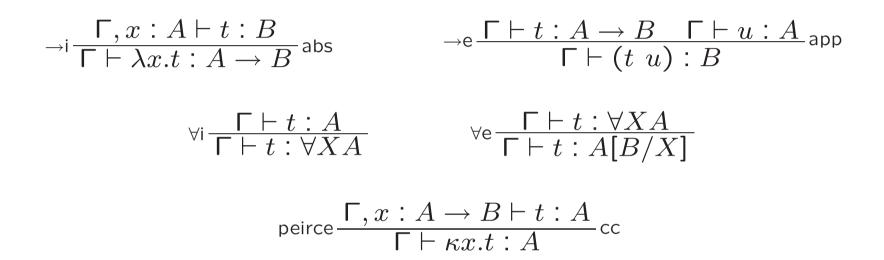
$$t \ u, \pi \succ t, u \cdot \pi$$
$$(\lambda x.t), u \cdot \pi \succ t[*u/x], \pi$$
$$*u, \pi \succ u, \pi$$
$$(\kappa x.t), \pi \succ t[*\pi/x], \pi$$
$$*\pi, t \cdot \pi' \succ t, \pi$$

• set $\delta = \kappa x \cdot x$, then for any π and get a loop:

$$\delta \ \delta, \pi \succ \delta, \delta \cdot \pi \succ *\delta \cdot \pi, \delta \cdot \pi \succ \delta, \delta \cdot \pi.$$

Logic or typing system

$$a \times \overline{\Gamma, x : A \vdash x : A}$$
 var



- First five rules: natural deduction for intuitionistic logic
- Sixth rule: Peirce's law makes it one *possible* presentation of second order classical logic

Truth Values

- Formulas are valued by particular sets of terms
- \bot a given set of executables 'good ones' closed by \succ^{-1}

• For any set of stacks \mathcal{Z} , set $\mathcal{Z} \to \bot$ to be the largest set of terms \mathcal{X} such that $\mathcal{X} \times \mathcal{Z} \subset \bot$: a truth value.

• Largest truth value $\Lambda = \emptyset \to \bot$, smallest $\bot = \Pi \to \bot$. (for any $t, \pi \in \bot$, $(*_{\pi})t \in \bot$, so \bot is empty iff \bot is).

Models

• Intuition: $|A|^-$ is the set of stacks all t : A get on well with, and ... dually |A| is the set of terms that will form nice executables when paired with $|A|^-$.

• |.|: Form(2^{Π}) \rightarrow TruthValues $\subset 2^{\Lambda}$ is defined as: $|F| = |F|^{-} \rightarrow \bot$.

• Given \bot we can inductively extend any $|.|^-$: Var $\rightarrow 2^{\Pi}$ to a map $|.|^-$: Form $(2^{\Pi}) \rightarrow 2^{\Pi}$:

$$\begin{aligned} |\mathcal{Z}|^{-} &= \mathcal{Z} \\ |X|^{-} &= |X|^{-} \\ |A \to B|^{-} &= (|A|^{-} \to \bot) \cdot |B|^{-} \\ |\forall XA|^{-} &= \cup_{\mathcal{Z}} |A[\mathcal{Z}/X]|^{-} \end{aligned}$$

(In the last clause, the union ranges over all subsets \mathcal{Z} of Π).

•
$$|\forall XX|^- = \cup |\mathcal{Z}|^- = \cup \mathcal{Z} = \Pi$$
, so $|\forall XX| = \bot$.

Adequacy

- If F is closed, |F| only depends on the choice of \bot .
- Valuations of classical formulas via a $\neg\neg$ -translation.

• If $\bot = \emptyset$, |.| takes only two values: \emptyset and Λ , and for any closed F, $|F| = \Lambda$ iff F is valid. If the model collapses to the usual notion of two-valued model.

• adequacy property for any $\bot \subset \Lambda \times \Pi$:

Consistency Check

• Take a first-order language \mathcal{L} with two constants 0 and 1:

$$Bx = \forall X [X0 \to (X1 \to Xx)]$$

• Suppose $\vdash t : B0$, set $\bot = \{e | e \succ a, \pi\}$, $X0^- = \{\pi\}$ and $X1 = \Lambda$: $a \in X0$ and $b \in X1$, so $t, a \cdot b \cdot \pi \in \bot$, and hence $tab, \pi \in \bot \succ a, \pi$.

• The system is computationally consistent

 Adequacy gives a means of decoding the behavior specified by a given formula with respect to a given language

A formula

• Coding disjunction to implication (intuitionistic).

$$(A \to B) \lor (B \to A)$$

$$\forall X[((A \to B) \to X) \to ((B \to A) \to X) \to X]$$

$$(\neg A \lor B) \lor (\neg B \lor A).$$

• Let G be the closure of the second formula.

