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Introduction

When we want to obtain programs from mathematical proofs, the main problem is, naturally,
raised by the axioms: indeed, it has been along time since we know how to transform a proof
in pure (i.e. without axioms) intuitionistic logic, even at second order [2, 7, 4].

The very first of these axioms is the excluded middle, and it seemed completely hopeless for
decades. The solution, given by T. Griffin [5] in 1990, was absolutely surprising. It was an
essential discovery in logic because, at this moment, it became clear that all other axioms
will follow, as soon as we will work in a suitable framework.

The theory of classical realizability is such a framework : it was developed in [12, 13], where
we treat the axioms of Analysis (second order arithmetic with dependent choice).

In [15], we attack a more difficult case of the general axiom of choice, which is the existence
of a non trivial ultrafilter on N ; the main tool is the notion of realizability structure, in which
the programs are written in A-calculus.

In the present paper, we replace it with the notion of realizability algebra, which has many
advantages : it is simpler, first order and much more practical for implementation. Itis a
three-sorted variant of the usual notion of combinatory algebra. Thus, the programming
language is no longer the A-calculus, but a suitable set of combinators ; remarkably enough,
this is almost exactly the original set given by Curry. The A-terms are now considered only
as notations or abbreviations, very useful in fact : a A-term is infinitely more readable than
its translation into a sequence of combinators. The translation used here is new, as far as I
know ; its fundamental property is given in theorem 2.

The aim of this paper is to show how to transform into programs, the classical proofs which
use dependent choice and :

i) the existence of a non trivial ultrafilter on N ;

ii) the existence of a well ordering on R.

Of course, (ii) implies (i) but the method used for (i) is interesting, because it can give simpler
programs. This is an important point, because a new problem is appearing now, an impor-
tant and very difficult problem : to understand the programs we obtain in this way, that is to
explain their behavior. A fascinating, but probably long work.



The logical frame is given by classical second order logic, in other words the (first order) the-
ory of the comprehension scheme. However, since we use a binary membership relation
on individuals, we work, in reality, in at least third order logic. Moreover, this is indispens-
able since, although the axiom of dependent choice on R can be expressed as a second order
scheme, axioms (i) and (ii) cannot be expressed in this way.

By using the method expounded in [11], we can obtain the same results in ZF.

It seems clear to me that, by developing the technology of classical realizability, we shall be
able to treat all “natural” axioms introduced in set theory. It is already done for the contin-
uum hypothesis, which will be the topic of a forthcoming paper. In my opinion, the axiom of
choice and the generalized continuum hypothesis in ZF do not pose serious issues, except
this : it will be necessary to use the proper class forcing of Easton [3] inside the realizability
model, and it will probably be very painful.

A very interesting open problem is posed by axioms such as the existence of measurable
cardinals or the determination axiom.

But the most important open problem is to understand what all these programs do and, in
this way, to be able to execute them. 1 believe that big surprises are waiting for us here.
Indeed, when we realize usual axioms of mathematics, we need to introduce, one after the
other, the very standard tools in system programming : for the law of Peirce, these are contin-
uations (particularly useful for exceptions) ; for the axiom of dependent choice, these are the
clock and the process numbering ; for the ultrafilter axiom and the well ordering of R, these
are no less than read and write instructions on a global memory, in other words assignment.
It seems reasonable to conjecture that such tools are introduced for some worthwhile pur-
pose, and therefore that the very complex programs we obtain by means of this formalization
work, perform interesting and useful tasks. The question is : which ones ?

Remark.

The problem of obtaining a program from a proof which uses a given axiom, must be set correctly
from the point of view of computer science. As an example, consider a proof of a theorem of arith-
metic, which uses a well ordering of 22(N) : if you restrict this proof to the class of constructible sets,
you easily get a new proof of the same theorem, which does not use this well ordering any more. Thus,
it looks like you simply have to transform this new proof into a program.

But this program would be extracted from a proof which is deeply different from (and dramatically
more complicated than) the original one. Moreover, with this method, it is impossible to associate a
program with the well ordering axiom itself. From the point of view of computer science, this is an
unacceptable lack of modularity : since we cannot put the well ordering axiom in a program library,
we need to undertake again the programming work with each new proof.

With the method which is explained below, we only use the A-term extracted from the original proof.
Therefore, this term contains an unknown instruction for the well ordering axiom on 22(N), which is
not yet implemented. Then, by means of a suitable compilation, we transform this term into a true
program which realizes the initial theorem.

As a corollary of this technology, we obtain a program which is associated with the well ordering ax-
iom, which we can put in a library for later use.



Realizability algebras

A realizability algebra is composed of three sets : A (the set of terms), II (the set of stacks),
A xII (the set of processes) with the following operations :

&,m) — (&)n from A2 into A (application) ;
(&, m) — &om from AxII into II (push) ;

(&, m) — & x m from AxIIinto A % IT (process) ;
71— k; from IT into A (continuation).

We have, in A, the distinguished elements B,C, E, I, K, W, cc, called elementary combinators
or instructions.

Notation. The term (... ((()n1)n2)...)n, will be also denoted by ({)1172...n, or éMin2...Nx.
For example : {nd = (E)nd = En) = (E)n)].

We define on A x IT a preorder relation, denoted by >. It is the least reflexive and transitive
relation such that we have, forany¢,n,{ e Aand r,0 € I1 :

N *m>E*xner.

Ix&emm>Ex.

Kx¢enerr > ¢ *m.

Ex&enenr > ()N * .
Wkéenem>ExNeneTt.
CxéeNelem >k (ane.

Bx&enelem> ()M *m.
cCr&Eem>ExKya.

kyx&ée@>¢& X,

Finally, we are given a subset 1L of A % II which is a terminal segment for this preorder, which
meansthat: pe l,p'>p=>p'el.

In other words, we ask that L be such that :

En*nm¢gl=>ECxneme L.
Ixéemg IL=>Exme AL,
K*xéenem¢ L=>Exme L.
Exéener¢ L= (E)n*me L.
Whéenemg L =>Eknenen ¢ L.
CkCeNelom¢ L =>E¢XConeme L.
Bxéaneloem¢ L= ()M xme L.
ccxéem¢ L =>Exkreme AL,
kp*xéeg ILl=>EXxme L.

c-terms and 1-terms

We call c-ferm a term which is built with variables, the elementary combinators B, C, E,
I, K, W, cc and the application (binary function). A c-term is called closed if it contains no
variable ; it will then also be called proof-like ; a proof-like term has a value in A.

Given a c-term ¢ and a variable x, we define inductively on ¢, a new c-term denoted by Ax t.
To this aim, we apply the first possible case in the following list :



1. Ax t = (K)tif t does not contain x.

2. Axx=1.

3. Axtu=(CAx(E)t)uif u does not contain x.
4. Ax tx = (E)tif t does not contain x.
5.Axtx=(W)Ax(E)t (if t contains x).

6. Ax(t)(w)v = Ax(B)tuv (if uv contains x).

We easily see that this rewriting is finite, for any given c-term ¢ : indeed, during the rewriting,
no combinator is introduced inside ¢, but only in front of it. Moreover, the only changes in ¢
are : moving parentheses and erasing occurrences of x. Now, rules 1 to 5 strictly decrease the
part of £ which remains under Ax, and rule 6 can be applied consecutively only finitely many
times.

The A-terms are defined as usual. But, in this paper, we consider A1-terms only as a notation
for particular c-terms, by means of the above translation. This notation is essential, because
almost every c-term we shall use, will be given as a A-term. Theorem 2 gives the fundamental
property of this translation.

Remark. We cannot use the well known KS-translation of A-calculus, because it does not satisfy
Theorem 2.

Lemma 1. Ift is a c-term with the only variables x, y,, ..., yn, and if &,n1,...,Mn € A, then :
Ax DNy, - onl ypl * §em > L&/ X, 01/ Y1, sl Ynl * .

To lighten the notation, letus put u* = u[n;/y1,...,n,/yxl for each c-term u; thus, we have :
u* (&1 x) =ulélx,n/y1, .-, Nnl ynl.
The proof is done by induction on the number of rules 1 to 6 used to translate the term Ax ¢.
Consider the rule used first.
Ifitisrule 1, thenwe have Ax)* xéem=(K)t* % e >t %7
= t[&/x,n1/V1,...,0nl ynl * 7 since x is not in ¢.
Ifitisrule 2, wehave t=xand (Ax)* *xem=I*éem>Exm=tE/ X,/ Y1, N0l Yn] * T
Ifitisrule 3, wehave t = uv and Ax0)* *xéem = (CAx(E)w)*v* *xéem
>Cx(AX(E))* e V" oot > (AX(E)U)* * o V™ e > (E)u™[¢/x] x v* o« (by induction hypoth-
esis) > Ex u*[{/x]e v et > (W [E/x])V* % = t[E/x,01/V1,...,Mn! ¥l * 7 since x is not in v.
Ifitisrule4,wehave t = ux and Axt)* *enm=(E)U* xEem > Exu*eéem>u"é*xm
= t[¢/x,n1/y1,...,0nl ynl * 7w since u does not contain x.
Ifitisrule 5,wehave t = ux and Axt)* * e = (WAX(BE)W)* xéem > W x (AX(E)U)* o&uTt
> (AxX(E)u)* *&eéem > (E)u*[{/x] % & o (by induction hypothesis)
>Exu*[é/x]elem> (u*[E/xNEXT=tIE/X,01/ V1,0, N0l Ynl * TT.
Ifitis rule 6, we have t = (u)(v)w and Axt)* *éem= (Ax(B)uvw)* x&em
> (B)u™[&/x]v*[¢/x]w™ [é]x] %  (by induction hypothesis)
>Bxu*[E/x]e v [E/x) e w* [E/x)emm > (W [E/xXD(W* [E/XDW*[Elx]) % 7
= t[E/x,n1! Y1, Nl Ynl * 7.

Q.E.D.

Theorem 2. If t is a c-term with the only variables x,,...,x,, and if ¢1,...,{, € A, then
A/xl...A/Xnt*élo...ognon> t[él/xl,...,é-n/x’/l]*ﬂ.



Proof by induction on 7 ; the case n = 0 is trivial.
Wehave Ax;...AXxp_1AXp %100y 1eénelm > (AXy, )€1/ X1,..., no1/Xn_1] %X Epem
(by induction hypothesis) > t[¢1/x1,...,$n—1/Xn-1,¢n/Xp] * m by lemma 1.

Q.E.D.

Natural deduction

Before giving the formal language that we shall use, it is perhaps useful to describe informally
the structures (models) we have in mind. They are second order structures, with two types of
objects : individuals also called conditions and predicates (of various arity). Since we remain
at an intuitive level, we start with a full model which we call the ground model.

Such a model consists of :

« an infinite set P (the set of individuals or conditions).

« the set of k-ary predicates is 2(P¥) (full model).

« some functions from P into P.

In particular, there is an individual 0 and a bijective function s: P — (P \{0}). This enables
us to define the set of integers N as the least set which contains 0 and which is closed for s.
There is also a particular condition denoted by 1 and an application denoted by A from P?
into P.

» some relations (fixed predicates) on P. In particular, we have the equality relation on
individuals and the subset C of non trivial conditions.

Clpnrg] reads as : “p and g are two compatible conditions”.

We now come to the formal language, in order to write formulas and proofs about such struc-
tures. It consists of :

e individual variables or variables of conditions called x, y,...or p,q,...

* predicate variables or second order variables X,Y,...; each predicate variable has an arity
which isin N.
e function symbols on individuals f, g, ... ; each one has an arity which is in N.

In particular, there is a function symbol of arity k for each recursive function f : NF — N. This
symbol will also be written as f.

There is also a constant symbol 1 (which represents the greatest condition) and a binary
function symbol A (which represents the inf of two conditions).

The ferms are built in the usual way with variables and function symbols.

The atomic formulas are the expressions X (#,..., t;), where X is an n-ary predicate variable,
and t,..., t, are terms.

Formulas are built as usual, from atomic formulas, with the only logical symbols —,V :
e each atomic formula is a formula ;

o if A, B are formulas, then A — Bis aformula;

e if Aisaformula, then Vx A and VX A are formulas.

Notations. The formula A; — (A, — (...(A,; — B)...) will be written A;, A,,...,A; — B.
The usual logical symbols are defined as follows :

(X is a predicate variable of arity 0, also called propositional variable)
1=VXX;7A=A—-1;AvB=A—-1),B—-1)—-1;AAB=AB—-1)—1;
JyF=Vy(F — 1) — 1 (whereyis an individual or predicate variable).



More generally, we shall write 3y{F,...,Fi} for Vy(Fi,...,Fr— 1) — L.
We shall sometimes write F for a finite sequence of formulas Fi, ..., Fy.
Then, we shall also write 3 y{ﬁ} and Vy(F— 1)— L.

x = yisthe formula VZ(Zx — Zy), where Z is a unary predicate variable.

The rules of natural deduction are the following (the A;’s are formulas, the x;’s are variables
of c-terms, ¢, u are c-terms) :

1.x1:A1,..., x5 A xi 1 Aj.

2.X1:A1,..,xp: Ay t:A—=B, x1:A1,.... XAyt u:A > x1:A,...,xp: Ay tu: B.
3.X1: A1, ., Xn A, X AR Et:B = x1:A1,..., x5 Ay Axt: A— B.

4.x1: A1, Xn ApE Lt A > x1: A5, X Ayt YXA for every variable x (individual
or predicate) which does not appear in Ay, ..., Aj,.

5.%1:A41,..,Xp: Ay Ft: VXA = x1:A1,...,x,: A, t: Alt/x] where x is an individual
variable and 7 is a term.

6. X1 A1, .. Xp i ApF VXA = x1: AL, xp Ap Bt AIFI Xy ... yx] where X is a
predicate variable of arity k and F an arbitrary formula.

Remark.
In the notation A[F/ Xy ... k], the variables y,..., yx are bound. A more usual notation is :
AlAy ... Ay F/ X]. I prefer this one, to avoid confusion with the A defined for c-terms.

Realizability

Given a realizability algebra « = (A, II, A xI1, 1), a &« -model .4 consists of the following
data:

¢ An infinite set P which is the domain of variation of individual variables.

e The domain of variation of k-ary predicate variables is 22(IT)” g

« We associate with each k-ary function symbol f, a function from P* into P, denoted by f
or even f if there is no ambiguity.

In particular, there is a distinguished element 0 in P and a function s: P — P (which is the
interpretation of the symbol s). We suppose that s is a bijection from P onto P\ {0}.Then, we
can identify s”0 € P with the integer n, and therefore, we have N c P.

Each recursive function f : N¥ — N is, by hypothesis, a function symbol. Of course, we as-
sume that its interpretation f : P¥ — P takes the same values as f on N¥.

Finally, we have also a condition 1 € P and a binary function A from P? into P.

A closed term (resp. a closed formula) with parameters in the model ./ is, by definition, a
term (resp. a formula) in which all free occurrences of each variable have been replaced with
a parameter, i.e. an object of the same type in the model .# : a condition for an individual
variable, an application from P¥ into 22(IT) for a k-ary predicate variable.

Each closed term ¢, with parameters in .# has a value 7 € P.

An interpretation .# is an application which associates an individual (condition) with each
individual variable and a parameter of arity k with each second order k-ary variable.

Fx — pl (resp. Z[X — X)) is, by definition, the interpretation obtained by changing, in .#,
the value of the variable x (resp. X) and giving to it the value p € P (resp. & € 220104 k).

For each formula F (resp. term 1), we denote by F (resp. t*) the closed formula (resp. term)
with parameters obtained by replacing each free variable with the value given by .#.
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For each closed formula F¥ with parameters in .4, we define two truth values :

|F¥ | cMand |[F7| c A.

|F| is defined as follows : e IF’| © (Vne ||F‘7||)<f*n ed.

| F< || is defined by recurrence on F :

e Fis atomic : then FZ has the form Z (1,,..., ;) where & : P¥ — 22(I) and the t;’s are
closed terms with parameters in .. We set | Z (f1,..., )| = X (t1,..., tr).

e F=A—B:weset |[F7|={.n;E€|A?|,ne|BY|}.

o F=VxA:weset |[F7|=U{|AZ*=Pl||; pe P}

e F=VXA:weset |[F7| =U{|ATE—2]); 2 € @(H)Pk} if X is a k-ary predicate variable.

Notation. We shall write ¢ |- F for ¢ € |F|.

Theorem 3 (Adequacy lemma).
If xp:A1,...,xk A Et: A and if & A7, ... &k - AY, where F is an interpretation, then

tE/ X1y, €l i) |- A7
In particular, if A is closed and if -t : A, then t |- A.

Proof by recurrence on the length of the derivation of xy: A;,...,x,: A £: A.
We consider the last used rule.

1. We have ¢ = x;, A = A;. Now, we have assumed that ¢; |- Al“.“ ; and it is the desired result.

2. We have ¢ = uv and we already obtained :
X1 AL X Apbu:B— A and x1:A;,..., X A v:B.
Given 7 € || A7 ||, we must show (uv)[&1/x1,..., ¢/ Xl *me L.
By hypothesis on L, it is sufficient to show u[¢1/x,...,E k/xk] * V[E1 /X1, ..., ¢kl X ]ome L.
By the induction hypothesis, we have v[¢;/x1,...,¢k/xk] |- B and therefore :
vIEr/x1,..., &kl xklem e |BY — A7
But, by the induction hypothesis, we have also u[¢1/xy,...,¢k/xk] |- BY — AZ, hence the
result.
3. We have A = B — C, t = Axu. We must show Axu[&;/xy,...,ék/xx] |- BY — C7 ; thus,
we suppose ¢ |-B7, m € ||C7|| and we have to show Ax u[é1/x1,...,¢éx/xx] *Eem € AL, By
hypothesis on 1L and lemma 1, it suffices to show u[¢{/x,¢1/xy,...,¢ /X ] *x T € L.
But this follows from the induction hypothesis applied to x;: Ay,...,x,: Ay, x:BFu:C.
4. We have A= VX B, and X is not free in A;,..., A;. We must show :
tlEr/xt, ., éklxi) - (WX B)Y, e tléy/xy,...,Ex/xi] I BY with £ = #[X — Z]. But, by
hypothesis, ¢; |- A'f therefore ¢&; | A;j : indeed, since X is not free in A;, we have :
”A}'] | = IIA‘I.}Z [l. Then, the induction hypothesis gives the result.
6. We have A= B[F/Xy;...y,] and we must show :
tEr/x1, ..., &l XK - BIF/ X1 ... y,])Y assuming that £[&/x1, ..., &/ xk] |- (VX B)?.
This follows from lemma 4 below.

Q.E.D.

Lemma 4. IIB[F/Xyl...yn]jII = |BX =% where % : P" — P (I) is defined by :

The proofis by induction on B. That is trivial if X is not free in B. Indeed, the only non trivial
case of the inductionis B=VY C; and then, we have Y # X and:



IBIF/Xy1...yn) | = (VY CIF/Xy1...yn)7 | =Us ICIEI Xy1 ...yl 7V =21,
By induction hypothesis, this gives U |CIY —#NX=Z]|| " that is Uw |CTX=ZIY =F]) e,
(VY O)F =21,

Q.E.D.

