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Introduction

When we want to obtain programs from mathematical proofs, the main problem is, naturally,
raised by the axioms : indeed, it has been a long time since we know how to transform a proof
in pure (i.e. without axioms) intuitionistic logic, even at second order [2, 7, 4].
The very first of these axioms is the excluded middle, and it seemed completely hopeless for
decades. The solution, given by T. Griffin [5] in 1990, was absolutely surprising. It was an
essential discovery in logic because, at this moment, it became clear that all other axioms
will follow, as soon as we will work in a suitable framework.

The theory of classical realizability is such a framework : it was developed in [12, 13], where
we treat the axioms of Analysis (second order arithmetic with dependent choice).
In [15], we attack a more difficult case of the general axiom of choice, which is the existence
of a non trivial ultrafilter onN ; the main tool is the notion of realizability structure, in which
the programs are written in λ-calculus.
In the present paper, we replace it with the notion of realizability algebra, which has many
advantages : it is simpler, first order and much more practical for implementation. It is a
three-sorted variant of the usual notion of combinatory algebra. Thus, the programming
language is no longer the λ-calculus, but a suitable set of combinators ; remarkably enough,
this is almost exactly the original set given by Curry. The λ-terms are now considered only
as notations or abbreviations, very useful in fact : a λ-term is infinitely more readable than
its translation into a sequence of combinators. The translation used here is new, as far as I
know ; its fundamental property is given in theorem 2.

The aim of this paper is to show how to transform into programs, the classical proofs which
use dependent choice and :
i) the existence of a non trivial ultrafilter on N ;
ii) the existence of a well ordering on R.
Of course, (ii) implies (i) but the method used for (i) is interesting, because it can give simpler
programs. This is an important point, because a new problem is appearing now, an impor-
tant and very difficult problem : to understand the programs we obtain in this way, that is to
explain their behavior. A fascinating, but probably long work.
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The logical frame is given by classical second order logic, in other words the (first order) the-
ory of the comprehension scheme. However, since we use a binary membership relation
on individuals, we work, in reality, in at least third order logic. Moreover, this is indispens-
able since, although the axiom of dependent choice on R can be expressed as a second order
scheme, axioms (i) and (ii) cannot be expressed in this way.
By using the method expounded in [11], we can obtain the same results in ZF.

It seems clear to me that, by developing the technology of classical realizability, we shall be
able to treat all “natural” axioms introduced in set theory. It is already done for the contin-
uum hypothesis, which will be the topic of a forthcoming paper. In my opinion, the axiom of
choice and the generalized continuum hypothesis in ZF do not pose serious issues, except
this : it will be necessary to use the proper class forcing of Easton [3] inside the realizability
model, and it will probably be very painful.
A very interesting open problem is posed by axioms such as the existence of measurable
cardinals or the determination axiom.

But the most important open problem is to understand what all these programs do and, in
this way, to be able to execute them. I believe that big surprises are waiting for us here.
Indeed, when we realize usual axioms of mathematics, we need to introduce, one after the
other, the very standard tools in system programming : for the law of Peirce, these are contin-
uations (particularly useful for exceptions) ; for the axiom of dependent choice, these are the
clock and the process numbering ; for the ultrafilter axiom and the well ordering of R, these
are no less than read and write instructions on a global memory, in other words assignment.
It seems reasonable to conjecture that such tools are introduced for some worthwhile pur-
pose, and therefore that the very complex programs we obtain by means of this formalization
work, perform interesting and useful tasks. The question is : which ones ?

Remark.
The problem of obtaining a program from a proof which uses a given axiom, must be set correctly

from the point of view of computer science. As an example, consider a proof of a theorem of arith-

metic, which uses a well ordering of P (N) : if you restrict this proof to the class of constructible sets,

you easily get a new proof of the same theorem, which does not use this well ordering any more. Thus,

it looks like you simply have to transform this new proof into a program.

But this program would be extracted from a proof which is deeply different from (and dramatically

more complicated than) the original one. Moreover, with this method, it is impossible to associate a

program with the well ordering axiom itself. From the point of view of computer science, this is an

unacceptable lack of modularity : since we cannot put the well ordering axiom in a program library,

we need to undertake again the programming work with each new proof.

With the method which is explained below, we only use the λ-term extracted from the original proof.

Therefore, this term contains an unknown instruction for the well ordering axiom on P (N), which is

not yet implemented. Then, by means of a suitable compilation, we transform this term into a true

program which realizes the initial theorem.

As a corollary of this technology, we obtain a program which is associated with the well ordering ax-

iom, which we can put in a library for later use.
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Realizability algebras

A realizability algebra is composed of three sets : Λ (the set of terms), Π (the set of stacks),
Λ?Π (the set of processes) with the following operations :

(ξ,η) 7→ (ξ)η fromΛ2 intoΛ (application) ;
(ξ,π) 7→ ξ.π fromΛ×Π intoΠ (push) ;
(ξ,π) 7→ ξ?π fromΛ×Π intoΛ?Π (process) ;
π 7→ kπ fromΠ intoΛ (continuation).

We have, inΛ, the distinguished elements B ,C ,E , I ,K ,W,cc, called elementary combinators
or instructions.

Notation. The term (. . . (((ξ)η1)η2) . . .)ηn will be also denoted by (ξ)η1η2 . . .ηn or ξη1η2 . . .ηn .
For example : ξηζ= (ξ)ηζ= (ξη)ζ= ((ξ)η)ζ.

We define on Λ?Π a preorder relation, denoted by Â. It is the least reflexive and transitive
relation such that we have, for any ξ,η,ζ ∈Λ and π,$ ∈Π :

(ξ)η?πÂ ξ?η.π.
I ?ξ.πÂ ξ?π.
K ?ξ.η.πÂ ξ?π.
E ?ξ.η.πÂ (ξ)η?π.
W ?ξ.η.πÂ ξ?η.η.π.
C ?ξ.η.ζ.πÂ ξ?ζ.η.π.
B ?ξ.η.ζ.πÂ (ξ)(η)ζ?π.
cc?ξ.πÂ ξ?kπ .π.
kπ?ξ.$Â ξ?π.

Finally, we are given a subset ⊥⊥ ofΛ?Πwhich is a terminal segment for this preorder, which
means that : p ∈⊥⊥, p′ Â p ⇒ p′ ∈⊥⊥.
In other words, we ask that ⊥⊥ be such that :

(ξ)η?π ∉⊥⊥⇒ ξ?η.π ∉⊥⊥.
I ?ξ.π ∉⊥⊥⇒ ξ?π ∉⊥⊥.
K ?ξ.η.π ∉⊥⊥⇒ ξ?π ∉⊥⊥.
E ?ξ.η.π ∉⊥⊥⇒ (ξ)η?π ∉⊥⊥.
W ?ξ.η.π ∉⊥⊥⇒ ξ?η.η.π ∉⊥⊥.
C ?ξ.η.ζ.π ∉⊥⊥⇒ ξ?ζ.η.π ∉⊥⊥.
B ?ξ.η.ζ.π ∉⊥⊥⇒ (ξ)(η)ζ?π ∉⊥⊥.
cc?ξ.π ∉⊥⊥⇒ ξ?kπ .π ∉⊥⊥.
kπ?ξ.$ ∉⊥⊥⇒ ξ?π ∉⊥⊥.

c-terms and λ-terms

We call c-term a term which is built with variables, the elementary combinators B , C , E ,
I , K , W , cc and the application (binary function). A c-term is called closed if it contains no
variable ; it will then also be called proof-like ; a proof-like term has a value inΛ.

Given a c-term t and a variable x, we define inductively on t , a new c-term denoted by λx t .
To this aim, we apply the first possible case in the following list :
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1. λx t = (K )t if t does not contain x.
2. λx x = I .
3. λx tu = (Cλx(E)t )u if u does not contain x.
4. λx t x = (E)t if t does not contain x.
5. λx t x = (W )λx(E)t (if t contains x).
6. λx(t )(u)v =λx(B)tuv (if uv contains x).

We easily see that this rewriting is finite, for any given c-term t : indeed, during the rewriting,
no combinator is introduced inside t , but only in front of it. Moreover, the only changes in t
are : moving parentheses and erasing occurrences of x. Now, rules 1 to 5 strictly decrease the
part of t which remains under λx, and rule 6 can be applied consecutively only finitely many
times.

The λ-terms are defined as usual. But, in this paper, we consider λ-terms only as a notation
for particular c-terms, by means of the above translation. This notation is essential, because
almost every c-term we shall use, will be given as aλ-term. Theorem 2 gives the fundamental
property of this translation.

Remark. We cannot use the well known K S-translation of λ-calculus, because it does not satisfy

Theorem 2.

Lemma 1. If t is a c-term with the only variables x, y1, . . . , yn , and if ξ,η1, . . . ,ηn ∈Λ, then :
(λx t )[η1/y1, . . . ,ηn/yn]?ξ.πÂ t [ξ/x,η1/y1, . . . ,ηn/yn]?π.

To lighten the notation, let us put u∗ = u[η1/y1, . . . ,ηn/yn] for each c-term u ; thus, we have :
u∗[ξ/x] = u[ξ/x,η1/y1, . . . ,ηn/yn].
The proof is done by induction on the number of rules 1 to 6 used to translate the term λx t .
Consider the rule used first.
If it is rule 1, then we have (λx t )∗?ξ.π≡ (K )t∗?ξ.πÂ t∗?π
≡ t [ξ/x,η1/y1, . . . ,ηn/yn]?π since x is not in t .
If it is rule 2, we have t = x and (λx t )∗?ξ.π≡ I ?ξ.πÂ ξ?π≡ t [ξ/x,η1/y1, . . . ,ηn/yn]?π.
If it is rule 3, we have t = uv and (λx t )∗?ξ.π≡ (Cλx(E)u)∗v∗?ξ.π
ÂC ? (λx(E)u)∗ .v∗ .ξ.πÂ (λx(E)u)∗?ξ.v∗ .πÂ (E)u∗[ξ/x]? v∗ .π (by induction hypoth-
esis) Â E ?u∗[ξ/x].v∗ .πÂ (u∗[ξ/x])v∗?π≡ t [ξ/x,η1/y1, . . . ,ηn/yn]?π since x is not in v .
If it is rule 4, we have t = ux and (λx t )∗?ξ.π≡ (E)u∗?ξ.πÂ E ?u∗ .ξ.πÂ u∗ξ?π
≡ t [ξ/x,η1/y1, . . . ,ηn/yn]?π since u does not contain x.
If it is rule 5, we have t = ux and (λx t )∗?ξ.π≡ (Wλx(E)u)∗?ξ.πÂW ? (λx(E)u)∗ .ξ.π
Â (λx(E)u)∗?ξ.ξ.πÂ (E)u∗[ξ/x]?ξ.π (by induction hypothesis)
Â E ?u∗[ξ/x].ξ.πÂ (u∗[ξ/x])ξ?π≡ t [ξ/x,η1/y1, . . . ,ηn/yn]?π.
If it is rule 6, we have t = (u)(v)w and (λx t )∗?ξ.π≡ (λx(B)uv w)∗?ξ.π
Â (B)u∗[ξ/x]v∗[ξ/x]w∗[ξ/x]?π (by induction hypothesis)
Â B ?u∗[ξ/x].v∗[ξ/x].w∗[ξ/x].πÂ (u∗[ξ/x])(v∗[ξ/x])w∗[ξ/x]?π
≡ t [ξ/x,η1/y1, . . . ,ηn/yn]?π.

Q.E.D.

Theorem 2. If t is a c-term with the only variables x1, . . . , xn , and if ξ1, . . . ,ξn ∈ Λ, then
λx1 . . .λxn t ?ξ1 . . . . .ξn .πÂ t [ξ1/x1, . . . ,ξn/xn]?π.
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Proof by induction on n ; the case n = 0 is trivial.
We have λx1 . . .λxn−1λxn t ?ξ1 . . . . .ξn−1 .ξn .πÂ (λxn t )[ξ1/x1, . . . ,ξn−1/xn−1]?ξn .π
(by induction hypothesis) Â t [ξ1/x1, . . . ,ξn−1/xn−1,ξn/xn]?π by lemma 1.

Q.E.D.

Natural deduction

Before giving the formal language that we shall use, it is perhaps useful to describe informally
the structures (models) we have in mind. They are second order structures, with two types of
objects : individuals also called conditions and predicates (of various arity). Since we remain
at an intuitive level, we start with a full model which we call the ground model.
Such a model consists of :
• an infinite set P (the set of individuals or conditions).
• the set of k-ary predicates is P (P k ) (full model).
• some functions from P k into P .
In particular, there is an individual 0 and a bijective function s : P → (P \ {0}). This enables
us to define the set of integers N as the least set which contains 0 and which is closed for s.
There is also a particular condition denoted by 1 and an application denoted by ∧ from P 2

into P .
• some relations (fixed predicates) on P . In particular, we have the equality relation on
individuals and the subset C of non trivial conditions.
C[p∧q] reads as : “p and q are two compatible conditions”.

We now come to the formal language, in order to write formulas and proofs about such struc-
tures. It consists of :

• individual variables or variables of conditions called x, y, . . . or p, q, . . .
• predicate variables or second order variables X ,Y , . . . ; each predicate variable has an arity
which is in N.
• function symbols on individuals f , g , . . . ; each one has an arity which is in N.
In particular, there is a function symbol of arity k for each recursive function f :Nk →N. This
symbol will also be written as f .
There is also a constant symbol 1 (which represents the greatest condition) and a binary
function symbol ∧ (which represents the inf of two conditions).

