Realizability algebras and new models of ZF

Jean-Louis Krivine

PPS Group, University Paris-Diderot, CNRS krivine@pps.univ-paris-diderot.fr

Münchenwiler, november 2010 (last update november 2011)

Introduction : classical realizability

- It is a method to get programs from mathematical proofs
 by extending the proof-program correspondence up to classical set theory.
 The transition from intuitionistic to classical logic is due to Griffin's discovery
 that a *control instruction* is typed with the law of Peirce (1990).
- It is also a new technique to build models of ZF

and to obtain relative consistency results.

Until now, only two such methods are known (thus, a third one is welcome)

- Inner models (particularly the model of *constructible sets*) : the model is a *subclass* of the ground model.
- Forcing : the model is an *extension* of the ground model ; the axiom of choice is maintained.

In both cases, ordinals are not changed.

Introduction

A classical realizability model is neither a subclass nor an extension of the ground model. The ordinals and even *the integers* are changed. The axiom of choice *is not* preserved, only dependent choice may be. The main tools are :

• Realizability algebra

a three-sorted variant of the well known combinatory algebra.

• ZF_{ε} set theory

a conservative extension of ZF ;

 ε is a strong membership relation which lacks extensionality.

Introduction

We prove relative consistency results not obtained by previous methods :

ZF + DC (dependent choice) +

- there exists a sequence of infinite subsets of ℝ with strictly decreasing cardinals ;
- there exists a sequence $X_n (n \ge 2)$ of infinite subsets of \mathbb{R} with strictly increasing cardinals such that $X_m \times X_n$ is equipotent with X_{mn} ;

Each proposition implies (trivially) that \mathbb{R} is not well ordered.

Remarks.

- It is the *simplest possible realizability model* which has such a strange \mathbb{R} .
- A new proof of the independence of the well-ordering axiom.

Classical realizability : an extension of forcing

More precisely, forcing is a *degenerate case* of classical realizability. The generalization is about *the set of conditions* which is always a first order structure with a binary operation :

• In the case of forcing, it is a *commutative idempotent monoid* with an identity **I**; in other words, a meet-semilattice with a greatest element. The axioms are : xy = yx; $x \cdot yz = xy \cdot z$; xx = x; **I**x = x.

Moreover, we have an *ideal* (initial segment) which is the set of *false conditions*. Usually, these false conditions are removed.

Then, we get a practically *arbitrary ordered set*

(any ordered set in which two compatible elements have a g.l.b.).

An extension of forcing and combinatory algebra

• In the general case of realizability, we have again a first order structure but with three types ; I call it a *realizability algebra*.

The commutative idempotent monoids of forcing are a simple particular case which is in no way representative (far too degenerate).

Another well known interesting case is the *combinatory algebra* of Curry.

It is only an approximation of a realizability algebra,

but is much more representative.

A binary operation with two constants K and S, called *combinators*.

The axioms are : $Kx \cdot y = x$; $Sxy \cdot z = xz \cdot yz$.

Combinatory algebra is very interesting because of its close connection with λ -calculus and therefore with *intuitionistic propositional logic*, by the proof-program (a.k.a. *Curry-Howard*) correspondence.

Realizability, forcing and combinatory algebra

We want to extend *intuitionistic propositional logic (IPL)* up to *classical set theory* ! To do this, we need to add some *axioms* to IPL, and therefore, by the proof-program correspondence, some *constants* to the algebra.

- If the algebra is commutative, the only possible constant is **I**. Then, there is no problem, we can add all the axioms we need at one go without changing the algebra ; it is the case of *forcing*.
- In the general case, for some axioms, we need to add new constants, and even new sorts, to the first order structure.

These problematic axioms are the *excluded middle* and the *dependent choice*.

The *general axiom of choice* is much more difficult to handle than dependent choice ; it will not be considered in these talks.

The excluded middle

It is, far and away, the toughest axiom.

The solution was not (it could not be !) found by a logician,

but by a computer scientist, *Timothy Griffin*, in 1990.

The constant associated with the law of Peirce is a sophisticated instruction

which can save and restore the context (or environment).

This is a *major discovery*, of the same importance, at least,

as the Gödel incompleteness theorem.

We now need a first order language with two sorts

in order to speak about *programs* and *environments*.

We also need to consider the dynamics (execution)

hence a third sort for *processes*.

Realizability algebra

It is a first order structure, which consists of :

• Three sets :

Λ the set of *terms*, Π the set of *stacks* and $\Lambda \star \Pi$ the set of *processes*.

- Six distinguished terms : B, C, I, K, W, cc (elementary combinators) ; they are not necessarily distinct.
- Four operations :

```
Application : \Lambda \times \Lambda \rightarrow \Lambda denoted (\xi)\eta (or often \xi\eta)
```

Push : $\Lambda \times \Pi \rightarrow \Pi$ denoted $\xi \cdot \pi$

Continuation : $\Pi \rightarrow \Lambda$ denoted k_{π}

Process : $\Lambda \times \Pi \rightarrow \Lambda \star \Pi$ denoted $\xi \star \pi$

(ξ , η are arbitrary terms and π is an arbitrary stack)

- A preorder on processes, denoted > (execution)
- A distinguished subset \perp of $\Lambda \star \Pi$

Axioms of realizability algebra

- The preorder ≻ is such that :
 - $(\xi)\eta\star\pi\succ\xi\star\eta\,{\scriptstyle\bullet}\pi$
 - $\mathsf{I} \star \xi \, \bullet \, \pi \succ \xi \star \pi$
 - $\mathsf{K} \star \xi \bullet \eta \bullet \pi \succ \xi \star \pi$
 - $\mathsf{W} \star \xi \bullet \eta \bullet \pi \succ \xi \star \eta \bullet \eta \bullet \pi$
 - $\mathsf{C} \star \xi \bullet \eta \bullet \zeta \bullet \pi \succ \xi \star \zeta \bullet \eta \bullet \pi$
 - $\mathsf{B} \star \xi \bullet \eta \bullet \zeta \bullet \pi \succ \xi \star (\eta) \zeta \star \pi$
 - $\mathsf{CC} \star \xi \, \bullet \, \pi \succ \xi \star \mathsf{k}_{\pi} \, \bullet \, \pi$
 - $\mathsf{k}_{\pi} \star \xi \bullet \varpi \succ \xi \star \pi$
- The set \bot of processes is a *terminal segment* of $\Lambda \times \Pi$ i.e. : $\xi \star \pi \in \bot$, $\xi' \star \pi' \succ \xi \star \pi \Rightarrow \xi' \star \pi' \in \bot$.
- If $\bot = \emptyset$, the realizability algebra is called *trivial*.

c-terms and λ -terms

A c-term is a term of the language of realizability algebras

built with variables x, y,..., elementary combinators and application.

