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Introduction : classical realizability

• It is a method to get programs from mathematical proofs

by extending the proof-program correspondence up to classical set theory.

The transition from intuitionistic to classical logic is due to Griffin’s discovery

that a control instruction is typed with the law of Peirce (1990).

• It is also a new technique to build models of ZF

and to obtain relative consistency results.

Until now, only two such methods are known (thus, a third one is welcome)

• Inner models (particularly the model of constructible sets) :

the model is a subclass of the ground model.

• Forcing : the model is an extension of the ground model ;

the axiom of choice is maintained.

In both cases, ordinals are not changed.
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Introduction

A classical realizability model is neither a subclass nor an extension

of the ground model. The ordinals and even the integers are changed.

The axiom of choice is not preserved, only dependent choice may be.

The main tools are :

• Realizability algebra

a three-sorted variant of the well known combinatory algebra.

• ZFε set theory

a conservative extension of ZF ;

ε is a strong membership relation which lacks extensionality.
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Introduction

We prove relative consistency results not obtained by previous methods :

ZF + DC (dependent choice) +

• there exists a sequence of infinite subsets of R

with strictly decreasing cardinals ;

• there exists a sequence Xn(n ≥ 2) of infinite subsets of R

with strictly increasing cardinals

such that Xm×Xn is equipotent with Xmn ;

Each proposition implies (trivially) that R is not well ordered.

Remarks.

• It is the simplest possible realizability model which has such a strange R.

• A new proof of the independence of the well-ordering axiom.
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Classical realizability : an extension of forcing

More precisely, forcing is a degenerate case of classical realizability.

The generalization is about the set of conditions

which is always a first order structure with a binary operation :

• In the case of forcing, it is a commutative idempotent monoid

with an identity I ; in other words, a meet-semilattice with a greatest element.

The axioms are : x y = y x ; x . y z = x y . z ; xx = x ; I x = x .

Moreover, we have an ideal (initial segment) which is the set of false conditions.

Usually, these false conditions are removed.

Then, we get a practically arbitrary ordered set

(any ordered set in which two compatible elements have a g.l.b.).
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An extension of forcing and combinatory algebra

• In the general case of realizability, we have again a first order structure

but with three types ; I call it a realizability algebra.

The commutative idempotent monoids of forcing are a simple particular case

which is in no way representative (far too degenerate).

Another well known interesting case is the combinatory algebra of Curry.

It is only an approximation of a realizability algebra,

but is much more representative.

A binary operation with two constants K and S, called combinators.

The axioms are : Kx . y = x ; Sx y . z = xz . y z .

Combinatory algebra is very interesting because of its close connection

with λ-calculus and therefore with intuitionistic propositional logic,

by the proof-program (a.k.a. Curry-Howard) correspondence.
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Realizability, forcing and combinatory algebra

We want to extend intuitionistic propositional logic (IPL) up to classical set theory !

To do this, we need to add some axioms to IPL, and therefore,

by the proof-program correspondence, some constants to the algebra.

• If the algebra is commutative, the only possible constant is I.

Then, there is no problem, we can add all the axioms we need at one go

without changing the algebra ; it is the case of forcing.

• In the general case, for some axioms, we need to add new constants,

and even new sorts, to the first order structure.

These problematic axioms are the excluded middle and the dependent choice.

The general axiom of choice is much more difficult to handle

than dependent choice ; it will not be considered in these talks.
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The excluded middle

It is, far and away, the toughest axiom.

The solution was not (it could not be !) found by a logician,

but by a computer scientist, Timothy Griffin, in 1990.

The constant associated with the law of Peirce is a sophisticated instruction

which can save and restore the context (or environment).

This is a major discovery, of the same importance, at least,

as the Gödel incompleteness theorem.

We now need a first order language with two sorts

in order to speak about programs and environments.

We also need to consider the dynamics (execution)

hence a third sort for processes.
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Realizability algebra
It is a first order structure, which consists of :
• Three sets :
Λ the set of terms, Π the set of stacks and Λ?Π the set of processes.

• Six distinguished terms : B, C, I, K, W, cc (elementary combinators) ;
they are not necessarily distinct.