The terms are built in the usual way with variables and function symbols.

The atomic formulas are the expressions X (t1, . . . , tn), where X is an n-ary predicate variable,
and t1, . . . , tn are terms.

Formulas are built as usual, from atomic formulas, with the only logical symbols →,∀ :
• each atomic formula is a formula ;
• if A,B are formulas, then A → B is a formula ;
• if A is a formula, then ∀x A and ∀X A are formulas.

Notations. The formula A1 → (A2 → (. . . (An → B) . . .) will be written A1, A2, . . . , An → B .
The usual logical symbols are defined as follows :
(X is a predicate variable of arity 0, also called propositional variable)
⊥≡∀X X ; ¬A ≡ A →⊥ ; A∨B ≡ (A →⊥), (B →⊥) →⊥ ; A∧B ≡ (A,B →⊥) →⊥ ;
∃ yF ≡∀y(F →⊥) →⊥ (where y is an individual or predicate variable).
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More generally, we shall write ∃ y{F1, . . . ,Fk } for ∀ y(F1, . . . ,Fk →⊥) →⊥.
We shall sometimes write ~F for a finite sequence of formulas F1, . . . ,Fk .
Then, we shall also write ∃ y{~F } and ∀ y(~F →⊥) →⊥.

x = y is the formula ∀Z (Z x → Z y), where Z is a unary predicate variable.

The rules of natural deduction are the following (the Ai ’s are formulas, the xi ’s are variables
of c-terms, t ,u are c-terms) :

1. x1 : A1, . . . , xn : An ` xi : Ai .
2. x1 : A1, . . . , xn : An ` t : A → B , x1 : A1, . . . , xn : An ` u : A ⇒ x1 : A1, . . . , xn : An ` tu : B .
3. x1 : A1, . . . , xn : An , x : A ` t : B ⇒ x1 : A1, . . . , xn : An `λx t : A → B .
4. x1 : A1, . . . , xn : An ` t : A ⇒ x1 : A1, . . . , xn : An ` t : ∀x A for every variable x (individual
or predicate) which does not appear in A1, . . . , An .
5. x1 : A1, . . . , xn : An ` t : ∀x A ⇒ x1 : A1, . . . , xn : An ` t : A[τ/x] where x is an individual
variable and τ is a term.
6. x1 : A1, . . . , xn : An ` t : ∀X A ⇒ x1 : A1, . . . , xn : An ` t : A[F /X y1 . . . yk ] where X is a
predicate variable of arity k and F an arbitrary formula.

Remark.
In the notation A[F /X y1 . . . yk ], the variables y1, . . . , yk are bound. A more usual notation is :

A[λy1 . . .λyk F /X ]. I prefer this one, to avoid confusion with the λ defined for c-terms.

Realizability

Given a realizability algebra A = (Λ,Π,Λ?Π,⊥⊥), a A -model M consists of the following
data :
• An infinite set P which is the domain of variation of individual variables.
• The domain of variation of k-ary predicate variables is P (Π)P k

.
• We associate with each k-ary function symbol f , a function from P k into P , denoted by f
or even f if there is no ambiguity.
In particular, there is a distinguished element 0 in P and a function s : P → P (which is the
interpretation of the symbol s). We suppose that s is a bijection from P onto P \ {0}.Then, we
can identify sn0 ∈ P with the integer n, and therefore, we have N⊂ P .
Each recursive function f : Nk → N is, by hypothesis, a function symbol. Of course, we as-
sume that its interpretation f : P k → P takes the same values as f on Nk .
Finally, we have also a condition 1 ∈ P and a binary function ∧ from P 2 into P .

A closed term (resp. a closed formula) with parameters in the model M is, by definition, a
term (resp. a formula) in which all free occurrences of each variable have been replaced with
a parameter, i.e. an object of the same type in the model M : a condition for an individual
variable, an application from P k into P (Π) for a k-ary predicate variable.
Each closed term t , with parameters in M has a value t ∈ P .

An interpretation I is an application which associates an individual (condition) with each
individual variable and a parameter of arity k with each second order k-ary variable.
I [x ← p] (resp. I [X ←X ]) is, by definition, the interpretation obtained by changing, in I ,

the value of the variable x (resp. X ) and giving to it the value p ∈ P (resp. X ∈P (Π)P k
).

For each formula F (resp. term t ), we denote by F I (resp. tI ) the closed formula (resp. term)
with parameters obtained by replacing each free variable with the value given by I .
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For each closed formula F I with parameters in M , we define two truth values :
‖F I ‖ ⊂Π and |F I | ⊂Λ.
|F I | is defined as follows : ξ ∈ |F I | ⇔ (∀π ∈ ‖F I ‖)ξ?π ∈⊥⊥.
‖F I ‖ is defined by recurrence on F :
• F is atomic : then F I has the form X (t1, . . . , tk ) where X : P k → P (Π) and the ti ’s are
closed terms with parameters in M . We set ‖X (t1, . . . , tk )‖ =X (t 1, . . . , t k ).
• F ≡ A → B : we set ‖F I ‖ = {ξ.π ; ξ ∈ |AI |,π ∈ ‖BI ‖}.
• F ≡∀x A : we set ‖F I ‖ =⋃

{‖AI [x←p]‖ ; p ∈ P }.

• F ≡∀X A : we set ‖F I ‖ =⋃
{‖AI [X←X ]‖ ; X ∈P (Π)P k

} if X is a k-ary predicate variable.

Notation. We shall write ξ ||−F for ξ ∈ |F |.
Theorem 3 (Adequacy lemma).
If x1 : A1, . . . , xk : Ak ` t : A and if ξ1 ||− AI

1 , . . . ,ξk ||− AI
k , where I is an interpretation, then

t [ξ1/x1, . . . ,ξk /xk ] ||− AI .
In particular, if A is closed and if ` t : A, then t ||− A.

Proof by recurrence on the length of the derivation of x1 : A1, . . . , xn : An ` t : A.
We consider the last used rule.

1. We have t = xi , A ≡ Ai . Now, we have assumed that ξi ||− AI
i ; and it is the desired result.

2. We have t = uv and we already obtained :
x1 : A1, . . . , xk : Ak ` u : B → A and x1 : A1, . . . , xk : Ak ` v : B .
Given π ∈ ‖AI ‖, we must show (uv)[ξ1/x1, . . . ,ξk /xk ]?π ∈⊥⊥.
By hypothesis on ⊥⊥, it is sufficient to show u[ξ1/x1, . . . ,ξk /xk ]? v[ξ1/x1, . . . ,ξk /xk ].π ∈⊥⊥.
By the induction hypothesis, we have v[ξ1/x1, . . . ,ξk /xk ] ||−BI and therefore :
v[ξ1/x1, . . . ,ξk /xk ].π ∈ ‖BI → AI ‖.
But, by the induction hypothesis, we have also u[ξ1/x1, . . . ,ξk /xk ] ||−BI → AI , hence the
result.

3. We have A = B → C , t = λx u. We must show λx u[ξ1/x1, . . . ,ξk /xk ] ||−BI → CI ; thus,
we suppose ξ ||−BI , π ∈ ‖CI ‖ and we have to show λx u[ξ1/x1, . . . ,ξk /xk ]? ξ.π ∈ ⊥⊥. By
hypothesis on ⊥⊥ and lemma 1, it suffices to show u[ξ/x,ξ1/x1, . . . ,ξk /xk ]?π ∈⊥⊥.
But this follows from the induction hypothesis applied to x1 : A1, . . . , xn : An , x : B ` u : C .

4. We have A ≡∀X B , and X is not free in A1, . . . , An . We must show :
t [ξ1/x1, . . . ,ξk /xk ] ||− (∀X B)I , i.e. t [ξ1/x1, . . . ,ξk /xk ] ||−BJ with J = I [X ← X ]. But, by

hypothesis, ξi ||− AI
i therefore ξi ||− A

J

i : indeed, since X is not free in Ai , we have :

‖AI
i ‖ = ‖A

J

i ‖. Then, the induction hypothesis gives the result.

6. We have A = B [F /X y1 . . . yn] and we must show :
t [ξ1/x1, . . . ,ξk /xk ] ||−B [F /X y1 . . . yn]I assuming that t [ξ1/x1, . . . ,ξk /xk ] ||− (∀X B)I .
This follows from lemma 4 below.

Q.E.D.

Lemma 4. ‖B [F /X y1 . . . yn]I ‖ = ‖BI [X←X ]‖ where X : P n →P (Π) is defined by :
X (p1, . . . , pn) = ‖F I [y1←p1,...,yn←pn ]‖.

The proof is by induction on B . That is trivial if X is not free in B . Indeed, the only non trivial
case of the induction is B =∀Y C ; and then, we have Y 6= X and :
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‖B [F /X y1 . . . yn]I ‖ = ‖(∀Y C [F /X y1 . . . yn])I ‖ =⋃
Y ‖C [F /X y1 . . . yn]I [Y ←Y ]‖.

By induction hypothesis, this gives
⋃

Y ‖CI [Y ←Y ][X←X ]‖, that is
⋃

Y ‖CI [X←X ][Y ←Y ]‖ i.e.
‖(∀Y C )I [X←X ]‖.

Q.E.D.

Lemma 5. Let X ,Y ⊂Π be truth values. If π ∈X , then kπ ||−X →Y .

Suppose ξ ||−X and ρ ∈Y ; we must show kπ?ξ.ρ ∈⊥⊥, that is ξ?π ∈⊥⊥, which is clear.
Q.E.D.

Proposition 6 (Law of Peirce). cc ||−∀X∀Y (((X → Y ) → X ) → X ).

We want to show that cc ||− ((X → Y ) → X ) → X . Thus, we take ξ ||− (X → Y ) → X and
π ∈X ; we must show that cc?ξ.π ∈⊥⊥, that is ξ?kπ .π ∈⊥⊥. By hypothesis on ξ and π, it is
sufficient to show that kπ ||−X →Y , which results from lemma 5.

Q.E.D.

Proposition 7.
i) If ξ ||− A → B, then ∀η(η ||− A ⇒ ξη ||−B).
ii) If ∀η(η ||− A ⇒ ξη ||−B), then (E)ξ ||− A → B.

i) From ξη?πÂ ξ?η.π.
ii) From (E)ξ?η.πÂ ξη?π.

Q.E.D.

Remark. Proposition 7 shows that ξ ||− A → B is “almost” equivalent (i.e. up to an η-expansion of ξ)

to ∀η(η ||− A ⇒ ξη ||−B).

Predicate symbols

In the following, we shall use extended formulas which contain predicate symbols (or predi-
cate constants) R,S, . . . on individuals. Each one has an arity, which is an integer.
In particular, we have a unary predicate symbol C (which represents the set of non trivial
conditions).
We have to add some rules of construction of formulas :

• If F is a formula, R is a n-ary predicate constant and t1, . . . , tn are terms, then
R(t1, . . . , tn) → F and R(t1, . . . , tn) 7→ F are formulas.
• > is an atomic formula.

In the definition of a A -model M , we add the following clause :

• With each relation symbol R of arity n, we associate an application, denoted by RM or
R, from P n into P (Λ). We shall also write |R(p1, . . . , pn)|, instead of R(p1, . . . , pn), for
p1, . . . , pn ∈ P .
In particular, we have an application C : P →P (Λ), which we denote as |C[p]|.
We define as follows the truth value in M of an extended formula :

‖>‖=;.
‖(R(t1, . . . , tn) → F )I ‖ = {t .π; t ∈ |R(tI

1 , . . . , tI
n )|,π ∈ ‖F I ‖}.

‖(R(t1, . . . , tn) 7→ F )I ‖ = ‖F I ‖ if I ∈ |R(tI
1 , . . . , tI

n )| ;
‖(R(t1, . . . , tn) 7→ F )I ‖ =; otherwise.
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Proposition 8.
i) λx(x)I ||−∀X∀x1 . . .∀xn[(R(x1, . . . , xn) → X ) → (R(x1, . . . , xn) 7→ X )].
ii) If we have |R(p1, . . . , pn)| 6= ;⇒ I ∈ |R(p1, . . . , pn)| for every p1, . . . , pn ∈ P, then :
K ||−∀X∀x1 . . .∀xn[(R(x1, . . . , xn) 7→ X ) → (R(x1, . . . , xn) → X )].

Trivial.
Q.E.D.

Remark. By means of proposition 8, we see that, if the application R : P n → P (Λ) takes only the

values {I } and ;, we can replace R(t1, . . . , tn) → F with R(t1, . . . , tn) 7→ F .

We define the binary predicate ' by putting |p ' q| = {I } if p = q and |p ' q | =; if p 6= q .
By the above remark, we can replace p ' q → F with p ' q 7→ F . Proposition 9 shows that
we can also replace p = q → F with p ' q 7→ F .

Notations. We shall write p = q 7→ F instead of p ' q 7→ F . Thus, we have :
‖p = q 7→ F‖ = ‖F‖ if p = q ; ‖p = q 7→ F‖ =; if p 6= q .
We shall write p 6= q for p = q 7→⊥. Thus, we have :
‖p 6= q‖ =Π if p = q and ‖p 6= q‖ =; if p 6= q .

Using p = q 7→ F instead of p = q → F , and p 6= q instead of p = q →⊥, greatly simplifies
the computation of the truth value of a formula which contains the symbol =.