A closed c-term is called *proof-like*. It has a value in Λ .

Examples : *integers* in combinatory logic.

 $\sigma = (BW)(B)B$ (the *successor*) ; $\underline{0} = KI$; $\underline{n+1} = (\sigma)\underline{n}$

Let *t* be a c-term and *x* a variable ; define inductively a c-term written $\int x t$:

- $\int x t = (K) t$ if x is not in t
- $\bigwedge x x = 1$
- $\int x t u = (C \int x t) u$ if x is in t but not in u
- $\int x t x = t$ if x is not in t
- $\int x t x = (W) \int x t$ if x is in t
- $\int x(t)(u)v = \int x(B)tuv$ if x is in uv

We now define our translation of λ -calculus, by setting : $\lambda x t = \int x(I) t$.

We use λ -calculus only as a convenient way of writing c-terms.

c-terms and λ -terms

The rewriting of $\int x t$ is finite because :

- no combinator is introduced inside *t*, but only in front of it ;
- the only changes in t are : moving parentheses, erasing occurrences of x;
- each rule decreases the part of t which is under Ax;
- except for the last rule, this decrease is *strict*;
- the last rule can be applied consecutively only finitely many times.

Theorem. Let $t[x_1, ..., x_n]$ be a c-term and $\xi_1, ..., \xi_n \in \Lambda$. Then $\lambda x_1 ... \lambda x_n t \star \xi_1 \cdot ... \cdot \xi_n \cdot \pi > t[\xi_1/x_1, ..., \xi_n/x_n] \star \pi$.

Easily proved, by induction on the length of the rewriting of t.

The usual KS -translation does not satisfy the theorem. For instance :

 $\lambda x(x)xx \star \xi \cdot \pi \equiv ((S)(S)|I)| \star \xi \cdot \pi > S|I \star \xi \cdot |\xi \cdot \pi > \xi \star |\xi \cdot |\xi \cdot \pi$ instead of $(\xi)\xi\xi \star \pi$.

The above Curry-style translation gives:

 $\lambda x(x) xx \star \xi \bullet \pi \equiv (\mathsf{W})(\mathsf{W})(\mathsf{B})(\mathsf{B})\mathsf{I} \star \xi \bullet \pi \succ \mathsf{B} \star \mathsf{B}\mathsf{I} \bullet \xi \bullet \xi \bullet \xi \bullet \pi \succ (\xi) \xi \xi \star \pi$

The formal system for ZF_{ε}

We use first order logic with the only connectives $\top, \bot, \rightarrow, \forall$, some function symbols, three binary relation symbols $\not{e}, \not{e}, \subseteq$ and the usual rules of natural deduction :

- $x_1:A_1,\ldots,x_n:A_n \vdash x_i:A_i$
- $x_1:A_1,\ldots,x_n:A_n \vdash t:A \to B$, $x_1:A_1,\ldots,x_n:A_n \vdash u:A \Rightarrow x_1:A_1,\ldots,x_n:A_n \vdash (t)u:B$
- $x_1:A_1, \dots, x_n:A_n, x:A \vdash t:B \implies x_1:A_1, \dots, x_n:A_n \vdash \lambda x t:A \to B$
- $x_1:A_1,\ldots,x_n:A_n \vdash t:A \Rightarrow x_1:A_1,\ldots,x_n:A_n \vdash t:\forall xA$ (x is not in A_1,\ldots,A_n)
- $x_1:A_1,...,x_n:A_n \vdash t: \forall x A \implies x_1:A_1,...,x_n:A_n \vdash t:A[\tau/x]$ (τ is a ℓ -term of $\mathsf{ZF}_{\mathcal{E}}$, i.e. a term built with variables and function symbols)
- $x_1:A_1, \dots, x_n:A_n \vdash \mathsf{cc:}((A \to B) \to A) \to A$ (law of Peirce)
- $x_1:A_1,\ldots,x_n:A_n \vdash t:\bot \Rightarrow x_1:A_1,\ldots,x_n:A_n \vdash t:A$

Notation. We write $F_1, \ldots, F_k \to F$ for $F_1 \to (F_2 \to \cdots \to (F_k \to F) \cdots)$ and $\exists x \{F_1, \ldots, F_k\}$ for $\forall x (F_1, \ldots, F_k \to \bot) \to \bot$.

Axioms of ZF_{ε} set theory

The axioms of ZF_{ε} essentially say that ε is a well founded relation and that its extensional collapse ϵ satisfies ZF.

- Foundation scheme. $\forall \vec{z} (\forall x ((\forall y \varepsilon x) F[y, \vec{z}] \rightarrow F[x, \vec{z}]) \rightarrow \forall a F[a, \vec{z}])$ for every formula $F[x, \vec{z}]$.
- Collapse. $\forall x \forall y (x \in y \leftrightarrow (\exists z \in y) \{x \subseteq z, z \subseteq x\}); \forall x \forall y (x \subseteq y \leftrightarrow (\forall z \in x) z \in y)$
- Comprehension scheme. $\forall \vec{z} \forall a \exists b \forall x (x \varepsilon b \leftrightarrow (x \varepsilon a \land F[x, \vec{z}]))$
- Pairing. $\forall a \forall b \exists x \{a \varepsilon x, b \varepsilon x\}$
- Union. $\forall a \exists b (\forall x \varepsilon a) (\forall y \varepsilon x) y \varepsilon b$
- Power set. $\forall a \exists b \forall x (\exists y \varepsilon b) \forall z (z \varepsilon y \leftrightarrow (z \varepsilon a \land z \varepsilon x))$
- Collection scheme. $\forall \vec{z} \forall a \exists b (\forall x \epsilon a) (\exists y F[x, y, \vec{z}] \rightarrow (\exists y \epsilon b) F[x, y, \vec{z}])$
- Infinity scheme. $\forall \vec{z} \forall a \exists b \{ a \varepsilon b, (\forall x \varepsilon b) (\exists y F[x, y, \vec{z}] \rightarrow (\exists y \varepsilon b) F[x, y, \vec{z}]) \}$

A conservative extension of ZF.