Lemma5s. Let X, % <1l be truth values. I[ft € X, then k; X — % .

Suppose ¢ |FZ and p € % ; we must show k; x&.p € L, thatis { x m € 1L, which is clear.
Q.E.D.

Proposition 6 (Law of Peirce). cc |FVXVY((X - Y) — X) — X).

We want to show that cc |- (¥ — %) - &) — &. Thus, we take ¢ |FH (X — %) - X and
e X ; we must show that ccx&eme I, thatis { xk; e € L. By hypothesis on ¢ and 7, it is
sufficient to show that k; |- & — %/, which results from lemma 5.

Q.E.D.

Proposition 7.
)If {|-FA— B, then VYn(n|l-A=¢n |- B).
i) If Y |- A= &n |- B), then (E)¢ |- A— B.

i) From {nxm>¢*nem.
ii) From (E){ *nem > ¢n* .
Q.E.D.
Remark. Proposition 7 shows that ¢ |- A — B is “almost” equivalent (i.e. up to an n-expansion of ¢)
to Vn(nl-A=¢nl-B).

Predicate symbols

In the following, we shall use extended formulas which contain predicate symbols (or predi-
cate constants) R,S, ... on individuals. Each one has an arity, which is an integer.

In particular, we have a unary predicate symbol C (which represents the set of non trivial
conditions).

We have to add some rules of construction of formulas :

e If Fis aformula, Ris a n-ary predicate constant and f;,..., t,, are terms, then

R(#,...,t;) = F and R(#,..., t;) — F are formulas.

e T isan atomic formula.

In the definition of a «/-model .4, we add the following clause :

« With each relation symbol R of arity n, we associate an application, denoted by R 4 or
R, from P” into 2(A). We shall also write |R(pi,...,pn)|, instead of R(pi,...,pn), for
P1,---,Pn € P. _

In particular, we have an application C: P — 22(A), which we denote as |C[p]|.

We define as follows the truth value in ./ of an extended formula :

1Tl =o.

IRty ..., tn) = F)? | ={tem; te R(tZ,..., t), we |F7}.

IRy, ..., ta) = F)7 I = IFZ N if I € IR(t7,..., ;)] ;

IR(ty,..., tn) — F)” | = @ otherwise.



Proposition 8.

DAx(X)I |FVXVxy...Vx,[(R(x1,...,x,) — X) — (R(x1,...,x,) — X)].

ii) If we have |R(p1,...,pn)| #® = I €|R(py,..., pn)| foreverypi,...,pn€ P, then:
KIFVXVxy...Vx,[(R(x1,...,x,) — X) = (R(x1,...,x,) — X)].

Trivial.
Q.E.D.

Remark. By means of proposition 8, we see that, if the application R:P" — 2(A) takes only the
values {I} and @, we can replace R(t,...,t,;) — F with R(#,...,t,;)— F.

We define the binary predicate = by putting |[p=qg|={I}if p=¢q and |p=ql=9if p # q.
By the above remark, we can replace p =~ g — F with p = g — F. Proposition 9 shows that
we can also replace p=q— Fwithp=qg— F.

Notations. We shall write p = g — F instead of p =~ q— F. Thus, we have :
Ip=q—Fl=IFlifp=qg; Ilp=g—Fl=0 iftp#q.

We shall write p # q for p=q— L. Thus, we have :

lp#qll=Mifp=gand p#qll=0ifp#gq.

Using p=qg+— F instead of p=qg — F,and p # q instead of p = q — L, greatly simplifies
the computation of the truth value of a formula which contains the symbol =.

Proposition 9.
DAXXI |FVXVxVy(x=y—-X) = (x=y— X)) ;
i) AxAy yx [FVYXVxVy(x=y— X),x=y — X).

DletabeP, X cIl{la=b—-X andnella=b—~ X|.
Then, we have a = b, thus I |- a = b, therefore E x [eme 1, thus AxxIxéeme A.
ii) Nowletn |F(a=b— %), {|Fa=band p € |Z|.
We show that AxAyyx*ne{+p€ 1L in other words { xne.p € L.
Ifa=b,thenn |-Z,{|IFVY(Y - Y). Wehaven.pe||Z — X|,thus{xn.pe L.
Ifa#b,then(|FT— L, thus{*ne.pe L.
In both cases, we get the desired result.
Q.E.D.

Remark.

Let R be a subset of PX and 15 : P*¥ — {0, 1} its characteristic function, defined as follows :
1r(p1,..., pn) =1 (resp. =0) if (p1,..., pn) € R (resp. (p1,..., Pn) € R).

Let us define the predicate R in the model .# by putting :

|R(p1,...,pn)| = {1} (resp. = @) if (p1,..., pn) € R (vesp. (p1,..., Pn) € R).

By propositions 8 and 9, we see that R(xy,...,X,) and 1g(xy,...,x,) = 1 are interchangeable. More
precisely, we have: I|-VXVx;...Vx,((R(x1,...,X5) — X) < (1r(x1,...,X) =1— X)).

For each formula A[x,...,x;], we can define the k-ary predicate symbol Ny, by putting

INA(p1, ..., pr)| = {ky; m € || Alp1, ..., prlll}. Proposition 10 below shows that N4 and — A are
interchangeable ; this may simplify truth value computations.

Proposition 10.
D IFEVX.. VX (Na(xy,..., XK) = 1A, .. XE)) S
i) cClFVxy...Vxp((Na(x1,...,x5) — L) — A(xq,..., X))



i) Let py,...,pre P, me|Alpy,...,p)l, ¢ |- A(py, ..., pr) and p € II. We must show :
Ixkyelepe I, thatis ¢ xme 1L, which is obvious.
ii) Letn |- Na(p1,...,px) — L and me [|A(py,..., pr)ll. We must show :
ccxneme ll,ie. nkkyeme I, whichis clear, since k; € |[N4(p1,..., pr)l-

Q.E.D.

Fixed point combinator

Theorem 11. Let Y = AA with A= Aaldf(f)(a)af. Then, we have Y x& et > * Y o1,
Let f : P? — P such that f(x,y) = 1 is a well founded relation on P. Then :
DYIFVX{Vx[Vy(f(y,x) =1— Xy) = Xx] = Vx Xx}.
i) YIFVX)...VXg
VxlVyXyy,.... Xky = f(,0) # 1), X1x,..., Xjex — L] = Vx(Xyx,..., Xpx — L)}

The property Y x¢em > ¢ *xY¢om isimmediate, from theorem 2.

i) Wetake  : P — ZI), pe Pand ¢ |FVxIVy(f(y,x) =1— ZXy) — X x]. We show, by

induction on the well founded relation f(x,y) =1, thatY x{«n € L for every 7 € Z p.

Let m € Z'p; from (i), we get Y* e > {*xY{emr and thus, it is sufficient to prove that

¢xY¢em e 1. By hypothesis, we have ¢ [FVy(f(y,p) =1— Xy) — X p; thus, it suffices to

show that Y¢ |- f (g, p) = 1 — Z q for every q € P. This is clear if f(gq, p) # 1, by definition

of —.

If f(q,p) =1, we must show Y¢ [FZ g, i.e. Y*Eop € L for every p € Z g. But this follows

from the induction hypothesis.

ii) The proofis almost the same : take &7,..., Zy: P — 22(II), p€ P and

EIFVXIVYZQY,.... Xy — [, x) # 1), 2x,...,Zrx — L]. We show, by induction on the

well founded relation f(x,y) =1, thatYx¢{em € I foreveryme [|Z1p,..., Zrp — L.

As before, we have to show that: Y¢ |- 21q,...,.Zxq— f(q,p) #1forallge P;

this is obvious if f(q,p) #1. If f(q,p) =1, we must show Y¢ |- %1q,...,Zrqg — L, orelse:

Yx¢op € Il foreveryp € |Z1q,..., Zrq — L. Butthis follows from the induction hypothesis.
Q.E.D.

Integers, storage and recursive functions

Recall that we have a constant symbol 0 and a unary function symbol s which is interpreted,
in the model .# by a bijective function s: P — (P \ {0}).

And also, that we have identified s"0 with the integer n ; thus, we suppose N c P.

We denote by int(x) the formula VX (Vy(Xy — Xsy), X0 — Xx).

Let u = (u,) nen be a sequence of elements of A. We define the unary predicate symbol e, by
putting : e, (s"0)| = {us}; leu(p)l =@ if p ¢ N.

Theorem 12. Let T, S, € A besuch that S, |F(T — 1), T— L and:
Tu*PeVeT >VkSyehellgell; Sy * Wellp et >W *k Upi] el
foreveryv,¢,w € A andn €11. Then :

T, IFVXVx[(ey(x) — X), int(x) — X].

T, is called a storage operator.
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Let peP,¢dlFey(p) — X, vIFint(p) and 7 € | X]. We must show T, *¢pevemre 1L i.e.
V*Suo()bou().ﬂEJ.L.

 If p ¢ N, we define the unary predicate Y by putting :

Y(q)=TifgeN; Y(q)=T — Lifg¢N.

Thus, we have obviously ¢ |- Y (0) and ug.m € [|Y(p)ll.

But, by hypothesis on v, we have v [FVy(Yy— Ysy),Y0— Yp.

Thus, it is sufficient to show that :

SulFVYy(Yy—Ysy),ie. S,I-Y(q) — Y(sq) forevery ge P.

This is clear if g € N, since we have [ Y (sq)|l = @.

If g ¢ N, we must show S, |- (T — 1), T — L, which follows from the hypothesis.

e If peN, we have p = sP0; we define the unary predicate Y by putting :
1Ysio| = {up_jemtfor0O<i<pand|Yqgll=0ifqg¢ (si0;0<i< p’.
By hypothesis on v, ¢, 7, we have :
VIFVy(Yy—Ysy),Y0— YsP0; ¢ |FYO0; upe.me||YsPO].
Thus, it suffices to show that S, FVy(Yy— Ysy),ie. S, I-Yq— YsqforeverygeP.
This is clear if g ¢ {s'0; 0 < i < p}, since then | Ysq| = @.
Ifg= si0with i < p,let ¢ |-Yq; we mustshow Sy *x¢Cetty_jjeme L.
Butwe have Sy x{etty_j1e7>¢* Uy whichisin I, by hypothesis on ¢.
Q.E.D.
Notation. We define the closed c-terms 0= AxAyy; o =AnAfAx(f)(n)fx; and, for each
neN, we put n = (0)"0. We define the unary predicate symbol ent(x) by putting :
lent(n)| = {n}if neN;
lent(p)| =@ if p ¢ N.
In other words, ent(x) is the predicate e, (x) when the sequence u is (1) jen.

Theorem 13.

Weput T=AfAn(n)Sf0, with S=AgAx(g)(o)x. Then, we have :
i) T|IFVXVx((ent(x) — X), int(x) — X).

ii) I |FVx((ent(x) —int(x)).

Therefore, T is a storage operator (theorem 12).

i) We immediately have, by theorem 2 :

TxPeVell >VhkSapa0emt; SkWe(0)"0er >y *(0)" 107

for every v, ¢, € A and 7 € II.

Now, we checkthat S |- (T — 1), T — L:indeed,if¢ |F T — L, then Sx{enemr >Exoneme 1L
for everyn € A and n € IT (by theorem 2).

Then, the result follows immediately, from theorem 12.

ii) We must show [ |- ent(p) — int(p) for every p € P. We may suppose p € N (otherwise
ent(p) = @ and the result is trivial). Then, we must show :

I%0P0.p € 1 knowing that p € [lint(s”0)]|.

Therefore, we can find a unary predicate X : P — 22(Il), ¢ |- Vy(Xy — Xsy), o |- X0 and
7 € | XsPO| such that p = ¢pewem. We must show (0)”0x p.wenm € L. In fact, we show by
recurrence on p, that (0)?0xp.we.nme 1L forall me || XsPO|.

If p=0,let 7 €| X0 ; we must show 0xpewerm € 1L, ie. w*me L, which is clear, since
w | XO0.
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To move up from p to p+ 1, let 7 € | XsP*10]. We have :
PO Pew e = (0)(0O)POXPew et >0 *kTP0epew o7 > Ppx (0P0)PwoT.
But, by induction hypothesis, we have 0”0 x ¢p.w.«p € L for every p € | Xs”0||. It follows that
(0P0)¢pw |- X sP0. Since ¢ |- XsP0 — XsP+10, we obtain ¢ * (6P0)¢pw.m e L.

Q.E.D.
Theorem 13 shows that we can use the predicate ent(x) instead of int(x), which greatly sim-
plifies many computations. In particular, we define the universal quantifier restricted to in-
tegers Vx™ by putting Vx"F = Vx(int(x) — F).
Thus, we can replace it with the universal quantifier restricted to ent(x) defined as follows :
Vx® F = Vx(ent(x) — F). Then, we have |Vx®™F| = {n.m; neN, 7€ | F[s"0/x]|}.
Therefore, the truth value of the formula Vx®™F is much simpler than the one of the for-

mula metF .

Theorem 14. Let ¢ : N — N be a recursive function. There exists a closed A-term 0 such that,
ifmeN, n=d¢(m) and f is a A-variable, then O m f reduces into f n by weak head reduction.

This is a variant of the theorem of representation of recursive functions by A-terms. It is
proved in [13].

Theorem 15. Let ¢ :N¥ — N be a recursive function. We define, in 4, a function symbol f, by
putting f(s™O0,...,s™0) = s"0 withn = ¢(my,...,my) ; we extend f on PX\NF in an arbitrary
way. Then, there exists a proof-like term 0 such that :
0 |FYxy...Vxilint(xy),..., int(xg) —int(f(x1,..., X)].

For simplicity, we assume k = 1. By theorem 13, it suffices to find a proof-like term 6 such
that 0 |- Vx[ent(x), (ent(f(x)) — L) — L]. In other words :
0 |-ent(p), (ent(f(p)) — L) — L for every p € P.
We can suppose that p = s™0 (otherwise, |ent(p)| = @ and the result is trivial).
Thus, we have ent(p) = {m} ; we must show :
O*xmdséeme 1 forall m e ITand ¢ | ent(s"0) — L, with n = ¢p(m).
Take the A-term 0 given by theorem 14. From this theorem, we get :
Ox meem><¢*nem, whichisin 1, by hypothesis on ¢.
Q.E.D.
Remark. We have now found proof-like terms which realize all the axioms of second order arithmetic,
with a function symbol for each recursive function.

Standard realizability algebras

A realizability algebra «f is called standard if its set of terms A and its set of stacks II are

defined as follows :

We have a countable set [Ty which is the set of stack constants.

The terms and the stacks of «f are finite sequences of elements of the set :
[MoU{B,C,E,I,K,W,cc,¢,x, ¥, K (), [,], o}

which are obtained by the following rules :

e B,C,E,I,K,W,cc,c,x, x are terms;
e each element of I is a stack ;
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e if {,n are terms, then ()7 is a term ;
e if { is a term and & a stack, then ¢ .7 is a stack;
e if 1 is a stack, then k[7x] is a term.

A term of the form k(] is called continuation. It will also be denoted as k;,.

The set of processes of the algebra «f is A xII.
If £ € A and 7 €11, the ordered pair (¢, ) is denoted as ¢ * 7.

Therefore, every stack has the form 7 =¢1e... ¢, emp, where¢y,...,{, € A and g € Il (g is
a stack constant). Given a term 7, we put :
JTT = 61. e .fn.T.Tlo.

We choose a recursive bijection from IT onto N, which is written 7 — nj.

We define a preorder relation >, on A xI1. It is the least reflexive and transitive relation such
that, for all ¢,n,{ € A and 7, ® € I1, we have :

En*m>Exnem.

Ixéem>¢&xm.

Kx¢enemr > ¢ *m.
Ex&enem > ()N * .
Whéenem>ExnNeneTt.
CkCeNelem>EXx{eNeT.
B*xenelem> (&) * .
cCrx&éem>ExKyam.
kpyx&e@>E& K.
CHCell>¢ kN o,

A xCemmt > X To.

Y *&eTem>ExT".

Finally, we have a subset 1L of A % IT which is a final segment for this preorder, which means
that: pel,p'>p=>p'el.

In other words, we ask that L has the following properties :
CEn* negl=>Exneme L.
Ixéemgll=>Exme L.
Kxéenem¢ L =>E¢xme L.
Ex¢enem¢ L= (En*me L.
WHhéenem¢g L =>E¢kneneme L.
CxleNelemt L =>¢xLeneme¢ L.
Bxéenelem¢ L= ()M xme¢ L.
ccxéem¢ L =>Exkeme A
kp*Ee@¢ L >Exme L.
CHhCem¢ L =>Ckn o L.

A et g L =>EkTome L.

X *EeTemeg L=>Exmt ¢ AL

Remark. Thus, the only arbitrary elements in a standard realizability algebra are the set 1y of stack
constants and the set L of processes.
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The axiom of choice for individuals (ACI)

Let o/ be a standard realizability algebra and .# a «/-model, the set of individuals of which
is denoted as P. Then, we have :

Theorem 16 (ACI). For each closed formula Vx;...Vx,,¥VyF with parameters, there exists a
function f : P"*! — P such that :

D) ¢lFVxy...Vx,(Vx(ent(x) — F[f(x1,...,Xm, X)/ y]) = Vy F).

ii) ¢ IFVxy...Vx,(Vx(int(x) — Ff(x1,...,Xm, X)/ y]) = Vy F).

For py,..., pm, k € P, we define f(py,..., pm, k) in an arbitrary way if k ¢ N.

If k € N, we have k = n;, for one and only one stack 7y € I1.

We define the function f(py,..., pm, k) by means of the axiom of choice, in such a way that,
if there exists g € P such that:

nk €NFIp1,-.-,Pm qlll, thenwe have i € | Flp1,-.., Pm, f(P1y---» Pmy K.

i) We must show ¢ |- Vx(ent(x) — FIp1,...., Pm>» [(P1,-- s P> X)) — Flp1,..., Pm, q], for every
Pi,.--»Pm> q€P.
Thus, let ¢ |-Vx(ent(x) — Flp1,.--, P, [(P1,---, Pn, X)) and w € | F[p1, ..., Pm, g1l ; we must
show¢*¢eme I, thatis {xn 7€ 1. But we have :
¢ Fent(ng) — Flp1,..., Pm> f(P1,--., Pm»Nz)] by hypothesis on ¢ ;
n, € lent(n;)| by definition of ent ;
nellFlp1,.-., Pm f(P1,---, Pm> N1 by hypothesis on 7w and by definition of f.
ii) The proof is the same ; in fact, (ii) is weaker than (i) since |ent(x)| < [int(x)|.