Proposition 9.
i) λx xI ||−∀X∀x∀y((x = y → X ) → (x = y 7→ X )) ;
ii) λxλy y x ||−∀X∀x∀y((x = y 7→ X ), x = y → X ).

i) Let a,b ∈ P , X ⊂Π,ξ ||−a = b →X and π ∈ ‖a = b 7→X ‖.
Then, we have a = b, thus I ||−a = b, therefore ξ? I .π ∈⊥⊥, thus λx xI ?ξ.π ∈⊥⊥.
ii) Now let η ||− (a = b 7→X ), ζ ||−a = b and ρ ∈ ‖X ‖.
We show that λxλy y x?η.ζ.ρ ∈⊥⊥ in other words ζ?η.ρ ∈⊥⊥.
If a = b, then η ||−X , ζ ||−∀Y (Y → Y ). We have η.ρ ∈ ‖X →X ‖, thus ζ?η.ρ ∈⊥⊥.
If a 6= b, then ζ ||−>→⊥, thus ζ?η.ρ ∈⊥⊥.
In both cases, we get the desired result.

Q.E.D.

Remark.
Let R be a subset of P k and 1R : P k → {0,1} its characteristic function, defined as follows :

1R (p1, . . . , pn) = 1 (resp. = 0) if (p1, . . . , pn) ∈ R (resp. (p1, . . . , pn) ∉ R).

Let us define the predicate R in the model M by putting :

|R(p1, . . . , pn)| = {I } (resp. =;) if (p1, . . . , pn) ∈ R (resp. (p1, . . . , pn) ∉ R).

By propositions 8 and 9, we see that R(x1, . . . , xn) and 1R (x1, . . . , xn) = 1 are interchangeable. More

precisely, we have : I ||−∀X∀x1 . . .∀xn((R(x1, . . . , xn) 7→ X ) ↔ (1R (x1, . . . , xn) = 1 7→ X )).

For each formula A[x1, . . . , xk ], we can define the k-ary predicate symbol NA, by putting
|NA(p1, . . . , pk )| = {kπ; π ∈ ‖A[p1, . . . , pk ]‖}. Proposition 10 below shows that NA and ¬A are
interchangeable ; this may simplify truth value computations.

Proposition 10.
i) I ||−∀x1 . . .∀xk (NA(x1, . . . , xk ) →¬A(x1, . . . , xk )) ;
ii) cc ||−∀x1 . . .∀xk ((NA(x1, . . . , xk ) →⊥) → A(x1, . . . , xk )).
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i) Let p1, . . . , pk ∈ P , π ∈ ‖A(p1, . . . , pk )‖, ξ ||− A(p1, . . . , pk ) and ρ ∈Π. We must show :
I ?kπ .ξ.ρ ∈⊥⊥, that is ξ?π ∈⊥⊥, which is obvious.
ii) Let η ||−NA(p1, . . . , pk ) →⊥ and π ∈ ‖A(p1, . . . , pk )‖. We must show :
cc?η.π ∈⊥⊥, i.e. η?kπ .π ∈⊥⊥, which is clear, since kπ ∈ |NA(p1, . . . , pk )|.

Q.E.D.

Fixed point combinator

Theorem 11. Let Y = A A with A =λaλ f ( f )(a)a f . Then, we have Y?ξ.πÂ ξ?Yξ.π.
Let f : P 2 → P such that f (x, y) = 1 is a well founded relation on P. Then :
i) Y ||−∀X {∀x[∀y( f (y, x) = 1 7→ X y) → X x] →∀x X x}.
ii) Y ||−∀X1 . . .∀Xk

{∀x[∀y(X1 y, . . . , Xk y → f (y, x) 6= 1), X1x, . . . , Xk x →⊥] →∀x(X1x, . . . , Xk x →⊥)}.

The property Y?ξ.πÂ ξ?Yξ.π is immediate, from theorem 2.
i) We take X : P → P (Π), p ∈ P and ξ ||−∀x[∀y( f (y, x) = 1 7→ X y) → X x]. We show, by
induction on the well founded relation f (x, y) = 1, that Y?ξ.π ∈⊥⊥ for every π ∈X p.
Let π ∈ X p ; from (i), we get Y? ξ.π Â ξ? Yξ.π and thus, it is sufficient to prove that
ξ?Yξ.π ∈ ⊥⊥. By hypothesis, we have ξ ||−∀y( f (y, p) = 1 7→ X y) → X p ; thus, it suffices to
show that Yξ ||− f (q, p) = 1 7→ X q for every q ∈ P . This is clear if f (q, p) 6= 1, by definition
of 7→.
If f (q, p) = 1, we must show Yξ ||−X q , i.e. Y? ξ.ρ ∈ ⊥⊥ for every ρ ∈ X q . But this follows
from the induction hypothesis.

ii) The proof is almost the same : take X1, . . . ,Xk : P →P (Π), p ∈ P and
ξ ||−∀x[∀y(X1 y, . . . ,Xk y → f (y, x) 6= 1),X1x, . . . ,Xk x → ⊥]. We show, by induction on the
well founded relation f (x, y) = 1, that Y?ξ.π ∈⊥⊥ for every π ∈ ‖X1p, . . . ,Xk p →⊥‖.
As before, we have to show that : Yξ ||−X1q, . . . ,Xk q → f (q, p) 6= 1 for all q ∈ P ;
this is obvious if f (q, p) 6= 1. If f (q, p) = 1, we must show Yξ ||−X1q, . . . ,Xk q →⊥, or else :
Y?ξ.ρ ∈⊥⊥ for everyρ ∈ ‖X1q, . . . ,Xk q →⊥‖. But this follows from the induction hypothesis.

Q.E.D.

Integers, storage and recursive functions

Recall that we have a constant symbol 0 and a unary function symbol s which is interpreted,
in the model M by a bijective function s : P → (P \ {0}).
And also, that we have identified sn0 with the integer n ; thus, we suppose N⊂ P .

We denote by int(x) the formula ∀X (∀y(X y → X s y), X 0 → X x).

Let u = (un)n∈N be a sequence of elements ofΛ. We define the unary predicate symbol eu by
putting : |eu(sn0)| = {un} ; |eu(p)| =; if p ∉N.

Theorem 12. Let Tu ,Su ∈Λ be such that Su ||− (>→⊥),>→⊥ and :
Tu ?φ.ν.πÂ ν?Su .φ.u0 .π ; Su ?ψ.un .πÂψ?un+1 .π
for every ν,φ,ψ ∈Λ and π ∈Π. Then :
Tu ||−∀X∀x[(eu(x) → X ), int(x) → X ].
Tu is called a storage operator.
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Let p ∈ P , φ ||−eu(p) → X , ν ||− int(p) and π ∈ ‖X ‖. We must show Tu ?φ.ν.π ∈ ⊥⊥ i.e.
ν?Su .φ.u0 .π ∈⊥⊥.

• If p ∉N, we define the unary predicate Y by putting :
Y (q) ≡> if q ∈N ; Y (q) ≡>→⊥ if q ∉N.
Thus, we have obviously φ ||−Y (0) and u0 .π ∈ ‖Y (p)‖.
But, by hypothesis on ν, we have ν ||−∀y(Y y → Y s y),Y 0 → Y p.
Thus, it is sufficient to show that :
Su ||−∀y(Y y → Y s y), i.e. Su ||−Y (q) → Y (sq) for every q ∈ P .
This is clear if q ∈N, since we have ‖Y (sq)‖ =;.
If q ∉N, we must show Su ||− (>→⊥),>→⊥, which follows from the hypothesis.

• If p ∈N, we have p = sp 0 ; we define the unary predicate Y by putting :
‖Y si 0‖ = {up−i .π} for 0 ≤ i ≤ p and ‖Y q‖ =; if q ∉ {si 0; 0 ≤ i ≤ p}.
By hypothesis on ν,φ,π, we have :
ν ||−∀y(Y y → Y s y),Y 0 → Y sp 0 ; φ ||−Y 0 ; u0 .π ∈ ‖Y sp 0‖.
Thus, it suffices to show that Su ||−∀y(Y y → Y s y), i.e. Su ||−Y q → Y sq for every q ∈ P .
This is clear if q ∉ {si 0; 0 ≤ i < p}, since then ‖Y sq‖ =;.
If q = si 0 with i < p, let ξ ||−Y q ; we must show Su ?ξ.up−i−1 .π ∈⊥⊥.
But we have Su ?ξ.up−i−1 .πÂ ξ?up−i .π which is in ⊥⊥, by hypothesis on ξ.

Q.E.D.

Notation. We define the closed c-terms 0 = λxλy y ; σ = λnλ f λx( f )(n) f x ; and, for each
n ∈N, we put n = (σ)n0. We define the unary predicate symbol ent(x) by putting :
|ent(n)| = {n} if n ∈N ;
|ent(p)| =; if p ∉N.
In other words, ent(x) is the predicate eu(x) when the sequence u is (n)n∈N.

Theorem 13.
We put T =λ f λn(n)S f 0, with S =λgλx(g )(σ)x. Then, we have :
i) T ||−∀X∀x((ent(x) → X ), int(x) → X ).
ii) I ||−∀x((ent(x) →int(x)).

Therefore, T is a storage operator (theorem 12).

i) We immediately have, by theorem 2 :
T ?φ.ν.πÂ ν?S .φ.0.π ; S?ψ. (σ)n0.πÂψ? (σ)n+10.π
for every ν,φ,ψ ∈Λ and π ∈Π.
Now, we check that S ||− (>→⊥),>→⊥ : indeed, if ξ ||−>→⊥, then S?ξ.η.πÂ ξ?ση.π ∈⊥⊥
for every η ∈Λ and π ∈Π (by theorem 2).
Then, the result follows immediately, from theorem 12.

ii) We must show I ||− ent(p) → int(p) for every p ∈ P . We may suppose p ∈ N (otherwise
ent(p) =; and the result is trivial). Then, we must show :
I ?σp 0.ρ ∈⊥⊥ knowing that ρ ∈ ‖int(sp 0)‖.
Therefore, we can find a unary predicate X : P → P (Π), φ ||−∀y(X y → X s y), ω ||−X 0 and
π ∈ ‖X sp 0‖ such that ρ = φ.ω.π. We must show (σ)p 0?φ.ω.π ∈ ⊥⊥. In fact, we show by
recurrence on p, that (σ)p 0?φ.ω.π ∈⊥⊥ for all π ∈ ‖X sp 0‖.
If p = 0, let π ∈ ‖X 0‖ ; we must show 0?φ.ω.π ∈ ⊥⊥, i.e. ω?π ∈ ⊥⊥, which is clear, since
ω ||−X 0.

11



To move up from p to p +1, let π ∈ ‖X sp+10‖. We have :
σp+10?φ.ω.π≡ (σ)(σ)p 0?φ.ω.πÂσ?σp 0.φ.ω.πÂφ? (σp 0)φω.π.
But, by induction hypothesis, we have σp 0?φ.ω.ρ ∈⊥⊥ for every ρ ∈ ‖X sp 0‖. It follows that
(σp 0)φω ||−X sp 0. Since φ ||−X sp 0 → X sp+10, we obtain φ? (σp 0)φω.π ∈⊥⊥.

Q.E.D.

Theorem 13 shows that we can use the predicate ent(x) instead of int(x), which greatly sim-
plifies many computations. In particular, we define the universal quantifier restricted to in-
tegers ∀xint by putting ∀xintF ≡∀x(int(x) → F ).
Thus, we can replace it with the universal quantifier restricted to ent(x) defined as follows :
∀xent F ≡∀x(ent(x) → F ). Then, we have ‖∀xent F‖ = {n .π; n ∈N,π ∈ ‖F [sn0/x]‖}.
Therefore, the truth value of the formula ∀xent F is much simpler than the one of the for-

mula ∀x
int

F .

Theorem 14. Let φ :N→N be a recursive function. There exists a closed λ-term θ such that,
if m ∈N, n =φ(m) and f is a λ-variable, then θm f reduces into f n by weak head reduction.

This is a variant of the theorem of representation of recursive functions by λ-terms. It is
proved in [13].

Theorem 15. Let φ :Nk →N be a recursive function. We define, in M , a function symbol f , by
putting f (sm1 0, . . . , smk 0) = sn0 with n =φ(m1, . . . ,mk ) ; we extend f on P k \Nk in an arbitrary
way. Then, there exists a proof-like term θ such that :
θ ||−∀x1 . . .∀xk [int(x1), . . . , int(xk ) →int( f (x1, . . . , xk ))].

For simplicity, we assume k = 1. By theorem 13, it suffices to find a proof-like term θ such
that θ ||−∀x[ent(x), (ent( f (x)) →⊥) →⊥]. In other words :
θ ||−ent(p), (ent( f (p)) →⊥) →⊥ for every p ∈ P .
We can suppose that p = sm0 (otherwise, |ent(p)| =; and the result is trivial).
Thus, we have ent(p) = {m} ; we must show :
θ?m .ξ.π ∈⊥⊥ for all π ∈Π and ξ ||−ent(sn0) →⊥, with n =φ(m).
Take the λ-term θ given by theorem 14. From this theorem, we get :
θ?m .ξ.πÂ ξ?n .π, which is in ⊥⊥, by hypothesis on ξ.

Q.E.D.

Remark. We have now found proof-like terms which realize all the axioms of second order arithmetic,

with a function symbol for each recursive function.

