
The Curry-Howard correspondence

in classical analysis and set theory
Jean-Louis Krivine

PPS Group, University Paris 7, CNRS

krivine@pps.jussieu.fr

Florianopolis, July 19, 2005

1

Introduction

In this tutorial, we introduce the Curry-Howard (proof-program) correspondence

which is usually restricted to intuitionistic logic.

We explain how to extend this correspondence to the whole of mathematics

and we build a simple suitable machine for this.

1st problem

Each mathematical proof must give a program

which must be executable in this machine.

2nd problem (specification problem)

Understand the behaviour of these programs

i.e. the specification associated with a given theorem.

The first problem is now completely solved, but the second is far from being so.

2

Usual λ-calculus

The λ-terms are defined as follows, from a given denumerable set of λ-variables :

• Each variable is a λ-term.

• If t is a λ-term and x a variable, then λx t is a term (abstraction).

• If t, u are terms, then (t)u is a term (application).

Notations. ((t)u1) . . . un is also denoted by tu1 . . . un.

The substitution is denoted by t[u1/x1, . . . , un/xn]

(replace, in t, each free occurrence of xi with ui).

λ-calculus is very important in computer science, because it is the core of every

programming language.

It is a very nice structure, with many properties (Church-Rosser, standardization, . . .)

which has been deeply investigated.

But, in the following, nothing else than the definition above is used about λ-calculus.

3

A machine in symbolic form

The machine is the program side of the proof-program correspondence.

In these talks, I use only a machine in symbolic form,

not an explicit implementation.

We execute a process t ? π ; t is (provisionally) a closed λ-term,

π is a stack, that is a sequence t1.t2 . . . tn.π0 where

π0 is a stack constant, i.e. a marker for the bottom of the stack.

We denote by t.π the stack obtained by ’’pushing’’ t on the top of the stack π.

Execution rules for processes (weak head reduction of λ-calculus) :

tu ? π Â t ? u.π (push)

λx t ? u.π Â t[u/x] ? π (pop)

This symbolic machine will be used to follow the execution of programs

written in an extension of λ-calculus with new instructions.

4

A machine in symbolic form (cont.)

We get a better approximation of a ‘‘real’’ machine by eliminating substitution.

The execution rules are a little more complicated (head linear reduction) :

tu ? π Â t ? u.π
λx1 . . .λxktu ? t1 . . . tk.π Â λx1 . . .λxkt ? t1 . . . tk.v.π

with v = (λx1 . . .λxku)t1 . . . tk
λx1 . . .λxkxi ? t1 . . . tk.π Â ti ? π.

It is necessary to add new instructions, because such simple machines

can only handle ordinary λ-terms, i.e. programs obtained from proofs

in pure intuitionistic logic.

Observe that some of these instructions will be incompatible with β-reduction.

5

Intuitionistic Curry-Howard correspondence

Consider second order formulas with→ and ∀ as the only logical symbols.

Intuitionistic natural deduction is given by the following usual rules :

A1, . . . , Ak ` Ai
A1, . . . , Ak,A ` B ⇒ A1, . . . , Ak ` A→ B

A1, . . . , Ak ` A→ B, A1, . . . , Ak ` A ⇒ A1, . . . , Ak ` B
A1, . . . , Ak ` A ⇒ A1, . . . , Ak ` ∀xA and ∀X A
(if x,X are not free in A1, . . . , Ak)

A1, . . . , Ak ` ∀xA→ A[t]

A1, . . . , Ak ` ∀X A→ A[F/Xx1 . . . xk]
(comprehension scheme)

⊥ is defined as ∀XX , X being a propositional variable (predicate of arity 0).

The axiom ⊥ → F is therefore a particular case of the comprehension scheme.

6

Intuitionistic Curry-Howard correspondence (cont.)

These rules become rules for typing λ-terms, as follows :

x1:A1, . . . , xk:Ak ` xi:Ai
x1:A1, . . . , xk:Ak, x:A ` t:B ⇒ x1:A1, . . . , xk:Ak ` λx t:A→ B

x1:A1, . . . , xk:Ak ` t:A→ B, u:A ⇒ x1:A1, . . . , xk:Ak ` tu:B
x1:A1, . . . , xk:Ak ` t:A ⇒ x1:A1, . . . , xk:Ak ` t:∀xA and t:∀X A
(if x,X are not free in A1, . . . , Ak)

x1:A1, . . . , xk:Ak ` λxx:∀xA→ A[t]

x1:A1, . . . , xk:Ak ` λxx:∀X A→ A[F/Xx1 . . . xk]
(comprehension scheme)

In this way, we get programs from proofs in pure (i.e. without axioms)

intuitionistic logic. It is the very first step of our work.

7

Realizability

We know that proofs in pure intuitionistic logic give λ-terms.

But pure intuitionistic, or even classical, logic is not sufficient

to write down mathematical proofs.

We need axioms, such as extensionality, infinity, choice, . . .

Axioms are not theorems, they have no proof !

How can we find suitable programs for them ?

The solution is given by the theory of classical realizability

by means of which we define, for each mathematical formula © :

• the set of stacks which are against ©, denoted by k©k
• the set of closed terms t which realize ©, which is written t k−©.

We first choose a set of processes, denoted by ⊥⊥, which is saturated, i.e.

t ? π ∈ ⊥⊥, t0 ? π0 Â t ? π ⇒ t0 ? π0 ∈ ⊥⊥.

8

Realizability (cont.)

The set k©k and the property t k−© are defined by induction on the formula ©.

They are connected as follows :

t k−© ⇔ (∀π ∈ k©k) t ? π ∈ ⊥⊥
Two steps of induction, because we use only two logical symbols : →, ∀.

1. k©→ªk= {t.π ; t k−©,π ∈ kªk}. In words :

if the term t realizes the formula © and the stack π is against the formula ª

then the stack t.π (push t on the top of π) is against the formula ©→ª.

2. k∀x©(x)k= S
a∈A k©(a)k where A is the domain of the variable x

(it may be the integers, or the whole universe of sets, . . .).

In words : a stack is against ∀x©(x) if it is against ©(a) for some a.

It follows that t k−∀x©(x) ⇔ t k−©(a) for all a.

9

Realizability (cont.)

In the definition of realizability, we need, in fact, one more step

which concerns atomic formulas.

Now, realizability theory is exactly model theory, in which the truth value set

is P(¦) instead of {0,1}, ¦ being the set of stacks.