Realizability models of ZF_{ε}

The *ground* or *standard model* \mathcal{M} is an ordinary model of ZFC. Its elements are called *individuals*.

The formulas of ZF (i.e. without $\not\in$) are interpreted in \mathcal{M} (*true or false*).

The *realizability model* \mathcal{N} has the *same domain* as \mathcal{M} .

The function symbols have the same interpretation as in \mathcal{M} .

The formulas of ZF_{ε} are interpreted in \mathcal{N} , but with truth values in $\mathcal{P}(\Pi)$.

Although ${\mathscr M}$ and ${\mathscr N}$ have the same domain (which means that

the quantifier $\forall x$ describes the same domain for both)

 \mathcal{N} has *more individuals* than \mathcal{M} because some of them are *not named*.

For instance, in the "thread model" below, there are necessarily

non standard integers in \mathcal{N} , i.e. integers which are not named in \mathcal{M} .

Therefore, realizability models *are not* forcing models.

Realizability models of ZF_{ε}

For each closed formula F of ZF_{ε} with parameters a_1, \ldots, a_n in \mathcal{M} we define its *truth value* $|F| \subset \Lambda$ and its *falsity value* $||F|| \subset \Pi$. $\xi \in |F|$ is read ξ *realizes* F and is written $\xi \Vdash F$. These values are connected by the relation : $\xi \in |F| \Leftrightarrow (\forall \pi \in ||F||)(\xi \star \pi \in \bot)$ so that we only need to define the falsity value ||F||, by induction :

• *F* is atomic ;

 $\|\top\| = \emptyset \ ; \ \|\bot\| = \Pi \ ; \ \|a \not \in b\| = \{\pi \in \Pi; \ (a, \pi) \in b\}$

 $\|a \subseteq b\|, \|a \notin b\| \text{ are defined by induction on the ranks of } a, b:$ $\|a \subseteq b\| = \bigcup_{c} \{\xi \cdot \pi; \xi \in \Lambda, \pi \in \Pi, (c, \pi) \in a, \xi \Vdash c \notin b\};$ $\|a \notin b\| = \bigcup_{c} \{\xi \cdot \xi' \cdot \pi; \xi, \xi' \in \Lambda, \pi \in \Pi, (c, \pi) \in b, \xi \Vdash a \subseteq c, \xi' \Vdash c \subseteq a\}.$

- $F \equiv A \rightarrow B$; then $||F|| = \{\xi \cdot \pi ; \xi \mid \vdash A, \pi \in ||B||\}$
- $F \equiv \forall x A$; then $||F|| = \bigcup_{a \in A} ||A[a/x]||$

Realizability models of ZF_{ε}

The following *adequacy lemma* is an essential tool. **Theorem.** If $x_1 : A_1, ..., x_n : A_n \vdash t : A$ and $\xi_1 \models A_1, ..., \xi_n \models A_n$ then $t[\xi_1/x_1, ..., \xi_n/x_n] \models A$. In particular, if $\vdash t : A$, then $t \models A$. We say that *the model* \mathcal{N} *realizes* F if there is a proof-like term $\xi \models F$. Notation : $\mathcal{N} \models F$ or even $\models F$. By adequacy, the class of realized formulas is closed by classical deduction. **Theorem.** The axioms of ZF_{ε} , and thus also the axioms of ZF, are realized. Therefore, the realizability model may give us relative consistency results if it is *coherent*, i.e. \perp *is not realized*. This means : For every proof-like term ξ , there is a stack π such that $\xi \star \pi \notin \bot$

For instance, $\bot = \Lambda \star \Pi$ (the whole set of processes) gives an incoherent model.

Equality

In the realizability model we have two notions of *equality* :

• The *strong* or *Leibniz* equality x = y which is $\forall z (x \notin z \rightarrow y \notin z)$.

We have $\Vdash \forall x \forall y (x = y, F[x] \rightarrow F[y])$ for every formula *F*.

• The *extensional* equality $x \simeq y$, which is $x \subseteq y, y \subseteq x$.

We have $\parallel \forall x \forall y (x \simeq y, F[x] \rightarrow F[y])$ for every formula *F* of *ZF*

(i.e. without the symbol $\not \epsilon$).

Each function symbol f on \mathcal{M} extends immediately to \mathcal{N} , with the same values on *named* individuals. ZF_{ε} remains satisfied with the extended language. On the other hand, to satisfy ZF, we must check that f is *compatible with* \simeq :

 $\parallel \forall x \forall y (x \simeq y \rightarrow f x \simeq f y)$

or else

 $\Vdash \forall x \forall y (x \subseteq y, y \subseteq x \to f x \subseteq f y)$

Equality

In order to compute more easily with Leibniz equality, we introduce the symbol \neq : $||a \neq b|| = \Pi = ||\perp||$ if a = b; $||a \neq b|| = \emptyset = ||\top||$ if $a \neq b$.

Then x = y is defined as $x \neq y \rightarrow \bot$. It is equivalent with Leibniz equality ; indeed : **Theorem.**

i) $| \models \forall z (a \notin z \rightarrow b \notin z), a \neq b \rightarrow \bot;$

ii) $\lambda x \lambda y(\mathbf{cc}) \lambda k(x)(k) y \Vdash (a \neq b \rightarrow \bot) \rightarrow \forall z (a \notin z \rightarrow b \notin z).$

i) Let $\xi \Vdash \forall z (a \notin z \to b \notin z), \eta \Vdash a \neq b$ and $\pi \in \Pi$. We must show $\xi \star \eta \cdot \pi \in \bot$.

If $a \neq b$, then $\|\forall z (a \notin z \rightarrow b \notin z)\| = \|\top \rightarrow \bot\|$ (take $z = \{b\} \times \Pi$).

Therefore $\xi \Vdash \top \rightarrow \bot$ and we are done.

If a = b, then $\eta \Vdash \bot$, thus $\eta \Vdash a \notin z$;

take $z = \{(b, \pi)\}$, then $\pi \in ||b \notin z||$ and $\eta \cdot \pi \in ||a \notin z \to b \notin z||$. Thus $\xi \star \eta \cdot \pi \in \mathbb{L}$.