• Four operations :
Application : Λ×Λ→Λ denoted (ξ)η (or often ξη)
Push : Λ×Π→Π denoted ξ .π
Continuation : Π→Λ denoted kπ
Process : Λ×Π→Λ?Π denoted ξ?π

(ξ,η are arbitrary terms and π is an arbitrary stack)
• A preorder on processes, denoted Â (execution)

• A distinguished subset ⊥⊥ of Λ?Π
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Axioms of realizability algebra

• The preorder Â is such that :

(ξ)η?πÂ ξ?η .π
I?ξ .πÂ ξ?π
K?ξ .η .πÂ ξ?π
W?ξ .η .πÂ ξ?η .η .π
C?ξ .η .ζ .πÂ ξ?ζ .η .π
B?ξ .η .ζ .πÂ ξ? (η)ζ?π

cc?ξ .πÂ ξ?kπ .π
kπ?ξ .$Â ξ?π

• The set ⊥⊥ of processes is a terminal segment of Λ×Π i.e. :

ξ?π ∈⊥⊥, ξ′?π′Â ξ?π ⇒ ξ′?π′ ∈⊥⊥.

If ⊥⊥=;, the realizability algebra is called trivial.
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c-terms and λ-terms
A c-term is a term of the language of realizability algebras
built with variables x, y, . . . , elementary combinators and application.
A closed c-term is called proof-like. It has a value in Λ.
Examples : integers in combinatory logic.
σ= (BW)(B)B (the successor) ; 0 = KI ; n +1 = (σ)n

Let t be a c-term and x a variable ; define inductively a c-term written λx t :
• λx t = (K)t if x is not in t

• λx x = I
• λx tu = (C λx t )u if x is in t but not in u
• λx t x = t if x is not in t
• λx t x = (W) λx t if x is in t
• λx(t )(u)v = λx(B)tuv if x is in uv

We now define our translation of λ-calculus, by setting : λx t = λx(I)t .
We use λ-calculus only as a convenient way of writing c-terms.

11



c-terms and λ-terms
The rewriting of λx t is finite because :
• no combinator is introduced inside t , but only in front of it ;
• the only changes in t are : moving parentheses, erasing occurrences of x ;
• each rule decreases the part of t which is under λx ;
• except for the last rule, this decrease is strict ;
• the last rule can be applied consecutively only finitely many times.

Theorem. Let t [x1, . . . , xn] be a c-term and ξ1, . . . ,ξn ∈Λ. Then
λx1 . . .λxn t ?ξ1 . . . . .ξn .πÂ t [ξ1/x1, . . . ,ξn/xn]?π.

Easily proved, by induction on the length of the rewriting of t .

The usual KS -translation does not satisfy the theorem. For instance :
λx(x)xx?ξ .π≡ ((S)(S)I I) I?ξ .πÂS I I?ξ . Iξ .πÂ ξ? Iξ . Iξ .π instead of (ξ)ξξ?π.
The above Curry-style translation gives:
λx(x)xx?ξ .π≡ (W)(W)(B)(B)I?ξ .πÂ B?BI .ξ .ξ .ξ .πÂ (ξ)ξξ?π
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The formal system for ZFε
We use first order logic with the only connectives >,⊥,→,∀, some function symbols,

three binary relation symbols 6ε ,∉,⊆ and the usual rules of natural deduction :

• x1:A1, . . . , xn:An ` xi :Ai

• x1:A1, . . . , xn:An ` t :A → B , x1:A1, . . . , xn:An ` u:A ⇒ x1:A1, . . . , xn:An ` (t )u:B

• x1:A1, . . . , xn:An, x:A ` t :B ⇒ x1:A1, . . . , xn:An `λx t :A → B

• x1:A1, . . . , xn:An ` t :A ⇒ x1:A1, . . . , xn:An ` t :∀x A (x is not in A1, . . . , An)

• x1:A1, . . . , xn:An ` t :∀x A ⇒ x1:A1, . . . , xn:An ` t :A[τ/x]

(τ is a `-term of ZFε, i.e. a term built with variables and function symbols)

• x1:A1, . . . , xn:An ` cc:((A → B) → A) → A (law of Peirce)

• x1:A1, . . . , xn:An ` t :⊥ ⇒ x1:A1, . . . , xn:An ` t :A

Notation. We write F1, . . . ,Fk → F for F1 → (F2 →···→ (Fk → F ) · · ·)
and ∃x{F1, . . . ,Fk} for ∀x(F1, . . . ,Fk →⊥) →⊥.
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Axioms of ZFε set theory

The axioms of ZFε essentially say that ε is a well founded relation

and that its extensional collapse ∈ satisfies ZF.

• Foundation scheme. ∀~z (∀x
(
(∀y εx)F [y,~z] → F [x,~z]

)→∀a F [a,~z]
)

for every formula F [x,~z].