Standard realizability algebras

A realizability algebra A is called standard if its set of terms Λ and its set of stacks Π are
defined as follows :
We have a countable setΠ0 which is the set of stack constants.
The terms and the stacks of A are finite sequences of elements of the set :

Π0 ∪ {B ,C ,E , I ,K ,W,cc,ς,χ,χ′,k, (, ), [, ], . }
which are obtained by the following rules :

• B ,C ,E , I ,K ,W,cc,ς,χ,χ′ are terms ;
• each element ofΠ0 is a stack ;
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• if ξ,η are terms, then (ξ)η is a term ;
• if ξ is a term and π a stack, then ξ.π is a stack ;
• if π is a stack, then k[π] is a term.

A term of the form k[π] is called continuation. It will also be denoted as kπ.

The set of processes of the algebra A isΛ×Π.
If ξ ∈Λ and π ∈Π, the ordered pair (ξ,π) is denoted as ξ?π.

Therefore, every stack has the form π= ξ1 . . . . .ξn .π0, where ξ1, . . . ,ξn ∈Λ and π0 ∈Π0 (π0 is
a stack constant). Given a term τ, we put :

πτ = ξ1 . . . . .ξn .τ.π0.

We choose a recursive bijection fromΠ onto N, which is written π 7→ nπ.

We define a preorder relation Â, onΛ?Π. It is the least reflexive and transitive relation such
that, for all ξ,η,ζ ∈Λ and π,$ ∈Π, we have :

(ξ)η?πÂ ξ?η.π.
I ?ξ.πÂ ξ?π.
K ?ξ.η.πÂ ξ?π.
E ?ξ.η.πÂ (ξ)η?π.
W ?ξ.η.πÂ ξ?η.η.π.
C ?ξ.η.ζ.πÂ ξ?ζ.η.π.
B ?ξ.η.ζ.πÂ (ξ)(η)ζ?π.
cc?ξ.πÂ ξ?kπ .π.
kπ?ξ.$Â ξ?π.
ς?ξ.πÂ ξ?nπ .π.
χ?ξ.πτ Â ξ?τ.π.
χ′?ξ.τ.πÂ ξ?πτ.

Finally, we have a subset ⊥⊥ of Λ?Π which is a final segment for this preorder, which means
that : p ∈⊥⊥, p′ Â p ⇒ p′ ∈⊥⊥.
In other words, we ask that ⊥⊥ has the following properties :

(ξ)η?π ∉⊥⊥⇒ ξ?η.π ∉⊥⊥.
I ?ξ.π ∉⊥⊥⇒ ξ?π ∉⊥⊥.
K ?ξ.η.π ∉⊥⊥⇒ ξ?π ∉⊥⊥.
E ?ξ.η.π ∉⊥⊥⇒ (ξ)η?π ∉⊥⊥.
W ?ξ.η.π ∉⊥⊥⇒ ξ?η.η.π ∉⊥⊥.
C ?ξ.η.ζ.π ∉⊥⊥⇒ ξ?ζ.η.π ∉⊥⊥.
B ?ξ.η.ζ.π ∉⊥⊥⇒ (ξ)(η)ζ?π ∉⊥⊥.
cc?ξ.π ∉⊥⊥⇒ ξ?kπ .π ∉⊥⊥.
kπ?ξ.$ ∉⊥⊥⇒ ξ?π ∉⊥⊥.
ς?ξ.π ∉⊥⊥⇒ ξ?nπ .π ∉⊥⊥.
χ?ξ.πτ ∉⊥⊥⇒ ξ?τ.π ∉⊥⊥.
χ′?ξ.τ.π ∉⊥⊥⇒ ξ?πτ ∉⊥⊥.

Remark. Thus, the only arbitrary elements in a standard realizability algebra are the set Π0 of stack

constants and the set ⊥⊥ of processes.
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The axiom of choice for individuals (ACI)

Let A be a standard realizability algebra and M a A -model, the set of individuals of which
is denoted as P . Then, we have :

Theorem 16 (ACI). For each closed formula ∀x1 . . .∀xm∀y F with parameters, there exists a
function f : P m+1 → P such that :
i) ς ||−∀x1 . . .∀xm(∀x(ent(x) → F [ f (x1, . . . , xm , x)/y]) →∀y F ).
ii) ς ||−∀x1 . . .∀xm(∀x(int(x) → F [ f (x1, . . . , xm , x)/y]) →∀y F ).

For p1, . . . , pm ,k ∈ P , we define f (p1, . . . , pm ,k) in an arbitrary way if k ∉N.
If k ∈N, we have k = nπk for one and only one stack πk ∈Π.
We define the function f (p1, . . . , pm ,k) by means of the axiom of choice, in such a way that,
if there exists q ∈ P such that :
πk ∈ ‖F [p1, . . . , pm , q]‖, then we have πk ∈ ‖F [p1, . . . , pm , f (p1, . . . , pm ,k)]‖.

i) We must show ς ||−∀x(ent(x) → F [p1, . . . , pm , f (p1, . . . , pm , x)]) → F [p1, . . . , pm , q], for every
p1, . . . , pm , q ∈ P .
Thus, let ξ ||−∀x(ent(x) → F [p1, . . . , pn , f (p1, . . . , pn , x)]) and π ∈ ‖F [p1, . . . , pm , q]‖ ; we must
show ς?ξ.π ∈⊥⊥, that is ξ?nπ .π ∈⊥⊥. But we have :
ξ ||−ent(nπ) → F [p1, . . . , pm , f (p1, . . . , pm ,nπ)] by hypothesis on ξ ;
nπ ∈ |ent(nπ)| by definition of ent ;
π ∈ ‖F [p1, . . . , pm , f (p1, . . . , pm ,nπ)]‖ by hypothesis on π and by definition of f .

ii) The proof is the same ; in fact, (ii) is weaker than (i) since |ent(x)| ⊂ |int(x)|.
Q.E.D.

Remarks.
1. A seemingly simpler formulation of this axiom of choice is the existence of a function φ : P m → P

such that ∀x1 . . .∀xm(F [φ(x1, . . . , xm)/y] →∀y F ). It clearly follows from theorem 16 : simply define

φ(x1, . . . , xm) as f (x1, . . . , xm , x) for the first integer x such that ¬F [ f (x1, . . . , xm , x)/y] if there is such an

integer ; otherwise, φ(x1, . . . , xm) is arbitrary.

But this function φ is not a function symbol, i.e. it cannot be defined in the ground model. For this

reason, we prefer to use this axiom in the form stated in theorem 16, which is, after all, much simpler.

2 .The axiom of dependent choice DC is a trivial consequence of ACI ; therefore theorem 16 shows that

DC is realized by a proof-like term. Theorem 16 is also crucial to prove theorem 38 (see lemma 40).

3. In the following, there will be individuals which represent sets of integers (proposition 50), but ex-

tensionality is not realized. That is why ACI is much weaker than the usual axiom of choice. For

instance, it does not imply well-ordering.

Generic models

Given a standard realizability algebra A and a A -model M , we now build a new realizability
algebra B and a B-model N , which is called generic over M . Then, we shall define the
notion of forcing, which is a syntactic transformation on formulas ; it is the essential tool in
order to compute truth values in the generic model N .

Thus, we consider a standard realizability algebra A and a A -model M , the set of individu-
als of which is P .
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We have a unary predicate C : P → P (Λ), a binary function ∧ : P 2 → P and a distinguished
individual 1 ∈ P . We suppose that the data {C,∧,1} constitute what we call a forcing structure
in M , which means that we have the following property :

There exist six proof-like terms α0,α1,α2,β0,β1,β2 such that :

τ ∈ |C[(p∧q)∧r ]| ⇒ α0τ ∈ |C[p∧(q∧r )]| ;
τ ∈ |C[p]| ⇒ α1τ ∈ |C[p∧1]| ;
τ ∈ |C[p∧q]| ⇒ α2τ ∈ |C[q]| ;
τ ∈ |C[p]| ⇒ β0τ ∈ |C[p∧p]| ;
τ ∈ |C[p∧q]| ⇒ β1τ ∈ |C[q∧p]| ;
τ ∈ |C[((p∧q)∧r )∧s]| ⇒ β2τ ∈ |C[(p∧(q∧r ))∧s]|.
We shall call C-expression any finite sequence of symbols of the form γ = (δ0)(δ1) . . . (δk )
where each δi is one of the proof-like terms α0,α1,α2,β0,β1,β2.
Such an expression is not a c-term, but γτ is, for every c-term τ ;
the term γτ= (δ0)(δ1) . . . (δk )τ will also be written (γ)τ.

Notation. A ∧-term is, by definition, a term which is written with the variables p1, . . . , pk , the
constant 1 and the binary function symbol ∧. Let t (p1, . . . , pk ),u(p1, . . . , pk ) be two ∧-terms.
The notation :

γ :: t (p1, . . . , pk ) ⇒ u(p1, . . . , pk )
means that γ is a C-expression such that τ ∈ |C[t (p1, . . . , pk )]| ⇒ (γ)τ ∈ |C[u(p1, . . . , pk )]|.
Thus, with this notation, the above hypothesis can be written as follows :

α0 :: (p∧q)∧r ⇒ p∧(q∧r ) ; α1 :: p ⇒ p∧1 ; α2 :: p∧q ⇒ q ;
β0 :: p ⇒ p∧p ; β1 :: p∧q ⇒ q∧p ; β2 :: ((p∧q)∧r )∧s ⇒ (p∧(q∧r ))∧s.

Lemma 17. There exist C-expressions β′
0,β′

1,β′
2,β3,β′

3 such that :
β′

0 :: p∧q ⇒ (p∧q)∧q ; β′
1 :: (p∧q)∧r ⇒ (q∧p)∧r ; β′

2 :: p∧(q∧r ) ⇒ (p∧q)∧r ;
β3 :: p∧(q∧r ) ⇒ p∧(r∧q) ; β′

3 :: (p∧(q∧r ))∧s ⇒ (p∧(r∧q))∧s.

We write the sequence of transformations, with the C-expressions which perform them :

• β′
0 = (β1)(α2)(α0)(β0).

p∧q ; β0 ; (p∧q)∧(p∧q) ; α0 ; p∧(q∧(p∧q)) ; α2 ; q∧(p∧q) ; β1 ; (p∧q)∧q .

• β′
2 = (β1)(α0)(β1)(α0)(β1).

p∧(q∧r ) ;β1 ; (q∧r )∧p ; α0 ; q∧(r∧p) ; β1 ; (r∧p)∧q ; α0 ; r∧(p∧q) ; β1 ; (p∧q)∧r .

• β′
1 = (α2)(α0)(β2)(β1)(α0)(α2)(β1)(β′

2)(β′
0)(β1).

(p∧q)∧r ; β1 ; r∧(p∧q) ; β′
0 (r∧(p∧q))∧(p∧q) ;β′

2 ; ((r∧(p∧q))∧p)∧q ; β1 ; q∧((r∧(p∧q))∧p) ;
α2 ; (r∧(p∧q))∧p ; α0 ; r∧((p∧q)∧p) ;β1 ; ((p∧q)∧p)∧r ; β2 ; (p∧(q∧p))∧r ; α0 ; p∧((q∧p)∧r ) ;
α2 ; (q∧p)∧r .

• β3 = (β1)(β′
1)(β1).

p∧(q∧r ) ; β1 ; (q∧r )∧p ; β′
1 ; (r∧q)∧p ; β1 ; p∧(r∧q).

• β′
3 = (β′

1)(β′
2)(β′

1)(α0)(β′
1).

(p∧(q∧r ))∧s ; β′
1 ; ((q∧r )∧p)∧s ; α0 ; (q∧r )∧(p∧s) ; β′

1 ; (r∧q)∧(p∧s) ; β′
2 ; ((r∧q)∧p)∧s ; β′

1 ;
(p∧(r∧q))∧s.

Q.E.D.

Lemma 18. Let t be a ∧-term and p a variable of t . Then, there exists a C-expression γ such
that γ :: t ⇒ t∧p.
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Proof by induction on the number of symbols of t which stand after the last occurrence of p.
If this number is 0, then t = p or t = u∧p. Then, we have γ=β0 or β′

0 (lemma 17).
Otherwise, we have t = u∧v ; if the last occurrence of p is in u, the recurrence hypothesis
gives γ′ :: v∧u ⇒ (v∧u)∧p. Then, we have γ= (β′

1)(γ′)(β1).
If the last occurrence of p is in v , we have v = v0∧v1. If this occurrence is in v0, the recurrence
hypothesis gives γ′ :: u∧(v1∧v0) ⇒ (u∧(v1∧v0))∧p. We put γ= (β′

3)(γ′)(β3) (lemma 17).
If this occurrence is in v1, the recurrence hypothesis gives
γ′ :: (u∧v0)∧v1 ⇒ ((u∧v0)∧v1)∧p. Then, we put γ= (β2)(γ′)(β′

2).
Q.E.D.

Lemma 19. Let t ,u be two ∧-terms such that each variable of u appears in t . Then, there
exists a C-expression γ such that γ :: t ⇒ t∧u.

Proof by recurrence on the length of u.
If u = 1, then γ=α1 ; if u is a variable, we apply lemma 18.
If u = v∧w , the recurrence hypothesis gives γ′ :: t ⇒ t∧v and also γ′′ :: t∧v ⇒ (t∧v)∧w . Then,
we put γ= (α0)(γ′′)(γ′).

Q.E.D.

Theorem 20. Let t ,u be two ∧-terms such that each variable of u appears in t . Then, there
exists a C-expression γ such that γ :: t ⇒ u.