Equality

ii) Let $\xi \Vdash a \neq b \to \bot$, $\eta \Vdash a \notin z$ and $\pi \in \|b \notin z\|$. We must show $(\mathbf{cc})\lambda k(\xi)(k)\eta \star \pi \in \bot$, i.e. $\xi \star k_{\pi}\eta \cdot \pi \in \bot$. If $a \neq b$, then $\xi \Vdash \top \to \bot$ and we are done. If a = b, then $\eta \star \pi \in \bot$, and therefore $k_{\pi}\eta \Vdash \bot$. Thus $k_{\pi}\eta \cdot \pi \in \|\bot \to \bot\|$. But $\xi \Vdash \bot \to \bot$, hence $\xi \star k_{\pi}\eta \cdot \pi \in \bot$. Q.E.D.

The axioms of ZF_{ε} are realized

Foundation. $Y \Vdash \forall x (\forall y (F[y] \rightarrow y \notin x), F[x] \rightarrow \bot) \rightarrow \forall x (F[x] \rightarrow \bot)$ with Y = AA and A = $\lambda x \lambda f(f)(x) x f$ (Turing fixed point combinator). Let $\xi \Vdash \forall x (\forall y (F[y] \rightarrow y \notin x), F[x] \rightarrow \bot), \eta \Vdash F[a]$ and $\pi \in \Pi$. We show $Y \star \xi \cdot \eta \cdot \pi \in \bot$ by induction on the rank of *a*. Since $Y \star \xi \cdot \eta \cdot \pi > \xi \star Y \xi \cdot \eta \cdot \pi$, it suffices to show $\xi \star Y \xi \cdot \eta \cdot \pi \in \mathbb{L}$. Now, $\xi \Vdash \forall y(F[y] \rightarrow y \notin a), F[a] \rightarrow \bot$, so that it suffices to show $Y\xi \Vdash \forall y(F[y] \rightarrow y \notin a)$, in other words $Y\xi \Vdash F[b] \rightarrow b \notin a$ for every b. Let $\zeta \Vdash F[b]$ and $\omega \in \|b \notin a\|$. Thus, we have $(b, \omega) \in a$, therefore $\mathsf{rk}(b) < \mathsf{rk}(a)$ and $Y \star \xi \cdot \zeta \cdot \varpi \in \mathbb{L}$ by induction hypothesis. It follows that $Y\xi \star \zeta \cdot \omega \in \mathbb{L}$, which is the desired result. O.E.D.

The axioms of ZF_{ε} are realized

С

Collapse. $\Vdash \forall x \forall y [x \subseteq y \leftrightarrow (\forall z \varepsilon x) z \in y]$; $\Vdash \forall x \forall y [x \in y \leftrightarrow (\exists z \varepsilon y) \{x \subseteq z, z \subseteq x\}]$ Indeed, we have :

 $||a \subseteq b|| = ||\forall z (z \notin b \rightarrow z \notin a)||$ and $||a \notin b|| = ||\forall z (a \subseteq z, z \subseteq a \rightarrow z \notin b)||$

This follows immediately from the definition of $||a \subseteq b||$ and $||a \notin b||$:

$$||a \subseteq b|| = \bigcup \{\xi \bullet \pi; \xi \in \Lambda, \pi \in \Pi, (c, \pi) \in a, \xi \Vdash c \notin b\};$$

$$\|a \notin b\| = \bigcup_{c} \{\xi \bullet \xi' \bullet \pi; \xi, \xi' \in \Lambda, \pi \in \Pi, (c, \pi) \in b, \xi \Vdash a \subseteq c, \xi' \Vdash c \subseteq a\}.$$

Pairing. If $c = \{a, b\} \times \Pi$, then $||a \notin c|| = ||b \notin c|| = ||\perp||$; thus $I \models a \in c$, $I \models b \in c$. *Warning*. In \mathcal{N} , c may have many other ε -elements than a, b.

An instance of a pair $\{a, b\}$ is $c' = \{(a, K \cdot \pi); \pi \in \Pi\} \cup \{(b, \underline{0} \cdot \pi); \pi \in \Pi\}$. Indeed : $\lambda x x K \models a \varepsilon c'; \quad \lambda x x 0 \models b \varepsilon c'; \quad \lambda x \lambda y \lambda z z x y \models \forall x (x \neq a, x \neq b \rightarrow x \notin c').$

The axioms of ZF_{ε} are realized

Comprehension.

Given a set *a* and a formula F[x], define $b = \{(u, \xi \cdot \pi); (u, \pi) \in a, \xi \Vdash F[u]\}$; then $||u \notin b|| = ||F(u) \to u \notin a||$ for every set *u*. Therefore $|| \Vdash \forall x(x \notin b \to (F(x) \to x \notin a))$ and $|| \Vdash \forall x((F(x) \to x \notin a) \to x \notin b))$.

and so on ...

The axioms of ZF_{ε} are much easier to realize than those of ZF.

Type-like sets in $\ensuremath{\mathcal{N}}$

Define the function symbol \exists by $\exists E = E \times \Pi$. Define the quantifier $\forall x^{\exists E}$ by : $\|\forall x^{\exists E} A[x]\| = \bigcup_{a \in E} \|A[a/x]\|$; therefore $\|\forall x^{\exists E} A[x]\| = \bigcap_{a \in E} |A[a/x]|$. Let us see that this quantifier has the intended meaning $\forall x(x \in \exists E \to A[x])$: **Theorem.**

i)
$$\lambda x \lambda y y x \Vdash \forall x^{\exists E} A[x] \rightarrow \forall x (\neg A[x] \rightarrow x \notin \exists E)$$
;
ii) cc $\Vdash \forall x (\neg A[x] \rightarrow x \notin \exists E) \rightarrow \forall x^{\exists E} A[x]$.
i) Let $\xi \Vdash \forall x^{\exists E} A[x], \eta \Vdash \neg A[a]$ and $\pi \in ||a \notin \exists E||$ i.e. $a \in E$.
Then $\xi \Vdash A[a]$; therefore $\lambda x \lambda y y x \star \xi \cdot \eta \cdot \pi \succ \eta \star \xi \cdot \pi \in \bot$.
ii) Let $\xi \Vdash \forall x (\neg A[x] \rightarrow x \notin \exists E), a \in E$ and $\pi \in ||A[a]||$;
then $\xi \Vdash \neg \neg A[a], k_{\pi} \Vdash \neg A[a]$; thus cc $\star \xi \cdot \pi \succ \xi \star k_{\pi} \cdot \pi \in \bot$.
Q.E.D.