• Collapse. ∀x∀y
(
x ∈ y ↔ (∃z ε y){x ⊆ z, z ⊆ x}

)
; ∀x∀y

(
x ⊆ y ↔ (∀z εx)z ∈ y

)
• Comprehension scheme. ∀~z∀a∃b∀x(x εb ↔ (x εa ∧F [x,~z]))

• Pairing. ∀a∀b∃x{a εx,b εx}

• Union. ∀a∃b(∀x εa)(∀y εx) y εb

• Power set. ∀a∃b∀x(∃y εb)∀z(z ε y ↔ (z εa ∧ z εx))

• Collection scheme. ∀~z∀a∃b(∀x εa)
(∃y F [x, y,~z] → (∃y εb)F [x, y,~z]

)
• Infinity scheme. ∀~z∀a∃b

{
a εb , (∀x εb)

(∃y F [x, y,~z] → (∃y εb)F [x, y,~z]
)}

A conservative extension of ZF.
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Realizability models of ZFε
The ground or standard model M is an ordinary model of ZFC.

Its elements are called individuals.

The formulas of ZF (i.e. without 6ε ) are interpreted in M (true or false).

The realizability model N has the same domain as M .

The function symbols have the same interpretation as in M .

The formulas of ZFε are interpreted in N , but with truth values in P (Π).

Although M and N have the same domain (which means that

the quantifier ∀x describes the same domain for both)

N has more individuals than M because some of them are not named.

For instance, in the ”thread model” below, there are necessarily

non standard integers in N , i.e. integers which are not named in M .

Therefore, realizability models are not forcing models.
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Realizability models of ZFε
For each closed formula F of ZFε with parameters a1, . . . , an in M

we define its truth value |F | ⊂Λ and its falsity value ‖F‖ ⊂Π.
ξ ∈ |F | is read ξ realizes F and is written ξ ∥−F .
These values are connected by the relation : ξ ∈ |F | ⇔ (∀π ∈ ‖F‖)(ξ?π ∈⊥⊥)
so that we only need to define the falsity value ‖F‖, by induction :

• F is atomic ;
‖>‖=; ; ‖⊥‖=Π ; ‖a 6εb‖ = {π ∈Π; (a,π) ∈ b}

‖a ⊆ b‖,‖a ∉ b‖ are defined by induction on the ranks of a,b :
‖a ⊆ b‖ =⋃

c
{ξ .π; ξ ∈Λ, π ∈Π, (c,π) ∈ a, ξ ∥−c ∉ b} ;

‖a ∉ b‖ =⋃
c

{ξ .ξ′ .π; ξ,ξ′ ∈Λ, π ∈Π, (c,π) ∈ b, ξ ∥−a ⊆ c, ξ′ ∥−c ⊆ a}.

• F ≡ A → B ; then ‖F‖ = {ξ .π ; ξ ∥− A, π ∈ ‖B‖}

• F ≡∀x A ; then ‖F‖ =⋃
a
‖A[a/x]‖
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Realizability models of ZFε
The following adequacy lemma is an essential tool.

Theorem. If x1 : A1, . . . , xn : An ` t : A and ξ1 ∥− A1, . . . ,ξn ∥− An

then t [ξ1/x1, . . . ,ξn/xn] ∥− A. In particular, if ` t : A, then t ∥− A.

We say that the model N realizes F if there is a proof-like term ξ ∥−F .

Notation : N ∥−F or even ∥−F .

By adequacy, the class of realized formulas is closed by classical deduction.

Theorem. The axioms of ZFε , and thus also the axioms of ZF , are realized.

Therefore, the realizability model may give us relative consistency results

if it is coherent, i.e. ⊥ is not realized. This means :

For every proof-like term ξ, there is a stack π such that ξ?π ∉⊥⊥
For instance, ⊥⊥=Λ?Π (the whole set of processes) gives an incoherent model.
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Equality

In the realizability model we have two notions of equality :

• The strong or Leibniz equality x = y which is ∀z(x 6εz → y 6εz).

We have ∥−∀x∀y(x = y,F [x] → F [y]) for every formula F .

• The extensional equality x ' y , which is x ⊆ y, y ⊆ x .

We have ∥−∀x∀y(x ' y,F [x] → F [y]) for every formula F of ZF

(i.e. without the symbol 6ε ).

Each function symbol f on M extends immediately to N , with the same values

on named individuals. ZFε remains satisfied with the extended language.

On the other hand, to satisfy ZF, we must check that f is compatible with ' :

∥−∀x∀y(x ' y → f x ' f y)

or else ∥−∀x∀y(x ⊆ y, y ⊆ x → f x ⊆ f y)

18



Equality

In order to compute more easily with Leibniz equality, we introduce the symbol 6= :

‖a 6= b‖ =Π= ‖⊥‖ if a = b ; ‖a 6= b‖ =;= ‖>‖ if a 6= b.