Q.E.D.
Remarks.
1. A seemingly simpler formulation of this axiom of choice is the existence of a function ¢ : P — P
such that Vx;...Vx, (Flp(x1,...,xm)/ y] — Yy F). It clearly follows from theorem 16 : simply define
&(x1,...,Xm) as f(x1,..., Xm, x) for the first integer x such that = F[f (x1,..., X, x)/ y] if there is such an
integer ; otherwise, ¢(xy,...,Xy,) is arbitrary.
But this function ¢ is not a function symbol, i.e. it cannot be defined in the ground model. For this
reason, we prefer to use this axiom in the form stated in theorem 16, which is, after all, much simpler.
2 . The axiom of dependent choice DC is a trivial consequence of ACI ; therefore theorem 16 shows that
DC is realized by a proof-like term. Theorem 16 is also crucial to prove theorem 38 (see lemma 40).
3. In the following, there will be individuals which represent sets of integers (proposition 50), but ex-
tensionality is not realized. That is why ACI is much weaker than the usual axiom of choice. For
instance, it does not imply well-ordering.

Generic models

Given a standard realizability algebra «/ and a o/ -model .4, we now build a new realizability
algebra 2 and a %-model A4, which is called generic over .4. Then, we shall define the
notion of forcing, which is a syntactic transformation on formulas ; it is the essential tool in
order to compute truth values in the generic model 4.

Thus, we consider a standard realizability algebra </ and a «/-model .4, the set of individu-
als of which is P.
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We have a unary predicate C : P — Z2(A), a binary function » : P> — P and a distinguished
individual 1 € P. We suppose that the data {C, A, 1} constitute what we call a forcing structure
in ./, which means that we have the following property :
There exist six proof-like terms ay, @1, a2, Bo, B1, B2 such that :
T e |Cl(prg)nar]l = aopT € |Clpalgan)ll;
Te|Clpll = a7 €|Clpalll;
1€ [Clpagll = a1 € |Clqll;
T e [Clpll = Bot € IC[papll;
1€ [Clpaqll = P17 €ICIgapll;
T € |Cl((pAg)AT)As]l = Bt € |C[(pA(gar))as]].
We shall call C-expression any finite sequence of symbols of the form y = (6¢)(01)...(0)
where each §; is one of the proof-like terms ag, a1, @2, Bo, B1, B2-
Such an expression is not a c-term, but y7 is, for every c-term 7 ;
the term y1 = (6¢)(61)...(6)T will also be written (y)z.
Notation. A A-term s, by definition, a term which is written with the variables py, ..., pi, the
constant 1 and the binary function symbol . Let t(py,..., px), u(p1,..., Px) be two a-terms.
The notation :
Y t(p1,..., pr) = ulpr,..., Px)
means that y is a C-expression such that 7 € [C[¢(py,..., p)ll = ()T € |Clu(ps, ..., p)ll.
Thus, with this notation, the above hypothesis can be written as follows :
ag: (PAq@IAT = pa(gar); arip=pal; a2::paqg=q;
Bo:p=pap; Briprg=gnrp; B2 (pAqg)AT)As = (PA(GAT))AS.
Lemma 17. There exist C-expressions B, B}, B, B3, By such that :
By pag = (Praq@)ng ; B (pAG)IAT = (GAPIAT 5 Bl pA(GAT) = (PAGIAT ;
B3 pa(gar) = pa(raq) ; By (pa(gar))as = (pA(rag))as.

We write the sequence of transformations, with the C-expressions which perform them :

o By = (B1)(a@2)(@o) (Bo).
prqg; Bo; (paq@)a(paq); ao; pa(ga(paq)) ; az; ga(paq); Br; (pag)aq.
o 5 = (B1)(ao)(B1)(ao)(B1).
pA(GnT); Br; (Gar)ap; ag; garap); Br; (rap)ag; ao; ra(paq); Brs (pag)ar.
o B = (@2) (@) (B2) (B1) (ao) (a2) (B1) (B5) (By) (B1)-
(PA@)IAT; Brs TA(paq) 5 By (ra(pag)a(paq); By ; (ra(pa@)ap)ag; Brs gal(ra(pag))ap);
az; (ra(pag))ap; ag; ra((pag)ap); B1; ((paq@)apIar; B (PA(Gap))ar; ag; pa((gap)ar) ;
a2 ; (gap)ar.
e B3= (BB B).
pa(gnr); Bi; (gar)ap; By (raq@)ap; Bis pa(rag).
o B = (BB B (@) (B
(palgar))as; By ((Gar)ap)as; ao; (Gar)a(pas); Bl s (raq@)a(pas); By s ((rag)ap)as; By ;
(pa(rag))as.
Q.E.D.

Lemma 18. Let t be a n-term and p a variable of t. Then, there exists a C-expression y such
that y:: t= tap.
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Proof by induction on the number of symbols of ¢ which stand after the last occurrence of p.
If this number is 0, then ¢ = p or t = uap. Then, we have y = f§, or ; (lemma 17).
Otherwise, we have ¢ = uav ; if the last occurrence of p is in u, the recurrence hypothesis
gives y':: vau= (vau)ap. Then, we have y = (8))(y")(B1).
If the last occurrence of p isin v, we have v = vgav;. If this occurrence is in vy, the recurrence
hypothesis gives y':: un(viavg) = (ur(v1avp))ap. We put y = (B5)(y")(B3) (lemma 17).
If this occurrence is in v}, the recurrence hypothesis gives
Yt (uavg)avy = ((uavg)avi)ap. Then, we put y = (B2) (") (B5).

Q.E.D.

Lemma 19. Let t,u be two n-terms such that each variable of u appears in t. Then, there
exists a C-expressiony such thaty :: t = tau.

Proof by recurrence on the length of u.
If u=1, theny = a; ;if uis avariable, we apply lemma 18.
If u = vaw, the recurrence hypothesis gives y' :: t = tav and also y” :: tav = (tav)aw. Then,
we put y = (ao) (y") ().
Q.E.D.

Theorem 20. Let t,u be two r-terms such that each variable of u appears in t. Then, there
exists a C-expressiony such thaty :: t = u.

By lemma 19, we have y’:: t = tau. Thus, we can put y = (a2)(y).
Q.E.D.

Corollary 21. There exist C-expressions y1,Yx,YE,YW,YC»YB>Ycc» Yk Such that :
Yripag=q; Yk Ia(pa(gar)) = par; Y In(pa(gar)) = (Pag)ar;

Yw = Ia(pa(gar)) = palgna(gar)) ; ye i In(pa(ga(ras))) = pa(ra(gas)) ;

YB : IA(pA(gAa(ras))) = (PA(GATIAS ;) Ve it In(paq) = pa(gaq) ;

Yk palgar) = gap.

The algebra %

We define now a new realizability algebra 98 = (A, II, A % II, L) : its set of terms is A = Ax P,
its set of stacks is I =[x P and its set of processes is A x IT = (A xIT) x P.

The distinguished subset 1L g of A x II is denoted by L. It is defined as follows :
Exmplell © (VreClp)ixnte L.

For (¢, p) € A and (7, g) € I1, we put :

&, p)*(m,q) = *7m,prq) ;

& p)e(mq)=(em, prq).

For (¢, p),(n,q) € A, we put :

&P, q) = (@oén, paq) with @y = Ax(y)Ay(x'x)(@o)y-

Lemma 22. For each C-expressiony, we put y = Ax(x)Ay(x'x)(y)y.
Then, we have Yy x o™ > Ex 7.
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This is immediate, by means of theorem 2. We could take also y = (y)AxAy(x'y) (y)x.
Q.E.D.

Proposition 23. Ifwe have vy : t(py,..., px) = u(p1,...,px), then :
(¥ xS em, t(p1,..., pK)) > E * 7w, u(p1,..., Pr))-

Suppose that (y x e, £(py, ..., pi)) ¢ AL. Thus, there exists T € C[£(py, ..., pr)] such that:
Yx&em® ¢ L. Therefore, we have é x 7" ¢ UL et yT € Clu(py, ..., pr)l. It follows that :
Exm ulpy,...,pr) & AL.

Q.E.D.

Lemma 24. We have (&, p)(n,q) *x (m,r) ¢ I = (&, p)*(1,q)«(r,7) ¢ L.

By hypothesis, we have (aoénxm, (prg)ar) ¢ 1L ; thus, there exists T € C[(parg)ar] such that :
apénxn’ ¢ 1. By lemma 22, we have { xnen%" ¢ 1 ; since agt € C[pa(gnar)], we have
(& *xnem, pr(gar)) ¢ 1L and thus (&, p) x (1, q) « (7, 7) ¢ L.

Q.E.D.
We define the elementary combinators B, G, E, I, K, W, cc of the algebra 98 by putting :
B=(B*1);C=(C*"1);E=(E*,1);I=("1);K=(K*,1); W=(W*1);cc=(cc*1)
with B* = AxAyAz(yg)(@ox)(@o)yz; C* =y -C; E* = AxAy(yg)(@o)xy; I* =v,I;
K* =y K; W=y, W; cc* = (0AXAY (A ¥) (Y ) X) (D AxXAy (k) (X' y) (yi) x.
We put Kz, ) = (ky, p) with k; = (DAxAy (k) (x'y) (yi) x.

Theorem 25. For every é:,ﬁ,f €A andit,d€Il, we have :
Ix&eigll = Exagll;

Kx&eet¢ Il = Exg dl;

Exlefjeii¢ Il = Oi*ae ll;

Wxéefjetg Il = Exefieii¢ L.

Bréofjoloitell = O@M{xAel;
Crlefjelefig I = ExCofjori ¢ AL,

ccxieigll = Exkyoimg .

kixEed¢ Wl = Exg ll.

We shall prove only the cases W, B, k3, cc.

We put ¢ = (&, )i = 0,9),{= (1,7 =(1,5),0 = @,4).

Suppose W ¢ .7+ 7 ¢ L, and therefore (Y, W * &enerr, In(pa(gas))) ¢ L.

Thus, there exists 7 € C[1a(pa(gns))] such that yy, W x&enen” ¢ L.

Since Yy Wk &enen® > xnenen’?, wehave Exnenen?™ ¢ 1.

But ywt € C[pa(gnr(gns))] and it follows that S* Nefef & L.

Suppose B *E.ﬁ.f.ﬁ ¢ U, thatis (B* %x¢enelem, In(pa(gna(ras)))) ¢ AL.

Thus, there exists T € C[1a(pa(ga(ras)))] suchthat B* x{enelen” ¢ L.

But, we have B* x{enelen’ > (¥p)(@oé)(@o)n{ * n* (by theorem 2)

> (@) (@p)n¢ * 178" (by lemma 22). Therefore, we have (ao¢)(@o)nd *n78% ¢ L.

But ypT € C[(pr(gnaT))as] and thus, we have :

((ao) (ap)n¢ x m, (pa(gar))as) ¢ 1L, in other words (E)(ﬁ)f*ft ¢ L.

Suppose ki x&.d ¢ L, thatis (kix&«®, sa(paq)) ¢ AL. Thus, there exists 7 € C[sa(paq)] such
that kl x.@" ¢ L. Butwe have k; x&e®@" > AxAy(K7) (X' 1) (Vi) XX T o & e @ > (k) (Y O (Y)T*x @
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(by theorem 2) > (Y'O) (Y )T * 7w > ¥/ * EayTom > E X VKT,
Thus, we have ¢ x <" ¢ 1L ; but, since yT € C[pas], we get Exmg .
Suppose cc x&o7t ¢ AL, thatis (cc* x&em,1n(pas)) € UL. Thus, there exists T € C[1a(pas)]
such that cc* x&.7" ¢ IL. But we have :
CC* * Eart" > AXAY(COAK((X 1) (V) X) (DAXAY () (X' 1) (i) X * Te 0T
> (COA(Y O (YT AXAY(K) (X' ) (i) x * 70
> (X' O WAXAY ) (X' V)X k7> ¥ * EaYecT o (NAXAYK) (X' V) (Vi) X o7
>Ex (NAXAY k) (X' Y () xe Vet =&k ko mVeeT.
It follows that & x k.7 ¢ 1. But we have y..T € C[pa(sas)] and it follows that we have
&, p) x(Kk:,s)e(m,s) ¢ 1L, thatis 5* kiome ll.
Q.E.D.
We have now completely defined the realizability algebra 3.

For each closed c-term ¢ (proof-like term), let us denote by ¢4 its value in the algebra 28 (its
value in the standard algebra < is t itself). Thus, we have t5 = (t*,1;), where t* is a proof-
like term and 1, a condition written with 1, A and parentheses, which are obtained as follows,
by recurrence on ¢ :

e If ¢ is an elementary combinator B,C, E, I, K, W, cc, then t* is given above ; 1; = 1.
o (tw)* =apgt u*;1;,=1;a1,.

The model A&

The %8-model .4 has the same set P of individuals and the same functions as ..

By definition, the k-ary predicates of .4 are the applications from P¥ into 22 (II). But, since
II = [I1x P, they are the same as the applications from P¥*! into 2(Il), i.e. the k + l-ary
predicates of the model .4 .

Each predicate constant R, of arity k, is interpreted, in the model .#, by an application R 4
from P¥ into 2(A). In the model ¥, this predicate constant is interpreted by the application
Ry : P¥ — (M), where Ry (p1,..., pr) =Ry (p1,..., pi) x{1}.

For each closed formula F, with parameters in ./, its truth value, which is a subset of 1II,
will be denoted by |[|F|l|. We shall write (¢, p) |I- F to mean that (¢, p) € A realizes F, in other
words (VreIl)(Vge P)(((m,q) € lIFII) = (&, p) % (m,q) € 1L).

Theorem 26.
Ifwe have +- t: A in classical second order logic, where A is a closed formula, then
tg = (%,1y) - A.

Immediate application of theorem 3 (adequacy lemma) in the 8-model .A4".
Q.E.D.

Proposition 27.

)If & 1) |IFF, then (¥¢, p) I-F foreach p € P, with y:: pag = 11q.
ii) Let¢,n € A be such that ¢ x > nx 1 for each it € I1. Then, we have :
Exmp)ell = mxn,p)¢ll foreverynellandpe P ;

(n,p) IFF = (,p) I-F forevery closed formula F.
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i) We must show that, for each (1, g) € || F|ll, we have (y¢,p) % (w,q) € 1L, thatis:
(y¢*m,prq) € L. Thus, let T € C[pag], so that yT € C[1rq].
Since we have, by hypothesis, (¢ x 7,1rq) € 1L, it follows that ¢ % n?* € 1L and therefore
Yéxnmte ll.
ii) By hypothesis, there exists 7 € C[p] such that { x 7 ¢ L. Thus, we have nxn’ ¢ 1, so
that (nxm,p) ¢ L.
Let (m,q) € IF|l ; we have (n, p) % (m,q) € 1L, thatis (n* 7, paq) € 1. From what we have just
shown, it follows that ({ x 7w, pag) € L, and therefore (¢, p) * (,q) € L.

Q.E.D.

The integers of the model A

Recall that we have put :

o=AnAfAx(f)(n)fx, 0=AxAyy and n=(0)"0 for every integer n.

Thus, we have o2 = (0%,1,) and ng, = ((0)"*0)g = (n*, ).

Therefore 0, = (KI) = (K*,1)(I*,1) and n+1,=03n,4=(0",15)(n",1,).
Thus, the recursive definitions of n*, 1, are the following :

g* ZEOK*I* ; (7’1_4'1)* =500*2* :

19=1a1; 1,41 = 15l

We can define the unary predicate ent(x) in the model .4 in two distinct ways :

i) From the predicate ent(x) of the model .#, by putting :

lent(s"0)| = {(n,1)}; lent(p)| =@ if p ¢ N.

ii) By using directly the definition of ent(x) in the model ./" ; we denote this predicate by
ent 4 (x). Therefore, we have :

lent, v (s"0)| = {ng}; lenty (p)| = B if p&N.

From theorem 13, applied in the model .4", we know that the predicates int(x) and ent_4 (x)
are interchangeable. Theorem 28 shows that the predicates int(x) and ent(x) are also inter-
changeable. Thus, we have three predicates which define the integers in the model A" ; it
is the predicate ent(x) that we shall mostly use in the sequel. In particular, we shall often
replace the quantifier Vx™t with Vx€™t,

Theorem 28.

There exist two proof-like terms T, ] such that :
i) (T,1) IFVXVx((ent(x) — X), int(x) — X).
ii) (J,1) |FVx(ent(x) —int(x)).

i) We apply theorem 12 to the sequence u: N — A defined by u,, = (n,1).
We are looking for two proof-like terms T,S such that:
S,Dxw,p)e(n,)e(m,r)>W,p)*x(n+1,D)e(r,r); (SHIFT—L,T— L.
(T,LD)x (P, p)e(V,q)e(mm,1)>(v,q) % (S,1) e (¢, p) e (0,1) e (71, 7).

Then theorem 12 will give the desired result :

(T,1) |FVXVx((ent(x) — X), int(x) — X).

We put S=AfAx(yf)(o)x, withy :: 1a(pa(gar)) = pa(gnar).

Then, we have (S,1) x (¥, p)e(V,q) e (T, 1) = (S* W eVerm, In(pa(gnar))) >

(Yw % ovenm,1n(pr(gnrr))) (theorem 2 and proposition 27(ii))
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> (W *xovem,pa(gnar)) (proposition 23) = (y, p) x (0Vv,q) « (7, 1).
Suppose first that (v, p) [ T — L ; then, we have (y, p) x (ov, q) « (7, 1) € Il and thus:
(S, D) x(y,p)e(v,q)e(m,r) € L. This shows that (S,1) [FT — L, T — L.
Moreover, if we put v =n, so that ov=n+1, and g = 1, we have shown that :
S, Dx,p)e(n,1)e(m,r) >, p)x(n+1,1)e(m,1).
Now, we put T = AfAx(Y x)Sf0, with ¥ :: 1a(pa(gar))] = ga(la(pa(1aT))).
Then, we have (T,1) % (b, p)e (V,q) o (1, 7) = (T * peVverm,In(pa(gnr))) >
(?'v *Sepe0e,1n(pnr(gnar))) (theorem 2 and proposition 27(ii))
>(VkSepe0e1,gr(In(pa(1ar)))) (proposition 23)
=W,q) % (S, 1)e(,p)e(0,1)«(m,r) which is the desired result.
ii) We are looking for a proof-like term J such that (J, 1) || Vx(ent(x) —int(x)). Itis sufficient
to have (/,1) |I-ent(s"0) —int(s"0) for each n €N, since |ent(p)| = @ if p ¢ N.
Let (m, q) € |lint(n) || ; we must have (J,1) % (n,1)«(m,q) € 1L, thatis (J*xnem,1n(1rq)) € 1.
But, we have (n*,1 n) = ((0) "0)% lI-int(s"0) (theorem 3, applied in 98) and therefore :
(n*,1,) % (r,q) € IL orelse (n* *m,1,nq) € AL.
Thus, let 7 € C[1A(11q)] ; we have then (y)"(yo)T € C[1,14g]
where y, and y are two C-expressions such that :
Yo In(laq) = (Aa)aq; y:iipag= (1gap)rq.
Indeed, we have seen that 19 = 1a1 and 1,41 = 15a1,. It follows that, if 7 € C[1A(1Ag)], then
(Yo)T € C[1pag], and therefore (y)"(yo)T € C[1,Ag]. Thus, we have n* x " oT e
Now, we build below two proof-like terms g, j such that, for each n € N, we have :
a) gxnelent” >Ex g 00T,
b) jxnelem>Ekn*om.
Then, by putting J = Ax(gx)(j)x, we have Jx nen® > n*%a®" 007 ¢ I which is the desired
result.
a) We put g = 1kAx(y,)(k)yx; from theorem 2, we have :
g*Nel ot > Yo * (MYEert” > (WY& x0T,
Therefore, it suffices to show that (n)y¢ * 7% > &x 2" which we do by recurrence on 7.
If n =0, we have immediately 0 xyelen’ > x " since 0 =AxAyy.
Goingfromnton+1:wehave (n+ 1)y *xn' = (0n)yé*n' >0 *xneyelen’
> ¥ * (WFEen” > (WYE* T > Ex 7" by induction hypothesis.
b) We put f=apo™, U=AgAy(g)(B)y and j=AkAf(k)UfO*.
Therefore, we have j*x ne.fem>nU¢*0*«m. We show, by recurrence on 7, that :
nUEx k™ e > &% (n+k)* « 7 for each integer k, which gives the desired result with k = 0.
For n =0, we have QUE * k™ et > & * k™ e 1 since 0= AxAy y.
Goingfromnton+1:wehave (n+ D) *xUelek™ em=0n*xUeéek™ em>UxnUEk™en
(since 0 = AnAfAx(f)(n)fx) > nUEx k™ em=nUEx (k+D)*en >k (n+k+1)* e
by induction hypothesis.
Q.E.D.