Thus, the notion of (first or second order) model is the usual one, except that

an n-ary predicate symbol is now interpreted in P(¦)Mn
instead of {0,1}Mn

(where M is the base set of the model).

The truth values ∅ and ¦ are denoted by > and ⊥. Therefore :

t k−> for every term t ; t k−⊥ ⇒ t k−F for every F .

n-ary function symbols have their usual interpretation : in MMn
.

10

The adequation lemma

Given a model, we can still choose the saturated set ⊥⊥.

The case ⊥⊥= ∅ is degenerate : we get back the usual two-valued model theory.

The lemma below is the analog of the soundness lemma for our notion of model.

It is an essential tool for the proof-program correspondence.

Adequation lemma.

If x1:©1, . . . , xn:©n ` t:© and if ti k−©i (1 ≤ i ≤ n)
then t[t1/x1, . . . , tn/xn] k−©.

In particular : If ` t:© then t k−©.

The proof is a simple induction on the length of the derivation of · · · ` t:©.

In the following, we shall more and more use semantic realizability t k−©
instead of syntactic typability ` t:©.

11

The language of mathematics

The proof-program correspondence is well known for intuitionistic logic. Now we have

Mathematics ≡ Classical logic + some axioms that is

Mathematics ≡ Intuitionistic logic + Peirce’s law + some axioms

For each axiom A, we choose a closed λ-term which realizes A, if there is one.

If not, we extend our machine with some new instruction which realizes A,

if we can devise such an instruction.

Now, there are essentially two possible axiom systems for mathematics :

1. Analysis, i.e. second order classical logic with dependent choice.

2. ZFC, i.e. Zermelo-Fraenkel set theory with the full axiom of choice.

Thus, we now have many axioms to deal with.

First of all, we must settle the law of Peirce : ((A→ ⊥)→ A)→ A.

12

Peirce’s law

We adapt to our machine the solution found by Tim Griffin in 1990.

We add to the λ-calculus an instruction denoted by cc. Its reduction rule is :

cc ? t.π Â t ? kπ.π

kπ is a continuation, i.e. a pointer to a location where the stack π is saved.

In our symbolic machine, it is simply a λ-constant, indexed by π.

Its execution rule is kπ ? t.π0 Â t ? π.

Therefore cc saves the current stack and kπ restores it.

Using the theory of classical realizability, we show that cc k− (¬A→ A)→ A.

In this way, we extend the Curry-Howard correspondence to every proof

in pure (i.e. without axiom) classical logic : we now have the new typing rule

x1:A1, . . . , xk:Ak ` cc:(¬A→ A)→ A

13

Peirce’s law (cont.)

Let us check that cc k− (¬A→ A)→ A : take t k−¬A→ A and π ∈ kAk.

For every u k−A, we have u ? π ∈ ⊥⊥, thus kπ ? u.π0 ∈ ⊥⊥ for every stack π0.
Thus kπ k−A→ ⊥ and kπ.π ∈ k¬A→ Ak.

It follows that t ? kπ.π ∈ ⊥⊥ thus cc ? t.π ∈ ⊥⊥. QED

We have now an extended λ-calculus, which we call λc-calculus.

A proof-like term is a closed λc-term which contains no continuation.

We say that the formula © is realized if there is a proof-like term τ such that

τ k−© for every choice of ⊥⊥. Thus :

• Every λc-term which comes from a proof is proof-like.

• If the axioms are realized, every provable formula is realized.

If ⊥⊥ 6= ∅, then τ k−⊥ for some λc-term τ : take t ? π ∈ ⊥⊥ and τ = kπt.

Observe that it is not a proof-like term.

14

First simple theorems

The choice of ⊥⊥ is generally done according to the theorem © for which

we want to solve the specification problem. Let us take two simple examples.

Theorem. If θ comes from a proof of ∀X(X → X) (with any realized axioms)

then θ ? t.π Â t ? π i.e. θ behaves like λxx.

Proof. Take ⊥⊥= {p ; p Â t ? π} and kXk= {π}.

Thus t k−X and θ ? t.π ∈ ⊥⊥. QED

Example : θ = λx ccλk kx.

Dual proof. Take ⊥⊥c = {p ; θ ? t.π Â p} and kXk= {π}.

Thus, θ ? t.π ∈ ⊥⊥c ; since π ∈ kXk and θ k−X → X , we have t 6k−X
and therefore t ? π ∈ ⊥⊥c. QED

15

First simple theorems (cont.)

The formula Bool(x) ≡ ∀X(X1,X0→ Xx) is equivalent to x=1 ∨ x=0.

Theorem. If θ comes from a proof of Bool(1), then θ ? t.u.π Â t ? π
i.e. θ behaves like the boolean λxλy x.

Proof. Take ⊥⊥= {p ; p Â t ? π}, kX1k= {π} and kX0k= ∅ = k>k.

Thus t k−X1, u k−X0 and θ ? t.u.π ∈ ⊥⊥. QED

Dual proof. Take ⊥⊥c = {p ; θ ? t.u.π Â p}, kX1k= {π} and kX0k= ∅ = k>k.

We have u k−X0, π ∈ kX1k, θ k−X1,X0→ X1 and θ ? t.u.π ∈ ⊥⊥c.
Thus t 6k−X1 and t ? π ∈ ⊥⊥c. QED

16

Another example : ∃x(Px→ ∀y Py)
Write this theorem ∀x[(Px→ ∀y Py)→ ⊥]→ ⊥. We must show :

z:∀x[(Px→ ∀y Py)→ ⊥] ` ?:⊥. We get z:(Px→ ∀y Py)→ ⊥,

z:(Px→ ∀y Py)→ Px, cc z:Px, cc z:∀xPx, λd cc z:Px→ ∀y Py
and zλd cc z:⊥. Finally we have obtained the program θ = λz zλd cc z.

Let us find a characteristic feature in the behaviour of all terms θ

such that ` θ:∃x(Px→ ∀y Py). Let α0,α1, . . . and $0,$1, . . .

be a fixed sequence of terms and of stacks. We define a new instruction κ ;

its reduction rule uses two players named ∃ and ∀ and is as follows :

κ ? ξ.π Â ξ ? αi.$j
where i is first chosen by ∃, then j by ∀.

The player ∃ wins iff the execution arrives at αi ? $i for some i ∈ N.

17

∃x(Px→ ∀y Py) (cont.)

Theorem. If ` θ:∀x[(Px→ ∀y Py)→ ⊥]→ ⊥, there is a winning strategy for ∃
when we execute the process θ ? κ.π (for any stack π).