Type-like sets in $\ensuremath{\mathcal{N}}$

Let f, g be some terms built with the function symbols in the ground model \mathcal{M} . If $\mathcal{M} \models f : E_1 \times \cdots \times E_k \to E$ then $\mathcal{N} \models f : \exists E_1 \times \cdots \times \exists E_k \to \exists E$ (in fact, $I \models \forall x_1^{\exists E_1} \cdots \forall x_k^{\exists E_k} [f(x_1, \dots, x_k) \notin \exists E \to \bot]$). Moreover, if $\mathcal{M} \models (\forall x_1 \in E_1) \cdots (\forall x_k \in E_k) [f(x_1, \dots, x_k) = g(x_1, \dots, x_k)]$ then $I \models \forall x_1^{\exists E_1} \cdots \forall x_k^{\exists E_k} [f(x_1, \dots, x_k) = g(x_1, \dots, x_k)]$. For instance, let \land, \lor, \neg be the (trivial) boolean operations on the set $2 = \{0, 1\}$. They give a structure of boolean algebra on $\exists 2$ in the realizability model \mathcal{N} . This boolean algebra is, in general, non trivial and even infinite ; but, only two elements of $\exists 2$ are *named* : 0 and 1.

Remarks about J2.

- $|\forall x^{\exists 2}F[x]| = |F[1]| \cap |F[0]|$; thus $\forall x^{\exists 2}F[x]$ behaves like an *intersection type*
- Every ε -element of $\exists 2$ except 1 is empty ; indeed $| | \vdash \forall x^{\exists 2} \forall y (x \neq 1 \rightarrow y \notin x)$.

Integers

Define the function symbol s in \mathcal{M} by $s(a) = \{a\} \times \prod = \mathbb{I}(\{a\})$ and $0 = \emptyset$.

s(a) represents some singleton of a in the realizability model \mathcal{N} ;

The following formulas are realized in $\ensuremath{\mathcal{N}}$:

 $\forall x \forall y (sx = sy \rightarrow x = y) ; \forall x (sx \neq 0) ;$

 $\forall x \forall y (x \simeq y \rightarrow sx \simeq sy).$

Let us define $\widetilde{\mathbb{N}} = \{(s^n 0, \underline{n} \cdot \pi); n \in \mathbb{N}, \pi \in \Pi\}$;

 $\widetilde{\mathbb{N}}$ is the set of integers of the realizability model \mathscr{N} (see below).

Since we have $\exists \mathbb{N} = \{(s^n 0, \pi); n \in \mathbb{N}, \pi \in \Pi\}$, it follows that $| \Vdash \widetilde{\mathbb{N}} \subset \exists \mathbb{N}$.

In general, this inclusion is strict.

Integers

Define the quantifier $\forall x^{\text{int}}$ by $\|\forall x^{\text{int}} F[x]\| = \bigcup \{\underline{n}, \pi; n \in \mathbb{N}, \pi \in \|F[s^n 0]\|\}$. **Remark.** $\xi \models \forall x^{\text{int}} F[x]$ implies $\xi \underline{n} \models F[s^n 0]$ for each $n \in \mathbb{N}$ (*Kleene realizability*). We see, as before, that the quantifier $\forall x^{\text{int}}$ has the intended meaning which is $\forall x (x \in \mathbb{N} \to F[x])$.

 $\widetilde{\mathbb{N}}$ represents the set of integers of the model \mathscr{N} . Indeed :

Theorem. $\lambda x x \underline{0} \models 0 \varepsilon \widetilde{\mathbb{N}}$; $\lambda f \lambda x(f)(\sigma) x \models \forall x(sx \not\in \widetilde{\mathbb{N}} \to x \not\in \widetilde{\mathbb{N}})$;

 $| \models \forall x^{\text{int}}(\forall y(F[sy] \rightarrow F[y]), F[x] \rightarrow F[0]) \text{ for every formula } F[x].$

The following theorem gives a characteristic property of recursive functions : *the image of an integer is an integer* and not only an element of $\exists \mathbb{N}$. **Theorem.** Let $f : \mathbb{N}^k \to \mathbb{N}$ be a recursive function defined in \mathscr{M} . Then $\mathscr{N} \models \forall x_1^{\text{int}} \dots \forall x_k^{\text{int}} (f(x_1, \dots, x_k) \in \widetilde{\mathbb{N}}).$

Standard realizability algebras

We consider now a (very) special case : the *standard* realizability algebras. The terms and the stacks are *words* composed with the following alphabet :

- the elementary *combinators* **B C I K W cc c** (there is a new one)
- the symbols k () []
- a countable set Π_0 of *empty stacks*.

The sets Λ of *terms* and Π of *stacks* are defined as follows :

- each elementary combinator is a term ; each empty stack is a stack ;
- if ξ , η are terms, then $(\xi)\eta$ is a term (*application*, written also $\xi\eta$);
- if ξ is a term and π a stack, then $\xi \cdot \pi$ is a stack (*push*);
- if π is a stack, then $k[\pi]$ is a term (*continuation*, written k_{π}).

A *process* is an ordered pair (ξ, π) with $\xi \in \Lambda, \pi \in \Pi$; it is written $\xi \star \pi$.

The four operations of *application, push, continuation, process* are defined in the obvious way.

Execution of processes

Define the preorder \succ on processes (*execution*) by the following rules :

 $(\xi)\eta \star \pi > \xi \star \eta \cdot \pi$ $\star \xi \cdot \pi > \xi \star \pi$ $\mathsf{K} \star \xi \bullet \eta \bullet \pi \succ \xi \star \pi$ $\mathsf{W} \star \xi \bullet \eta \bullet \pi \succ \xi \star \eta \bullet \eta \bullet \pi$ $C \star \xi \cdot \eta \cdot \zeta \cdot \pi > \xi \star \zeta \cdot \eta \cdot \pi$ $\mathsf{B} \star \xi \bullet \eta \bullet \zeta \bullet \pi \succ (\xi)(\eta) \zeta \star \pi$ $\operatorname{cc} \star \xi \cdot \pi > \xi \star k_{\pi} \cdot \pi$ $k_{\pi} \star \xi \cdot \omega > \xi \star \pi$ $\varsigma \star \xi \cdot \eta \cdot \pi > \xi \star \underline{n}_{\eta} \cdot \pi$ where $\eta \mapsto n_{\eta}$ is a fixed (not necessarily recursive) numerotation of terms. \bot is any set of processes such that $\xi \star \pi \in \bot, \xi' \star \pi' \succ \xi \star \pi \Rightarrow \xi' \star \pi' \in \bot$. The proof-like terms are generated with the seven combinators B, C, I, K, W, cc, ς .