By lemma 19, we have γ′ :: t ⇒ t∧u. Thus, we can put γ= (α2)(γ′).
Q.E.D.

Corollary 21. There exist C-expressions γI ,γK ,γE ,γW ,γC ,γB ,γcc,γk such that :
γI :: p∧q ⇒ q ; γK :: 1∧(p∧(q∧r )) ⇒ p∧r ; γE :: 1∧(p∧(q∧r )) ⇒ (p∧q)∧r ;
γW :: 1∧(p∧(q∧r )) ⇒ p∧(q∧(q∧r )) ; γC :: 1∧(p∧(q∧(r∧s))) ⇒ p∧(r∧(q∧s)) ;
γB :: 1∧(p∧(q∧(r∧s))) ⇒ (p∧(q∧r ))∧s ; γcc :: 1∧(p∧q) ⇒ p∧(q∧q) ;
γk :: p∧(q∧r ) ⇒ q∧p.

The algebra B

We define now a new realizability algebra B = (Λ,Π,Λ?Π,⊥⊥⊥) : its set of terms is Λ=Λ×P ,
its set of stacks is Π=Π×P and its set of processes is Λ?Π= (Λ?Π)×P .
The distinguished subset ⊥⊥B ofΛ?Π is denoted by ⊥⊥⊥. It is defined as follows :
(ξ?π, p) ∈⊥⊥⊥ ⇔ (∀τ ∈ C[p])ξ?πτ ∈⊥⊥.

For (ξ, p) ∈Λ and (π, q) ∈Π, we put :

(ξ, p)? (π, q) = (ξ?π, p∧q) ;
(ξ, p). (π, q) = (ξ.π, p∧q).

For (ξ, p), (η, q) ∈Λ, we put :

(ξ, p)(η, q) = (α0ξη, p∧q) with α0 =λx(χ)λy(χ′x)(α0)y .

Lemma 22. For each C-expression γ, we put γ=λx(χ)λy(χ′x)(γ)y.
Then, we have γ?ξ.πτ Â ξ?πγτ.
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This is immediate, by means of theorem 2. We could take also γ= (χ)λxλy(χ′y)(γ)x.
Q.E.D.

Proposition 23. If we have γ :: t (p1, . . . , pk ) ⇒ u(p1, . . . , pk ), then :
(γ?ξ.π, t (p1, . . . , pk )) Â (ξ?π,u(p1, . . . , pk )).

Suppose that (γ?ξ.π, t (p1, . . . , pk )) ∉⊥⊥⊥. Thus, there exists τ ∈ C[t (p1, . . . , pk )] such that :
γ?ξ.πτ ∉⊥⊥. Therefore, we have ξ?πγτ ∉⊥⊥ et γτ ∈ C[u(p1, . . . , pk )]. It follows that :
(ξ?π,u(p1, . . . , pk )) ∉⊥⊥⊥.

Q.E.D.

Lemma 24. We have (ξ, p)(η, q)? (π,r ) ∉⊥⊥⊥ ⇒ (ξ, p)? (η, q). (π,r ) ∉⊥⊥⊥.

By hypothesis, we have (α0ξη?π, (p∧q)∧r ) ∉⊥⊥⊥ ; thus, there exists τ ∈ C[(p∧q)∧r ] such that :
α0ξη?π

τ ∉ ⊥⊥. By lemma 22, we have ξ? η.πα0τ ∉ ⊥⊥ ; since α0τ ∈ C[p∧(q∧r )], we have
(ξ?η.π, p∧(q∧r )) ∉⊥⊥ and thus (ξ, p)? (η, q). (π,r ) ∉⊥⊥⊥.

Q.E.D.

We define the elementary combinators B, C, E, I, K, W, cc of the algebra B by putting :

B = (B∗,1) ; C = (C∗,1) ; E = (E∗,1) ; I = (I∗,1) ; K = (K ∗,1) ; W = (W ∗,1) ; cc = (cc∗,1)
with B∗ =λxλyλz(γB )(α0x)(α0)y z ; C∗ = γC C ; E∗ =λxλy(γE )(α0)x y ; I∗ = γI I ;
K ∗ = γK K ; W ∗ = γW W ; cc∗ = (χ)λxλy(cc)λk((χ′y)(γcc)x)(χ)λxλy(k)(χ′y)(γk)x.

We put k(π,p) = (k∗π, p) with k∗π = (χ)λxλy(kπ)(χ′y)(γk)x.

Theorem 25. For every ξ̃, η̃, ζ̃ ∈Λ and π̃,$̃ ∈Π, we have :
I? ξ̃. π̃ ∉⊥⊥⊥ ⇒ ξ̃? π̃ ∉⊥⊥⊥ ;
K? ξ̃. η̃. π̃ ∉⊥⊥⊥ ⇒ ξ̃? π̃ ∉⊥⊥⊥ ;
E? ξ̃. η̃. π̃ ∉⊥⊥⊥ ⇒ (ξ̃)η̃? π̃ ∉⊥⊥⊥ ;
W? ξ̃. η̃. π̃ ∉⊥⊥⊥ ⇒ ξ̃? η̃. η̃. π̃ ∉⊥⊥⊥.
B? ξ̃. η̃. ζ̃. π̃ ∉⊥⊥⊥ ⇒ (ξ̃)(η̃)ζ̃? π̃ ∉⊥⊥⊥ ;
C? ξ̃. η̃. ζ̃. π̃ ∉⊥⊥⊥ ⇒ ξ̃? ζ̃. η̃. π̃ ∉⊥⊥⊥.
cc ? ξ̃. π̃ ∉⊥⊥⊥ ⇒ ξ̃? kπ̃ . π̃ ∉⊥⊥⊥.
kπ̃? ξ̃.$̃ ∉⊥⊥⊥ ⇒ ξ̃? π̃ ∉⊥⊥⊥.

We shall prove only the cases W, B, kπ̃, cc.
We put ξ̃= (ξ, p), η̃= (η, q), ζ̃= (ζ,r ), π̃= (π, s),$̃= ($, q).

Suppose W? ξ̃. η̃. π̃ ∉⊥⊥⊥, and therefore (γW W ?ξ.η.π,1∧(p∧(q∧s))) ∉⊥⊥⊥.
Thus, there exists τ ∈ C[1∧(p∧(q∧s))] such that γW W ?ξ.η.πτ ∉⊥⊥.
Since γW W ?ξ.η.πτ Â ξ?η.η.πγW τ, we have ξ?η.η.πγW τ ∉⊥⊥.
But γW τ ∈ C[p∧(q∧(q∧s))] and it follows that ξ̃? η̃. η̃. π̃ ∉⊥⊥⊥.

Suppose B? ξ̃. η̃. ζ̃. π̃ ∉⊥⊥⊥, that is (B∗?ξ.η.ζ.π,1∧(p∧(q∧(r∧s)))) ∉⊥⊥⊥.
Thus, there exists τ ∈ C[1∧(p∧(q∧(r∧s)))] such that B∗?ξ.η.ζ.πτ ∉⊥⊥.
But, we have B∗?ξ.η.ζ.πτ Â (γB )(α0ξ)(α0)ηζ?πτ (by theorem 2)
Â (α0ξ)(α0)ηζ?πγBτ (by lemma 22). Therefore, we have (α0ξ)(α0)ηζ?πγBτ ∉⊥⊥.
But γBτ ∈ C[(p∧(q∧r ))∧s] and thus, we have :
((α0ξ)(α0)ηζ?π, (p∧(q∧r ))∧s) ∉⊥⊥⊥, in other words (ξ̃)(η̃)ζ̃? π̃ ∉⊥⊥⊥.

Suppose kπ̃?ξ̃.$̃ ∉⊥⊥⊥, that is (k∗π?ξ.$, s∧(p∧q)) ∉⊥⊥⊥. Thus, there exists τ ∈ C[s∧(p∧q)] such
that k∗π?ξ.$τ ∉⊥⊥. But we have k∗π?ξ.$τ Âλxλy(kπ)(χ′y)(γk)x?τ.ξ.$Â (kπ)(χ′ξ)(γk)τ?$
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(by theorem 2) Â (χ′ξ)(γk)τ?πÂχ′?ξ.γkτ.πÂ ξ?πγkτ.
Thus, we have ξ?πγkτ ∉⊥⊥ ; but, since γkτ ∈ C[p∧s], we get ξ̃? π̃ ∉⊥⊥⊥.

Suppose cc ? ξ̃. π̃ ∉ ⊥⊥⊥, that is (cc∗? ξ.π,1∧(p∧s)) ∉ ⊥⊥⊥. Thus, there exists τ ∈ C[1∧(p∧s)]
such that cc∗?ξ.πτ ∉⊥⊥. But we have :
cc∗?ξ.πτ Âλxλy(cc)λk((χ′y)(γcc)x)(χ)λxλy(k)(χ′y)(γk)x?τ.ξ.π
Â (cc)λk((χ′ξ)(γcc)τ)(χ)λxλy(k)(χ′y)(γk)x?π
Â ((χ′ξ)(γcc)τ)(χ)λxλy(kπ)(χ′y)(γk)x?πÂχ′?ξ.γccτ. (χ)λxλy(kπ)(χ′y)(γk)x .π
Â ξ? (χ)λxλy(kπ)(χ′y)(γk)x .πγccτ ≡ ξ?k∗π .πγccτ.
It follows that ξ? k∗π .πγccτ ∉ ⊥⊥. But we have γccτ ∈ C[p∧(s∧s)] and it follows that we have
(ξ, p)? (k∗π, s). (π, s) ∉⊥⊥⊥, that is ξ̃? kπ̃ . π̃ ∉⊥⊥⊥.

Q.E.D.

We have now completely defined the realizability algebra B.

For each closed c-term t (proof-like term), let us denote by tB its value in the algebra B (its
value in the standard algebra A is t itself). Thus, we have tB = (t∗,1t ), where t∗ is a proof-
like term and 1t a condition written with 1, ∧ and parentheses, which are obtained as follows,
by recurrence on t :

• If t is an elementary combinator B ,C ,E , I ,K ,W,cc, then t∗ is given above ; 1t = 1.
• (tu)∗ =α0t∗u∗ ; 1tu = 1t∧1u .

The model N

The B-model N has the same set P of individuals and the same functions as M .
By definition, the k-ary predicates of N are the applications from P k into P (Π). But, since
Π = Π×P , they are the same as the applications from P k+1 into P (Π), i.e. the k + 1-ary
predicates of the model M .
Each predicate constant R, of arity k, is interpreted, in the model M , by an application RM

from P k into P (Λ). In the model N , this predicate constant is interpreted by the application
RN : P k →P (Λ), where RN (p1, . . . , pk ) =RM (p1, . . . , pk )×{1}.

For each closed formula F , with parameters in N , its truth value, which is a subset of Π,
will be denoted by ‖|F‖|. We shall write (ξ, p) ‖|−F to mean that (ξ, p) ∈Λ realizes F , in other
words (∀π ∈Π)(∀q ∈ P )(((π, q) ∈ ‖|F‖|) ⇒ (ξ, p)? (π, q) ∈⊥⊥⊥).

Theorem 26.
If we have ` t : A in classical second order logic, where A is a closed formula, then
tB = (t∗,1t ) ‖|− A.

Immediate application of theorem 3 (adequacy lemma) in the B-model N .
Q.E.D.

Proposition 27.
i) If (ξ,1) ‖|−F , then (γξ, p) ‖|−F for each p ∈ P, with γ :: p∧q ⇒ 1∧q.
ii) Let ξ,η ∈Λ be such that ξ?πÂ η?π for each π ∈Π. Then, we have :
(ξ?π, p) ∉⊥⊥⊥⇒ (η?π, p) ∉⊥⊥⊥ for every π ∈Π and p ∈ P ;
(η, p) ‖|−F ⇒ (ξ, p) ‖|−F for every closed formula F .
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i) We must show that, for each (π, q) ∈ ‖|F‖|, we have (γξ, p)? (π, q) ∈⊥⊥⊥, that is :
(γξ?π, p∧q) ∈⊥⊥⊥. Thus, let τ ∈ C[p∧q], so that γτ ∈ C[1∧q].
Since we have, by hypothesis, (ξ?π,1∧q) ∈ ⊥⊥⊥, it follows that ξ?πγτ ∈ ⊥⊥ and therefore
γξ?πτ ∈⊥⊥.
ii) By hypothesis, there exists τ ∈ C[p] such that ξ?πτ ∉ ⊥⊥. Thus, we have η?πτ ∉ ⊥⊥, so
that (η?π, p) ∉⊥⊥⊥.
Let (π, q) ∈ ‖|F‖| ; we have (η, p)? (π, q) ∈⊥⊥⊥, that is (η?π, p∧q) ∈⊥⊥. From what we have just
shown, it follows that (ξ?π, p∧q) ∈⊥⊥, and therefore (ξ, p)? (π, q) ∈⊥⊥⊥.

Q.E.D.

The integers of the model N

Recall that we have put :
σ=λnλ f λx( f )(n) f x, 0 =λxλy y and n = (σ)n0 for every integer n.
Thus, we have σB = (σ∗,1σ) and nB = ((σ)n0)B = (n∗,1n).
Therefore 0B = (K I )B = (K ∗,1)(I∗,1) and n +1B =σBnB = (σ∗,1σ)(n∗,1n).
Thus, the recursive definitions of n∗,1n are the following :
0∗ =α0K ∗I∗ ; (n +1)∗ =α0σ

∗n∗ ;
10 = 1∧1 ; 1n+1 = 1σ∧1n .