Forcing

Forcingis a method to compute truth values of formulas in the generic 2-model 4.
For each k-ary predicate variable X, we add to the language a new predicate variable, de-

20



noted by X*, which has arity k+ 1. In the «/-model .4, we use the variables X and X™ ; in
the 28-model ./, only the variables X.

With each k-ary second order parameter & : P¥ — Z2(II) of the model .4, we associate a
(k + 1)-ary second order parameter &+ : P¥*1 — 22(II) of the model .. It is defined in an
obvious way, since Il =I1x P ; we put:

X (p,p1,--pr) ={mell; (n,p) € X (p1,..., Pr)}-

For each formula F written without the variables X*, with parameters in the model .4/, we
define, by recurrence on F, a formula denoted by p [ F (read “ p forces F ”), with parameters
in the model «f, written with the variables X* and a free condition variable p :

If F is atomic of the form X(fy,..., 1), then p i Fis Vq(Clprgl — X" (g, t1,..., tx)).
If F is atomic of the form X (11,..., 1), then p - Fis Vq(Clprgl — X" (q, t1,..., t)).
If F = (A — B) where A, B are formulas, then p [ Fis Yq(g B A— prq I B).

If F=(R(fy,..., tx) — B), where R is a predicate constant, then :

pBFis (R(t,...,t5) — p F B).

IfF=(ty=t— B), then pf}-F is (hH=t— p B B).

IfF=VxA, then pfF is Vx(p I A).

IfF=VXA, then pfF is VX' (p i A).

Thus we have, in particular :

IfF=VYx*" A, then p-F is Vx*™(p I A).

Lemma 29. Let F be a formula the free variables of which are amongst X,..., Xy and let
X,...,Zy be second order parameters in the model &, with corresponding arities. Then,
we have : (p H—F)[%f/Xf,...,%,:/X;] =(p Bk Fl21/X3,..., X! Xi)).

Immediate, by recurrence on F.
Q.E.D.

Theorem 30.

For each closed formula F with parameters in the model N, there exist two proof-like terms
XF» X » which only depend on the propositional structure of F, such that we have :

S HF) = (xré,p) IFF;

&P IFF = Yl -(pF)

forevery £ € A and p € P.

The propositional structure of F is the simple type built with only one atom O and the con-
nective —, which is obtained from F by deleting all quantifiers, all symbols — with their
hypothesis, and by identifying all atomic formulas with O.

For instance, the propositional structure of the formula :

VX(Vx(Vy(f(x,y) =0— Xy) - Xx) - VxXx) is (O— O)— O.

Proof by recurrence on the length of F.

e If Fis atomic, we have F = 2'(ty,..., t) ; we show that yr=yand y. =y’

Indeed, we have :

Ip B Fll=1Vq(Clprgl — X" (q, tr, ..., t)l = UglT e 5 T € Clpagql, (m, @) € I (11, ..., t)lI},
because, by definition of ", we have w € | X " (q, t1,..., )l © (1,q) € X (1, ..., t)l.
Therefore, we have :

(%) EIF(pHF) © (VgeP)(VTeClpaq)(VreID)((,q) € X (t1,..., )l > ExTeme LL).
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Moreover, we have (&, p) I[FF © (Vge P)(Vr e ID)((w,q) € lIF|ll = (&, p) x (m,q) € 1)
< (VgeP)(Vrell)((m, qg) € IFIl= (& *m, paq) € 1) and finally, by definition of 1L :

(xx) (P IFF < (Vge PYVTeClprg)(Vr e D ((m,q) €IIFIl = ¢ *x " € L).

Suppose that ¢ |- (p B F). Since y¢xn® > & x 7+, we have from (x) :

(Vge P)VTeClpag)(Vr e D) ((m, q) € WX (t1,..., ti)ll = yE*Teme L)

and therefore (y¢,p) IFF from ().

Conversely, suppose that (&, p) [ F. By applying (x*) and y'é x T > ¢ x 7, we obtain
(Vg e P)(VT eClpag))(Yr e ID((, @) € IFll = y'ExTeme L)

and therefore y'¢ |- (p  F) from (x).

e fF=VXA, thenp F F=VX*(p B A). Therefore, wehave ¢ | (p B F)=VX* (€ |- (p |k A).
Moreover, we have (¢, p) I[FF=VYX((, p) - A).

Let & : P¥ — 9(I) be a second order parameter in the model .4/, with the same arity as X,
and let " be the corresponding parameter of the model ..

If £ |- (p B F), thenwehave (¢ |- (p FA))XT/XT], thusé | (p F A[Z /X]), from lemma 29.
By the recurrence hypothesis, we have (ya¢, p) I-A[Z /X]. Since & is arbitrary, it follows
that (ya¢,p) IFVXA.

Conversely, if we have (¢, p) I F, then (¢, p) - AIZ / X] for every &'.

By the recurrence hypothesis, we have y',¢ |- (p I A[%/X]), and therefore :

1€ - (p B AX /X)), from lemma 29. Since &' is arbitrary, it follows that :

14¢ I-VXT (p I A), thatis y,¢ - (p B- VX A).

e fF=VxA thenpF F=Vx(pl A). Therefore |Fp B F=Vx( I-(p | A).

Moreover, (£, p) IFF=Vx((¢, p) IF A).

The result is immediate, from the recurrence hypothesis.

e IfF=(tj=t,— A),thenp F F=t; = t, — p I A. Therefore :

IEFpEF) = =n—<¢IF(piA).

Moreover, (¢, p) I-F= (5 =12~ (&, p) - A).

The result is immediate, from the recurrence hypothesis.

e IfF=A— B,wehave pfF=Vq(g# A— prq I+ B) and therefore :

(%) (IE(pBF)=>VYnVqgn - (g | A) —¢én - (paq | B)).

Suppose that ¢ |- (p | F) and put yr=AxAy(,) (x8) (%) (x')y.

We must show (yr¢, p) IFA— B; thus, let (n,9) |- Aand (7, r) € [I|BIl.

We must show (yré, p) x (1, q)«(m,r) € 1L thatis (ypé xnem, pa(gnar)) € L.

Thus, let 7€ C[pa(gar)] ; we must show ypé*xnen’ € L orelse ypx&enenm’ € L.

From the recurrence hypothesis applied to (1, q) |- A, we have )(’Ar/ (g I A.

From (*), we have therefore (&) ()(;1)17 I (prg B B).

Applying again the recurrence hypothesis, we get :

((xp) ' )n, prq) - B. But since (7, ) € || B]ll, we have :

((xB) (X' )0, pag) x (m, 1) € AL, thatis ((xp)(&)(x')n* 7, (paq)ar) € AL.

Since 7 € C[pa(gar)], we have yo7 € C[(prg)ar] and therefore (yp)(&)(x')n*x"°" € IL.
But, by definition of yr, we have, from theorem 2 :

XE*Eenen’ > (xB)(&)(x'))n * m7°" which gives the desired result: yp*¢ene.n’ € L.

Suppose now that (¢, p) - A— B;we put y=AxAy(xp)(@ox)(xa)y-
We must show y%.¢ |- (p b A— B) thatis Vq(y:¢ |- (g B A— pag i B)).
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Thus, let n |- g+ Aand 7 € | pag B B]l ; we must show )(}:6*17.71 el.

By the recurrence hypothesis, we have (yan, q) Il A, therefore (¢, p)(xan, @) - B or else, by

definition of the algebra 28 : ((ao¢)(x4)n, prq) I+ B.

Applying again the recurrence hypothesis, we have (y})(@o¢)(x)n - (prq B B) and there-

fore :

(xp) (@) (x A)n * m € IL. But we have :

Xp€xNemm >y k&enenm > (x) (@) (xA)n * 7w from theorem 2 ; the desired result follows.
Q.E.D.

A formula F is said to be first order if it is obtained by the following rules :

e 1 isfirst order.

o If A, B are first order, then A — B is first order.

o If B is first order, R is a predicate symbol and #,,..., f; are terms with parameters, then
R(#,...,t) — B, t; = t, — B are first order.

o If Ais first order, then Vx A is first order (x is an individual variable).

Remarks.

i) If A isafirst order formula, it is the same for Vx
ii) This notion will be extended below (see proposition 37).

ent A

Theorem 31. Let F be a closed first order formula. There exist two proof-like terms 6,0,
which depend only on the propositional structure of F, such that we have :

$IHClpl—F) = (6ré,p) IFF;

& p) IFF = 6%¢ - (Clpl — F)

foreveryée Aandp e P.

The proof is by recurrence on the construction of F following the above rules.

e IfFis L, we put:

01 =Ax(PAyx)(@)y witha:: prg=p.

0" =AxAy(y'x)(a)y witha'::p= pal.

Indeed, suppose that ¢ |- C[p] — L and let us show that (6, ¢, p)(w, g) € 1L, thatis:

(01 &xm,prg) € IL. Thus, let T € C[prg], so that at € C[p], so that { xat.m € 1L, by hypoth-
esis on ¢, which gives 6 {xn* € L.

Conversely, if (&, p) - L, we have (&, p) x (,1) = (§ x 7, pal) € UL for every m € I1.

But, if 7 € C[p], we have a’t € C[pal], therefore f*n“,T € 1, thus 5lf *Temm€ L.

Therefore 6’ ¢ [-Clp] — L.

e If Fis A— B, we put:

04— =AxAy(YAz((x)(0p)Ad((x)(@)2)(6',¥)(B)2)(y)z with

a:palgar)=p; Brpalgar)=q; v = palgar) = 1ar.

Indeed, suppose that ¢ |-C[pl,A— B, (n,q) I A and (x,7) € || Bl

We must show (6 4—p¢, p) * (1, q)« (, 1) € UL, thatis (6 o~ *Nem, pa(gar)) € L.

Thus, let 7 € C[pa(gar)]; we must show d4.pé*nen’ € L.

We have at € C[p], Bt € C[g] ; but, by the recurrence hypothesis, we have 6’A17 I-Clgl — A,
therefore (6',n)(B)7 |- A and ((§)(@)1)©',M (BT I-B;

thus Ad((§)(a)7)(6",m)(B)7 IFC[1] — B.

From the recurrence hypothesis, we have ((6)Ad(({)(@)7)('ym(B)7,1) - B, thus:
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(6RIAA((E)(@)T) Oy (BT, 1) % (m,r) € 1L, thatis ((6p)Ad(()(@)T)(6' M) (B)T *xm,1a1) € IL.
But, we have yt € C[1A7], therefore (53)/1d((5)(a)r)(6’A17) (B)T *x "7 € 1L, and thus:

(XN @ RAA(E) (@)T)(O',M(B)T) ()T * 7 € LL. Tt follows that :

(DAz(x)(0B)AA(()(@)2)(6",m (B)2) (Y)zx " € L sothat § 4.l *ne.n’ € L.

We now put:

0y 5 = AxAyAz((8%) (@ox) (6 A)Ad 2)(a)y with a::p = pal.

Suppose that (¢, p) I[FA— B;lett e Clpl,n |- Aand 7 € || B]|. We must show :

5;PB€ *Tenem e L. We have Adn |- C[1] — A; applying the recurrence hypothesis, we have
((6A)Adn,1) |- A, thus (&, p)(6a)Adn,1) |- B thatis ((@é)(0a)Adn, pal) |I-B.
Applying again the recurrence hypothesis, we find :

(0) (@¢) (0 A)Adn |- C[pal] — B. Since we have at € C[pal], we get :

(0%) (@) (0 A)Adn* aten € I and finally 6, &*xTeneme L.

o If F=R(g) — B, where Ris a k-ary predicate symbol and j € P¥, we put :
Op—p=AxAy(@)(0p)Az(x)zy with a:: pa(1ar) = par.

0% g = AxAYAz((6%) (@) x2)(a')y with a'::p= pal.

Suppose that ¢ |-C[p],R[G] — B and let n € [R[4]|, (7, 1) € || B|ll. We must show :

(Or—B&, p) * (M, 1) e(m,r) € I, thatis (6g—pé *nem, pa(lar)) € IL. Thus, let 7 € C[pa(1aT)];
we must show dp_.gé*xnen’ € 1. But, we have Az(¢)zn |- C[p] — B, and thus:
((6B)Az(¢)zn, p) Il B, by the recurrence hypothesis.

It follows that ((6p)Az({)zn, p) * (m,r) € UL, that is :

((6p)Az(&)zn *x m, par) € UL. But we have at € C[par], and therefore (6p)Az(&)zn*a%" € L,
thus (@)(0p)Az(€)znx n* € I, therefore dp_pg*xnen’ € L.

Suppose now that (¢, p) [FR(§) — B;let T € Clpl,n€|R[gll and 7 € || B].

We must show 5'R_,B<f*T-77-7T € 1. But, we have (¢, p)(n,1) |- B, thatis ((ag)én, pal) - B,
thus : (5%)(&0)617 |- Clpal] — B, by recurrence hypothesis.

But, we have a'z € C[pal], therefore (6%)(@o){n* a't.7 € 1L, hence the result.

e If F=(p, = p2— B),weput §r=0p and 6, =07y.

Indeed, suppose that ¢ |-C[p] — (p1 = p2 — B) and (7, q) € Ip1 = p2 — Bll. We must show
that (6g¢, p) x (1, q) € L. Since ||p; = p» — Bl # @, we have p; = p», thus (7, g) € [|Bll| and
¢ |- Clp] — B. Hence the result, by the recurrence hypothesis.

Suppose now that (&, p) I-p1 = p2— B, T |FClp] et m € ||p1 = p2 — BIl. We must show
5% *Tem € L. Since ||p; = p2 — Bl # @, we have p; = p», therefore 7 € | B| and (¢, p) |- B.
Hence the result, by the recurrence hypothesis.

e f F=VxA,weput 6p =04 and 6. =0',.
Indeed, if ¢ |-Cl[p] — Vx A, we have ¢ |- C[p] — Ala/x] for every a € P. By the recurrence
hypothesis, we have (6 4¢, p) - Ala/x] ; thus (6 4¢, p) lIFVx A.

If ¢, p) IFVxA, we have (¢, p) - Alalx] for every a € P. By the recurrence hypothesis, we
have §',¢ |- Clp] — Ala/x] ; thus 8',¢ |-Clp] — Vx A.
Q.E.D.
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The generic ideal

We define a unary predicate ¢ : P — Z2(Il) in the model A" (second order parameter of
arity 1), by putting _¢# (p) =IIx{p} ; we call it the generic ideal.
Thus, the binary predicate ¢ : P2 — 92(11) which corresponds to it in the model .4, is such
that _#*(p,q) = ¢ (resp. II) if p # g (resp. p = g). In other words :

FZ*(p,q) is the predicate p # q.
The formula p |- _#(q) is Vr(C[par] — _#7(r,q)). Therefore, we have :
Ip - 2@l =I~Clpagll ; in other words :

p I _#(q) is exactly 7"C[pagq].

Notations.
e We denote by p = g the formula Vr(=C[gar] — 7C[par]) and by p ~ g the formula
PEgAqE p,thatis Vr(=Clgar] < =C[pnr]).
In the sequel, we shall often write F — C[p] instead of —C[p] — —F;
Then pc g iswritten Vr(C[par] — Clgar]) and p ~ q is written Vr (C[par] < Clgnr]).
Remark. We recall that C[p] is not a formula, but a subset of A ; in fact, in some realizability models
which will be considered below, there will exist a formula C[p] such that :
IC[p]l = {Tr € A T |- Clp]}. In such cases, we can identify C[p] with the formula C[p].
o If F is a closed formula, we shall write |-F to mean that there exists a proof-like term
0 such that (0,1) |- F. From proposition 27(i), this is equivalent to say that there exists a
proof-like term 0 such that (0, p) ||~ F for every p € P.

Proposition 32.
D) ¢I-Clpagl = (xé, p) I-2(q) ;
& p) I 2@ = x'¢ I--Clpaqgl.
i) S IEVYr(Clpaan)],Clgl — 1) = (x$, p) I-Clgl ;
& p) IF=Clgl = x'¢ I-Yr(Clpaan)],Clg] — 1).
iii) If¢ |-—R(ay,...,ar) then (&, p) IF—-R(ay,...,a) forallp
(R is a predicate symbol of arity k).

i) If ¢ |- —=C[pnrg], then { x Temr € I and therefore y¢ x ¥ € L for all T € C[prg]. Thus, we
have: (y¢*m, paq) € 1L, thatis (x¢, p) x (m,q) € UL forevery m €11, i.e. (x¢,p) I-_Z(q).
If ¢, p) - _£1ql, we have (&, p) x (7, q) € UL, thus (¢ x 7, paq) € 1L for all 7 € T1. Therefore, we
have ¢ x 7" € 1L, thatis y'é xt.m € 1L foreach 1€ C[paq]. Therefore y'¢ |--Clpagl.
ii) If ¢ [FVr(Clpa(1ar)],Clgl — L), we have { xveTem € 1L if v e C[pa(1ar)] and 7 € Clg].
Therefore y¢éxten¥ € 1L, thus (yé*xTem, pa(lar)) e Il ie. (x&, p) *x (1,1)e(r,r) € L.
But (7,1) is arbitrary in C_4[g], and therefore (y¢,p) II-Clgl — L.
If (&, p) I-—Clqgl, we have (¢, p) % (7,1)« (1, 7) € I, and therefore (¢ x 7«7, pa(1a1)) € L for
each 7 € C[g]. Thus, we have {xT.71” € 1L therefore y'éxv.Tem € I foreach ve Clpa(1ar)].
It follows that y'¢ |- Vr(Clpa(1a7)],Clg] — L).
iii) Let 7 € |[R(ay,...,a;)|;wehave {xTe.m€ I forallm €11, thus ((xTem,a) € ll foralla€ P,
and therefore (¢, p) x (r,1). (1, q) € L.