Non extensional and dependent choice

Theorem. For each formula F[x, y], we can define a function symbol f such that : $\lambda x(\varsigma)xx \Vdash \forall x(\forall k^{\text{int}}F[x, f(k, x)] \rightarrow \forall y F[x, y]).$

Now, let $\phi(x) = f(k, x)$ for the first k s.t. $\neg F[x, f(k, x)]$ if there is one ; else 0. Then $\mathcal{N} \models \forall x (F[x, \phi(x)] \rightarrow \forall y F[x, y])$

This gives the axiom of choice in the realizability model \mathcal{N} for ZF_{ε} , but not for ZF, because we cannot find a symbol f which is compatible with \simeq .

This axiom is much weaker than choice, we call it *non extensional choice (NEC)*.

As we shall see below, it does not even imply the well ordering of \mathbb{R} .

Nevertheless, *it implies the axiom of dependent choice (DC)*. The proof is easy :

from $\forall x \exists y F[x, y]$, using NEC, we get a function ϕ such that $\forall x F[x, \phi x]$;

then, given a_0 , we have the sequence $a_k = \phi^k(a_0)$ such that $F[a_k, a_{k+1}]$.

The Boolean algebra **J2**

The Boolean algebra J2 is essential in order to understand the structure of the realizability model \mathcal{N} . It is rather difficult to handle because, in general, it is infinite (even atomless) but only its obvious elements 0 and 1 are named. It has the remarkable property of having *a countable dense subset*. **Theorem.** There exists a function $\Delta : \mathbb{N} \to \mathbf{2}$ such that $\lambda x \lambda y(\varsigma) y x x \Vdash \forall x^{\exists 2} (x \neq 0 \to \exists n^{\text{int}} \{ \Delta(n) \neq 0, (\Delta(n) \lor x) = x \}).$ Δ is defined as follows in \mathcal{M} : let $n \mapsto \xi_n$ be the inverse of the given recursive enumeration of Λ which is $\xi \mapsto n_{\xi}$ (recall : the execution rule of the instruction ς is $\varsigma \star \xi \cdot \eta \cdot \pi > \xi \star \underline{n}_{\eta} \cdot \pi$). Then $\Delta(n) = 0 \Leftrightarrow \xi_n \Vdash \bot.$ In \mathcal{N} , we have $\Delta : \mathbb{I} \mathbb{N} \to \mathbb{I}^2$ and therefore $\Delta : \mathbb{N} \to \mathbb{I}^2$.

The theorem says that every element $\neq 0$ of]2 has a lower bound $\Delta(n) \neq 0$ with $n \in \mathbb{N}$.

The pseudo integers $\exists n$

In the ground model \mathcal{M} , we put, for each integer n:

 $\mathbf{n} = \{0, 1, \dots, n-1\} = \{0, s0, \dots, s^{n-1}0\}.$

The functions $n \mapsto \mathbf{n}$ and $n \mapsto \mathbf{ln}$ are defined in the realizability model \mathcal{N} with domain \mathbf{ln} .

We define the function (m < n) from $(\mathbb{I}\mathbb{N})^2$ into $\mathbb{I}2$, by putting, in \mathcal{M} , for $m, n \in \mathbb{N}$: (m < n) = 1 if m < n else (m < n) = 0.

The relation (m < n) = 1 is a strict (well founded, partial) order on $\mathbb{I}\mathbb{N}$ which is the usual order on the set \mathbb{N} of integers in \mathcal{N} .

The following formulas are realized :

 $\forall x^{\mathbb{IN}} \forall m^{\mathbb{IN}} ((x < m) = 1 \leftrightarrow x \varepsilon \,\mathbb{Im})$

 $\forall m^{\mathbb{J}\mathbb{N}} \forall n^{\mathbb{J}\mathbb{N}} ((m < n) = 1 \rightarrow \mathbb{J}\mathbf{m} \subset \mathbb{J}\mathbf{n})$

 $\forall m^{\mathbb{I}} \forall n^{\mathbb{I}}$ (the application $(x, y) \mapsto my + x$

is a bijection from $\exists m \times \exists n \text{ onto } \exists (mn))$.

Injection of $\exists n$ into \mathbb{R}

The application $x \mapsto \{n \in \widetilde{\mathbb{N}}; \Delta(n) \leq x\}$ is, in \mathcal{N} , an injection of $\exists 2$ into $\mathscr{P}(\widetilde{\mathbb{N}})$ (the real line of the model \mathcal{N}). Therefore :

 $\mathcal{N} \Vdash (\forall n^{\text{int}}) (\exists f : (\exists 2)^n \to \mathbb{R}) (f \text{ is injective}).$

By recurrence on *n*, we see that $(\exists 2)^n$ is equipotent with $\exists (2^n)$. Now, for each integer *n*, we have $n < 2^n$ and therefore $\exists n \subset \exists (2^n)$. Thus : $\mathscr{N} \Vdash (\forall n^{\text{int}}) (\exists f : \exists n \to \mathbb{R}) (f \text{ is injective}).$

We will now choose the set \bot such that, in the realizability model \mathcal{N} , $\exists 2$ is infinite and the "cardinals" of $\exists n$ form a *strictly increasing sequence* (which means that there is no surjection of $\exists n$ onto $\exists (n + 1)$). Since $\exists m \times \exists n$ is equipotent with $\exists (mn)$, it follows that *neither* $\exists 2$ *nor* \mathbb{R} *are well ordered in* \mathcal{N} .

The model of threads

Remark. If $\exists 2$ is non trivial, then there are non standard integers in the model \mathscr{N} . Indeed, let $a \varepsilon \exists 2, a \neq 0, 1$; there is an integer n such that $\Delta(n) \neq 0$ and $\Delta(n) \leq a$. Thus $\Delta(n) \neq 0, 1$; n is non-standard because $\Delta(m) = 0$ or 1 for each standard m. Thus, the realizability model \mathscr{N} we are looking for, has non-standard integers. It cannot be a forcing model or an inner model.

We define now the simplest non trivial *coherent* realizability model. Let :

- $n \mapsto \pi_n$ be an enumeration of the *empty stacks*
- $n \mapsto \theta_n$ be a recursive enumeration of the *proof-like terms*

The *thread with number n* is the set of processes $\xi \star \pi$ such that $\theta_n \star \pi_n > \xi \star \pi$.