We can define the unary predicate ent(x) in the model N in two distinct ways :

i) From the predicate ent(x) of the model M , by putting :
|ent(sn0)| = {(n,1)} ; |ent(p)| =; if p ∉N.
ii) By using directly the definition of ent(x) in the model N ; we denote this predicate by
entN (x). Therefore, we have :
|entN (sn0)| = {nB} ; |entN (p)| =; if p ∉N.
From theorem 13, applied in the model N , we know that the predicates int(x) and entN (x)
are interchangeable. Theorem 28 shows that the predicates int(x) and ent(x) are also inter-
changeable. Thus, we have three predicates which define the integers in the model N ; it
is the predicate ent(x) that we shall mostly use in the sequel. In particular, we shall often
replace the quantifier ∀xint with ∀xent.

Theorem 28.
There exist two proof-like terms T, J such that :
i) (T,1) ‖|−∀X∀x((ent(x) → X ), int(x) → X ).
ii) (J ,1) ‖|−∀x(ent(x) →int(x)).

i) We apply theorem 12 to the sequence u :N→Λ defined by un = (n,1).
We are looking for two proof-like terms T,S such that :
(S,1)? (ψ, p). (n,1). (π,r ) Â (ψ, p)? (n +1,1). (π,r ) ; (S,1) ‖|−>→⊥,>→⊥.
(T,1)? (φ, p). (ν, q). (π,r ) Â (ν, q)? (S,1). (φ, p). (0,1). (π,r ).

Then theorem 12 will give the desired result :
(T,1) ‖|−∀X∀x((ent(x) → X ), int(x) → X ).

We put S =λ f λx(γ f )(σ)x, with γ :: 1∧(p∧(q∧r )) ⇒ p∧(q∧r ).

Then, we have (S,1)? (ψ, p). (ν, q). (π,r ) ≡ (S?ψ.ν.π,1∧(p∧(q∧r ))) Â
(γψ?σν.π,1∧(p∧(q∧r ))) (theorem 2 and proposition 27(ii))
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Â (ψ?σν.π, p∧(q∧r )) (proposition 23) ≡ (ψ, p)? (σν, q). (π,r ).
Suppose first that (ψ, p) ‖|−>→⊥ ; then, we have (ψ, p)? (σν, q). (π,r ) ∈⊥⊥⊥ and thus :
(S,1)? (ψ, p). (ν, q). (π,r ) ∈⊥⊥⊥. This shows that (S,1) ‖|−>→⊥,>→⊥.
Moreover, if we put ν= n, so that σν= n +1, and q = 1, we have shown that :
(S,1)? (ψ, p). (n,1). (π,r ) Â (ψ, p)? (n +1,1). (π,r ).

Now, we put T =λ f λx(γ′x)S f 0, with γ′ :: 1∧(p∧(q∧r ))] ⇒ q∧(1∧(p∧(1∧r ))).

Then, we have (T,1)? (φ, p). (ν, q). (π,r ) ≡ (T ?φ.ν.π,1∧(p∧(q∧r ))) Â
(γ′ν?S .φ.0.π,1∧(p∧(q∧r ))) (theorem 2 and proposition 27(ii))
Â (ν?S .φ.0.π, q∧(1∧(p∧(1∧r )))) (proposition 23)
≡ (ν, q)? (S,1). (φ, p). (0,1). (π,r ) which is the desired result.

ii) We are looking for a proof-like term J such that (J ,1) ‖|−∀x(ent(x) →int(x)). It is sufficient
to have (J ,1) ‖|−ent(sn0) →int(sn0) for each n ∈N, since |ent(p)| =; if p ∉N.
Let (π, q) ∈ ‖|int(n)‖| ; we must have (J ,1)? (n,1). (π, q) ∈⊥⊥⊥, that is (J ?n .π,1∧(1∧q)) ∈⊥⊥⊥.
But, we have (n∗,1n) = ((σ)n0)B ‖|− int(sn0) (theorem 3, applied in B) and therefore :
(n∗,1n)? (π, q) ∈⊥⊥⊥ or else (n∗?π,1n∧q) ∈⊥⊥⊥.

Thus, let τ ∈ C[1∧(1∧q)] ; we have then (γ)n(γ0)τ ∈ C[1n∧q]
where γ0 and γ are two C-expressions such that :
γ0 :: 1∧(1∧q) ⇒ (1∧1)∧q ; γ :: p∧q ⇒ (1σ∧p)∧q .
Indeed, we have seen that 10 = 1∧1 and 1n+1 = 1σ∧1n . It follows that, if τ ∈ C[1∧(1∧q)], then

(γ0)τ ∈ C[10∧q], and therefore (γ)n(γ0)τ ∈ C[1n∧q]. Thus, we have n∗?π(γ)n (γ0)τ ∈⊥⊥.
Now, we build below two proof-like terms g , j such that, for each n ∈N, we have :
a) g ?n .ξ.πτ Â ξ?π(γ)n (γ0)τ ;
b) j ?n .ξ.πÂ ξ?n∗ .π.
Then, by putting J =λx(g x)( j )x, we have J?n .πτ Â n∗?π(γ)n (γ0)τ ∈⊥⊥, which is the desired
result.

a) We put g =λkλx(γ0)(k)γx ; from theorem 2, we have :
g ?n .ξ.πτ Â γ0? (n)γξ.πτ Â (n)γξ?π(γ0)τ.
Therefore, it suffices to show that (n)γξ?πτ Â ξ?π(γ)nτ which we do by recurrence on n.
If n = 0, we have immediately 0?γ.ξ.πτ Â ξ?πτ since 0 =λxλy y .
Going from n to n +1 : we have (n +1)γξ?πτ ≡ (σn)γξ?πτ Âσ?n .γ.ξ.πτ
Â γ? (n)γξ.πτ Â (n)γξ?π(γ)τ Â ξ?π(γ)n+1τ by induction hypothesis.

b) We put β=α0σ
∗, U =λgλy(g )(β)y and j =λkλ f (k)U f 0∗.

Therefore, we have j ?n .ξ.πÂ nUξ?0∗ .π. We show, by recurrence on n, that :
nUξ?k∗ .πÂ ξ? (n +k)∗ .π for each integer k, which gives the desired result with k = 0.
For n = 0, we have 0Uξ?k∗ .πÂ ξ?k∗ .π since 0 =λxλy y .
Going from n to n +1 : we have (n +1)?U .ξ.k∗ .π≡σn?U .ξ.k∗ .πÂU ?nUξ.k∗ .π
(since σ=λnλ f λx( f )(n) f x) Â nUξ?βk∗ .π≡ nUξ? (k +1)∗ .πÂ ξ? (n +k +1)∗ .π
by induction hypothesis.

Q.E.D.

Forcing

Forcing is a method to compute truth values of formulas in the generic B-model N .
For each k-ary predicate variable X , we add to the language a new predicate variable, de-
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noted by X +, which has arity k +1. In the A -model M , we use the variables X and X + ; in
the B-model N , only the variables X .

With each k-ary second order parameter X : P k → P (Π) of the model N , we associate a
(k +1)-ary second order parameter X + : P k+1 → P (Π) of the model M . It is defined in an
obvious way, sinceΠ=Π×P ; we put :
X +(p, p1, . . . , pk ) = {π ∈Π; (π, p) ∈X (p1, . . . , pk )}.

For each formula F written without the variables X +, with parameters in the model N , we
define, by recurrence on F , a formula denoted by p []−F (read “ p forces F ”), with parameters
in the model A , written with the variables X + and a free condition variable p :

If F is atomic of the form X (t1, . . . , tk ), then p []−F is ∀q(C[p∧q] → X +(q, t1, . . . , tk )).
If F is atomic of the form X (t1, . . . , tk ), then p []−F is ∀q(C[p∧q] →X +(q, t1, . . . , tk )).
If F ≡ (A → B) where A,B are formulas, then p []−F is ∀q(q []− A → p∧q []−B).
If F ≡ (R(t1, . . . , tk ) → B), where R is a predicate constant, then :
p []−F is (R(t1, . . . , tk ) → p []−B).
If F ≡ (t1 = t2 7→ B), then p []−F is (t1 = t2 7→ p []−B).
If F ≡∀x A, then p []−F is ∀x(p []− A).
If F ≡∀X A, then p []−F is ∀X +(p []− A).

Thus we have, in particular :
If F ≡∀xent A , then p []−F is ∀xent(p []− A).

Lemma 29. Let F be a formula the free variables of which are amongst X1, . . . , Xk and let
X1, . . . ,Xk be second order parameters in the model N , with corresponding arities. Then,
we have : (p []−F )[X +

1 /X +
1 , . . . ,X +

k /X +
k ] ≡ (p []−F [X1/X1, . . . ,Xk /Xk ]).

Immediate, by recurrence on F .
Q.E.D.

Theorem 30.
For each closed formula F with parameters in the model N , there exist two proof-like terms
χF ,χ′F , which only depend on the propositional structure of F , such that we have :
ξ ||− (p []−F ) ⇒ (χFξ, p) ‖|−F ;
(ξ, p) ‖|−F ⇒ χ′Fξ ||− (p []−F )
for every ξ ∈Λ and p ∈ P.

The propositional structure of F is the simple type built with only one atom O and the con-
nective →, which is obtained from F by deleting all quantifiers, all symbols 7→ with their
hypothesis, and by identifying all atomic formulas with O.
For instance, the propositional structure of the formula :
∀X (∀x(∀y( f (x, y) = 0 7→ X y) → X x) →∀x X x) is (O →O) →O.

Proof by recurrence on the length of F .
• If F is atomic, we have F ≡X (t1, . . . , tk ) ; we show that χF =χ and χ′F =χ′.
Indeed, we have :
‖p []−F‖ = ‖∀q(C[p∧q] →X +(q, t1, . . . , tk )‖ =⋃

q {τ.π; τ ∈ C[p∧q], (π, q) ∈ ‖|X (t1, . . . , tk )‖|},
because, by definition of X +, we have π ∈ ‖X +(q, t1, . . . , tk )‖⇔ (π, q) ∈ ‖|X (t1, . . . , tk )‖|.
Therefore, we have :
(∗) ξ ||− (p []−F ) ⇔ (∀q ∈ P )(∀τ ∈ C[p∧q])(∀π ∈Π)((π, q) ∈ ‖|X (t1, . . . , tk )‖|⇒ ξ?τ.π ∈⊥⊥).
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Moreover, we have (ξ, p) ‖|−F ⇔ (∀q ∈ P )(∀π ∈Π)((π, q) ∈ ‖|F‖|⇒ (ξ, p)? (π, q) ∈⊥⊥⊥)
⇔ (∀q ∈ P )(∀π ∈Π)((π, q) ∈ ‖|F‖|⇒ (ξ?π, p∧q) ∈⊥⊥⊥) and finally, by definition of ⊥⊥⊥ :

(∗∗) (ξ, p) ‖|−F ⇔ (∀q ∈ P )(∀τ ∈ C[p∧q])(∀π ∈Π)((π, q) ∈ ‖|F‖|⇒ ξ?πτ ∈⊥⊥).

Suppose that ξ ||− (p []−F ). Since χξ?πτ Â ξ?τ.π, we have from (∗) :
(∀q ∈ P )(∀τ ∈ C[p∧q])(∀π ∈Π)((π, q) ∈ ‖|X (t1, . . . , tk )‖|⇒χξ?τ.π ∈⊥⊥)
and therefore (χξ, p) ‖|−F from (∗∗).
Conversely, suppose that (ξ, p) ‖|−F . By applying (∗∗) and χ′ξ? τ.π Â ξ?πτ, we obtain
(∀q ∈ P )(∀τ ∈ C[p∧q])(∀π ∈Π)((π, q) ∈ ‖|F‖|⇒χ′ξ?τ.π ∈⊥⊥)
and therefore χ′ξ ||− (p []−F ) from (∗).

• If F ≡∀X A, then p []−F ≡∀X +(p []−A). Therefore, we have ξ ||− (p []−F ) ≡∀X +(ξ ||− (p []−A)).
Moreover, we have (ξ, p) ‖|−F ≡∀X ((ξ, p) ‖|− A).
Let X : P k → P (Π) be a second order parameter in the model N , with the same arity as X ,
and let X + be the corresponding parameter of the model M .
If ξ ||− (p []−F ), then we have (ξ ||− (p []− A))[X +/X +], thus ξ ||− (p []− A[X /X ]), from lemma 29.
By the recurrence hypothesis, we have (χAξ, p) ‖|− A[X /X ]. Since X is arbitrary, it follows
that (χAξ, p) ‖|−∀X A.
Conversely, if we have (ξ, p) ‖|−F , then (ξ, p) ‖|− A[X /X ] for every X .
By the recurrence hypothesis, we have χ′Aξ ||− (p []− A[X /X ]), and therefore :
χ′Aξ ||− (p []− A)[X +/X +]), from lemma 29. Since X + is arbitrary, it follows that :
χ′Aξ ||−∀X +(p []− A), that is χ′Aξ ||− (p []−∀X A).

• If F ≡∀x A, then p []−F ≡∀x(p []− A). Therefore ξ ||−p []−F ≡∀x(ξ ||− (p []− A)).
Moreover, (ξ, p) ‖|−F ≡∀x((ξ, p) ‖|− A).
The result is immediate, from the recurrence hypothesis.