Proof. Let ⊥⊥ be the set of processes for which there is a winning strategy for ∃.

Define a realizability model on N, by setting kPnk= {$n}. Thus αn k−Pn.

Suppose that ξ k−Pi→ ∀y Py for some i ∈ N. Then :

ξ ? αi.$j ∈ ⊥⊥ for every j and it follows that κ ? ξ.π ∈ ⊥⊥, for any stack π : indeed,

a strategy for ∃ is to play i and to continue with a strategy for ξ ?αi.$j if ∀ plays j.

It follows that κ k− (Pi→ ∀y Py)→ ⊥ and therefore :

κ k−∀x[(Px→ ∀y Py)→ ⊥]. Thus, θ ? κ.π ∈ ⊥⊥ for every stack π. QED

18

∃x(Px→ ∀y Py) (cont.)

For instance, if θ = λz zλd cc z, we have :

θ ? κ.π Â κ ? λd ccκ.π Â λd ccκ ? αi0.$j0 if ∃ plays i0 and ∀ plays j0.

We get cc ? κ.$j0 Â κ ? k$j0
.$j0. A winning strategy for ∃ is now to play j0 :

if ∀ plays j1, this gives k$j0 ? αj0.$j1 Â αj0 ? $j0.

Remark. The program θ does not give explicitly a winning strategy.

Programs associated with proofs of arithmetical theorems will give such strategies,

i.e. will play in place of ∃. Examples in the following.

19

Axioms for mathematics

Let us now consider the usual axiomatic theories which formalize mathematics.

• Analysis is written in second order logic. There are three groups of axioms :

1. Equations such as x+0 = x, x+ sy = s(x+ y), . . .

and inequations such as s0 6= 0.

2. The recurrence axiom ∀x int(x), which says that each individual (1st order object)

is an integer. The formula int(x) is : ∀X{∀y(Xy → Xsy), X0→ Xx}.

3. The axiom of dependent choice :

If ∀X∃Y F(X,Y), then there exists a sequence Xn such that F(Xn,Xn+1).

Analysis is sufficient to formalize a very important part of mathematics

including the theory of functions of real or complex variables,

measure and probability theory, partial differential equations,

analytic number theory, Fourier analysis, etc.

20

Axioms for mathematics (cont.)

• Axioms of ZFC can be classified in three groups :

1. Equality, extensionality, foundation.

2. Union, power set, substitution, infinity.

3. Choice : Any product of non void sets is non void ;

possibly other axioms such as CH, GCH, large cardinals.

In order to realize axioms 1 and 2 (i.e. ZF), we must interpret ZF

in another theory called ZFε which is much simpler to realize.

The λc-terms for ZF are rather complicated, but do not use new instructions.

The solution for AC and CH has been found very recently.

We need new instructions and get very complicated programs for these axioms.

21

Realizability models

In the following, we consider realizability models of 2nd order logic and of set theory.

For models of 2nd order logic, the domain of individuals is always N
and the domain of n-ary predicate variables is always P(¦)Mn

.

The only left free choice is ⊥⊥.

But it is important to remember that these domains are used only

for computing the truth values of formulas : k∀x©(x)k= S
n∈N k©(n)k.

For example, it does not mean that the formula : ‘‘ every individual is an integer ’’,

that is the recurrence axiom ∀x∀X[∀y(Xy → Xsy),X0→ Xx] is realized.

Indeed, for the most interesting choices of ⊥⊥, the negation of this formula is realized.

22

Coherence

In fact, there are very interesting examples of ⊥⊥ for which ⊥ is realized :

for instance, ⊥⊥= the set of processes the reduction of which is infinite ;

in this case, we have δδ k−⊥.

Now, by adequation lemma, we know that the set of realized formulas

is closed by classical deduction. If this set is consistent, we say that ⊥⊥ is coherent.

It means that there is no proof-like term θ such that θ k−⊥.

In other words, for every proof-like term θ, there is a stack π such that θ ? π /∈ ⊥⊥.

In what follows, we are mainly concerned with coherent ⊥⊥.

Examples : let po be some given process ; then ⊥⊥ = {p; p Â po} is coherent if

there is at least 2 stack constants ; ⊥⊥= {p; po 6Â p} is not coherent in general.

23

2-valued realizability models

Let ⊥⊥ be a coherent saturated set of processes. Then the set of realized closed

formulas is closed under derivation in classical logic and does not contain ⊥.

It is therefore consistent and we obtain, in this way, 2-valued models

of second order logic or of set theory.

We shall see that these models are very different from the model we started with.

As said before, there exist individuals which are not integers ; but there are also non-

standard integers in the following strong sense : there is a unary predicate P such

that the formulas ∃x[int(x) ∧ Px], ¬Pn are realized for each integer n.

24

The Boolean algebra P(¦)
Every coherent ⊥⊥ gives a Boolean structure on the set P(¦) of truth values :

for X ,Y ⊂ ¦, define :

X ≤ Y ⇔ there is a proof-like term θ s.t. θ k−X → Y .

It is easy to prove that it is a Boolean preorder on P(¦), with X c = k¬Xk and

inf(X ,Y) = kX ∧ Yk= k∀X((X ,Y → X)→ X)k or k(X ,Y → ⊥)→ ⊥k,

sup(X ,Y) = kX ∨ Yk= k∀X((X → X), (Y → X)→ X)k
or k(X → ⊥), (Y → ⊥)→ ⊥k.

Let B = P(¦)/' be this Boolean algebra.

Every closed formula has a value in P(¦) and therefore a value in B.

We get, in this way, Boolean models of second order logic or set theory.

Using any ultrafilter on B, we obtain again the 2-valued realizability models

described in the last slide.

25

Axioms of analysis : equations

Axioms : ¬(0 = s0) ; p0 = 0 ; ∀x(psx= x) ; ∀x(x+0 = x) ; ∀x(x.0 = 0) ;

∀x∀y(x+ sy = s(x+ y)) ; ∀x∀y(x.sy = xy+ x)

Such equations and inequations are very easy to realize.

Theorem. Any true equation is realized by λxx.

Any true inequation is realized by λxxt for an arbitrary t.

Proof. x= y is defined by ∀X(Xx→ Xy) in second order logic. QED

Useful definition. Define a new predicate x 6= y by setting :

kn 6= pk= ∅ = k>k if n 6= p and kn 6= pk= ¦ = k⊥k if n= p.

Theorem. λxλy yx k−∀x∀y[x 6= y → ¬(x = y)] and

λxxt k−∀x∀y[¬(x= y)→ x 6= y] for any t.