The only empty stack which appears in the terms of the *n*-th thread is π_n .

The model of threads

The simplest way to ensure a *coherent model* is to decide that $\theta_n \star \pi_n \in \mathbb{L}^c$

 $(\perp^{c}$ is the complement of \perp). Then, every thread must be in \perp^{c} . Thus, we decide :

$\bot\!\!\!\!\bot^c$ is the union of all threads

Therefore $\xi \star \pi \in \bot$ iff $\xi \star \pi$ never appears in any thread.

 $\xi \Vdash \perp$ iff ξ never appears in head position in any thread.

Theorem. The following are satisfied in the model of threads :

i) There is a proof-like ω such that $\omega k_{\pi} \xi \Vdash \bot$ or $\omega k_{\pi} \xi' \Vdash \bot$ for any π, ξ, ξ' with $\xi \neq \xi'$.

ii) If $\zeta_0, \zeta_1, \zeta_2$ are distinct, then $k_{\pi} \alpha \zeta_0 \Vdash \bot$ or $k_{\pi} \alpha \zeta_1 \Vdash \bot$ or $k_{\pi} \alpha \zeta_2 \Vdash \bot$ for any α, π .

i) Take $\omega = (\lambda x x x) \lambda x x x$ or (WI)(W)I.

ii) If the process $\alpha \star \pi$ appears twice in a thread, then the execution enters in a loop, and there will be no third appearance.

Q.E.D.

Consequences of (i)

We now consider any realizability model which satisfies properties (i) or (ii) (or both). **Theorem.**

If a realizability model ${\cal N}$ satisfies property (i), then it realizes the formulas :

- **]2** is not countable.
- $\forall m^{\text{int}} \forall n^{\text{int}} ((m < n) = 1 \rightarrow \text{there is no surjection from } \exists \mathbf{m} \text{ onto } \exists \mathbf{n}).$

Since there is an injection of $\exists n$ into \mathbb{R} , it follows that :

there exists a sequence $X_n (n \ge 2)$ of infinite subsets of \mathbb{R} such that

their "cardinals" are strictly increasing and $X_m \times X_n$ is equipotent with X_{mn} .

Dependent choice is true, but \mathbb{R} is badly not well orderable.

The behaviour of cardinals is far from the usual one :

compare card(X_2) with card($X_2 \times X_2$) which is card(X_4)

or worse, $card(X_5) < card(X_6) < card(X_7)$ and $card(X_5 \times X_7) < card(X_6 \times X_6)$.

This relative consistency result is not obtainable with forcing.

Consequences of (ii)

Theorem.

If a realizability model ${\mathscr N}$ satisfies property (ii), then it realizes the formulas :

- 32 is an atomless Boolean algebra.
- $\forall a^{\exists 2} \forall b^{\exists 2} (a \land b = 0, b \neq 0 \rightarrow \text{there is no surjection from } a \exists 2 \text{ onto } b \exists 2).$
- $\forall a^{\exists 2} \forall b^{\exists 2} (a < b \rightarrow \text{there is no surjection from } a \exists 2 \text{ onto } b \exists 2).$

a]2 is the ideal { $x \in$]2; $x \leq a$ } of the boolean algebra]2.

We have an atomless Boolean algebra \mathscr{B} of infinite subsets of \mathbb{R} such that :

X, *Y* ∈ \mathscr{B} , *X* ∩ *Y* = \emptyset ⇒ card(*X*) and card(*Y*) are not comparable.

 $X, Y \in \mathcal{B}, X \subset Y, X \neq Y \Rightarrow card(X) < card(Y).$

Thus, there is a family $(X_r)_{r \in \mathbb{R}}$ of subsets of \mathbb{R} such that

 $r < s \Rightarrow \operatorname{card}(X_r) < \operatorname{card}(X_s).$

Very far from the continuum hypothesis and the well ordering of \mathbb{R} .

Realizability algebras and models of ZF

Appendix Some proofs

Non extensional choice

Theorem. For each formula F[x, y], there is a function symbol f such that : $\lambda x(\varsigma) xx \Vdash \forall x \forall y(\forall k^{\text{int}} F[x, f(k, x)] \rightarrow F[x, y]).$

For each $j \in \mathbb{N}$, let $P_j = \{\pi \in \Pi; \xi_j \star \underline{j} \cdot \pi \notin \bot\}$; ξ_j is the term η such that $n_{\eta} = j$. For each individual a, we have $\|\forall y F[a, y]\| = \bigcup \|F[a, b]\|$.

Thus, there exists a function f such that, given $j \in \mathbb{N}$ and a such that $P_j \cap ||\forall y F[a, y]|| \neq \emptyset$, we have $P_j \cap ||F[a, f(j, a)]|| \neq \emptyset$ (by axiom of choice in \mathcal{M}). Now, we want to show $\lambda x(\varsigma) xx \mid |-\forall k^{\text{int}} F[a, f(k, a)] \rightarrow F[a, b]$, for every a, b. If this is false, we have $\varsigma \star \eta \cdot \eta \cdot \pi \notin \bot$, for some $\eta \mid |-\forall k^{\text{int}} F[a, f(k, a)]$ and $\pi \in ||F[a, b]||$. Therefore $\eta \star \underline{j} \cdot \pi \notin \bot$ with $j = n_\eta$ and it follows that $\pi \in P_j \cap ||F[a, b]||$. Thus, there exists $\emptyset \in P_j \cap ||F[a, f(j, a)]||$; then $\underline{j} \cdot \emptyset \in \bot$. Contradiction with $\emptyset \in P_j$.

Q.E.D.