• If F ≡ (t1 = t2 7→ A), then p []−F ≡ t1 = t2 7→ p []− A. Therefore :
ξ ||− (p []−F ) ≡ (t1 = t2 7→ ξ ||− (p []− A)).
Moreover, (ξ, p) ‖|−F ≡ (t1 = t2 7→ (ξ, p) ‖|− A).
The result is immediate, from the recurrence hypothesis.

• If F ≡ A → B , we have p []−F ≡∀q(q []− A → p∧q []−B) and therefore :
(∗) ξ ||− (p []−F ) ⇒∀η∀q(η ||− (q []− A) → ξη ||− (p∧q []−B)).
Suppose that ξ ||− (p []−F ) and put χF =λxλy(γ0)(χB )(x)(χ′A)y .
We must show (χFξ, p) ‖|− A → B ; thus, let (η, q) ‖|− A and (π,r ) ∈ ‖|B‖|.
We must show (χFξ, p)? (η, q). (π,r ) ∈⊥⊥⊥ that is (χFξ?η.π, p∧(q∧r )) ∈⊥⊥⊥.
Thus, let τ ∈ C[p∧(q∧r )] ; we must show χFξ?η.πτ ∈⊥⊥ or else χF ?ξ.η.πτ ∈⊥⊥.

From the recurrence hypothesis applied to (η, q) ‖|− A, we have χ′Aη ||− (q []− A).
From (∗), we have therefore (ξ)(χ′A)η ||− (p∧q []−B).
Applying again the recurrence hypothesis, we get :
((χB )(ξ)(χ′A)η, p∧q) ‖|−B . But since (π,r ) ∈ ‖|B‖|, we have :
((χB )(ξ)(χ′A)η, p∧q)? (π,r ) ∈⊥⊥⊥, that is ((χB )(ξ)(χ′A)η?π, (p∧q)∧r ) ∈⊥⊥⊥.
Since τ ∈ C[p∧(q∧r )], we have γ0τ ∈ C[(p∧q)∧r ] and therefore (χB )(ξ)(χ′A)η?πγ0τ ∈⊥⊥.
But, by definition of χF , we have, from theorem 2 :
χF ?ξ.η.πτ Â (χB )(ξ)(χ′A)η?πγ0τ which gives the desired result : χF ?ξ.η.πτ ∈⊥⊥.

Suppose now that (ξ, p) ‖|− A → B ; we put χ′F =λxλy(χ′B )(α0x)(χA)y .
We must show χ′Fξ ||− (p []− A → B) that is ∀q(χ′Fξ ||− (q []− A → p∧q []−B)).

22



Thus, let η ||−q []− A and π ∈ ‖p∧q []−B‖ ; we must show χ′Fξ?η.π ∈⊥⊥.
By the recurrence hypothesis, we have (χAη, q) ‖|− A, therefore (ξ, p)(χAη, q) ‖|−B or else, by
definition of the algebra B : ((α0ξ)(χA)η, p∧q) ‖|−B .
Applying again the recurrence hypothesis, we have (χ′B )(α0ξ)(χA)η ||− (p∧q []−B) and there-
fore :
(χ′B )(α0ξ)(χA)η?π ∈⊥⊥. But we have :
χ′Fξ?η.πÂχ′F ?ξ.η.πÂ (χ′B )(α0ξ)(χA)η?π from theorem 2 ; the desired result follows.

Q.E.D.

A formula F is said to be first order if it is obtained by the following rules :
• ⊥ is first order.
• If A,B are first order, then A → B is first order.
• If B is first order, R is a predicate symbol and t1, . . . , tk are terms with parameters, then
R(t1, . . . , tk ) → B , t1 = t2 7→ B are first order.
• If A is first order, then ∀x A is first order (x is an individual variable).

Remarks.
i) If A is a first order formula, it is the same for ∀xent A.

ii) This notion will be extended below (see proposition 37).

Theorem 31. Let F be a closed first order formula. There exist two proof-like terms δF ,δ′F ,
which depend only on the propositional structure of F , such that we have :
ξ ||− (C[p] → F ) ⇒ (δFξ, p) ‖|−F ;
(ξ, p) ‖|−F ⇒ δ′Fξ ||− (C[p] → F )
for every ξ ∈Λ and p ∈ P.

The proof is by recurrence on the construction of F following the above rules.

• If F is ⊥, we put :
δ⊥ =λx(χ)λy(x)(α)y with α :: p∧q ⇒ p .
δ′⊥ =λxλy(χ′x)(α′)y with α′ :: p ⇒ p∧1 .

Indeed, suppose that ξ ||−C[p] →⊥ and let us show that (δ⊥ξ, p)(π, q) ∈⊥⊥⊥, that is :
(δ⊥ξ?π, p∧q) ∈⊥⊥⊥. Thus, let τ ∈ C[p∧q], so that ατ ∈ C[p], so that ξ?ατ.π ∈⊥⊥, by hypoth-
esis on ξ, which gives δ⊥ξ?πτ ∈⊥⊥.

Conversely, if (ξ, p) ‖|−⊥, we have (ξ, p)? (π,1) ≡ (ξ?π, p∧1) ∈⊥⊥⊥ for every π ∈Π.
But, if τ ∈ C[p], we have α′τ ∈ C[p∧1], therefore ξ?πα

′τ ∈⊥⊥, thus δ′⊥ξ?τ.π ∈⊥⊥.
Therefore δ′⊥ξ ||−C[p] →⊥.

• If F is A → B , we put :
δA→B =λxλy(χ)λz((χ′)(δB )λd((x)(α)z)(δ′A y)(β)z)(γ)z with
α :: p∧(q∧r ) ⇒ p; β :: p∧(q∧r ) ⇒ q ; γ :: p∧(q∧r ) ⇒ 1∧r .

Indeed, suppose that ξ ||−C[p], A → B , (η, q) ‖|− A and (π,r ) ∈ ‖|B‖|.
We must show (δA→Bξ, p)? (η, q). (π,r ) ∈⊥⊥⊥, that is (δA→Bξ?η.π, p∧(q∧r )) ∈⊥⊥⊥.
Thus, let τ ∈ C[p∧(q∧r )] ; we must show δA→Bξ?η.πτ ∈⊥⊥.
We have ατ ∈ C[p],βτ ∈ C[q] ; but, by the recurrence hypothesis, we have δ′Aη ||−C[q] → A,
therefore (δ′Aη)(β)τ ||− A and ((ξ)(α)τ)(δ′Aη)(β)τ ||−B ;
thus λd((ξ)(α)τ)(δ′Aη)(β)τ ||−C[1] → B .
From the recurrence hypothesis, we have ((δB )λd((ξ)(α)τ)(δ′Aη)(β)τ,1) ‖|−B , thus :

23



((δB )λd((ξ)(α)τ)(δ′Aη)(β)τ,1)? (π,r ) ∈⊥⊥⊥, that is ((δB )λd((ξ)(α)τ)(δ′Aη)(β)τ?π,1∧r ) ∈⊥⊥⊥.
But, we have γτ ∈ C[1∧r ], therefore (δB )λd((ξ)(α)τ)(δ′Aη)(β)τ?πγτ ∈⊥⊥, and thus :
((χ′)(δB )λd((ξ)(α)τ)(δ′Aη)(β)τ)(γ)τ?π ∈⊥⊥. It follows that :
(χ)λz((χ′)(δB )λd((ξ)(α)z)(δ′Aη)(β)z)(γ)z?πτ ∈⊥⊥ so that δA→Bξ?η.πτ ∈⊥⊥.

We now put :
δ′A→B =λxλyλz((δ′B )(α0x)(δA)λd z)(α)y with α :: p ⇒ p∧1.

Suppose that (ξ, p) ‖|− A → B ; let τ ∈ C[p], η ||− A and π ∈ ‖B‖. We must show :
δ′A→Bξ?τ.η.π ∈⊥⊥. We have λd η ||−C[1] → A ; applying the recurrence hypothesis, we have
((δA)λd η,1) ‖|− A, thus (ξ, p)((δA)λd η,1) ‖|−B that is ((α0ξ)(δA)λd η, p∧1) ‖|−B .
Applying again the recurrence hypothesis, we find :
(δ′B )(α0ξ)(δA)λd η ||−C[p∧1] → B . Since we have ατ ∈ C[p∧1], we get :
(δ′B )(α0ξ)(δA)λd η?ατ.π ∈⊥⊥ and finally δ′A→Bξ?τ.η.π ∈⊥⊥.

• If F ≡ R(~q) → B , where R is a k-ary predicate symbol and ~p ∈ P k , we put :
δR→B =λxλy(α)(δB )λz(x)z y with α :: p∧(1∧r ) ⇒ p∧r .
δ′R→B =λxλyλz((δ′B )(α0)xz)(α′)y with α′ :: p ⇒ p∧1.

Suppose that ξ ||−C[p],R[~q] → B and let η ∈ |R[~q]|, (π,r ) ∈ ‖|B‖|. We must show :
(δR→Bξ, p)? (η,1). (π,r ) ∈⊥⊥⊥, that is (δR→Bξ?η.π, p∧(1∧r )) ∈⊥⊥⊥. Thus, let τ ∈ C[p∧(1∧r )] ;
we must show δR→Bξ?η.πτ ∈⊥⊥. But, we have λz(ξ)zη ||−C[p] → B , and thus :
((δB )λz(ξ)zη, p) ‖|−B , by the recurrence hypothesis.
It follows that ((δB )λz(ξ)zη, p)? (π,r ) ∈⊥⊥⊥, that is :
((δB )λz(ξ)zη?π, p∧r ) ∈⊥⊥⊥. But we have ατ ∈ C[p∧r ], and therefore (δB )λz(ξ)zη?πατ ∈⊥⊥,
thus (α)(δB )λz(ξ)zη?πτ ∈⊥⊥, therefore δR→Bξ?η.πτ ∈⊥⊥.

Suppose now that (ξ, p) ‖|−R(~q) → B ; let τ ∈C [p], η ∈ |R[~q]| and π ∈ ‖B‖.
We must show δ′R→Bξ?τ.η.π ∈⊥⊥. But, we have (ξ, p)(η,1) ‖|−B , that is ((α0)ξη, p∧1) ‖|−B ,
thus : (δ′B )(α0)ξη ||−C[p∧1] → B , by recurrence hypothesis.
But, we have α′τ ∈ C[p∧1], therefore (δ′B )(α0)ξη?α′τ.π ∈⊥⊥, hence the result.

• If F ≡ (p1 = p2 7→ B), we put δF = δB and δ′F = δ′B .
Indeed, suppose that ξ ||−C[p] → (p1 = p2 7→ B) and (π, q) ∈ ‖|p1 = p2 7→ B‖|. We must show
that (δBξ, p)? (π, q) ∈ ⊥⊥⊥. Since ‖|p1 = p2 7→ B‖| 6= ;, we have p1 = p2, thus (π, q) ∈ ‖|B‖| and
ξ ||−C[p] → B . Hence the result, by the recurrence hypothesis.

Suppose now that (ξ, p) ‖|−p1 = p2 7→ B , τ ||−C[p] et π ∈ ‖p1 = p2 7→ B‖. We must show
δ′B ?τ.π ∈ ⊥⊥. Since ‖p1 = p2 7→ B‖ 6= ;, we have p1 = p2, therefore π ∈ ‖B‖ and (ξ, p) ‖|−B .
Hence the result, by the recurrence hypothesis.

• If F ≡∀x A, we put δF = δA and δ′F = δ′A.

Indeed, if ξ ||−C[p] → ∀x A, we have ξ ||−C[p] → A[a/x] for every a ∈ P . By the recurrence
hypothesis, we have (δAξ, p) ‖|− A[a/x] ; thus (δAξ, p) ‖|−∀x A.

If (ξ, p) ‖|−∀x A, we have (ξ, p) ‖|− A[a/x] for every a ∈ P . By the recurrence hypothesis, we
have δ′Aξ ||−C[p] → A[a/x] ; thus δ′Aξ ||−C[p] →∀x A.

Q.E.D.
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The generic ideal

We define a unary predicate J : P → P (Π) in the model N (second order parameter of
arity 1), by putting J (p) =Π×{p} ; we call it the generic ideal.
Thus, the binary predicate J+ : P 2 →P (Π) which corresponds to it in the model M , is such
that J+(p, q) =; (resp. Π) if p 6= q (resp. p = q). In other words :

J+(p, q) is the predicate p 6= q .
The formula p ||−J (q) is ∀r (C[p∧r ] →J+(r, q)). Therefore, we have :
‖p ||−J (q)‖ = ‖¬C[p∧q]‖ ; in other words :

p ||−J (q) is exactly ¬C[p∧q].

Notations.
• We denote by p v q the formula ∀r (¬C[q∧r ] → ¬C[p∧r ]) and by p ∼ q the formula
p v q ∧q v p, that is ∀r (¬C[q∧r ] ↔¬C[p∧r ]).
In the sequel, we shall often write F → C[p] instead of ¬C[p] →¬F ;
Then p v q is written ∀r (C[p∧r ] → C[q∧r ]) and p ∼ q is written ∀r (C[p∧r ] ↔ C[q∧r ]).
Remark. We recall that C[p] is not a formula, but a subset of Λ ; in fact, in some realizability models

which will be considered below, there will exist a formula C[p] such that :

|C[p]| = {τ ∈Λc ; τ ||−C[p]}. In such cases, we can identify C[p] with the formula C[p].