This means we can use the predicate x 6= y in place of ¬(x = y).

26

Axioms of analysis : recurrence

The proper recurrence axiom is ∀x int(x), where int(x) is the formula :

∀X[X0,∀x(Xx→ Xsx)→ Xx]

This axiom is impossible to realize, even by means of new instructions.

This means that there must be individuals which are not integers.

There are two solutions, which are logically equivalent for integers ;

but they correspond to very different programming styles.

The first method is to discard the recurrence axiom

and restrict first order quantifiers to the formula int(x).

The second method is the same we shall use to realize axioms of ZF.

We define a new equality ' on individuals, which allows to realize

the recurrence axiom : every individual becomes equivalent to an integer.

It uses a fixpoint combinator and the programming style is that of LISP.

27

Recurrence axiom, 1st method

The language has a function symbol for each recursive function.

The set of individuals is N. Let int(x) ≡ ∀X[∀y(Xy → Xsy),X0→ Xx].

Theorem. If a second order formula © is provable with the recurrence axiom,

then the restricted formula ©int is provable without it, using the axioms

∀x1 . . .∀xk{int(x1), . . . ,int(xk)→ int(f(x1, . . . , xk))} for each symbol f .

Now, we only need to realize these new axioms. There are two ways of doing this :

• Prove this formula from true equations.

Examples. The successor s : int(x)→ int(sx) is provable with no equation.

Addition : int(x), int(y)→ int(x+ y) is provable with the equations :

x+0 = x; x+ sy = s(x+ y), . . .

This works for a very large class of recursive functions :

the provably total functions in second order arithmetic.

28

Recurrence axiom (cont.)

• The second method works for every recursive function f .
Assume, for simplicity, that f is unary. We have two lemmas.
Lemma. If τ is a closed λ-term, τ 'β n (Church integer), then τ k− int(sn0).
Define T = λfλn(n)λg g◦s.f.0 (storage operator [5]).
Storage lemma. If (∀π ∈ kXk)φ ? sn0.π ∈ ⊥⊥ then Tφ k− int(n)→ X .
Proof. Let kPjk= {sn−j0.π; π ∈ kXk} for 0 ≤ j ≤ n ;
kPjk= ∅ for j > n. Then λg g◦s k−∀x(Px→ Psx) and φ k−P0.
Thus, if ν k− int(n) then ν ? λg g◦s.φ.π ∈ ⊥⊥ which gives Tφ ? ν.π ∈ ⊥⊥. QED
Theorem. Let τ be a closed λ-term which computes the recursive function f .
Then Tλx τx k−∀x[int(x)→ int(f(x))].
By the storage lemma, we only need to prove that λx τx ? sn0.π ∈ ⊥⊥
for π ∈ kint(fsn0)k. But this follows from the first lemma,
since τsn0 'β r with r = f(n). QED

29

Imperative call-by-value

Let ν ∈ ¤0c such that ` ν:int(sn0) ; i.e. ν ”behaves like” the integer n.

In the λc-term φν this data is called by name by the program φ.

In the λc-term Tφν the same data is called by value by φ,

which means it is computed first (in the form sn0).

Theorem. If ` ν:int(sn0), then Tφ ? ν.π Â φ ? sn0.π.

Take ⊥⊥= {p; p Â φ ? sn0.π}. Then Tφ ? ν.π ∈ ⊥⊥, by the storage lemma. QED

I name this behaviour imperative call-by-value, to avoid confusion with

the well-known notion of (functional) call-by-value, and because

it is very similar to the usual notion of call-by-value in imperative languages.

It is only defined for data types (booleans, integers, trees, . . .)

30

Computing recursive functions

So, we can discard the recurrence axiom and replace it with the formulas :

∀x1 . . .∀xk{int(x1), . . . ,int(xk)→ int(f(x1, . . . , xk))} for each symbol f .

Theorem. If ` φ : ∀~x{ ~int(~x)→ int(f~x)}, then φ computes the function f , i.e. :

if ~n is a sequence of Church integers, then Tκ ? φ~n.π Â κ ? sp0.π with p= f(~n).

This works for every data types : Booleans, integers, sums, product and lists of data

types, etc. In this tutorial, we only use the type of Booleans :

Bool(x) ≡ ∀X(X1,X0→ Xx). For this type we have :

Theorem. If ` φ : ∀x{int(x)→ Bool(f(x))}, then

φ ? n̂.t.u.π Â t ? π if f(n) = 1

φ ? n̂.t.u.π Â u ? π if f(n) = 0

where n̂ is any closed λ-term β-equivalent to the Church integer n.

31

Recurrence axiom, 2nd method

The following formula tells that the relation sy = x is well founded :

∀x[∀y(Xy → sy 6= x)→ ¬Xx]→ ∀x¬Xx
It is realized by the Turing fixpoint combinator Y, wich has the reduction rule :

Y ? t.π Â t ? Yt.π.

Define now a new predicate x ≤ y by the recursive equation :

kx ≤ yk= k∀x0[∀y0(x0 ≤ y0→ y 6= sy0)→ x 6= sx0]k that is :

k0 ≤ nk= k>k (= ∅), km+1 ≤ 0k= k>→ ⊥k,

km+1 ≤ n+1k= k(m ≤ n→ ⊥)→ ⊥k for every m,n ∈ N.

Obviously λxx k−∀x∀y{x ≤ y ↔ ∀x0[∀y0(x0 ≤ y0→ y 6= sy0)→ x 6= sx0]}
Define x ' y by x ≤ y ∧ y ≤ x. Then, we can prove ∀x(∃!y ' x) int(y).

32

Fixpoint and well foundedness
Let x y be well founded on integers and φ(x, y) its characteristic function. Then

Y k−∀X{∀x[∀y(Xy → φ(y, x) 6= 1)→ ¬Xx]→ ∀x¬Xx}
Proof. Let t k−∀x[∀y(X(y)→ φ(y, x) 6= 1)→ ¬X(x)]
for some X : N→ P(¦). We prove Yt k−¬X(n) by induction on n,
following . Let u k−X(n), we must prove Y ? tuπ ∈ ⊥⊥, i.e. t ? Yt.u.π ∈ ⊥⊥.
It is sufficient to prove Yt k−∀y(X(y)→ φ(y, n) 6= 1).
Now, if y n, it is true because Yt k−X(y)→ ⊥, by induction hypothesis ;
else it is true because kφ(y, n) 6= 1k= ∅. Q.E.D.