Then x = y is defined as x 6= y →⊥. It is equivalent with Leibniz equality ; indeed :

Theorem.

i) I ∥−∀z(a 6εz → b 6εz), a 6= b →⊥ ;

ii) λxλy(cc)λk(x)(k)y ∥− (a 6= b →⊥) →∀z(a 6εz → b 6εz).

i) Let ξ ∥−∀z(a 6εz → b 6εz),η ∥−a 6= b and π ∈Π. We must show ξ?η .π ∈⊥⊥.

If a 6= b, then ‖∀z(a 6εz → b 6εz)‖ = ‖>→⊥‖ (take z = {b}×Π).

Therefore ξ ∥−>→⊥ and we are done.

If a = b, then η ∥−⊥, thus η ∥−a 6εz ;

take z = {(b,π)}, then π ∈ ‖b 6εz‖ and η .π ∈ ‖a 6εz → b 6εz‖. Thus ξ?η .π ∈⊥⊥.
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Equality

ii) Let ξ ∥−a 6= b →⊥, η ∥−a 6εz and π ∈ ‖b 6εz‖.

We must show (cc)λk(ξ)(k)η?π ∈⊥⊥, i.e. ξ?kπη .π ∈⊥⊥.

If a 6= b, then ξ ∥−>→⊥ and we are done.

If a = b, then η?π ∈⊥⊥, and therefore kπη ∥−⊥. Thus kπη .π ∈ ‖⊥→⊥‖.

But ξ ∥−⊥→⊥, hence ξ?kπη .π ∈⊥⊥.

Q.E.D.
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The axioms of ZFε are realized

Foundation. Y ∥−∀x
(∀y(F [y] → y 6εx),F [x] →⊥) →∀x(F [x] →⊥)

with Y = AA and A =λxλ f ( f )(x)x f (Turing fixed point combinator).

Let ξ ∥−∀x(∀y(F [y] → y 6εx),F [x] →⊥), η ∥−F [a] and π ∈Π.

We show Y?ξ .η .π ∈⊥⊥ by induction on the rank of a.

Since Y?ξ .η .πÂ ξ?Yξ .η .π, it suffices to show ξ?Yξ .η .π ∈⊥⊥.

Now, ξ ∥−∀y(F [y] → y 6εa),F [a] →⊥, so that it suffices to show

Yξ ∥−∀y(F [y] → y 6εa), in other words Yξ ∥−F [b] → b 6εa for every b.

Let ζ ∥−F [b] and $ ∈ ‖b 6εa‖. Thus, we have (b,$) ∈ a, therefore rk(b) < rk(a)

and Y?ξ .ζ .$ ∈⊥⊥ by induction hypothesis.

It follows that Yξ?ζ .$ ∈⊥⊥, which is the desired result.

Q.E.D.
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The axioms of ZFε are realized

Collapse. ∥−∀x∀y[x ⊆ y ↔ (∀z εx)z ∈ y] ; ∥−∀x∀y[x ∈ y ↔ (∃z ε y){x ⊆ z, z ⊆ x}]

Indeed, we have :

‖a ⊆ b‖ = ‖∀z(z ∉ b → z 6εa)‖ and ‖a ∉ b‖ = ‖∀z(a ⊆ z, z ⊆ a → z 6εb)‖
This follows immediately from the definition of ‖a ⊆ b‖ and ‖a ∉ b‖ :

‖a ⊆ b‖ =⋃
c

{ξ .π; ξ ∈Λ, π ∈Π, (c,π) ∈ a, ξ ∥−c ∉ b} ;

‖a ∉ b‖ =⋃
c

{ξ .ξ′ .π; ξ,ξ′ ∈Λ, π ∈Π, (c,π) ∈ b, ξ ∥−a ⊆ c, ξ′ ∥−c ⊆ a}.

Pairing. If c = {a,b}×Π, then ‖a 6εc‖ = ‖b 6εc‖ = ‖⊥‖ ; thus I ∥−a εc , I ∥−b εc .

Warning. In N , c may have many other ε-elements than a,b.

An instance of a pair {a,b} is c ′= {(a,K .π); π ∈Π}∪ {(b,0 .π); π ∈Π}. Indeed :

λx xK ∥−a εc ′ ; λx x0 ∥−b εc ′ ; λxλyλz zx y ∥−∀x(x 6= a, x 6= b → x 6εc ′).
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The axioms of ZFε are realized

Comprehension.

Given a set a and a formula F [x], define b = {(u,ξ .π); (u,π) ∈ a, ξ ∥−F [u]} ;

then ‖u 6εb‖ = ‖F (u) → u 6εa‖ for every set u.

Therefore I ∥−∀x(x 6εb → (F (x) → x 6εa)) and I ∥−∀x((F (x) → x 6εa) → x 6εb).

and so on . . .