Q.E.D.

Theorem 33 (Elementary properties of the generic ideal).
D) -7 21) with a:1A(prq) = pal.
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i) (0,1) IFVx(=Clx] — _#(x)) where 0 =Ax()Ay(Y'0)(B)y)(@)y

with a::1An(paq) = q and B::1a(prq) = pa(1al). _

ii1) (0,1) IFVxVy(Z(xny), 1 Z(x) — Z(y) where 0 = AxAy(a)(y)(f)x

with a: 1A(p'A(g'rq@)) = g'~((grp") A1) and B:: (gap)ap = p'A(prq).

i) (0,1 IFVx(Vy(=Clxayl — _£() — 7 Z(x)) where 0 =AxAy(¥)(x)Az(x'y)(B)z, with
B:prg= qgrp and y : Ia(ralgar’)) = ra(1ap).

v) 0,1) IFVxVy(Z(x),yEx— _Z()

where 0 = AxAy((NAz(Y) (@) Az (¥ x)(B)2)) (@) z) (y) 2z, with

a:zInA(p'A(raq)) = (raa(Ial) ; & = IA(P'A(G'AqQ) = gap’; B prg = qrp.

i) Let (&, p) I _# (1) ; we must show that (a,1) x ({, p)«(m,q) € 1L, thatis to say :
(@*&em,1n(prq)) € L. But, from proposition 23, we have :

(@*&em,In(prq)) > (& * 1, pal) = (&, p) * (1, 1).

Now, we have (¢, p) % (,1) € L by hypothesis on (¢, p).

ii)Let (n, p) I-~Clqg] and (7, q) € lI_Z(q)ll. We must show that (6,1) x (7,p)« (7, q) € 1L, i.e.
@ *nem, 1a(prq)) € IL. Thus, let 7€ C[1r(prq)] ; we must show that @ xnen” € L.

From proposition 32, we have y'n |FC[pAa(121)],C[g] —

Now, we have 7 € C[pa(1a1)] and at € C[q], therefore y'nx fr.at.m€ 1L thus

WAV B (@) y*n" € I thusO*xnen” € L.

iii) Let (£, p) - _Z(prq), 0, 4") I-—_£(p) and (7, q) € lI_£ (q)|l. We must show that :

O, *Ep)emq)e(m,g) € I, ie. OxEenerm, In(p'A (g’ rq))) € L.

From proposmons 27(ii) and 23, it suffices to show :

((T(n)(ﬂ)f*n 1A(p'A(g'rq))) € L then (n*ﬁf 7,4 A((gap") D)) € L, that is :

M, g") *x (BE, grp) e (m,1) € L. _

By hypothesis on (1, ¢'), we have now to show that (8¢, gap’) IF_£ (p), i.e.:

(BE, gap)) * (@, p) € UL, or else (BE* @, (gap’)ap) € LI for all @ € I1.

But, by proposition 23, we have :

(BE*x @, (grp")ap) = E* @, p'r(prq)) = (&, p") x (@, prq) € LL by hypothesis on (¢, p').

iv) Let (£, 9) I _#(p) and (n,1) |-V q(=Clprgl — #(q)) ; we must show that :

O,1) % (0,1 e(&,q) e (m,r") € AL, thatis (@ *neéem, In(ra(gar’))) € AL.

From proposition 32(i), we have y'¢ |- ~C[gap]. Let T € C[pagq], thus Bt € C[gap] therefore
x'é* BT.p € L for every p € I1. Therefore, we have Ax(y'&)(B)x*T«p € 1, thus

Az(x'&)(B)z |- ~Clpag]. From proposition 32(iii), we have (1z(y'¢)(B)z,1) [IF~Clpaq]l.

By hypothesis on (1, r), we thus have (1,7) x (Az(y'&)(B)z,1). (7, q) € 1L, i.e.:

% Az(y'E)(B)zem, ra(lrg)) € AL, thus ((7)MAz(Y'E)(B)z * 7, In(ra(gar’))) € 1L
(proposition 23) and therefore (0 xne&«7, 1a(ra(gar’))) € L.

v) Let (¢, p)) I+ _#(p) and (n,1) |- g E p ; we must show that :

O, 1) x (&, p)e(m,1)e(m,q) € I forall w € T1, thatis (B xEener, In(p'A(rag))) € AL.

From proposition 32(i), we have y'¢ |- =C[p'ap], thus Az (Y'&)(B)Z' |- -~Clpap'] : indeed, if
1eC[pap'land p €I, we have Az'(y'&)(B)z' xT+p > (¥'&)(B)T * p € I since Bt € C[p'ap].
Then, from proposition 32(iii), we have (1z'(y'¢)(8)z’,1) - ~Cl(pap']. But, by hypothesis on
(n,1r), we have (1,r) |- (=Clpap'l = ~Clgap’]). It follows that :

M, NAZ (YO (P)Z, 1) IF-Clgap'l,ie. (@omAz' (x'$)(B)Z,ral) lI--Clgap'].

From proposition 32(ii), we have (y")(@om)Az' (x'&)(B)z’ | Cl(ral)a(1a1)],Clgap’] — L

Let 7 € C[1A(p'A(rng))], therefore at € C[(ral)A(1a1)] and a’t € C[gap']. Thus, we have :
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() @emAZ ('O (B)2) (@) T)(y)T * 7w € L, therefore :

(NAz((x" ([@om Az (¥ &) (B)Z) (@) z)(a')z % n* € IL. In other words :

(VA2 @omAZ' (X' O (B)2) (@) 2) (@) zx 7, 1a(p'A(rag))) € IL

or else, from proposition 27(ii) : (@ x&enem, In(p'A(raq))) € L.
Q.E.D.

Theorem 34 (Density).

For each function ¢ : P — P, we have:

0,1 IFVx(~Clxad(x)] — Z(x)),Vx _Z(xrp(x)) — L
where 0 = (B)/lxﬂty(x) @y, 9= (AdAxAy(x'x)(@)y ;
with a::gnr = qga(gnar); B 1a(pa(gar)) = pa(1rq).

Let (¢, p) IFYx(=Clxadp(x)] — £ (X)), (0, q) IFVYx _Z(xrd(x)) and (7, 7) € IL.
we must show that (0 *x¢enem,1n(pa(gnar))) € UL ; thus, let 79 € C[1a(pa(gar))]. We must
show O x¢enen™e 1.
We first show that (91, 1) I ~Clga¢(g)].
Thus, let (@,r") e Il and 7 € C[gad(q)] ; we must show (9n,1) x (7,1)« (@, 7") € 1L
ie. OM*xTe®, In(1rr")) € L orelse In*T.@" € L for each 7/ € C[Ia(1rr)]).
Now, Inx 1 @7 > nxo*" and at € C[ga(grp(g))]. Thus, it suffices to show :
(n*®,gn(gndp(q))) € UL or else (1, qg) * (@, grd(q)) € L.
But this follows from the hypothesis on (1, ), which implies (1, q) - _£ (grdp(q)).
By hypothesis on ¢, we have (¢, p) |- Clgad(q)] — _#(q). It follows that :
&, p)*(On,1)e(m,q) € I, thatis ({xInem, pa(lag)) € L.
But we have 79 € C[1a(pa(gar))]), thus Bto € C[pa(1ag)]. It follows that & x InenPToe 1.
This gives the desired result, since 0 % & o1« > & % In o P,
Q.E.D.

Countable downward chain condition

In this section, we consider a standard realizability algebra « and a «/-model .#. We sup-
pose that the set P (domain of variation of individual variables) has a power > 2%, We choose
a surjection ¢: P — Z2(IDN and we define a binary predicate in the model .#, which we de-
note also by ¢, by putting :

Inepll=e(p)(n)ifneN; |nepll=@ifn¢N
(we use, for the predicate €, the notation ne p instead of e(n, p)).
Therefore, the predicate € enables us to associate, with each individual, a set of integers
which are its elements. Proposition 35 shows that the following axiom is realized :

For every set, there exists an individual which has the same integer elements.
This axiom will be called axiom of representation of predicates on N and denoted by RPN.

Proposition 35 (RPN).
Ax(x)00 |-V X3AxVne(Xn — nex).

This formulais VX (Vx[Vn(ent(n),Xn — nex),Vn(ent(n),nex — Xn) — L] — 1).
Thus, we consider a unary parameter & : P — 22(Il) and a term ¢ € A such that :

CIFVx[Vnlent(n),Zn— nex),Vnlent(n),nex — Xn)— L].
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We must show that Ax(x)00x¢eme 1, orelse{ x0.0.7 € I for every stack 7 € I1.

By definition of ¢, there exists py € P such that X' n = ||ne pyll for every integer n.

But, we have: ¢ |- Vn(ent(n), X' n — ne py),Vu(lent(n),ne pg — Xn)— L.

Thus, it suffices to show that 0 |- Vn(ent(n), Z' n — ne py) and 0 |- Vn(ent(n), ne pg — X n).

Recall that the predicate ent(x) is defined as follows :

lent(n)| ={n} if neN and |ent(n)| =@ if n¢N.

Therefore, we have to show :

Oxnenepell forallneN,n|-Z(n) and pellnepl;

0xn.n'.p' el forallneN,n’ |Fnepy and p' € X (n).

But this follows from nx p € 1L and 1’ x p’ € I, which is trivially true, since ' n = ||ne py|.
Q.E.D.

We suppose now that {C, A, 1} is a forcing structure in .#. Then we define also the symbol ¢
in the 28-model A by putting :

linepll =lnepll x{1} for n, p € P. In other words

linepll={(,1); tee(p)(mM}tifneN;|lnepll=a@if n¢N.

Proposition 36. The predicate €*(q,n,p) is q=1— nep.
The formula q B nep is Clgal]l — nep.

Immediate, by definition of ||z € pll.
Q.E.D.

Proposition 37.
D) - (Clpl = neq) > (0&,p) lIFneq where § = Ax(PAy(x)(@)y and a::pal = p.
ii) &, p)IFneq = 8¢+ (Clpl — neq) where §' = AxAy(x'x)(@)y and o' :: p = pal.

We have (&,p) Fnep < (&, p)*x(r,1)e Il forallme|nepll, orelse:
& p)lFnep © Exnt el foreachteC[pal] and me€ ||nepl.
i) Suppose that ¢ |- (C[p] — neq), Tt € C[pal] and 7€ ||ne pll. Then,we have :
0Exn">¢xart.me L, since at € C[p].
ii) Suppose that (¢, p) IFneq, 7€ C[p] and 7 € |ne p|. Then,we have :
S'ExTem=EXxT®T € 1L, since a'T € Cipall.
Q.E.D.
The notion of first order formula has been defined previously (see theorem 31). We extend
this definition with the following clause :

o teuisfirst order, for all terms ¢, u.
Proposition 37 shows that theorem 31 remains true for this extended notion.

We say that the forcing structure {C, A, 1} satisfies the countable downward chain condition
(in abridged form c.d.c.) if there exists a proof-like term cdc such that :
cde |- YX[Vn®™3p X(n, p), V" pY q(X(n, p), X(n,q) — p = q),

VnepVvq(X(n, p), X(sn,q) — qE p) —

A" V"V p(X(n, p) — p' € p), (Vn"V p(X(n, p) — Clp]) — CIp'DI.
The intuitive meaning of this formula is :
If X(n, p) is a decreasing sequence of conditions, then there exists a condition p’ which is less than all
of them ; moreover, if all these conditions are non trivial, then p’ is non trivial.

We intend, in this section to prove the :
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Theorem 38 (Conservation of reals).
Ifthe c.d.c. is verified, then there exists a proof-like term crl such that :
@l 1) - YX3IxVn(Xn < nex).

This means that the axiom RPN, which is realized in the «/-model .4 (see proposition 35) is
also realized in the generic 8-model .A.

Notation.

The formula Vq(C[pnrql,q I Xn — p - Xn) reads as “ p decides Xn ”, and is denoted by
pixXn.

It can also be written as VqVr(Clpaql,q & Xn,Clpar] — X*(r, n)).

If X : P— 22(I1xP) is a unary predicate in the %-model /4,

and '+ : P? — 22(Il) is the corresponding binary predicate in the standard «/-model .,
the formula Vq(Clpnrql,q & Z n— p I Z n) is thus also denoted by p - +Z n.

Theorem 39. Ifthe c.d.c. is verified, there exists a proof-like term dec such that :
dec |-V XV po3p'{(Clpol — CIp'D, p' € po, V" (p' B £ Xn)}.

Remark. This formula means that, for any predicate X, the set of conditions which decide Xn for all
integers n is dense.

We first show how theorem 38 can be deduced from this theorem 39.
From theorem 30, it is sufficient to find a proof-like term crl0 such that :
crlO -1 f VX3xV ™ (Xn < nex)
or else, since 1 - 1A= Vpo((po B A),Cl[lapel — L) :
crl0 |-V XV pol(po B VgivVn®™(Xn — neq) — 1}),Cl1ape] — L.
From theorem 39, it is sufficient to find a proof-like term crl1 such that :
crl |-V XV poV p'{(Clpol — Clp'D, p' E po, V™ (p' B £ Xn),

(po FVqg(Vn®™(Xn < neq) — 1)),C[1apy] — L}.
It is sufficient to find a proof-like term crl2 such that :
crl2 |-V XY poVp'{(po BV gV n®™ (Xn — neq) — 1)), p' C po, V™ (p' B £Xn),Clp'] — L}.
Indeed, we take then crl1=AxAyAzAudv((x)(crl2)uyz)(6)v with d::1rp=>p;
(recall that the formula C[pg] — C[p'] is written, in fact, as =C[p'] — =C[py]).
We fix Z*:P? — 2, po,p' € P, EI-(po FYqg(Vn®™"(Xn — neq) — 1)), nl-p' © po,
(VYR (p' - +% n) and 7 € C[p']. We must have (crl2)énd |- L.
We choose ¢ € P such that we have ||[ne gyl = ||p’ % n| for all n € N, which is possible, by
definition of £. We trivially have ¢ |- (po B (Vn®™(ne go — X n), Vn®™" (X n — ne qy) — 1)).
But, the formula pg |- (Vn®™(ne go — X' n), Vn®™" (X n — ne qy) — L) is written as :
vrvr'(r V™ (ne go— X n), r' B VX n— ne qo), Cl(poar)ar'l — 1).
Replacing r and r’ with p’, we obtain :
El-(p' BV (neqo— Zn), p' V(X n— neqo), Cl(porp)ap'l — L).
From 1t eC[p'l and n | Vr(=C[poar] — C[p’ar]), we deduce that :
AR(mMAx(h)(B)x)(@)T |- ~=Cl(porp)ap']
where a, f are C-expressions suchthata:p= pap; B::prg= (prq)rq.
Thus, we have :
(1) AyAz(mAx(Eyz)(B)x)(@)T |- (p' V™ (ne go— X n), (p' V(X n— neqp)) — L.
e The formula p’ I Vn®™(ne gy — X n) is written as Vn®™"Wr(r - ne gy — p'ar X n).
But r  neqo=Clral] — neqo (proposition 36) =C[ral] — p’' i Z (n) by definition of ¢p.
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Therefore p’' FVn®™(neqgy— Zn) =Vn®"Wr(Clrall —» p' B X (n)) — p'ar - Zn) =

Ve v q'[Vq(Clrall,Clp'aql — X+ (q,n),Cl(p'ar)ng'l — X (q', n)].

Thus, we have :

(2) AdAxAy((x)(@)y)(B)y IF (p' B ¥Yn® (ne go — X))

with ' :: (par)ag=ral and B :: (par)ag = paq.

e The formula p’ | Vn®™" (X n — ne qo) is written as Vn®"'Wr(r - Zn— p'ar - ne qo),

orelse: Vn®"Wr(r B Z n,C[(p'ar)al] — ne qo), that is, by definition of g :

Ve r(r  Z n,Cl(p'ar)al] — p' B % n). But, we have :

{ FVYn®(p' - +% n), in other words { |- Vn™"'Vr(r B2 n,C[p'arr] — p’ % n). Therefore :

(3) AnAxAy(nx)(@")y - p' BVYn®"(X n— neqo) with a”:: (par)al = par.

It follows from (1,2,3) that :

(AyAz(mMAx(Ey2) (B)x)(@)T) AdAxAy(x)(a)y)(B)y) AnAxAynx)(a”)y |- L.

Therefore, we can put crl2 =

AxoAyoAzgAu((AyAz((yo) Ax(xoy2)(B)x) (@) u) AdAxAy((x)(a) y)(B)y) AnAxAy(zognx)(a')y.
Q.E.D.

The remaining of this section is devoted to the proof of theorem 39.

Definition of a sequence by dependent choices

In this section, we are given a fixed element py € P and a finite sequence of formulas with
parameters F(n, p, p'). We are also given a proof-like term dse such that :

dse |- VnVpap'F(n,p,p).

Remark. The aim of this section is to write down a formula ®(x, y) which represents the graph of
a function ¢ : N — P such that the formulas ¢(0) = po and Vn®™F(n,¢(n),¢p(n + 1)) are realized by
proof-like terms. We shall only apply the results of this section to a particular sequence F of length 3.

From theorem 16(i) (axiom of choice for individuals), there exists a function f:P3 — P such
that: ¢ |-VYnVp(VkS"(F(n, p, f(n, p, k) — L) — Vp'(F(n, p,p) — L)).

It follows that Ax(dse)(¢)x |- VnVp(Vk " (F(n, p, f(n, p, k) — L) — L).

We define a function denoted by (m<n), from P? into P, by putting, for m,ne P :
(m<n)=1if m,neNand m < n; (m<n) = 0 otherwise.

Obviously, the relation (m<n) = 1 is well founded on P.
Thus, from theorem 11(ii), we have :
Y |- Vk(VI(ent(l), F(n, p, f(n, p, D) — (I<k) # 1),ent(k), F(n, p, f (1, p, k) — 1)

— Vk(ent(k),F(n,p, f(n,p, k) — 1).
Therefore, if we set Y = Ax(Y)AyAz(x)zy, we have :
Y |- VKUV ICMY(Eln, p, f(n, p, )] — (I<k) # 1), Fln, p, f(n, p, k)] — L1}

— VE"Y(F[n, p, f(n, p, k)] — L).

Thus, we have :
Ax(dse) () (Y)x |- Vkem{Vlem(ﬁ[n, p, f(n,p, D] — (I<k) # 1),15[71, p,f(n,p, k)] — L} — L.
We define the formula G(n, p, k) = YI"Y(F(n, p, f(n, p, 1)) — (I<k) # 1) and the finite se-
quence of formulas FI(n, p, k) ={G(n,p, k), ﬁ(n, p, f(n, p,k))}. Then, we have shown :

Lemma 40. dse0 |- VnVpIk{H(n, p, k)}, with dse0 = Ax(dse)(c)(Y)x.