We use this principle in a more general form.
Notation. ~X = (X1, . . . ,Xn) denotes a finite sequence of predicates.
Y k−∀x[∀y(∀z(~X(y, z)→ φ(y, x) 6= 1)→ ∀z(~X(x, z)→ ⊥)]

→ ∀x∀z(~X(x, z)→ ⊥)
Remark. This formula is clearly derivable from the formula above,
but the interesting fact is that Y realizes it.

33

Examples of arithmetical theorems

Theorem. Let ` θ : ∃x[int(x) ∧ f(x) = 0], with f recursive. Let κ be a stop

instruction. Then θ ? Tκ.π Â κ ? sn0.π with f(n) = 0 ; T is the storage operator.

Proof. We have θ k−∀x[int(x)→ f(x) 6= 0]→ ⊥.

Now take ⊥⊥= {p ; p Â κ ? sn0.π with f(n) = 0}.

We simply have to show that Tκ k−∀x[int(x)→ f(x) 6= 0]

i.e. by the storage lemma, that κ?sn0.π ∈ ⊥⊥ for every n such that π ∈ kf(n) 6= 0k.

But this means that kf(n) 6= 0k 6= ∅ and thus f(n) = 0. QED

Remark. κ is clearly a pointer to an integer. In the program, we wrote Tκ,

because we want it to point to a computed integer.

It is the intuitive meaning of imperative call-by-value.

34

Examples of arithmetical theorems (cont.)

We consider now an arithmetical theorem {∃x∀y[f(x, y) 6= 0]}int.

Define a game with two players ∃ and ∀ : ∃ plays an integer m, ∀ answers by n ;

the play stops as soon as f(m,n) 6= 0 and then ∃ won ;

thus ∀ wins if and only if the play does not stop.

Intuitively, ∃ is the ‘‘ defender ’’ of the theorem and

∀ ‘‘ attacks ’’ it, searching to exhibit a counter-example.

It is clear that ∃ has a winning strategy if and only if N |= ∃x∀y[f(x, y) 6= 0] ;

then, there is an obvious strategy for ∃ : simply play successively 0,1,2, . . .

We show that a proof of {∃x∀y[f(x, y) 6= 0]}int gives an explicit programming

of a winning strategy for the ‘‘ defender ’’.

Usually, this strategy is much more efficient than the trivial one.

35

Programming a winning strategy

Let us add to our symbolic machine, an instruction κ which allows an interactive

execution. Its execution rule is :

κ ? sn0.ξ.π Â ξ ? sp0.πnp

for n, p ∈ N ; πnp is a stack constant.

This execution rule is non deterministic since p is arbitrary. Intuitive meaning :

in the left hand side, the program (the player ∃), plays the integer n and prepares a

handler ξ for the answer of ∀ ; in the right hand side, the attacker ∀ plays p ;

πnp store the stroke.

Theorem. If ` θ : {∃x∀y(f(x, y) 6= 0)}int, then every reduction of θ ? Tκ.π

ends up into ξ ? sp0.πnp with f(n, p) 6= 0 (T is the storage operator).

This means that the process θ ? Tκ.π acts as a winning strategy for ∃.

36

Programming a winning strategy (cont.)

Proof. Take for ⊥⊥ the set of processes every reduction of which ends up

into ξ ? sp0.πnp with f(n, p) 6= 0. We must show that θ ? Tκ.π ∈ ⊥⊥.

Now θ k−∀x[int(x),∀y(int(y)→ f(x, y) 6= 0)→ ⊥]→ ⊥.

Therefore, by definition of k− , it is sufficient to show that :

Tκ k−∀x[int(x),∀y(int(y)→ f(x, y) 6= 0)→ ⊥].
By the storage lemma, we only need to show that :

if ξ k−∀y(int(y)→ f(n, y) 6= 0) then κ ? sn0.ξ.π ∈ ⊥⊥, i.e.

ξ ? sp0.πnp ∈ ⊥⊥ for every p ∈ N.

If f(n, p) 6= 0, it is true by definition of ⊥⊥.

Else, πnp ∈ kf(n, p) 6= 0k = ¦, hence the result, by hypothesis on ξ. QED

37

Programming a winning strategy (cont.)

Remark. κ can be considered as a pointer to the object (n, ξ) consisting of the

integer n and the handler ξ (data and method). Moreover, the integer n is called by

value which is guaranteed by writing Tκ instead of κ.

Example. We take the theorem {∃x∀y[f(x) ≤ f(y)]}int where f is recursive.

Let φ(x, y) be the characteristic function of the well founded relation f(x) < f(y).

The theorem is ∀x[int(x),∀y(int(y)→ φ(y, x) 6= 1)→ ⊥]→ ⊥. Now :

Y k−∀x[∀y(int(y)→ φ(y, x) 6= 1)→ ¬int(x)]→ ∀x¬int(x)

and we get θ = λh(Yλxλnhnx)0. It is easily checked that the process θ ? Tκ.π

gives the following strategy, much better than the trivial one :

∃ plays 0 ; if ∀ plays p and if f(p) < f(0), then ∃ plays p and so on.

38

Programming a winning strategy (cont.)

We now treat the same example by a proof. For simplicity, we assume

f : N→ {0,1}. We have a proof-like term φ which computes f , i.e.

` φ:∀x(int(x) → Bool(fx)). We prove ` {∃x∀y[f(x)f(y)c 6= 1]}int, i.e.

h:∀x{int(x),∀y(int(y)→ f(x)f(y)c 6= 1)→ ⊥} ` ? :⊥.

Let us declare x:int(x), y:int(y) and r:∀x[int(x)→ f(x) 6= 0]

(because there are two cases according to : f takes the value 0 or not). Then :

φy: Bool(fy) and therefore :

φy:(16=0→ 06=1), (06=0→ f(x)6=1)→ [f(y)6=0→ f(x)f(y)c 6=1].
Since ry:f(y)6=0, we get λy(φyaoI)(r)y:∀y[int(y)→ f(x)f(y)c 6=1] and

(hno)λy(φyaoI)(r)y:⊥ ; ao (resp. no) is an arbitrary closed term (resp. integer).

Let ξh = λr(hno)λy(φyaoI)(r)y ; then ξh:∀x[int(x)→ f(x) 6= 0]→ ⊥.

Now, we have also φx:Bool(f(x)) and therefore

39

Programming a winning strategy (cont.)