The axioms of ZFε are much easier to realize than those of ZF.
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Type-like sets in N

Define the function symbol ג by Eג = E×Π. Define the quantifier ∀xגE by :

‖∀xגE A[x]‖ = ⋃
a∈E

‖A[a/x]‖ ; therefore |∀xגE A[x]| = ⋂
a∈E

|A[a/x]|.
Let us see that this quantifier has the intended meaning ∀x(x εגE → A[x]) :

Theorem.

i) λxλy y x ∥−∀xגE A[x] →∀x(¬A[x] → x 6εגE) ;

ii) cc ∥−∀x(¬A[x] → x 6εגE) →∀xגE A[x].

i) Let ξ ∥−∀xגE A[x], η ∥−¬A[a] and π ∈ ‖a 6εגE‖ i.e. a ∈ E .

Then ξ ∥− A[a] ; therefore λxλy y x?ξ .η .πÂ η?ξ .π ∈⊥⊥.

ii) Let ξ ∥−∀x(¬A[x] → x 6εגE), a ∈ E and π ∈ ‖A[a]‖ ;

then ξ ∥−¬¬A[a], kπ ∥−¬A[a] ; thus cc?ξ .πÂ ξ?kπ .π ∈⊥⊥.

Q.E.D.

24



Type-like sets in N

Let f , g be some terms built with the function symbols in the ground model M .

If M |= f : E1×·· ·×Ek → E then N ∥− f : ··×E1ג Ekג×· → Eג

(in fact, I ∥−∀xגE1
1 · · ·∀x

Ekג
k [ f (x1, . . . , xk) 6εגE →⊥]).

Moreover, if M |= (∀x1 ∈ E1) · · · (∀xk ∈ Ek)[ f (x1, . . . , xk) = g (x1, . . . , xk)]

then I ∥−∀xגE1
1 · · ·∀x

Ekג
k [ f (x1, . . . , xk) = g (x1, . . . , xk)].

For instance, let ∧,∨,¬ be the (trivial) boolean operations on the set 2 = {0,1}.

They give a structure of boolean algebra on 2ג in the realizability model N .

This boolean algebra is, in general, non trivial and even infinite ;

but, only two elements of 2ג are named : 0 and 1.

Remarks about .2ג

• |∀x2גF [x]| = |F [1]|∩ |F [0]| ; thus ∀x2גF [x] behaves like an intersection type

• Every ε-element of 2ג except 1 is empty ; indeed I ∥−∀x2ג∀y(x 6= 1 → y 6εx).
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Integers

Define the function symbol s in M by s(a) = {a}×Π= ({a})ג and 0 =;.

s(a) represents some singleton of a in the realizability model N ;

The following formulas are realized in N :

∀x∀y(sx = s y → x = y) ; ∀x(sx 6' 0) ;

∀x∀y(x ' y → sx ' s y).

Let us define Ñ= {(sn0,n .π); n ∈N,π ∈Π} ;

Ñ is the set of integers of the realizability model N (see below).

Since we have =Nג {(sn0,π); n ∈N,π ∈Π}, it follows that I ∥−Ñ⊂ .Nג

In general, this inclusion is strict.
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Integers

Define the quantifier ∀x int by ‖∀x int F [x]‖ =⋃
{n .π; n ∈N,π ∈ ‖F [sn0]‖}.

Remark. ξ ∥−∀x int F [x] implies ξn ∥−F [sn0] for each n ∈N (Kleene realizability).

We see, as before, that the quantifier ∀x int has the intended meaning

which is ∀x(x εÑ→ F [x]).

Ñ represents the set of integers of the model N . Indeed :

Theorem. λx x0 ∥−0εÑ ; λ f λx( f )(σ)x ∥−∀x(sx 6εÑ→ x 6εÑ) ;

I ∥−∀x int(∀y(F [s y] → F [y]),F [x] → F [0]) for every formula F [x].

The following theorem gives a characteristic property of recursive functions :

the image of an integer is an integer and not only an element of .Nג

Theorem. Let f :Nk →N be a recursive function defined in M .

Then N ∥−∀x int
1 . . .∀x int

k ( f (x1, . . . , xk)εÑ).
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Standard realizability algebras
We consider now a (very) special case : the standard realizability algebras.
The terms and the stacks are words composed with the following alphabet :
• the elementary combinators B C I K W cc ς (there is a new one)
• the symbols k . ( ) [ ]

• a countable set Π0 of empty stacks.

The sets Λ of terms and Π of stacks are defined as follows :
• each elementary combinator is a term ; each empty stack is a stack ;
• if ξ,η are terms, then (ξ)η is a term (application, written also ξη) ;
• if ξ is a term and π a stack, then ξ .π is a stack (push) ;
• if π is a stack, then k[π] is a term (continuation, written kπ).