Remark. The intuitive meaning of H(n, p, k) is “k is the least integer such that F(n, p, f(n, p, k))".
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Lemma 41. Let cp be a proof-like term such that, for every m, n € N, we have :
p*xMeNeleNelemm>EKm (resp. Nk 7, (x7)if m<n (resp. n<m, m=n). Then:

D) ep lFVmPI ne™(m<n) £1,(n<m) #1,m#n— 1).

ii)dsel |- VnVpVk® k' @ (H(n, p, k), H(n,p, k), k # k' — 1)

with dsel= AkAK'AxAYAX'AY ((cp k'k)(x)k'Y')(x" kY, where ¥,¥ are two sequences of dis-
tinct variables of the same length as the sequence F.

i) Trivial.
ii) Let & - G(n, p, k), i -F(n, p, f(n, p, k), & | Gln, p, k), 7 - E(n, p, f(n, p, k)
and { |-k # k'. We must show cpx k' e ko (KT « (VKT el ome L.
If k = K/, it remains to prove { * 7 € I ; but this is true because we then have ¢ |- L.
If k' < k, it remains to prove & x k' «7) « 71 € IL. This results immediately from :
E-YE Y E(n, p, f(n, p, k) — (k'<k) #1) and thus & |Fent(k)), F(n, p, f(n,p, k') — L,
since k' < k.
Q.E.D.

We now define the binary predicate :

®(x,y) = VX(VnVpVke " (H(n, p,k), X (n, p) — X(sn, f(n, p,k))), X (0, po) — X (x, 7))

and we show that ®(x, y) is a sequence of conditions (functional relation on N) and also some
other properties of ®.

Remark. Intuitively, the predicate ® is the graph of the function ¢ of domain N, recursively defined
by the conditions : ¢(0) = pg; Pp(n+1)= f'(n,¢(n))

where f'(n, p) is f(n, p, k) for the least k such that F(n, p, f(n, p, k)). Unfortunately, we cannot intro-
duce f’ as a function symbol because, unlike f, it is not defined in the ground model.

Lemma 42.

DAxAyy |FD(0, po).

i) Ax()1I |-V y(@(0,y) = y = po).

iii) rec |- VxVyVke (H(x, y, k), ®(x, y) — ®(sx, f (X, y, k)))
where rec = AkAXAYAX' A zAu(zkxy)(x") zu

and ¥ is a sequence of distinct variables of the same length as F.

i) Trivial.
ii) We define the binary predicate & : P2 (1) by putting :
Z(0,9) =g =poll and Z (p,q) = @ for p #0.
We replace X with & in the definition of ®(0, y). Since we have sn # 0 for all n € P, we obtain
1P, I 21T, po=po— ¥ = poll; hence the result.
iii) Let & |- G(x,, k), i |- F(x, y, f(x,, ), &' IF@(x, y),
{ IFVnVYpYk™ (H(n, p,k), X (n, p) — X(sn, f(n, p, k),
v |- X(0, po) and 7€ | X(sx, f(x,y, k).
Then ¢'v |- X(x, y), therefore {*x keéoTjeé'(veme I ie. (reQ)kéné'{uvxme L.
Q.E.D.

Lemma 43. cdcl | Vn®"3p®(n, p) where cdcl = An(m)AxAy(x)Az(cd1)zy)Ax(x)AxAyy
withcd1=AxAy(dse0)AIAZ(y)(rec)lZx ;
Z is a sequence of distinct variables of the same length as H.
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Proof by recurrence on n ; we have AxAy y |- ®(0, po), therefore Ax(x)AxAy y |3y ®(0, y).
We now show that cd1 |- ®(x, y) — IyD(sx, y).

Thus, we consider ¢ |- ®(x,y), nl-Vy(@(sx,y) — 1).

We have rec |- VI (H(x, y, 1), ®(x, y) — ®(sx, f(x, 3, 1)) (lemma 42iii),

n I (D(sx, f(x,y,1)) — 1), and therefore :

MIAZ(n) (rec) 1Z¢ |- VI (H(x, y,I) — L), where Z has the same length as H.

Now, we have dse0 |- 3k [ (x, ¥, k)} (lemma 40) ; therefore :

(dse0)AIAZ(n) (rec)lZ¢ |- L, thatis (cd1)¢én |- L.

Thus, we have shown that cd1 |V y(®(x, y) — IyP(sx, y)), and it follows that :
AxAy(x)Az(cdl)zy |FIyP(x, y) — TyD(sx, y).
Q.E.D.

Lemma 44. There exists a proof-like term cdc2 such that :
cde2 |- Vne™Y pVY q(®(n, p), ®(n,q) — p = q).

We give a detailed proof, by recurrence on n. It enables us to write explicitly the proof-like
term cdc2.

For n =0, the lemma 42(ii) gives the result: ®(0, p),®(0,q9) — p=q.

Let us fix m and suppose that VpVq(®(m, p),®(m,q) — p = q).
We define the binary predicate :

W(n,q) =VpVk®(n=sm, Hm,p,k),®(m,p) — q= f(m, p,k)).

We show that [V pVk™ (H(n, p, k), ®(n, p) — ¥(sn, f(n, p, k), that is to say :

-V pV gV ke 1Y F (n, p, k), ®(n, p), sn = sm, H(m, q,1),®(m, q) — f(n, p, k) = f(m, q, D}
But we have | sn = sm| = ||n = m|, ®(m, p),®(m, q) — p = q by hypothesis of recurrence ;
H(m, p, k), Him, p,1) — k = I (lemma 41(ii)), and it follows that f(n, p,k) = f(m,q,1).

If we put ¥'(x,y) = ®(x,y) A ¥(x,y), we have :

-V pV ke (H(n, p, k), ¥'(n, p) — ¥Y'(sn, f(n, p,k))) ; we have also |- W¥/(0, pg). This shows
that | (®(x, y) — ¥'(x, y)) by making X = P’ in the definition of ®.

Thus, we have |- ®(sm,q) — V¥ pVk™(H(m, p, k), ®(m, p) — q = f(m, p, k)). It follows that :
I-®@(sm, q), ®(sm, q') — ¥ pY ke (H(m, p, k), ®(m, p) — (g = f(m, p, D)) A (g’ = f(m, p, k)
and therefore |-®(sm,q),®(sm,q’) — ‘v’kaem(FI(m, p, k), ®(m,p) — q=4).

Thus, we obtain |-®(sm,q),®(sm,q") — q = g/, since we have cdcl |-IpD(m,p) by
lemma 43 and dse0 |-V p3k®™Y{H(m, p, k)} by lemma 40.

Q.E.D.

End of the proof of theorem 39

In order to show theorem 39, we fix p, € P and a binary predicate & : P? — 22(Il).
We have to find a proof-like term dec such that:

dec |-3p'{(Clpol — CIp'D, p' € po, V™ (p' B +X n)}.

We apply the above results, taking for F (n, p, p) the sequence of three formulas :

{(Clpl —=Clp'D, P EP), ' F+X N} )
Lemma 45 below gives a proof-like term dse such that dse |-V nV p3p'{F(n, p, p')}.
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Lemma 45. dse |-V p3p'{F(n, p, p)}
where dse=Aa(Ah(alDAxAy h)Az(cA)Ak((aAlxxz) B)AxAy (k) (y)(a)x
with B =AxAy(x)(B)y, a:: (paq)ar = raq and B:: (PAG)AT = par.

The formula we consider is written as Vp'[(C[p] — C[p'),p'Ep,(p' F+Xn) — L] — L.
Thus, let ¢ |FVp'[(Clpl = Clp'D, p ' Ep,(p' B +X n) — L]. We must show (dse)é |- L.

e We show that Ah(CINAxAyh|F-(p X n):
Let ¢ | (p X n) ; therefore, we have AxAy( |- (p B +Z n) ; indeed :
pF+xZXn=vqCiprql, gt X n— pFZn).
But, we have ¢ |- (C[p] = ClpD),pCp,(pF+tZn)—L;
we have I |FC[p]—Clpland I |-pCEp (since p'c p=Vq(=Clprgl — ~Clp'rq))).
Thus ((INAxAy( |- L, hence the result.
e We now show Az(cAAk((EAxxz)BHAxAy(k)(y)(@)x |+ (p B X n).
Thus, let 7 € C[paq] and 7w € X * (g, n). We must show :
(EAxx1)BYAxAy (k) (¥) (@) x % 7w € 1. But, we have Axxt |- —C[paq],
B' - prg E p (lemma 46) and ¢ |- (=Clpag]l — =C[p]), pAq E p, (prq b +X n) — L ; thus:
EAxx1) B |+ ((prq B X n) — L). Therefore, it is sufficient to show :
AxAy k) (P (@)x |- (prg X n), ie.:
AxAy (k)W) (@) x [FYr(Cl(pag)ar]l, r X n— paq X n). In fact, we show :
AxAy (k) (P) (@) x [FYr(Cl(pag)ar], r F X n— 1).
Thus, let ve Cl(pag)ar] and 1 |- (r X n). We must show :
kr)mM(@)v*pe Lforallpell ie. (n)(a)vxme L. But, wehave (a)veClragl,
therefore (n)(a)v |- " (q,n), hence the result, since 7 € Z * (g, n).
o It follows that (AR(EINAxAy W) Az(c)Ak((EAxx2)B)AxAy(k)(y) (@) x |- L
i.e. (dse)¢ | L, which completes the proof.
Q.E.D.

Lemma46. Let f:: (pag)ar = par. Then AxAy(x)(B)y -V pVYq((prqg) E p).

This formula is written VpVqVr(—Clpar],Cl(prg)ar] — L1).
Therefore, let ¢ |- Clpar], 7 € C[(pag)ar], thus T € C[par] and ()(B)T |- L.
Thus, we obtain AxAy(x)(f)y*¢eTem e L forevery mell.

Q.E.D.

We propose now to apply the countable downward chain condition to the binary predicate
®(x,y). Lemmas 43 and 44 show that the first two hypothesis of the c.d.c. are realized by
cdc1 and cdc2. The third one is given by lemma 47 below.

Lemma 47. There exist two proof-like terms cdc3 and for such that :
i) cdc3 |- VYn" pV q(®@(n, p),®(sn, q) — g E p).
ii) for |-V n®" q(®(sn, q) — q F +% n).

By lemma 42(iii), we have :

rec |- VK Y (H(n, p, k), ®(n, p) — ®(sn, f(n, p, k))). Using cdc2 (lemma 44), we get :
VK (H (n, p, k), @ (1, p), D(sn, q) — g = f(n, p, k).

Now, H(n, p, k) is a sequence of four formulas, the last two of which are :
f(n,p,k)=p and f(n,p, k) -+Xn.
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i) It follows first that |- V.S (H(n, p, k), ®(n, p),®(sn,q) — G C p).
Hence the result, since we have dse0 |- 3k®"{H (n, p, k)} (lemma 40).
ii) It follows also that |-V k™ (H(n, p, k), ®(n,p),d(sn,q) — g X n).
Thus, we obtain |- Vn®™"'Vq(®(sn,q) — q I £+ n) since we have cdcl |- Vn®™Ipd(n, p)
(lemma 43) and dse0 |-V nV pIk™{H (n, p, k)} (lemma 40).
Q.E.D.

We can now apply the c.d.c. to the predicate ®(x, y), which gives a proof-like term cdcO such
that cdcO |-3p'{Q(n, p, p")} with :

Qn, p,p") = (V"N p(@(n, p) — p' C p), V"V p(®(n, p), ~Clp] — 1),~C[p'] — L}.
Therefore, in order to complete the proof of theorem 39, it is sufficient to find proof-like
terms dec0,dec1,dec2 such that:

decO |- ¥p'(Q(n, p, p),~Clpol,Clp'l — L) ;

decl [FVp' (Qn, p,p) — P Epo) ;

dec2 |FVp' (Qn, p, p)) — Vn (' f +X n)).

Thus, let wg,w; € A be such that:

wo [FYn®"Y p(@(n, p) — p' S p) and w, | Yn"V p(@(n, p),~Clp] — L1),~C[p'] — L
Applying lemma 42(i) with n = 0, p = po, we obtain (wo)AxAyy |- p’' E po.

Therefore, we can take decl = AaAlb(a)AxAyy.

Lemma 48. cdc4 |- (C[pg] — YV p(®(n, p),  Clp] — 1))
where cdcd= AalbAc((bAxgAx1Ax2Ax3AxAy(x)(x1)y)Ax xa)c.

Let T € C[pol, ¢ [FD(n, p) and n |- ~C[p].
Making X(x,y) = 7C[y] in the definition de ®, we get :
¢ -YR'Y PV GIn, p' kL Eln', P/, f (1, p', )], 7 ~Clp't = ~=CLf (!, p, K)D),
2C[pol, ~C[p] — L.

We have Ax(x)7 |- —-Clpol.
Moreover, since F[n',p’, q] = {(~Clq] — aClp'D, (gE P, g b £ n}, we easily get :
AxoAx1 A X2 Ax3Ax Ay (%) (x1) y |-

vr'Vp VG, p', k), Eln', p', f(r, p', k)1, 7~ Clp'l — == CLf (', p', K))).
It follows that ((AxgAx;Ax2Ax3AxAy(x)(x1) Y)Ax(x)T)n |- L, i.e. (cdcd)tén |- L.

Q.E.D.

From lemma 48, we immediately deduce Ax(w;)(cdcd)x |-Clpol,7Clp'] — L.
Therefore, we can put decO = LalbAx(b)(cdc4)x.

Lemma 49.

D) 1efO|FVpYg(pXn,qE p— gl ZXn) with lef0=AxAydz(cAk((y)Au(k)(x)u)z.
ii) lef1 |-VpVq(p b+Zn, q= p— q -+ n) with

lef1 = AxAyAzAu((Ief0)(cc) Ah((y)Av(h)(x)vu)z.

i) This is immediate, if we write explicitly the formulas :
pEXn=vVrClparl > ZX*(r,n);

g p=VYr(=Clpar] = ~Clgnarl);

g Zn=vrCigrr] — X" (r,n)).

Wedeclare x:p%Xn, y:qE p, z:Clgnar], k:~X " n.
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ii) We write down the formulas :

plR£Xn=vVrClparl,rkZn—-phZn);

g p=VYr(Cipar] — 2Clgar]);

g +Zn=vrClgnrl,rFXn—-qZn).

Wedeclare x:p-+Zn, y:q=p, z:Clgnarl, u:r - %n, v:Clparl, h:(p |-Z n).
Q.E.D.

By means of lemmas 47(ii) and 49 and also wy |- Y n®™Vp(®(n, p) — p' C p), we obtain :

AnAx((lef1)(for)nx) (wo) nx |- VY™V q(®(sn, q) — p' I +X n).

But, we have cdcl |- Vn®™3p®(n, p) (lemma 43) ; it follows that :

An(co)Ak((cdc)(s)n) Ax(k) ((lef1) (for) nx) (we) nx |-V n®™ (pg B+ n).

Thus, we can put dec2 = AaAlbAn(cc)Ak((cdc1)(s)n)Ax(k)((lef1)(for)nx)(a)nx.

This completes the proof of theorem 39.
Q.E.D.

The ultrafilter axiom on N

Let us consider a standard realizability algebra « and a «/-model .# in which the individual
set (which is also the set of conditions) is P = 2(ID)N.

The binary relation ¢ is defined by ||nepl = p(n) if n € N ; otherwise ||nep| = @.

1 is defined by 1(n) = @ for every n e N;

aisdefined by |[ne(prg)ll=IlnepAneq| for every n e N.

The axiom of representation of predicates on N (RPN)

We define the following recursive function of arity k, denoted by (n,,...,n) (coding of k-
uples) : (n1,n2) = ny+ (M +n2)(ny + np+1)/25 (ny,..., Ngy1) = (M, ..., 1E), Ngq ).

Proposition 50. |- VX3xVy". .V yP((y,,...,y) ex = X(1,..., yx) where X is a predicate
variable of arity k.

Let & : P¥ — 2(I1) be a predicate of arity k. We define a € P by putting :
an) =% (ny,...,ng) forneN, n=(n,,...,n;). Then, we have immediately :
I II—Vyfm...Vygm((yl,...,yk)sa—» X (y1,.-.,yx)) and
IV Yy (e y) = - V) €4).
It follows that :
Ax() |-V X3xVyst . Yy (..., v €x — X(y1,..., yi) and
Ax(x)1 ||—‘v’XEleyfm...VyZnt(X(yl,...,yk) = (V1.4 YK) EX).
Then, it suffices to apply theorem 13.
Q.E.D.

The comprehension scheme for N (CSN)

Let F[y,x,...,x;] be a formula the free variables of which are taken among y, x, ..., xk.
We define a k-ary function g :P¥ — P, in other words gr: P¥xN — 2(II) by putting
gr(p1,...,p) (M) = |Fln, p1,..., pill for every n € N.
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Proposition 51. We have |- ‘v’xl...ka‘v’yim(yegp(xl,...,xk) — F[y,x1,...,x]) for every for-
mula Fly, x1,...,Xl.

Indeed, we have trivially :
IFVx...Vx VY (ye gr(xy, ..., xx) — Fly, x1,..., x¢]) and
TFVYx1.. VXV Yy (Fly, X1, ..., Xi] — yegr(Xa, ..., Xi).
Then, it suffices to apply theorem 13.

Q.E.D.

Remark. The binary function symbol 4 is obtained by applying CSN to the formula yex; A y € x».

The generic model

We denote by C[x] the formula v mintg nim(m + n) € x, which says that the set x of integers is
infinite. The predicate C is defined by this formula : for every p € P, |C[p]| is, by definition,
theset {re A; 7 |-C[pl}.

It follows that the condition y : t(py,..., pn) = u(p1,..., py) is written as :

Axyx |FVpy...Vpu(Clt(py,..., p)] — Clu(pi,..., p)D.

Therefore, in order to complete the definition of the algebra 28 (and of the 8-model .4, it
remains to find proof-like terms ag, a1, a2, Bo, B1, B2 such that :

ao =Y pVgvr(Cl(pagarl — Clpa(gan]); ar IV p(Clp] — Clpall);

az |[-YpYq(Clprgl — Clql); o l-VYp(Clpl = Clpapl); B1I-YpVYq(Clprgl — Clgap)) ;

B2 IFYpY gV rVs(Cl((prqg)ar)as] — Cl(pa(gar))as]).

Now, we easily have, in natural deduction :

FO:Vn(nex — nex’) — (Clx] — C[x']) with 8 = AfAulmAh(um)AnAx(hn)(f)x.
Therefore, by theorem 3 (adequacy lemma), we can put a; =6a; and §; =07, with proof-
like terms a;‘ , ﬁ;‘ (0 <i <2)suchthat:

Fag :VXVYVZ{XAYINZ = XA(YAZ)}; Fal :VX{IX — XATH Fa; : VXVY{XAY - Y}
FBy:VXIX—XAX}; EB]:VXVY{XAY - YAXY};

B3 :VXVYVZVU{((XAY)ANZ)ANU — (XA (Y AZ)) AU}

The countable downward chain condition

In this section, we show the :

Theorem 52.
The forcing structure {C, A, 1} satisfies the countable downward chain condition in 4 .

Remark. The proof of this theorem is a formalization of the following simple result :

The set of infinite subsets of N with the preorder “p = q & p\ g is finite”, satisfies the countable
downward chain condition.