φx:[¬∀y(int(y)→ f(y)c 6=1)→ 16=0], [¬∀y(int(y)→ 06=1)→ 06=0]
→ [¬∀y(int(y)→ f(x)f(y)c 6=1)→ f(x)6=0]

It follows that ((φxao)λz zao)(h)x : f(x)6=0. Let us set

ρh = λx((φxao)λz zao)(h)x ; then ρh : ∀x[int(x)→ f(x)6=0] and ξhρh : ⊥.

Finally, set θ = λh ξhρh. Then we have ` θ : {∃x∀y[f(x)f(y)c 6= 1]}int.

Let us check the behaviour of the process θ ? h.π which gives

h ? no.λy(φyaoI)(ρh)y.π. Thus ∃ plays no, then ∀ plays po and we get

λy(φyaoI)(ρh)y ? po.πnopo Â φpo ? ao.I.ρhpo.πnopo
If f(po) = 1, ∃ wins and the play stops. Else, we get ρh ? po.πnopo, then

φpo ? ao.λz zao.hpo.πnopo Â λz zao ? hpo.πnopo Â h ? po.ao.πnopo.

It means that ∃ plays po and wins because f(po) = 0 ; ∀ plays qo
and the execution ends with ao ? qo.πpoqo.

40

The axiom of dependent choice

We need a new instruction in our machine. Any of the following two will work :

1. The signature. Let t 7→ nt be a function from closed terms into the integers,

which is very easily computable and ‘‘practically’’ one-to-one. It means that the one-to-

one property has to be true only for the terms which appear during the execution of

a given process. And also that we never try to compute the inverse function.

We define an instruction σ with the following reduction rule :

σ ? t.π Â t ? nt.π.

A simple way to implement such an instruction is to take for nt the signature

of the term t, given by a standard algorithm, such as MD5 or SHA1.

Indeed, these functions are almost surely one-to-one for the terms

which appear during a finite execution of a given process.

41

The axiom of dependent choice (cont.)

2. The clock. It is denoted as and its reduction rule is :

? t.π Â t ? n.π
where n is a Church integer which is the current time (for instance, the number of

reduction steps from the boot).

Both instructions, the clock and the signature, can be given (realize) the same type,

which is not DC but a formula DC’ which implies DC in classical logic.

By means of this proof, we get a λ-term γ[cc,σ] or γ[cc,] which has the type DC.

The instructions σ, appear only inside this λ-term γ.

By looking at its behavior, we find that the integers produced by these instructions are

only compared with each other. No other operation is performed on these integers.

42

’’ Proof ’’ of the countable choice axiom

For simplicity, we consider only the countable choice axiom :

∃Z∀x(F [x, Z(x, y)/Xy]→ ∀X F [x,X])
and a variant of the instruction σ with the following reduction rule :

σ ? t.π Â t ? nπ.π
(π 7→ nπ is a given recursive bijection of ¦ onto N).

Theorem. There exists a ’’ predicate ’’ U : N3→ P(¦) such that

σ k−∀x{∀n(int[n]→ F [x, U(x, n, y)/Xy])→ ∀X F [x,X]}.

The usual countable choice axiom follows easily, but not intuitionistically.

Simply define, for each x, the unary predicate Z(x, •) as U(x, n, •) for the first

integer n s.t. ¬F [x, U(x, n, y)/Xy], or as N if there is no such integer :

Z(x, z) ≡ ∀n{int(n),∀p(int(p), p < n→ F [x, U(x, p, y)/Xy]),

¬F [x, U(x, n, y)/Xy]→ U(x, n, z)}.

43

The countable choice axiom (cont.)

Proof. By definition of k∀X F [x,X]k, we have :

π ∈ k∀X F [x,X]k⇔ (∃R ∈ P(¦)N)π ∈ kF [x,R/X]k.

By countable choice, we get a function U : N3→ P(¦) such that

π ∈ k∀X F [x,X]k⇔ π ∈ kF [x, U(x, nπ, y)/Xy]k.

Let x ∈ N, t k−∀n(int[n]→ F [x, U(x, n, y)/Xy]) and π ∈ k∀X F [x,X]k.

We must show that σ ? t.π ∈ ⊥⊥ and, by the rule for σ,

it suffices to show t ? nπ.π ∈ ⊥⊥. But this follows from

nπ k− int(snπ0), π ∈ kF [x, U(x, nπ, y)/Xy]k (by definition of U) and

t k− int(snπ0)→ F [x, U(x, nπ, y)/Xy]. QED

44

A program for the CCA

The explicit writing of the program γ[cc,] of type CCA is as follows :

γ = λf()(Y)λxλn(cc)λk fτ0τ1
with τ0 = λz zxnk, τ1 = λyλx0λn0λk0 Compnn0αα0y,

α= (k)(x0)n, α0 = (k0)(x)n0,
Compnn0αα0y = α if n < n0, α0 if n0 < n, y if n = n0.
Consider a process γ ? f.π in which γ is in head position. We have :

γ ? f.π Â ? Yξf .π where ξf = λxλn(cc)λk fτ0τ1 depends only on f

Â Yξf ? nf.π Â ξf ? ηf .nf .π, with ηf = Yξf . Therefore

γ ? f.π Â f ? τfπ0 .τ
fπ
1 .π

with τ
fπ
i = τi[ηf/x, nf/n, kπ/k].

45

A program for the CCA (cont.)

Now τ
fπ
0 is simply the triple <ηf , nf, kπ>. In other words

τ
fπ
0 stores the current state and time f,π, nf when γ comes in head position.

τ
fπ
1 performs the real job : it looks at two such states f.π and f 0.π0 and compare

their times nf and nf 0. If nf = nf 0 it does nothing.

If nf < nf 0 (resp. nf 0 < nf) it restarts with f 0?τf
0π

0 .τ
f 0π
1 .π (resp. f ?τfπ

0
0 .τ

fπ0
1 .π0) :

in each case, the second file with the first stack.

Thus, the main function of this program is to update files.

If we take the signature σ instead of the clock , the program can be used

to choose a suitable version of a file.

The axiom of dependent choice is a very general and useful principle in mathematics.

The program associated with it is also a very general and useful tool

to update files or choose the suitable release of a file.

46

Zermelo-Fraenkel set theory

A first order theory. Its axioms can be classified in three groups :

1. Equality, extensionality, foundation.

2. Union, power set, substitution, infinity.

3. Choice ; possibly other axioms such as CH, GCH, large cardinals.

We can realize the first two groups by λc-terms,

i.e. no new instruction is necessary besides cc.