A process is an ordered pair (ξ,π) with ξ ∈Λ,π ∈Π ; it is written ξ?π.

The four operations of application, push, continuation, process
are defined in the obvious way.
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Execution of processes
Define the preorder Â on processes (execution) by the following rules :

(ξ)η?πÂ ξ?η .π
I?ξ .πÂ ξ?π
K?ξ .η .πÂ ξ?π
W?ξ .η .πÂ ξ?η .η .π
C?ξ .η .ζ .πÂ ξ?ζ .η .π
B?ξ .η .ζ .πÂ (ξ)(η)ζ?π

cc?ξ .πÂ ξ?kπ .π
kπ?ξ .$Â ξ?π
ς?ξ .η .πÂ ξ?nη .π
where η 7−→ nη is a fixed (not necessarily recursive) numerotation of terms.

⊥⊥ is any set of processes such that ξ?π ∈⊥⊥,ξ′?π′Â ξ?π ⇒ ξ′?π′ ∈⊥⊥.

The proof-like terms are generated with the seven combinators B, C, I, K, W, cc,ς.
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Non extensional and dependent choice

Theorem. For each formula F [x, y], we can define a function symbol f such that :

λx(ς)xx ∥−∀x(∀k intF [x, f (k, x)] →∀y F [x, y]).

Now, let φ(x) = f (k, x) for the first k s.t. ¬F [x, f (k, x)] if there is one ; else 0. Then

N ∥−∀x(F [x,φ(x)] →∀y F [x, y])

This gives the axiom of choice in the realizability model N for ZFε, but not for ZF,

because we cannot find a symbol f which is compatible with '.

This axiom is much weaker than choice, we call it non extensional choice (NEC).

As we shall see below, it does not even imply the well ordering of R.

Nevertheless, it implies the axiom of dependent choice (DC). The proof is easy :

from ∀x∃y F [x, y], using NEC, we get a function φ such that ∀x F [x,φx] ;

then, given a0, we have the sequence ak =φk(a0) such that F [ak , ak+1].
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The Boolean algebra 2ג

The Boolean algebra 2ג is essential in order to understand the structure

of the realizability model N . It is rather difficult to handle because, in general,

it is infinite (even atomless) but only its obvious elements 0 and 1 are named.

It has the remarkable property of having a countable dense subset.

Theorem. There exists a function ∆ :N→ 2 such that

λxλy(ς)y xx ∥−∀x2ג(x 6= 0 →∃nint{∆(n) 6= 0, (∆(n)∨x) = x}).

∆ is defined as follows in M : let n 7−→ ξn be the inverse of

the given recursive enumeration of Λ which is ξ 7−→ nξ
(recall : the execution rule of the instruction ς is ς?ξ .η .πÂ ξ?nη .π). Then

∆(n) = 0 ⇔ ξn ∥−⊥.

In N , we have ∆ : →Nג 2ג and therefore ∆ : Ñ→ .2ג

The theorem says that every element 6= 0 of 2ג has a lower bound ∆(n) 6= 0 with n εÑ.
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The pseudo integers nג
In the ground model M , we put, for each integer n :

n = {0,1, . . . ,n −1} = {0, s0, . . . , sn−10}.

The functions n 7→ n and n 7→ nג are defined in the realizability model N

with domain .Nג

We define the function (m<n) from 2(Nג) into ,2ג by putting, in M , for m,n ∈N :

(m<n) = 1 if m < n else (m<n) = 0.

The relation (m<n) = 1 is a strict (well founded, partial) order on Nג
which is the usual order on the set Ñ of integers in N .

The following formulas are realized :

∀xגN∀mגN((x<m) = 1 ↔ x εגm)

∀mגN∀nגN((m<n) = 1 → mג ⊂ (nג

∀mגN∀nגN(the application (x, y) 7−→ my +x

is a bijection from nג×mג onto .((mn)ג
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Injection of nג into R

The application x 7−→ {n εÑ; ∆(n) ≤ x} is, in N , an injection of 2ג into P (Ñ)

(the real line of the model N ). Therefore :

N ∥− (∀nint)(∃ f : n(2ג) →R)( f is injective).

By recurrence on n, we see that n(2ג) is equipotent with .(2n)ג

Now, for each integer n, we have n < 2n and therefore nג ⊂ .(2n)ג Thus :

N ∥− (∀nint)(∃ f : nג →R)( f is injective).

We will now choose the set ⊥⊥ such that, in the realizability model N ,

2ג is infinite and the “cardinals” of nג form a strictly increasing sequence

(which means that there is no surjection of nג onto .((n+1)ג

Since nג×mג is equipotent with ,(mn)ג it follows that

neither 2ג nor R are well ordered in N .
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The model of threads

Remark. If 2ג is non trivial, then there are non standard integers in the model N .