32 has a countable dense subset

Define $\Delta : \mathbb{N} \to 2$ as follows in $\mathcal{M} : \Delta(j) = 0 \Leftrightarrow \xi_j \Vdash \bot$ $(\xi_j \text{ is the term } \eta \text{ such that } n_\eta = j).$ In \mathcal{N} , we have $\Delta : \mathbb{J}\mathbb{N} \to \mathbb{J}2$ and therefore $\Delta : \mathbb{N} \to \mathbb{J}2$. **Theorem.** $\lambda x \lambda y(\varsigma) y x x \Vdash \forall x^{\mathbb{J}2} (x \neq 0, \forall n^{\text{int}} (\Delta(n) \neq 0 \to x \neq \Delta(n) \lor x) \to \bot).$ Let $a \in \{0, 1\}, \xi \Vdash a \neq 0, \eta \Vdash \forall n^{\text{int}} (\Delta(n) \neq 0 \to a \neq \Delta(n) \lor a)$ and $\pi \in \Pi$. We must show $\varsigma \star \eta \cdot \xi \cdot \xi \cdot \pi \in \bot$ that is $\eta \star \underline{n}_{\xi} \cdot \xi \cdot \pi \in \bot$. By hypothesis on η , it suffices to show $\underline{n}_{\xi} \cdot \xi \cdot \pi \in \|\forall n^{\text{int}} (\Delta(n) \neq 0 \to a \neq \Delta(n) \lor a)\|$ i.e. by definition of the quantifier $\forall n^{\text{int}} : \xi \cdot \pi \in \|\Delta(n_{\xi}) \neq 0 \to a \neq \Delta(n_{\xi}) \lor a\|$ This amounts to show $\xi \Vdash \Delta(n_{\xi}) \neq 0$ and $a = \Delta(n_{\xi}) \lor a$.

- Proof of $\xi \parallel \Delta(n_{\xi}) \neq 0$: trivial if $\Delta(n_{\xi}) = 1$ because $\|\Delta(n_{\xi}) \neq 0\| = \emptyset$; if $\Delta(n_{\xi}) = 0$, then $\xi \parallel \perp$, by definition of Δ .
- Proof of $a = \Delta(n_{\xi}) \lor a$: obvious if a = 1; if a = 0, then $\xi \Vdash \bot$ (hypothesis on ξ); thus $\Delta(n_{\xi}) = 0$ by definition of Δ , hence the result. Q.E.D.

]2 is not equipotent with]4

This is the key property to prove that \mathbb{R} is not well ordered.

Theorem. Suppose there is a proof-like ω such that $\xi \neq \xi' \Rightarrow \omega k_{\pi}\xi \Vdash \bot$ or $\omega k_{\pi}\xi' \Vdash \bot$. Then $\lambda x \lambda x'(cc) \lambda k(x') \lambda z(xzz)(\omega) kz \Vdash$

 $\forall z [(\forall x \forall y \forall y' (F(x, y, z), F(x, y', z), y \neq y' \rightarrow \bot), \forall y \exists 4 \exists x \exists 2 F(x, y, z) \rightarrow \bot)].$

The formula F being arbitrary, this tells us that there is no surjection from $\exists 2$ onto $\exists 4$. A similar proof will show that there is no surjection from $\widetilde{\mathbb{N}}$ onto $\exists 2$.

Since $\exists 4$ is equipotent with $(\exists 2)^2$ it follows that $\exists 2$ is not well ordered.

Proof. If this is false, there exist $\xi, \xi' \in \Lambda, \pi \in \Pi$ and an individual c such that :

 $\lambda x \lambda x'(\mathsf{cc}) \lambda k(x') \lambda z(xzz)(\omega) kz \star \xi \, \bullet \, \xi' \, \bullet \, \pi \notin \mathbb{L} ;$

 $\xi \Vdash \forall x \forall y \forall y' [F(x, y, c), F(x, y', c), y \neq y' \rightarrow \bot];$ $\xi' \Vdash \forall y^{\exists 4} \neg \forall x^{\exists 2} \neg F(x, y, c).$

32 is not equipotent with 34

Therefore, we have $\xi' \star \eta \cdot \pi \notin \bot$ with $\eta = \lambda z(\xi z z)(\omega) k_{\pi} z$. By hypothesis on ξ' , we have $\eta \not\models \forall x \exists^2 \neg F(x, i, c)$ for i < 4. Thus, there exists $\delta_i \in \{0, 1\}$ such that $\eta \not\models \neg F(\delta_i, i, c)$. Then, there exist $\xi_i \in \Lambda$ and $\pi_i \in \Pi$ such that $\xi_i \models F(\delta_i, i, c)$ and $\eta \star \xi_i \cdot \pi_i \notin \bot$. By definition of η , we get $\xi \star \xi_i \cdot \xi_i \cdot \omega k_{\pi} \xi_i \cdot \pi_i \notin \bot$. By hypothesis on ξ , we have $\omega k_{\pi} \xi_i \not\models i$, i.e. $\omega k_{\pi} \xi_i \not\models \bot$ for every i < 4. Now, the hypothesis of the theorem gives $\xi_i = \xi_j$ for every i, j < 4. But, since $\delta_i < 2$, there exist $i, j < 4, i \neq j$ such that $\delta_i = \delta_j = \delta$. Then, $\xi_i = \xi_j \models F(\delta, i, c), F(\delta, j, c)$ and $\omega k_{\pi} \xi_i \models i \neq j$ since $||i \neq j|| = \emptyset$. Thus, by hypothesis on ξ , we have $\xi \star \xi_i \cdot \xi_i \cdot \omega k_{\pi} \xi_i \cdot \pi_i \in \bot$, which is a contradiction.

Q.E.D.

References

1. H.B. Curry, R. Feys Combinatory Logic. North-Holland, 1958.

2. **T. Griffin** A formulæ-as-type notion of control.

Conf. Record of the 17th A.C.M. Symp. on Principles of Progr. Languages, 1990.

3. **M. E. Hyland** *The effective topos.*

The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), 165–216, Stud. Logic Foundations Math., 110, North-Holland, 1982.

4. **W. Howard** *The formulas–as–types notion of construction.*

Essays on combinatory logic, λ -calculus, and formalism,

Acad. Press, 479–490, 1980.

5. J.-L. Krivine Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Arch. Math. Log. 40, 3, 189-205, 2001.

References

- 6. J.-L. Krivine Dependent choice, 'quote' and the clock.
- Th. Comp. Sc. 308, 259–276, 2003.
- 7. J.-L. Krivine Realizability in classical logic.

Panoramas et synthèses, Société Mathématique de France, 27, 197–229, 2009.

8. J.-L. Krivine Realizability algebras : a program to well order \mathbb{R} . Logical Methods in Computer Science, vol. 7, 3:02, 1–47, 2011.

9. J.-L. Krivine *Realizability algebras II : new models of ZF + DC*. Logical Methods in Computer Science, vol. 8, 1:10, 1–28, 2012.

Pdf files at http://www.pps.univ-paris-diderot.fr/~krivine