Curiously, equality and extensionality are the most difficult ones. For example,

the first axiom of equality ∀x(x= x) is realized by a λ-term τ

with the reduction rule : τ ? t.π Â t ? τ.τ.π (fixed point of λxλf fxx).

Therefore, we first consider a theory with a strong membership relation ε,

without extensionality ; in some sense, ∈ is defined by means of ε .

47

ZFε set theory
Three binary symbols ∈,⊂ and ε (strong membership) ; x= y is x ⊂ y ∧ y ⊂ x.
• ’’Definition’’ of ∈ and ⊂ :
∀x∀y[x ∈ y ↔ (∃z ε y)x = z] ; ∀x∀y[x ⊂ y ↔ (∀z εx)z ∈ y].
• Foundation : ∀a[(∀x ε a)F(x)→ F(a)]→ ∀aF(a) (for every formula F).
• Comprehension : ∀a∃b∀x[x ε b↔ (x ε a ∧ F(x))] (’’)
• Pair : ∀a∀b∃x[a εx ∧ b εx]
• Union : ∀a∃b(∀x ε a)(∀y εx) y ε b.
• Power set : ∀a∃b∀x(∃y ε b)∀z(z ε y ↔ (z ε a ∧ F(z, x))) (’’)
• Collection : ∀a∃b(∀x ε a)[∃y F(x, y)→ (∃y ε b)F(x, y)] (’’)
• Infinity : ∀a∃b{a ε b ∧ (∀x ε b)[∃y F(x, y)→ (∃y ε b)F(x, y)]} (’’)

This theory is a conservative extension of ZF :
1. If ZFε ` F (formula of ZF), then ZF ` F : simply replace ε by ∈ in ZFε.
2. We must show that each axiom of ZF is a consequence of ZFε.

48

ZFε set theory (cont.)

Example. ZF ε ` a ⊂ a (and thus a= a).

By foundation, assume ∀x(x ε a→ x ⊂ x) ; this gives ∀x(x ε a→ x= x), thus

∀x[x ε a→ (∃y ε a)x= y], i.e. ∀x(x ε a→ x ∈ a), and therefore a ⊂ a.

Now, we define realizability models for ZFε, which will therefore be also

realizability models for ZF. We only need to define kFk for atomic formulas F .

Of course, we start with a model of ZF, and we take as atomic formulas :

a ε/ b, a /∈ b and a ⊂ a. Then define : ka ε/ bk= {π ∈ ¦; (a,π) ∈ b}.

We check that all the axioms of ZFε, except the first, are realized, without knowing

the precise definition of ka /∈ bk, ka ⊂ bk, simply because they are defined in ZF.

Foundation. Y k−∀a[∀x(F(x)→ x ε/ a)→ ¬F(a)]→ ∀a¬F(a).

This explains why we find Yλxλffxx k−∀x(x = x).

49

ZFε set theory (cont.)

Comprehension. For every set a and every formula F(x), set :

b = {(x, t.π); (x,π) ∈ a, t k−F(x)}. We easily get kx ε/ bk= kF(x)→ x ε/ ak.

It follows that (I, I) k−∀x[x ε/ b↔ (F(x)→ x ε/ a)].

Other axioms of ZFε are realized in the same way. For example :

Collection. Let a be a set, Cl(a) its transitive closure and F(x, y) a formula.

We set b =
S{©(x, t)×Cl(a); x ∈ Cl(a), t ∈ ¤c} with

©(x, t) = {y of minimum rank ; t k−F (x, y)}, or ∅ if there is no such y.

We show that k∀y(F(x, y)→ x ε/ a)k ⊂ k∀y(F(x, y)→ y ε/ b)k. Indeed :

suppose t k−F(x, y), (x,π) ∈ a. Then x,π ∈ Cl(a), and therefore :

(y0,π) ∈ b for some y0 ∈ ©(x, t) ; it follows that t k−F(x, y0) and π ∈ ky0 ε/ bk.

Therefore t.π ∈ k∀y(F(x, y)→ y ε/ b)k.

We have proved that I k−∀y(F(x, y)→ y ε/ b)→ ∀y(F(x, y)→ x ε/ a).

50

ZFε set theory (cont.)

We must now realize the first axioms of ZFε and therefore define the truth values of

the atomic formulas : ka /∈ bk, ka ⊂ bk, where a, b vary in a given model of ZFC.

It would be nice to have :

ka /∈ bk= k∀z(z ⊂ a, a ⊂ z → z ε/ b)k and ka ⊂ bk= k∀z(z /∈ b→ z ε/ a)k
because we should deduce immediately that I realizes the axioms we need.

Now kc ε/ ak= ∅ if rk(a) ≤ rk(c). Thus, the above equations may be written as :

ka /∈ bk= S
rk(c)<rk(b) k(c ⊂ a, a ⊂ c→ c ε/ b)k

ka ⊂ bk= S
rk(c)<rk(a) k(c /∈ b→ c ε/ a)k i.e.

ka /∈ bk= S
rk(c)<rk(b) ©(a, b, c, kc ⊂ ak, ka ⊂ ck)

ka ⊂ bk= S
rk(c)<rk(a)ª(a, b, c, kc ⊂ ak, ka ⊂ ck)

where ©,ª are functionals defined in ZF.

We simply observe now that this is a correct inductive definition

on the ordered pair of ordinals : (rk(a) ∪ rk(b), rk(a) ∩ rk(b)).

51

ZFε set theory (cont.)

Remark. It is also possible to define the relations x /∈ y, x ⊂ y by formulas with the
only symbol ε/ and then to prove the first axioms of ZFε from the others axioms.
We cannot use induction to define these relations, because ordinals are not definable
in ZFε. But we can use coinduction.
Anyway, this method gives complicated λ-terms for the first axioms of ZFε, so that
we prefer the above method.

Remark. The definition of t k−x /∈ y and t k−x ⊂ y is very similar to the defintion
of forcing. In fact, the generic models of set theory, which are defined in forcing, are
particular cases of realizability models.
Thus, the theory presented here gives completely new models of set theory.
The fact that forcing is a case of realizability, is used to find programs associated with
the axiom of choice and the continuum hypothesis. We build a model by combining
both methods ; we call this iterated realizability by analogy with iterated forcing.

52

The full axiom of choice

We get a program for the axiom of dependent choice in the same way as in Analysis.

The problem for the full axiom of choice is more difficult. It has been solved very

recently (not yet published). As a bonus, we get also the continuum hypothesis.