The proofis as follows : let p,, be a decreasing sequence for this preorder ; put h, = (i<n pi, kn = the
first element of h,, which is = n, and consider {k, ; n € N} which is an infinite subset of N.

We have to find a proof-like term cdc such that:
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cde |-V X3x{Vn®™3p X (n, p), VY pV q(X(n, p), X(n,q) — p = q),
vYnt"Vpvq(X(n, p), X(sn,q) — qE p) —
Vne" p(X(n, p) — x C p) A (VY p(X (n, p) — Clpl) — Clx])}
where p £ g is the formula Vr(C[par] — Clgnar]).
By theorem 13, this amounts to find a proof-like term cdc’ such that:

cdc’ |- VX3Ax(Vr™3p X (n, p), VRN pY q(X (1, p), X (1, q) — p = q),

vn" pv q(X(n, p), X(sn, q) — g E p) —

V"V p(X(n, p) — xS p) A (VR p(X (1, p) — Clp]) — Clx])}.
By theorem 3 (adequacy lemma), given a formula F, we can use the following method to
show |- F:
First, show |- Ajy,..., |- Ak, then show A,,...,Ax = F by means of the rules of classical
second order natural deduction (which contains the comprehension scheme), and of the
following axioms which are realized by proof-like terms in the «/-model ./ :

o t# ufor all closed terms t, u which take distinct values in /.
. inlnt...Vx}cnt(t(xl,...,xk) = u(xy,..., x)) for all the equations between terms which are
true in N.
¢ The foundation scheme (SCF, see theorem 11ii) which consists of the formulas :
VX Y XAV XY YN Xy, Xy — Fh X0 # 1D, X%, Xex — L]

—vxint(Xx, ..., Xpx — L)}
where f: P2 — P is such that the relation f(,x) =1 iswell founded on N.
e The axiom of choice scheme for individuals (ACI, see theorem 16) which consists of the
formulas V%(Vy™F(Z, fr(X, 1) — VyF(& ) ;
%= (x1,..., Xg) is a finite sequence of variables, VXV y""'F is an arbitrary closed formula, and
fr is a function symbol of arity k+ 1.
* The axiom of representation of predicates on N (RPN, see proposition 50) which consists
of the formulas VX3xVJ ((y1,..., y0) €x — XJ) ;
¥=(y1,..., ¥&) is a sequence of k variables and X is a predicate variable of arity k.
e The comprehension scheme for integers (CSN, see proposition 51), which consists of the
formulas VZVy"(ye gp(X) < Fly, %) ;
X = (x1,...,xy) is a sequence of k variables, VXV yimF is an arbitrary closed formula, and gr
is a function symbol of arity k.

Lemma53. - VpVq(pE g —Im"™n" (n+mep — n+meq)).

We apply the CSN to the formula F[y, x] = y ¢ x ; thus, we obtain :
FVxVy™(yex— yd x)

using the notation —x for gr(x).

We have pc g =Vr(C[par] — Clgar]) and therefore p= g FClpa—q] — Clgarg].

But, we have C[gag] - Vm™3n™(m+negam+nd q) + L, and thus:

pEq +-Clpangql, thatis F pE g —Im™V ™ ~(m+nep A-(m+neq)).

Conversely, from the hypothesis :

V'm0 ep — m +n'eq), Ym™ A (m+ nep Am+ner), we deduce :

Vm™M3n(m' + m) + nep A(m' + m) + ner), then:

VM 3n™ (o (m' + n)eg Am+(m' +n)er) then:
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Vm™3n™(m+ ne g Am+ ner). Therefore :

V' (m' + n'ep — m'+n'eq) - Clpar] — Clgar] and thus:
Im'Vr' (! + nep—m'+n'eq) = Clpar] — Clgnrl.

Q.E.D.
Applying RPN and the comprehension scheme, we obtain :

-V X3hD(h,X) with D(h, X) = VK™V R ((k, n)e h — YqVi™(i < n, X(i,q) — ke q)).
Remark. The intuitive meaning of D(h,X) is: & is the individual associated with the decreasing
sequence of conditions X', the n-th term of which is the intersection of the n first terms of the se-
quence X.

We apply CSN to the formula F(k, n, h) = (k, n) € h. Thus, we obtain :

VRV AYE™ Y n(ke gr(n, h) — (k,n) € h).

We shall use the notation h, for gr(n, h). Therefore, we have :
FVYrYhY K™ (ke hy, < (k,n) € h).

and it follows that :

D(h, X) - V™Y niM (ke b, — Y qVi™(i < n, X(i, q) — ke q))
We put ®(k, h, n) = 3P4V j(j+ neh, — (j<i)#1), i+nehy, k=i+nk.
Remark. The intuitive meaning of ®(k, h, n) is : “ k is the first element of h,, whichis=n".
We apply CSN to the formula F(k, h) = EInintCI)(k, h, n). Thus, we obtain :

FVAVE™ (ke gp(h) — In™d(k, h, n)).

We shall use the notation inf(h) for gr(h). Therefore, we have :
FYhY kP (ke inf(h) < In™ @ (k, h, n)).
The hypothesis of the c.d.c. are:

Ho[X]=Vn™3pX(n,p);

H[X]=Vn"™VpVYq(X(n,p),X(n,q) = p=q);

H,[X] =Vn™VpVYq(X(n,p),X(sn,q) = qEp);

Hs[X] = V™V p(X(n, p) — Clp)).

We put H(X] = {Ho[X], Hi[X], H>[X], H3[X]} and H.[X]={Ho[X], Hi[X], H>[X]}.
Thus, it is sufficient to show :

D(h, X), H.[X] F Yn'™V p(X(n, p) — inf(h) = p) and
D(h, X), HX] F Clinf(h)].

Notation. The formula Vn™(ne p — neq) is denoted by p < gq.

Lemma 54. D(h, X) - Ym™vyni"h, . C h,).

This formula is written ¥ mi"tV nitty kNt (ke by, .. — ke h,,). Now, we have :
D(h, X) =V m" P M (kg ryyyy — Y qY i (i < n+ m, X (i, q) — keq)) ;
FVmmY MY MY YT G < nt+ m, X (i, q) — keq) = VqVi™ (G < n, X, q) — ke )] :
D(h, X) - Ym™Mty ity (Y gV il (i < n, X (i, q) — ke q) — ke hy).

Q.E.D.

Lemma 55. D(h, X), Ho[X], H, [X] F Vn"™V k" p(X(sn, p), ke p, ke hy — ke hg).

We have D(h, X), int(k), int(n) - ¥V pVil™(i < sn, X (i, p) — ke p) — ke hgp.
But, we have int(n), int(i), i <sn + i <nvi=sn, and therefore :
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int(n), VpVi™(i < n, X(i, p) — ke p), Vp(X(sn,p) — kep)
VpVil™"(i < sn, X(i, p) — ke p).
It follows that :
D(h, X), int(k), int(n) - VpVi'™ (i < n, X(i, p) — ke p),Vp(X(sn, p) — ke p) — ke hgp, i.e.:
D(h, X), int(k), int(n) - ke h,,Vp(X(sn, p) — ke p) — ke hgy,. Therefore :
D(h, X), int(k), int(n), Hy[X], H [ X]F Vp(ke h,, X(sn,p), ke p — ke hgy).
Q.E.D.

Lemma 56. D(h, X), H.[X] - ‘v’ni’”Vp(X(n, p) — pE hy).

Proof by recurrence on n. We must show :
D(h,X), H,[X], int(n) - Vpam™V I X (n, p), I+ mep — |+ me hy,).
For n =0, we have D(h, X) F Vk™{(Vg(X(0,q) — ke q) — ke hg). Thus, it suffices to show :
D(h, X), H.[X] F Vpam™ty [y (X (0, p), [+ me p, X(0,q) — L+ meq),
which follows, in fact, from H;[X], thatis X(0, p), X(0,q9) — p=4g.
The recurrence hypothesisis Vp(X(n,p) = pC hy) ;
Hy)[X]isVpVYqg(X(n,p),X(sn,q) — qgE p); H(X]isIp X(n, p).
Moreover, we have easily g= p,p= r + g E r. Thus, it follows that :
Vp(X(sn,p) — pE hy),ie. VpImPWVIP (X (sn,p), 1+ mep — [+ mehy).
Now, we have, by lemma 55 :
D(h,X), HolX], H1[X] + X(sn,p), |+ mep, |+ me h, — |+ me hg,.
Therefore, we have VpEImintVlim(X(sn, p),l+mep— 1+ mehg,) thatis:
Vp(X(sn, p) — p E hyy,), which is the desired result.

Q.E.D.

Lemma57. D(h,X), H(X) - VYn™Clh,].

We have VniPty p(X(n, p) — C[p]) from Hs. Moreover, we have easily :

FVYpVYq(Clpl,pC q— Clg]). Thus, applying lemma 56, we obtain :

D(h,X), H(X) - VYn'""' p(X (n, p) — Clh,]). Hence the result, from Hy[X].
Q.E.D.

Lemma 58. D(h, X), H[X] F Vn™M3ki"®(k, h, n).

By the foundation scheme (SCF), we have :
F Vit ji0 + nehy, — (j<i) #1),i+neh, — L} = Vi (i + neh, — 1).
But, we have D(h, X), fi[X] [ VnimC[hn] (lemma 57), therefore :
D(h, X), H[X] + Vnint3i0 1 ne by, It follows that :
D(h, X), H[X] + Va3 j0 4 ne h, — (j<i) #1),i + nehp}.
Q.E.D.

Lemma59. D(h, X), H[X] + C[inf(h)].

We have Clinf(h)] = Vm™3i"(; + me inf(h)).

Now, by definition of the function symbol inf, we have :

F VRV K" (ke inf(h) — IniMd(k, h, n)).

Therefore + Clinf(h)] < ¥ m™3;/M 30" + m, h, n).

By definition de @, we have trivially + Vn"V k(@ (k, h, n) — 3i™(k = i + n)).

39



Moreover, we have D(h, X), HIX] + Yn™3k™®(k, h, n) (lemma 58).
Therefore D(h, X), H[X] F Yr™ 3" ® + n, h, n), thus D(h, X), H[X] - C[inf(h)].
Q.E.D.

Lemma 60. . ] . )
D(h, X), H,[X] F YhY KMy Py pinty ' " @k, b, n), ®(K', h,n'), k' > k — n' > n).

We have ®(k, h, n) = 3i™¥ (k, h, n, i), with :
Wk, h,n,i)={Vj"(j+neh, — (j<i) #1), i+ nehy, k=i+n}.
Thus, we have to show :
D(h, X), Hy[X], int(k), int(k'), int(n), int(n'), int(?), int(i') - Z(h, k,n, i, k', n',i") — L
with Z(h, k,n,i, k', n',i") = (¥ (k, h,n,i), Y (K',h,n',i"), k' > k, n' < n} thatis:
Z(h, k,n,i, k', n',i" =
VM +neh, — (j<i)#1), i+neh,, k=i+n,
VG ey — (j'<i) #1), i+ 10 ey, K ="+ 10,
k' >k, n' <n.
From n'<n and k=i+n,wededuce n' <k, thus k=j +n'
From k' > k, we deduce i’ +n’ > k, and thus j' <i’.
Therefore, we have j'+n'd h,,i.e. kd h,. But, from n’ < n, we deduce h, < h,y (lemma 54),
thus kéd h,, which contradicts i+ neh,, k=i+n.
Q.E.D.
By definition of ®, we have trivially + Vn"tV k" (@ (k, h, n) — ke hy,).
By lemmas 54 and 60, we get : .
D(h, X), H.[X] - VhY KNty My pinty n"Y Dk, b, n), (K, b, n'), k' > k — K € hy).
Lemma 58 gives Vi3 intg (k) b, n). It follows that :
D(h, X), H,[X] + VniM3Enty 5/ 0ty 1 Y@k, 1, n'), k' > k — k' € hy),
and therefore D(h, X), H,[X] + ¥Yni™(inf(h) C h,,).
But, we have trivially D(h, X) - Vnmthinth(ks hn, X(n, p) — ke p). Therefore, finally :
D(h, X), H.[X] - Yri™V p(X (n, p) — inf(h)  p).
We have eventually obtained the desired proof-like term cdc’, which completes the proof of

theorem 52.
Q.E.D.

The ultrafilter

In the model 4/, we have defined the generic ideal #, which is a unary predicate, by putting :
Z(p) =IIx{p} forevery pe P.

By theorem 33, we have :

i) I-=-_2(1)

i) IFVYx(=Clx] — #Z(x)

iii) I-VYxVy(Z (xry) = £V _Z(y)

iv) IFVx(Vy(=Clxay]l — Z(y) — 2 7 (1)

V) IFYxVy(Z(x),yEx— Z()

By theorem 31, we have |F < |- F for every closed first order formula F.
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Remark. A “first order” formula contains quantifiers on the individuals which, by means of the sym-
bol &, represent the subsets of N. Therefore, it is a second order formula from the point of view of
Arithmetic. But it contains no quantifier on sets of individuals.

int ent ;

By theorems 13 and 28, we can use, in F, the quantifier Vx S

first order.

, since the quantifier Vx

Therefore, we have :

vi) [IFClx] < Vm™3ni"(m + ne x)

vii) |FyCx— Im™V ™ (m+ney — m+nex)

viii) |- vniltpel = VxVyVnim(nsx/\y —NEXNANEY)

since all these formulas are first order. Properties (i) to (viii) show that, in the 8-model ./,
the following formula is realized :

Z is a maximal non trivial ideal on the Boolean algebra of the subsets of N which are repre-
sented by individuals.

Now, by theorems 38 and 52, the following formula is realized in A" :
Every subset of N is represented by an individual.

Thus the following formula is realized in A :
Z is a maximal non trivial ideal on the Boolean algebra of the subsets of N.

Programs obtained from proofs

Let F be a formula of second order arithmetic, that is to say a second order formula every
individual quantifier of which is restricted to N and every second order quantifier of which
is restricted to 2 (N).

We associate with F, a first order formula F', defined by recurrence on F :

e IfFist=u,FT=F.

e If Fis Xt, F' is te X~, where X~ is an individual variable associated with the unary predi-
cate variable X.

« f FisA— B, Fis A" — B'.

e IfFisVx A, Fis vx™t AT,

e IfFisVXA FlisvXx™ A'.

We note that, if F is a formula of first order arithmetic, then F Tis simply the restriction
of F to the predicate int(x).

Fint

Let F be a closed formula of second order arithmetic and let us consider a proof of F, which
uses the axiom of dependent choice DC and the axiom UA of ultrafilter on N, written in the
following form, with a constant _¢ of predicate : “_¢ is a maximal non trivial ideal on Z(N) ”.
We can transform it immediately into a proof of F' if we add the axiom RPN of representa-
tion of predicates on N : VX3xVy(yex — Xy). Thus, we obtain :

x:UA, y:RPN, z: DC' I t[x, y,2] : F'.

Therefore, we have + 1 :UA, RPN — G with u = AxAyAzt[x,y,z] and G=DC' — FF,

Thus, G is a first order formula.

In the previous section, we obtained proof-like terms 6,6’ such that (0,1) | UA and
(0',1) || RPN (theorems 38 and 52).

Therefore, theorem 26 (adequacy lemma) gives (u*,1,)(0,1)(0',1) | G, that is to say :
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(v, AyAD)AD) |-G with v = ((ap) (@) u*0)o’.

By theorem 31, we thus have 6’G v IFC[(1,A1)Al] — G, that is :

8, v FCl(1ua)al], DCt — F.

The axiom DC' is consequence of ACI (axiom of choice for individuals). Therefore, by theo-
rem 16, we have a proof-like term 7 |- DC'.

Moreover, we have obviously a proof-like term ¢y |- C[(1,A1)A1].

Thus, finally, we have 6, v¢ono |- F.

Then, we can apply to the program { = §{-v¢ono all the results obtained in the framework of
usual classical realizability. The case when F is an arithmetical (resp. H}) formula is consid-
ered in [13] (resp. [14]).

Let us take two very simple examples :

If F=VX(X1,X0— X1), we have { xk .k’ «7 >k % 7 for all terms «,x’ € A and every stack
mell

If F = Vm™3n™(¢(m, n) = 0), where ¢ is a function symbol, then for every m € N, there
exists n € Nsuch that ¢p(m,n) =0 and {* MeTKkeT > K *x NoTT'.

T is the proof-like term for integer storage, given in theorem 13(i).

7,k are arbitrary ; therefore, by taking a constant for x, we obtain a program which computes
n from m.

Well ordering on R

The «/-model ./ is the same as in the previous section : the set of individuals is P = 22(IT)V.
Recall that an element of P is called sometimes an individual, sometimes a condition, de-
pending on the context.

We put (m, n) = m+(m+n)(m+n+1)/2 (bijection of N2 onto N). We define a binary function

y : P> — P by putting :

Y(n,p)(i) = p(i,n) if neN; y(n, p) is arbitrary (for instance 0) if n ¢ N.

Notation. In the sequel, we shall write p,, instead of y(n, p). Thus, it is the same to give an

individual p or a sequence of individuals p,(n eN).

If i,neN,wehave |(i,n)epll =liepnl.

We fix a well ordering < on P = (DN, which is strict (i.e. Yx—(x<x)) and isomorphic to

the cardinal 2™ : every proper initial segment of < is therefore of power < 2%, We define a

binary function, denoted by (p <q) by putting (p<q) =1if p<q; (p<q) =0 otherwise.

Since the relation (p < g) =1 is well founded on P, we have (theorem 11) :

YIFVX[Vx(Vy(y<x)=1— Xy) = Xx) = Vx Xx]

in the «/-model ., but also in every 28-model 4.

We shall write, in abridged form, y <x for (y <x) = 1.

Thus, in .4 and ./, the relation < is well founded but, in general, not total.

It is a strict order relation, in both models ; indeed we have immediately, in the model ./ :
TFVYx((x<x)#1); IFVYxVyVz((x<y)=1— ((y<z) =1— (x<2z) =1)).

Since all these formulas are first order, by theorem 31, we have also, in the model A" :
IFVx(x<x)#1D; IFVxVyVz((x<y)=1— ((y<2z) =1— (x<2) =1)).

A condition p € P is also a sequence of individuals pj. Intuitively, we shall consider it, as
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“ the set of individuals py.; for ke po 7 ; we define accordingly the condition 1, the formula
Clp] which says that p is a non trivial condition, and the binary operation a.

1 is the empty set, in other words i€l (i.e. (i,0) € 1) must be false. Therefore, we put :

1(n) =I1for every n e N.

A condition is non trivial if the set of individuals, which is associated with it, is totally ordered
by <. Therefore, we put :

Clp] = Vi®"V j"(ie po, j€ po — Elpis1, pj+1]) with :

Elx,yl=(x=yvx<yVvy<x) thatis E[x,yl=(x# )y, (x<y) #1,(y<x) #1— 1).

The set associated with pag is the union of the sets associated with p and with g ; therefore,
we put:

prq =1 where ryisdefined by : ||2iergll=lliepoll; I12i+1ergll =1llieqoll ;
rj+1isdefinedby: rzj+1 = pit1; r2iv2 = Gi+1-

The notation p < g means that the set associated with g contains the one associated with p.
Therefore, we put :

pcq=Vi®"(iepy— Ij"Yjeqo, pis1 = qj+1})-

Lemma 61.