Indeed, let a ε2ג, a 6= 0,1 ; there is an integer n such that ∆(n) 6= 0 and ∆(n) ≤ a.

Thus ∆(n) 6= 0,1 ; n is non-standard because ∆(m) = 0 or 1 for each standard m.

Thus, the realizability model N we are looking for, has non-standard integers.

It cannot be a forcing model or an inner model.

We define now the simplest non trivial coherent realizability model. Let :

n 7−→πn be an enumeration of the empty stacks

n 7−→ θn be a recursive enumeration of the proof-like terms

The thread with number n is the set of processes ξ?π such that θn?πn Â ξ?π.

The only empty stack which appears in the terms of the n-th thread is πn .
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The model of threads

The simplest way to ensure a coherent model is to decide that θn?πn ∈⊥⊥c

(⊥⊥c is the complement of ⊥⊥). Then, every thread must be in ⊥⊥c . Thus, we decide :

⊥⊥c is the union of all threads

Therefore ξ?π ∈⊥⊥ iff ξ?π never appears in any thread.

ξ ∥−⊥ iff ξ never appears in head position in any thread.

Theorem. The following are satisfied in the model of threads :

i) There is a proof-like ω such that ωkπξ ∥−⊥ or ωkπξ′ ∥−⊥ for any π,ξ,ξ′ with ξ 6= ξ′.
ii) If ζ0,ζ1,ζ2 are distinct, then kπαζ0 ∥−⊥ or kπαζ1 ∥−⊥ or kπαζ2 ∥−⊥ for any α,π.

i) Take ω= (λx xx)λx xx or (WI)(W)I.

ii) If the process α?π appears twice in a thread, then the execution enters in a loop,

and there will be no third appearance.

Q.E.D.
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Consequences of (i)
We now consider any realizability model which satisfies properties (i) or (ii) (or both).

Theorem.
If a realizability model N satisfies property (i), then it realizes the formulas :

• 2ג is not countable.

• ∀mint∀nint((m<n) = 1 → there is no surjection from mג onto .(nג

Since there is an injection of nג into R, it follows that :

there exists a sequence Xn(n ≥ 2) of infinite subsets of R such that

their “cardinals” are strictly increasing and Xm×Xn is equipotent with Xmn .

Dependent choice is true, but R is badly not well orderable.

The behaviour of cardinals is far from the usual one :

compare card(X2) with card(X2×X2) which is card(X4)

or worse, card(X5) < card(X6) < card(X7) and card(X5×X7) < card(X6×X6).

This relative consistency result is not obtainable with forcing.
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Consequences of (ii)

Theorem.

If a realizability model N satisfies property (ii), then it realizes the formulas :

• 2ג is an atomless Boolean algebra.

• ∀a2ג∀b2ג(a∧b = 0,b 6= 0 → there is no surjection from a2ג onto b2ג).

• ∀a2ג∀b2ג(a < b → there is no surjection from a2ג onto b2ג).

a2ג is the ideal {x ε2ג; x ≤ a} of the boolean algebra .2ג

We have an atomless Boolean algebra B of infinite subsets of R such that :

X ,Y ∈B, X ∩Y =; ⇒ card(X ) and card(Y ) are not comparable.

X ,Y ∈B, X ⊂ Y , X 6= Y ⇒ card(X ) < card(Y ).

Thus, there is a family (Xr )r∈R of subsets of R such that

r < s ⇒ card(Xr ) < card(Xs).

Very far from the continuum hypothesis and the well ordering of R.
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Realizability algebras and models of ZF

Appendix

Some proofs
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Non extensional choice
Theorem. For each formula F [x, y], there is a function symbol f such that :
λx(ς)xx ∥−∀x∀y(∀k intF [x, f (k, x)] → F [x, y]).

For each j ∈N, let P j = {π ∈Π; ξ j ? j .π ∉⊥⊥} ; ξ j is the term η such that nη= j .

For each individual a, we have ‖∀y F [a, y]‖ =⋃
b
‖F [a,b]‖.

Thus, there exists a function f such that, given j ∈N and a such that
P j ∩‖∀y F [a, y]‖ 6= ;, we have P j ∩‖F [a, f ( j , a)]‖ 6= ; (by axiom of choice in M ).
Now, we want to show λx(ς)xx ∥−∀k intF [a, f (k, a)] → F [a,b], for every a,b.
If this is false, we have ς?η .η .π ∉⊥⊥, for some η ∥−∀k intF [a, f (k, a)] and π ∈ ‖F [a,b]‖.
Therefore η? j .π ∉⊥⊥ with j = nη and it follows that π ∈ P j ∩‖F [a,b]‖.