The proof is too long to be given here ; the result is as follows :

we need two new instructions χ and χ0 which appear inside

two very complex λ-terms, together with cc and the clock (or the signature).

The behaviour of these programs is not yet understood.

These new instructions χ, χ0 work on the bottom of the stack.

Their reduction rules is as follows :

χ ? t.τ.t1 . . . tn.π0 Â t ? t1 . . . tn.τ.π0
χ0 ? t.t1 . . . tn.τ.π0 Â t ? τ.t1 . . . tn.π0
where π0, as before, is a marker for the bottom of the stack.

53

The axiom of choice (cont.)

In order to understand the behaviour of these new instructions, we consider

processes of the form <t ? π, τ> where τ is a closed term.

The execution rules are as follows :

<tu ? π, τ> Â <t ? u.π, α0τ> <λx t ? u.π, τ> Â <t[u/x] ? π, α1τ>
<cc ? t.π, τ> Â <t ? kπ.π, α2τ> <kπ ? t.ρ, τ> Â <t ? π, α3τ>
<χ ? t.τ.t1 . . . tn.π0, τ

0> Â <t ? t1 . . . tn.τ 0.π0, τ>
<χ0 ? t.t1 . . . tn.τ 0.π0, τ> Â <t ? τ.t1 . . . tn.π0, τ 0>
The αi are fixed closed terms, which we shall not write explicitly here.

In fact, we get a parallel execution ; χ and χ0 are communication instructions.

54

The standard realizability model in analysis

Realizability models are obtained by choosing a set ⊥⊥ which must be saturated

and coherent. Let ⊥⊥c be the complement of ⊥⊥. The conditions on ⊥⊥c are :

p∈ ⊥⊥c, p Âq⇒ q∈ ⊥⊥c (saturation) ;

for every proof-like term ξ there is a stack π s.t. ξ ? π ∈ ⊥⊥c (coherence).

Let ξ 7→ πξ be a one-one map from proof-like terms into stack constants.

If ξ ? πξ ∈ ⊥⊥c for every ξ, the set ⊥⊥ is obviously coherent. The set of all processes

obtained by executing ξ ? πξ will be called the thread generated by the proof-like

term ξ, and ξ ? πξ is the boot of this thread.

Thus, ⊥⊥c = the union of all threads is a somewhat canonical way to define ⊥⊥.

We have thus ⊥⊥c = {p; there is a proof-like ξ s.t. ξ ? πξ Â p}
We call this model the standard realizability model.

Nevertheless, as we shall see, it contains non standard integers.

55

A generic non-standard integer

Let n 7→ ξn be a fixed recursive enumeration of proof-like terms. We define a unary

predicate G by setting :

kGnk= ¦n i.e. the set of stacks which end with the constant πξn.

We assume there is no instruction which changes the stack constant. It follows that

πξ is the only one which appears in the thread ξ ? πξ.

Since
S
n¦n = ¦, we get k∀xGxk= ¦, thus I k−¬∀xGx.

We show that Gn is realized for each integer n. Indeed suppose that :

δδ0 6k−Gn and δδ1 6k−Gn with δ = λxxx.

Then, ξn ? πξn Â δδ0 ? π0 and ξn ? πξn Â δδ1 ? π1 which is impossible.

It follows that the predicateG contains every standard integer, but not every individual.

Does it contain every integer ?

56

A generic non-standard integer (cont.)

Let ς (for ’’self’’) be a new instruction with the following reduction rule :

ς ? t.π Â t ? n.π ; n is the integer such that π ∈ ¦ξn.

Then ς k−∀x(int(x)→ Gx)→ ⊥.

Indeed, if t k−∀x(int(x) → Gx) and π ∈ ¦n, then n k− int(n) and π ∈ kGnk.

Thus t ? n.π ∈ ⊥⊥ and ς ? t.π ∈ ⊥⊥.

It follows that the predicate ¬G contains at least one non-standard integer.

In the next slide, we show that the formula ∀x∀y{¬Gx, x 6= y → Gy} is realized.

Thus, the predicate ¬Gx consists in exactly one individual

and it is a non-standard integer. We call it the generic integer.

We add a new individual constant g to our language, and replace Gx with x 6= g.

The non-standard proof-like term ξg has remarkable properties.

57

A generic non-standard integer (cont.)

Lemma. If ξ ? kπ.ρ ∈ ⊥⊥ for all π ∈ kAk and ρ ∈ kBk, then γξ k−¬A → B with

γ = λxλy ccλh y cch◦x.

The hypothesis gives cckρ◦ξ k−A. If t k−¬A, we get t cckρ◦ξ k−⊥, therefore

ccλh t cch◦ξ ? ρ ∈ ⊥⊥ for every ρ ∈ kBk. Thus, γξ ? t.ρ ∈ ⊥⊥, because it reduces to

this process. QED

We want to show that ∀x∀y[¬Gx, x 6= y → Gy] is realized. By the preceding

lemma, it is sufficient to show that :

0 ? kπ.t.ρ ∈ ⊥⊥ with 0 = λxλy y, π ∈ kGnk= ¦n, ρ ∈ kGpk= ¦p, t k−n 6= p.

If n 6= p, this process is in no thread, because it contains two different stack constants

πξn and πξp. If n= p, then t k−⊥ and 0 ? kπ.t.ρ Â t ? ρ, hence the result. QED

58

Conclusion

The conclusion is that we can translate every mathematical proof

into a program. We can execute this program in a lazy λ-calculus machine

extended with only four new instructions : cc, σ (or), χ and χ0.
This machine can be implemented rather easily.

The challenge, now, is to understand all these programs,

first of all the ones we obtained for the axioms of ZFC.

It is very plausible that we shall find, in this way, programs analogous

to the core of an operating system like Unix.

This would give a method to implement such a core on a very firm basis.

59

References

1. S. Berardi, M. Bezem, T. Coquand On the computational content of the axiom of

choice. J. Symb. Log. 63, pp. 600-622 (1998).

2. U. Berger, P. Oliva Modified bar recursion and classical dependent choice. Preprint.

3. J.-L. Krivine Typed lambda-calculus in classical Zermelo-Fraenkel set theory.

Arch. Math. Log. 40, 3, pp. 189-205 (2001)

4. J.-L. Krivine Dependent choices, ‘quote’ and the clock.

Th. Comp. Sc. 308, pp. 259-276 (2003)

5. J.-L. Krivine Realizability in classical logic.

To appear in Panoramas et Synthèses. Société mathématique de France.

Pdf files at http://www.pps.jussieu.fr/~krivine

60