) OIFVpYgVr(pcqg,gcr—pcr) with 0 =AfAgALiAxAh(fix)AjAy(g)jyh.

ii) 0" |-V pVYqVr(pc qg— par < gar) with 8’ = AfAidyAu((ei)(w)iy)(f)(d2)iy)Aj(u)(do)j
where dy, d,, do, e are proof-like terms representing respectively the recursive functions :
n—2n,n—2n+1, n— [n/2], n— parity of n (e returns boolean values).

i) We suppose :
fI=Vi(ent(i),ie po,V jlent(j), jeqo — pi+1 # qj+1) — L);
g |-V j(ent(j), je qo, Vk(ent(k),kero — gjr1 # res1) — 1) ;
X|iepo; hI-Vk(ent(k),kerg— pi+1 # re+1) ; and we have i € |ent(7)].
It follows that fix |-V j(ent(j), jeqo— pi+1 # qj+1) — L.
Suppose that y |- jeqo andlet j € |ent(j)].
If pis1=¢j+1, then gjyh |- L; therefore gjyh |- pii1 # qj+1. We have shown :
AjAy(g)jyh IV j(ent()), j&qo — pis1 # gj+1)- Therefore (fix)AjAy(g)jyh I L.
ii) We suppose :
fI-Vi(ent(i),ie po,Vj(ent(j), jeqo — pi+1 # qj+1) — L);
yIFi'e(par)o; ul-Vj'(ent(j"), j e (gar)o — (par)ie1 # (GAT) jri1).
If we replace j' with 2", and then with 2j” + 1, we obtain, by definition of A :
(1) (W(do)j" IFj"eqo— (par)is1 # qjrer s
2) W) (d)j" I-j"ero— (par)ie1 # rjnsr.
Then, there are two cases :
o If i’ =2i",wehave y |-i"epo and, by (1), (u)(do)j" I j"€qo— pir+1 # gjr+1. Therefore :
Aj(w)(do)j IFV j(ent()), j € go — piv+1 # gj+1) and it follows that :
((N@)iHPAja)(do)j I- L.
e Ifi'=2i"+1,wehave y |-i"ero and, by (2), (u)(d1)j" |- j"erg— ring #1jns.
By making j” = i, we obtain (u)(d;)i" |-i"ero— L and therefore :
(Wi'y I+ L.
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Thus, in both cases, we get :  ((ei") ()i’ y) (/) (d2)iN YA j(u)(do)j I L.
Q.E.D.

Lemma 62.

i) 0|FVpVYq(pcq,Clgl — Clpl) with

0 =AfAGAIAI AXAX AuAvAw (fi' XA AY (Fix)AjAy(g)jj vy uvw.

ii) FVYpVYqVr(pcq,Clgar]l — Clpar]) inother words |FVpVYq(pcq— qEp).

i) Let fIFpcq,gl-Clgl, thatis:

fI=Vi(ent(i),ie po,Vjlent(j), jeqo— pi+1 # qj+1) — L) ;

g -V jvj'(ent()), ent(j"), j€ qo, j € go — Elqj+1,qj+1]) with :

Elx,yl=(x#y,(x<y) #1,(y<x) #1 = 1).

Let x |Fiepo,x" I-i'epo, u b piv1 # pirr1, v - (piv1 <pire)) # L w I (pire1 <pis1) # L.

Let yI-jeqo, ¥ Ij'€qo.

We have gll’yy’ I-Elgj+1,qj+1] 5 if piv1 = gj+1 and pjryy = gjr41, then:

8JJ'yy' |- Elpis1, pir1], and therefore gj j'yy'uvw Ik L.

Thus, we have AjAy(g)jj'yy uvw [-ent(j), jeqo— Lif piy1=qj+1 and pirs = qjrar.

Therefore, A1jAy(g)jj'yy' uvw |-V j(ent(j), j& go — pis1 # qj+1) if pis1=qj1, thus:

(fioAjAy(@jj'yy uvw I L if pirsr =qj1, thus:

AJAY(Fix)AjAy(g)jj'yy uvw |-V j'(ent(j"), j'€ go — pirs1 # qjr+1)- Therefore :

(IR AY (FiAjAY@) vy uvw I L.

ii) Follows immediately from (i) and |- VpVgVr(p c g — par c gar) (lemma 61).
Q.E.D.

The following lemma shows that we can build the algebra %8 and the 28-model .A".

Lemma 63. There exist six proof-like terms ay, a1, a2, Bo, B1, B2 such that :

ao -V pVgVr(Cl(pag)arl — Clpa(ganl) ; ar IFYp(Clp]l — Clpall) ;

az IV pYq(Clprgl — Clql) ; Bo =Y p(Clpl — Clpap)) ; B1 IFVYpVq([Clpagl — Clgapl) ;
B2 IFYpY gV rVs(Cl((prqg)ar)as] — Cl(pa(gar))as]).

We only show the first case. By lemma 62(i), it suffices to find a proof-like term :
0 |FVYpYgVr(pa(gar) < (paqg)ar). Thus, we suppose :
VIEie(pa(gan)o; ul-Vjlent(j), je ((pag)ar)o — (PA(gar))iv1 # (PAG)IAT) j41).
There are three cases :
e i =2i"; then, we have y|i'epo. We make j = 2i = 4i', therefore u |- ent(2i),i'e pg —
pi+1 # pir+1. Thus, we have : (u)(dp)iy |- L.
e i =4i'"+1;then, we have y |i'eqgo. We make j=i+2=4i"+3, thus:
ul- ent(i+2),i'e go — qirs1 # Gir+1. Thus, we have: ((w)(0)?i)y |- L.
e i =4i"+3;then, we have y |-i'ery. We make j =i—3=4i, thus:
ul- ent(i —3),i'erg — ry4 # ri+1. Therefore, we have : ((u)(p)3i)y L
(p is the program for the predecessor).
Thus, we put 0 = LidyAu(((esi)(w)(do)iy)(w)(0)?i)y) (1) (p)3i)y, where e, is defined by its
executionrule: esx ieéefelem > o (resp. ner, (o) if i = 4i' (resp. 4i' + 1,41’ +3).
Q.E.D.

We now show the :
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Theorem 64.
The forcing structure {C, A, 1} satisfies the countable downward chain condition in /.

The hypothesis of the c.d.c. are :

Hy=VnipX(n,p);

Hy = V"'V pVg{Z (n,p), & (n,q) — p = q};

Hy =Vn®™pVq(Z (n,p), % (sn,q) = qE p);

H3 = VYn®"W p(Z (n, p) — Clp)).

Moreover, by theorem 16, we have a binary function f : P> — P such that :
¢ IFVYn™@p X (n, p) — IK™X (n, f(n, k).

Therefore, by Hy, we can also use the hypothesis :

H} =V n®™™M3k*™ X (n, f(n, k).

Letus put H = {Hy, H}y, Hy, Hp, H3} and H. = {Hp, H}, Hy, Ha}.

Lemma 65. H+ VpVqVme™ n®" (% (m, p), % (n,q) — Clprql).

We show Vmi"y ni"(% (m, p), % (m + n,q) — q = p) by recurrence on n.
For n = 0, this follows from H;, Hs. For the recurrence step, we use H>.
Thus, we have VpVqVm®™Vn®" (% (m, p), % (n,q) — p= gV qC p).
From p £ g, we deduce C[pap] — Clgap], and the result follows, by H3 and C[p] — C[pap].
Q.E.D.
We define the wanted limit & by defining hy and h,,+; for each m e N.
For m = (i, n, k) (thatis (i,(n,k))), we put |mehg| = |Z (n, f(n, k) Nie(f(n, K)ol ;
then hp41 = (f(n, k)41
Intuitively, Z defines a sequence of countable sets, and 4 is the union of these sets.
e Proofof H,+ % (n,p) — hC p.
By lemma 62(ii), it suffices to show % (n,p) — p < h, thatis:
% (n,p),iepo, Ym™ (me hy,— hpi1 # piv1) — L, for n,i eN.
We fix k e N and we put m = (i, n, k). By definition of £, it suffices to show :
%(n) p)) igp()) Vkent(%(nrf(n) k)); i£ (f(n) k))o; - (f(n) k))l+]. ;é pl-l—l) - J—-
Now, from H;,% (n,p), Z (n, f(n,k)), we deduce f(n, k)= p and therefore:
(f(n,k))o=po and (f(n,k))i+1 = pi+1. Thus, it remains to show :
X (n,p),iepo, VKX (n, f(n,k),iepo— pis1 # pis1) — L.
But this formula follows immediately from Hy.
e Proofof H+ C[h].
We must show C[h], thatis mehy, m' e hg — E[hy+1, By +1]. Now, we have :
m=(i,n,k); lmeholl =X n, f(n,K) Nie(f(n, K)ol ; hme1=(f(n,Kk)is1;
m'=(i",n',k); Im' eholl = 1 X (W, f(n, kKN ANi"e (fF (0, K)ol 5 Brsr = (F (1, K)) 141
From % (n, f(n,k),Z (7, f(n', k), we deduce Clu] with u= f(n,k)Af(n,k’) lemma 65).
Therefore, we have :
lie(f(n,k)oll =N2ieul; li'e (f(n',kKNoll = 12"+ 1eull; hmer = Uziv1; Rps1 = Uzirso.
From Clu], we deduce E[uy;.1,Uj42], thatis E[hpi1, Bpyi1l.
This completes the proof of theorem 64.
Q.E.D.
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The well ordering on 27 (N)

In the model .4, we define the unary predicate ¥ (x) = 3p3i®™{~ _Z(p), i€ po, X = pi+1}.
Lemma66. [-%(x),%(y) — Elx,yl.

We must show [|-=_2(p), 7 2(q),i€po, X = pi+1,j€qGo, ¥ = qj+1 — Elx, y], thatis
I==2(p), 2 2(q), i€ po, j&qo— Elpit1, gjsl.
By theorem 33(ii) and (iii), we have |I--_¢(p),7_#(q) — Clpaq].
Therefore, it is sufficient to show that [[-Cl[pagl, i€ po, jeqo— Elpi+1,qj+1]-
We show below that we have I |-Clpagl,i€po,jeqo — Elpi+1,4qj+1]. Since this is a first
order formula, this gives the desired result, by theorem 31.
Indeed, we have : pii1 = (prq)2i+1; qjr1 = (PAG)2j+2;
liepoll = 12i e (paqloll; lj€ ol = 12 + 1 (pagholl.
Therefore, it remains to show :
I'-Clpaql,2ie(prq)o, 2] +1e(paq)o — EL(PAG2i+1, (PAG)2j+2]
which is obvious, by definition of C[pag].
Q.E.D.

Lemma 66 shows that < is a fotal relation on ¢. But, moreover, < is a well founded relation
in A& . Therefore, we have :

I~ <4 is well ordered by <.
We define now two functions on P :
e aunary function 6 : P — P by putting [[ied(p)oll=lli+1epoll; O(P)it1 = Pi+2-
¢ abinary function (/):P2 — P by putting [0ed(p, @)oll =D ; lli+1ep(p, g)oll = liepoll;
dp,Dr1=q; ¢(p,q)i+2 = pi+1 forevery i e N.
Therefore, we have 6(¢p(p,q)) = p and ¢(p,q); = q forall p,q e P and thus:
IEYpYq6(pp, @) =p); LIEYpYqé(p(p,q) =p);
II=-VYpYqpp,g1=q); TLIFYpYq(p,gh = q.
Intuitively, 6 (p) defines the set we obtain by removing p; from the set associated with p ;
¢(p, q) defines the set we obtain by adding g to the set associated with p.

Lemma 67. Ifp, q € P, there exists q' € P such that 6(q') = q and p; <q' foreveryieN.

For each a € P, we have 6 (¢(q, a)) = g. But the application a— ¢(q, a) is obviously injective,

since ¢(q,a); = a. Thus, the set {¢p(q, a); a € P} is of cardinal 2%, Now, by hypothesis on <,

every proper initial segment of P, for the well ordering <, is of cardinal < 2%, Thus, there

exists some ag € P such that p; <¢(q, ag) for every i € N. Then, it suffices to put ¢’ = ¢(q, ay).
Q.E.D.

Therefore, we can define a binary function v : P> — P such that we have :
o(w(p,q)=q and (p;<y(p,q)) =1 forall p,q € P and i € N. Thus, we have :

IIFVpYqlwp,g)=q); LIFYpYq(y(p,q) =q).
KI|FVYpYqYi®™(p;<y(p,q); KL VpYqVi®™(p; <y (p, q)).

Lemma 68. We have |IYq3x{¥(x),0(x)=q}.
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This is written as |-V q[VxVpVi®™(6(x) = g, i€ po, x = pi+1 — £ (p)) — L] orelse:

I=Y v Vi (ie po, 6(pis1) =g — £ (p) — L.

By making i =0, it is sufficient to show :

(1) I=Yq(VpOepo,6(p1) =g — #(p) — Ll

By replacing p with ¢(p,v(p,q)) in (1), we see that it remains to show:
I=Yaq=yp 2o,y (p, ).

Lemma 69. |VpVq(Clp] — Clo(p,w(p, 9))).

We have C[r] = Vi®"V " (ierg, jerg — Elris1,7j41]). Therefore, in order to show that

I-Clp] — Cl[r], it suffices to show :

(1) IFClpl = ViV j™ (G + 1&g, j+1erg — Elrita,Tjs2]) and
(2) IFClpl = V™ 0ery, j+1erg— Elr,1js2)).

We apply this remark by putting r = ¢(p,w(p,q)). Then (1) is written as |-C[p] — C[p]
since ||i+1eryll=liepol and ri42 = pi+1 and the same for j.
Thus, it suffices to show (2), that is :

I-Clpl — Y j™ 0 ed(p,w(p, @)o, j + 1ed(p,w(p, @))o — ElPp(p, ¥ (p, )1, d(p, w(p, @) j+2]).
But, we have I |FVpVYq0ed(p,q)o); [IFVYpYqg(jepo— j+1ledp(p,v(p, §)o);
IIEVYpYqpp,w(p, ) =v(p, @) ; TIFYpVqdp,w(p, q)jr2 = pj+).

Therefore, it remains to show :

I-Clpl — V¥ j™(je po — Elw(p, 9), pjs1])

which is trivial, since we have K1 |-V pVYqV¥ j*™ (pj+1 <y (p, q).
Q.E.D.

Lemma 70. LiAxAy((»)(@)i)x|-VYpVYq(p < d(p,q)).

This is written as :
AidxAy(y)(0)i)x |- Vi(ent(i),ie po,V jlent(j), jep(p, )o — ¢(p, @) j+1 # pi+1) — L)
which is immediate, by making j =i+ 1.
Q.E.D.
We have |pco(p,w(p,q)) lemma 70), and it follows that :
I-¢(p,w(p, q)) E p (lemma 62ii), and thus [|-Cl¢(p,v(p, )] — Clprd(p, v (p, )]
Therefore, by lemma 69, we have :
IFVYpVYq(Clpl — Ciprd(p,w(p,g))]). Since this is a first order formula, we have, by theo-
rem31: [-VYpVYq(Clpl — Clprd(p,w(p, g))D)
and therefore, by theorem 33(ii) : |- VpVq(Clprd(p,v(p,g)] — Z(p)).
Then, we apply theorem 34, which gives: [-VYg-Vp _Z((p,v(p,q)))
which is the desired result.
Q.E.D.

Theorem 71. The following formulas are realized in N :
i) There exists a well ordering on the set of individuals.
ii) There exists a well ordering on the power set of N.

i) Lemma 68 shows that, in .4, the function ¢ is a surjection from ¢ onto the set P of indi-
viduals. But, we have seen that the formula: “ <% is well ordered by <” is realized in .A4".
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ii) By theorems 38 and 64, the following formula is realized in A" : “ Every subset of N is
represented by an individual ”. Hence the result, by (i).

Q.E.D.
Theorem 71(ii) enables us to transform into a program any proof of a formula of second order
arithmetic, which uses the existence of a well ordering on R. The method is the same as the
one explained above for the ultrafilter axiom.

References

(1] S.Berardi, M. Bezem, T. Coquand. On the computational content of the axiom of choice.
J. Symb. Log. 63 (1998), p. 600-622.

[2] H.B. Curry, R. Feys. Combinatory Logic. North-Holland (1958).
[3] W. Easton. Powers of regular cardinals. Ann. Math. Logic 1 (1970), p. 139-178.

[4] J.Y. Girard. Une extension de l'interprétation fonctionnelle de Gddel a 'analyse.
Proc. 2nd Scand. Log. Symp. (North-Holland) (1971) p. 63-92.

[5] T. Griffin. A formulce-as-type notion of control.
Conf. record 17th A.C.M. Symp. on Principles of Progr. Languages (1990).

[6] S. Grigorieff. Combinatorics on ideals and forcing.
Ann. Math. Logic 3(4) (1971), p. 363-394.

[7]1 W. Howard. The formulas—-as—types notion of construction.
Essays on combinatory logic, A-calculus, and formalism, J.P. Seldin and J.R. Hindley ed.,
Acad. Press (1980) p. 479-490.

(8] J. M. E. Hyland. The effective topos.
The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), 165-216,
Stud. Logic Foundations Math., 110, North-Holland, Amsterdam-New York, 1982.

[9] G.Kreisel. On the interpretation of non-finitist proofs I.
J. Symb. Log. 16 (1951) p. 248-26.

[10] G. Kreisel. On the interpretation of non-finitist proofs II.
J. Symb. Log. 17 (1952), p. 43-58.

[11] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.
Arch. Math. Log., 40, 3, p. 189-205 (2001).
http://www.pps.jussieu.fr/ ~krivine/articles/zf_epsi.pdf

[12] J.-L. Krivine. Dependent choice, ‘quote’ and the clock.
Th. Comp. Sc., 308, p. 259-276 (2003).
http://hal.archives-ouvertes.fr/hal-00154478
http://www.pps.jussieu.fr/ ~krivine/articles/quote.pdf

48



(13]

(14]

(15]

J.-L. Krivine. Realizability in classical logic.

In Interactive models of computation and program behaviour.
Panoramas et syntheses, Société Mathématique de France, 27 (2009).
http://hal.archives-ouvertes.fr/hal-00154500

Updated version at :

http://www.pps.jussieu.fr/ “krivine/articles/ Luminy04.pdf

J.-L. Krivine. Realizability : a machine for Analysis and set theory.
Geocal’06 (fevrier 2006 - Marseille); Mathlogaps’'07 (juin 2007 - Aussois).
http://cel.archives-ouvertes.fr/cel-00154509

Updated version at :

http://www.pps.jussieu.fr/ ~krivine/articles/Mathlog07.pdf

J.-L. Krivine. Structures de réalisabilité, RAM et ultrafiltre surN. (2008)
http://hal.archives-ouvertes.fr/hal-00321410
http://www.pps.jussieu.fr/ “krivine/articles/Ultrafiltre.pdf

skskokskokokkokkksk

49