Thus, there exists $ ∈ P j ∩‖F [a, f ( j , a)]‖ ; then j .$ ∈ ‖∀k intF [a, f (k, a)]‖.
Therefore, by hypothesis on η, we have η? j .$ ∈⊥⊥. Contradiction with $ ∈ P j .

Q.E.D.
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2ג has a countable dense subset
Define ∆ :N→ 2 as follows in M : ∆( j ) = 0 ⇔ ξ j ∥−⊥
(ξ j is the term η such that nη= j ).

In N , we have ∆ : →Nג 2ג and therefore ∆ : Ñ→ .2ג

Theorem. λxλy(ς)y xx ∥−∀x2ג(x 6= 0,∀nint(∆(n) 6= 0 → x 6=∆(n)∨x) →⊥).

Let a ∈ {0,1}, ξ ∥−a 6= 0, η ∥−∀nint(∆(n) 6= 0 → a 6=∆(n)∨a) and π ∈Π.

We must show ς?η .ξ .ξ .π ∈⊥⊥ that is η?nξ .ξ .π ∈⊥⊥.

By hypothesis on η, it suffices to show nξ .ξ .π ∈ ‖∀nint(∆(n) 6= 0 → a 6=∆(n)∨a)‖
i.e. by definition of the quantifier ∀nint : ξ .π ∈ ‖∆(nξ) 6= 0 → a 6=∆(nξ)∨a‖
This amounts to show ξ ∥−∆(nξ) 6= 0 and a =∆(nξ)∨a.

• Proof of ξ ∥−∆(nξ) 6= 0 : trivial if ∆(nξ) = 1 because ‖∆(nξ) 6= 0‖ =; ;

if ∆(nξ) = 0, then ξ ∥−⊥, by definition of ∆.

• Proof of a =∆(nξ)∨a : obvious if a = 1 ; if a = 0, then ξ ∥−⊥ (hypothesis on ξ) ;

thus ∆(nξ) = 0 by definition of ∆, hence the result. Q.E.D.
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2ג is not equipotent with 4ג

This is the key property to prove that R is not well ordered.

Theorem. Suppose there is a proof-like ω such that ξ 6= ξ′ ⇒ ωkπξ ∥−⊥ or ωkπξ′ ∥−⊥.

Then λxλx′(cc)λk(x′)λz(xzz)(ω)kz ∥−
∀z[(∀x∀y∀y ′(F (x, y, z),F (x, y ′, z), y 6= y ′→⊥),∀y4ג∃x2גF (x, y, z) →⊥)].

The formula F being arbitrary, this tells us that there is no surjection from 2ג onto .4ג

A similar proof will show that there is no surjection from Ñ onto .2ג

Since 4ג is equipotent with 2(2ג) it follows that 2ג is not well ordered.

Proof. If this is false, there exist ξ,ξ′ ∈Λ,π ∈Π and an individual c such that :

λxλx′(cc)λk(x′)λz(xzz)(ω)kz?ξ .ξ′ .π ∉⊥⊥ ;

ξ ∥−∀x∀y∀y ′[F (x, y,c),F (x, y ′,c), y 6= y ′→⊥] ;

ξ′ ∥−∀y4ג¬∀x2ג¬F (x, y,c).
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2ג is not equipotent with 4ג

Therefore, we have ξ′?η .π ∉⊥⊥ with η=λz(ξzz)(ω)kπz .

By hypothesis on ξ′, we have η 6∥−∀x2ג¬F (x, i ,c) for i < 4.

Thus, there exists δi ∈ {0,1} such that η 6∥−¬F (δi , i ,c).

Then, there exist ξi ∈Λ and πi ∈Π such that ξi ∥−F (δi , i ,c) and η?ξi .πi ∉⊥⊥.

By definition of η, we get ξ?ξi .ξi .ωkπξi .πi ∉⊥⊥.

By hypothesis on ξ, we have ωkπξi 6∥− i 6= i , i.e. ωkπξi 6∥−⊥ for every i < 4.

Now, the hypothesis of the theorem gives ξi = ξ j for every i , j < 4.

But, since δi < 2, there exist i , j < 4, i 6= j such that δi = δ j = δ.

Then, ξi = ξ j ∥−F (δ, i ,c),F (δ, j ,c) and ωkπξi ∥− i 6= j since ‖i 6= j‖ =;.

Thus, by hypothesis on ξ, we have ξ?ξi .ξi .ωkπξi .πi ∈⊥⊥, which is a contradiction.

Q.E.D.
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