Example of a new instruction: C_G

• Extend $\lambda \kappa$ with a new combinator C_G :

 $\begin{array}{cccc} \mathcal{C}_{G} \,,\, \sigma_{1} \cdot \sigma_{2} \cdot \pi &\succ & \sigma_{1} \,,\, \alpha \cdot \pi \\ \alpha \,,\, a \cdot \pi' & \qquad \succ & \sigma_{2} \,,\, \lambda d.\kappa \alpha.a \cdot \pi \end{array}$

• α is a fresh variable defined by C_G memoizing σ_2 and π (a better/heavier notation is $*\sigma_2, \pi$)

• When α makes it to head position, it rebinds itself in a !

• Informally: call α an exception; call pushing α to head position 'raising' the exception (the exception is trapped *once* for all)

 Clean local exception handling; no heavier than the usual mechanism, just sound.

Other Solutions

• a 'lefthanded' C_G : could have taken a right-handed one of course; even a concurrent=both-handed one, more about this later.

Typing \mathcal{C}_G

Subject to a few natural additional conditions on \bot :

$$\mathcal{C}_G \in |\forall X.[((A \to B) \to X) \to ((B \to A) \to X) \to X]|$$

(1) $e \succ e' \Rightarrow (e \in \bot \Leftrightarrow e' \in \bot)$ (it's closed by \succ^{-1} and \succ as well);

(2) if $e[t/x] \in \bot$ and $e \not\succ x$, ... then for any $u, e[u/x] \in \bot$ (that's when x never makes it to head position in e);

(3) $\lambda x.t$, $\pi_0 \notin \bot$ if π_0 is an end-stack (ϵ).

Proof

Take $\sigma_1 \in (A \to B) \to X$, $\sigma_2 \in (B \to A) \to X$ and $\pi \in X^-$ (we drop the |.|s everywhere).

We want C_G , $\sigma_1 \cdot \sigma_2 \cdot \pi \in \bot$, or by (1) σ_1 , $\alpha \cdot \pi \in \bot$.

There are three cases.

$$1-\sigma_{1}, \alpha \cdot \pi \not\succeq \alpha, \dots$$

If $t \in A \to B, \sigma_{1}, t \cdot \pi \in \mathbb{L}$, and by (2) $\sigma_{1}, \alpha \cdot \pi \in \mathbb{L}$.
$$2-\sigma_{1}, \alpha \cdot \pi \succ \alpha, \pi_{0} \text{ with } \pi_{0} \text{ an end-stack.}$$

If $t \in B$ then $\lambda x.t \in A \to B$, so σ_1 , $\lambda x.t \cdot \pi \in \bot$, and $\lambda x.t$, $\pi_0 \in \bot$ by (1), which contradicts (3).

Proof (2)

 $3-\sigma_1, \alpha \cdot \pi \succ \alpha, a \cdot \pi'.$

For any $\pi_A \in A^-$, one has: $*\pi_A \in A \to \bot \subset A \to B$, hence $\sigma_1, *\pi_A \cdot \pi \in \bot$, but

$$\sigma_1 , *\pi_A \cdot \pi \succ *\pi_A , (a \cdot \pi')^{[*\pi_A/\alpha]} \succ a[*\pi_A/\alpha] , \pi_A,$$

(because α is fresh in the first step) so everything above is in \bot by (1)⁻ and therefore $\kappa \alpha.a$, $\pi_A \in \bot$ by (1). This is true for any $\pi_A \in A^-$, hence $\kappa \alpha.a \in A$, and $\lambda d\kappa \alpha.a \in B \to A$. Turning to σ_2 we get σ_2 , $\lambda d\kappa \alpha.a \cdot \pi \in \bot$, which is what we wanted, since:

$$\mathcal{C}_G, \sigma_1 \cdot \sigma_2 \cdot \pi \succ \sigma_1, \alpha \cdot \pi \succ \alpha, a \cdot \pi' \succ \sigma_2, \lambda d\kappa \alpha . a \cdot \pi$$

Peirce's Anamorphosis

• C_G smarter than its implementations in $\lambda \kappa$ but they're equivalent (horrible to prove). Such as:

$$((C)\sigma_1)\sigma_2 = \kappa k^{X \to B} . (\sigma_1)\lambda x^A . (k)(\sigma_2)\lambda y^B . x$$

That's the way we decompiled it !

• There should be a deadlock-free implementation of the concurrent version.

$H = (A_1 \to C) \lor (A_2 \to C) \lor (A_1 \land A_2)$

- *H* is classically equivalent to $\neg A_1 \lor C \lor \neg A_2 \lor C \lor A_1 \land A_2$
- Generates another new combinator C_H :

• Again there seems to be an obvious synchronisation interpretation: run the two bobs, σ_1 and σ_2 , handle them both (τ) if they both raise an exception.

• But it's not a join pattern because of the rescoping, or rebinding, involved; vital to the consistency of the typing.

Conclusions

• What exactly is the family of tautologies for which this analysis is relevant ? it contains our 'disjunctive tautologies'.

• Work out a presentation of local exception handling that would suit programmers.

 Rescoping or rebinding syntax: smarter instruction sets for abstract/virtual machines

• Communication: closed communication contexts, ambients with a handler; in development: a syntax for outs & ins.