• If F is a closed formula, we shall write ‖|−F to mean that there exists a proof-like term
θ such that (θ,1) ‖|−F . From proposition 27(i), this is equivalent to say that there exists a
proof-like term θ such that (θ, p) ‖|−F for every p ∈ P .

Proposition 32.
i) ξ ||−¬C[p∧q] ⇒ (χξ, p) ‖|−J (q) ;

(ξ, p) ‖|−J (q) ⇒ χ′ξ ||−¬C[p∧q].
ii) ξ ||−∀r (C[p∧(1∧r )],C[q] →⊥) ⇒ (χξ, p) ‖|−¬C[q] ;

(ξ, p) ‖|−¬C[q] ⇒ χ′ξ ||−∀r (C[p∧(1∧r )],C[q] →⊥).
iii) If ξ ||−¬R(a1, . . . , ak ) then (ξ, p) ‖|−¬R(a1, . . . , ak ) for all p
(R is a predicate symbol of arity k).

i) If ξ ||−¬C[p∧q], then ξ?τ.π ∈ ⊥⊥ and therefore χξ?πτ ∈ ⊥⊥ for all τ ∈ C[p∧q]. Thus, we
have : (χξ?π, p∧q) ∈⊥⊥⊥, that is (χξ, p)? (π, q) ∈⊥⊥⊥ for every π ∈Π, i.e. (χξ, p) ‖|−J (q).

If (ξ, p) ‖|−J [q], we have (ξ, p)? (π, q) ∈⊥⊥⊥, thus (ξ?π, p∧q) ∈⊥⊥⊥ for all π ∈Π. Therefore, we
have ξ?πτ ∈⊥⊥, that is χ′ξ?τ.π ∈⊥⊥ for each τ ∈ C[p∧q]. Therefore χ′ξ ||−¬C[p∧q].

ii) If ξ ||−∀r (C[p∧(1∧r )],C[q] →⊥), we have ξ?υ.τ.π ∈ ⊥⊥ if υ ∈ C[p∧(1∧r )] and τ ∈ C[q].
Therefore χξ?τ.πυ ∈⊥⊥, thus (χξ?τ.π, p∧(1∧r )) ∈⊥⊥⊥ i.e. (χξ, p)? (τ,1). (π,r ) ∈⊥⊥.
But (τ,1) is arbitrary in CN [q], and therefore (χξ, p) ‖|−C[q] →⊥.

If (ξ, p) ‖|−¬C[q], we have (ξ, p)? (τ,1). (π,r ) ∈ ⊥⊥⊥, and therefore (ξ?τ.π, p∧(1∧r )) ∈ ⊥⊥⊥ for
each τ ∈ C[q]. Thus, we have ξ?τ.πυ ∈⊥⊥ therefore χ′ξ?υ.τ.π ∈⊥⊥ for each υ ∈ C[p∧(1∧r )].
It follows that χ′ξ ||−∀r (C[p∧(1∧r )],C[q] →⊥).
iii) Let τ ∈ |R(a1, . . . , ak )| ; we have ξ?τ.π ∈⊥⊥ for all π ∈Π, thus (ξ?τ.π, a) ∈⊥⊥⊥ for all a ∈ P ,
and therefore (ξ, p)? (τ,1). (π, q) ∈⊥⊥⊥.

Q.E.D.

Theorem 33 (Elementary properties of the generic ideal).
i) (α,1) ‖|−¬J (1) with α :: 1∧(p∧q) ⇒ p∧1.
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ii) (θ,1) ‖|−∀x(¬C[x] →J (x)) where θ =λx(χ)λy((χ′x)(β)y)(α)y
with α :: 1∧(p∧q) ⇒ q and β :: 1∧(p∧q) ⇒ p∧(1∧1).
iii) (θ,1) ‖|−∀x∀y(J (x∧y),¬J (x) →J (y)) where θ =λxλy(α)(y)(β)x
with α :: 1∧(p ′∧(q ′∧q)) ⇒ q ′∧((q∧p ′)∧1) and β :: (q∧p ′)∧p ⇒ p ′∧(p∧q).
iv) (θ,1) ‖|−∀x(∀y(¬C[x∧y] →J (y)) →¬J (x)) where θ =λxλy(γ)(x)λz(χ′y)(β)z, with
β :: p∧q ⇒ q∧p and γ :: 1∧(r∧(q∧r ′)) ⇒ r∧(1∧p).
v) (θ,1) ‖|−∀x∀y(J (x), y v x →J (y))
where θ =λxλy((χ)λz(((χ′)(α0 y)λz ′(χ′x)(β)z ′)(α)z)(γ)z, with
α :: 1∧(p ′∧(r∧q)) ⇒ (r∧1)∧(1∧1) ; α′ :: 1∧(p ′∧(q ′∧q)) ⇒ q∧p ′ ; β :: p∧q ⇒ q∧p.

i) Let (ξ, p) ‖|−J (1) ; we must show that (α,1)? (ξ, p). (π, q) ∈⊥⊥⊥, that is to say :
(α?ξ.π,1∧(p∧q)) ∈⊥⊥⊥. But, from proposition 23, we have :
(α?ξ.π,1∧(p∧q)) Â (ξ?π, p∧1) ≡ (ξ, p)? (π,1).
Now, we have (ξ, p)? (π,1) ∈⊥⊥⊥ by hypothesis on (ξ, p).

ii)Let (η, p) ‖|−¬C[q] and (π, q) ∈ ‖|J (q)‖|. We must show that (θ,1)? (η, p). (π, q) ∈ ⊥⊥⊥, i.e.
(θ?η.π,1∧(p∧q)) ∈⊥⊥⊥. Thus, let τ ∈ C[1∧(p∧q)] ; we must show that θ?η.πτ ∈⊥⊥.
From proposition 32, we have χ′η ||−C[p∧(1∧1)],C[q] →⊥.
Now, we have βτ ∈ C[p∧(1∧1)] and ατ ∈ C[q], therefore χ′η?βτ.ατ.π ∈⊥⊥ thus
(χ)λy((χ′η)(β)y)(α)y ?πτ ∈⊥⊥ thus θ?η.πτ ∈⊥⊥.

iii) Let (ξ, p ′) ‖|−J (p∧q), (η, q ′) ‖|−¬J (p) and (π, q) ∈ ‖|J (q)‖|. We must show that :
(θ,1)? (ξ, p ′). (η, q ′). (π, q) ∈⊥⊥⊥, i.e. (θ?ξ.η.π,1∧(p ′∧(q ′∧q))) ∈⊥⊥⊥.
From propositions 27(ii) and 23, it suffices to show :
((α)(η)(β)ξ?π,1∧(p ′∧(q ′∧q))) ∈⊥⊥⊥ then (η?βξ.π, q ′∧((q∧p ′)∧1)) ∈⊥⊥⊥, that is :
(η, q ′)? (βξ, q∧p ′). (π,1) ∈⊥⊥⊥.
By hypothesis on (η, q ′), we have now to show that (βξ, q∧p ′) ‖|−J (p), i.e. :
(βξ, q∧p ′)? ($, p) ∈⊥⊥⊥, or else (βξ?$, (q∧p ′)∧p) ∈⊥⊥⊥ for all $ ∈Π.
But, by proposition 23, we have :
(βξ?$, (q∧p ′)∧p) Â (ξ?$, p ′∧(p∧q)) ≡ (ξ, p ′)? ($, p∧q) ∈⊥⊥⊥ by hypothesis on (ξ, p ′).

iv) Let (ξ, q) ‖|−J (p) and (η,r ) ‖|−∀q(¬C[p∧q] →J (q)) ; we must show that :
(θ,1)? (η,r ). (ξ, q). (π,r ′) ∈⊥⊥⊥, that is (θ?η.ξ.π,1∧(r∧(q∧r ′))) ∈⊥⊥⊥.
From proposition 32(i), we have χ′ξ ||−¬C[q∧p]. Let τ ∈ C[p∧q], thus βτ ∈ C[q∧p] therefore
χ′ξ?βτ.ρ ∈⊥⊥ for every ρ ∈Π. Therefore, we have λx(χ′ξ)(β)x?τ.ρ ∈⊥⊥, thus
λz(χ′ξ)(β)z ||−¬C[p∧q]. From proposition 32(iii), we have (λz(χ′ξ)(β)z,1) ‖|−¬C[p∧q].
By hypothesis on (η,r ), we thus have (η,r )? (λz(χ′ξ)(β)z,1). (π, q) ∈⊥⊥⊥, i.e. :
(η?λz(χ′ξ)(β)z .π,r∧(1∧q)) ∈⊥⊥⊥, thus ((γ)(η)λz(χ′ξ)(β)z?π,1∧(r∧(q∧r ′))) ∈⊥⊥⊥
(proposition 23) and therefore (θ?η.ξ.π,1∧(r∧(q∧r ′))) ∈⊥⊥⊥.

v) Let (ξ, p ′) ‖|−J (p) and (η,r ) ‖|−q v p ; we must show that :
(θ,1)? (ξ, p ′). (η,r ). (π, q) ∈⊥⊥⊥ for all π ∈Π, that is (θ?ξ.η.π,1∧(p ′∧(r∧q))) ∈⊥⊥⊥.
From proposition 32(i), we have χ′ξ ||−¬C[p ′∧p], thus λz ′(χ′ξ)(β)z ′ ||−¬C[p∧p ′] : indeed, if
τ ∈ C[p∧p ′] and ρ ∈Π, we have λz ′(χ′ξ)(β)z ′?τ.ρ Â (χ′ξ)(β)τ?ρ ∈⊥⊥ since βτ ∈ C[p ′∧p].
Then, from proposition 32(iii), we have (λz ′(χ′ξ)(β)z ′,1) ‖|−¬C[p∧p ′]. But, by hypothesis on
(η,r ), we have (η,r ) ‖|− (¬C[p∧p ′] →¬C[q∧p ′]). It follows that :
(η,r )(λz ′(χ′ξ)(β)z ′,1) ‖|−¬C[q∧p ′], i.e. ((α0η)λz ′(χ′ξ)(β)z ′,r∧1) ‖|−¬C[q∧p ′].
From proposition 32(ii), we have (χ′)(α0η)λz ′(χ′ξ)(β)z ′ ||−C[(r∧1)∧(1∧1)],C[q∧p ′] →⊥.
Let τ ∈ C[1∧(p ′∧(r∧q))], therefore ατ ∈ C[(r∧1)∧(1∧1)] and α′τ ∈ C[q∧p ′]. Thus, we have :
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(((χ′)(α0η)λz ′(χ′ξ)(β)z ′)(α)τ)(γ)τ?π ∈⊥⊥, therefore :
(χ)λz(((χ′)(α0η)λz ′(χ′ξ)(β)z ′)(α)z)(α′)z?πτ ∈⊥⊥. In other words :
((χ)λz(((χ′)(α0η)λz ′(χ′ξ)(β)z ′)(α)z)(α′)z?π,1∧(p ′∧(r∧q))) ∈⊥⊥⊥
or else, from proposition 27(ii) : (θ?ξ.η.π,1∧(p ′∧(r∧q))) ∈⊥⊥⊥.

Q.E.D.

Theorem 34 (Density).
For each function φ : P → P, we have :
(θ,1) ‖|−∀x(¬C[x∧φ(x)] →J (x)),∀x J (x∧φ(x)) →⊥
where θ = (β)λxλy(x)(ϑ)y, ϑ= (χ)λdλxλy(χ′x)(α)y ;
with α :: q∧r ⇒ q∧(q∧r ) ; β :: 1∧(p∧(q∧r )) ⇒ p∧(1∧q).

Let (ξ, p) ‖|−∀x(¬C[x∧φ(x)] →J (x)), (η, q) ‖|−∀x J (x∧φ(x)) and (π,r ) ∈Π.
we must show that (θ? ξ.η.π,1∧(p∧(q∧r ))) ∈ ⊥⊥⊥ ; thus, let τ0 ∈ C[1∧(p∧(q∧r ))]. We must
show θ?ξ.η.πτ0 ∈⊥⊥.
We first show that (ϑη,1) ‖|−¬C[q∧φ(q)].
Thus, let ($,r ′) ∈Π and τ ∈ C[q∧φ(q)] ; we must show (ϑη,1)? (τ,1). ($,r ′) ∈⊥⊥⊥
i.e. (ϑη?τ.$,1∧(1∧r ′)) ∈⊥⊥⊥ or else ϑη?τ.$τ′ ∈⊥⊥ for each τ′ ∈ C[1∧(1∧r ′)]).
Now, ϑη?τ.$τ′ Â η?$ατ and ατ ∈ C[q∧(q∧φ(q))]. Thus, it suffices to show :
(η?$, q∧(q∧φ(q))) ∈⊥⊥⊥ or else (η, q)? ($, q∧φ(q)) ∈⊥⊥⊥.
But this follows from the hypothesis on (η, q), which implies (η, q) ‖|−J (q∧φ(q)).

By hypothesis on ξ, we have (ξ, p) ‖|−¬C[q∧φ(q)] →J (q). It follows that :
(ξ, p)? (ϑη,1). (π, q) ∈⊥⊥⊥, that is (ξ?ϑη.π, p∧(1∧q)) ∈⊥⊥⊥.
But we have τ0 ∈ C[1∧(p∧(q∧r ))]), thus βτ0 ∈ C[p∧(1∧q)]. It follows that ξ?ϑη.πβτ0 ∈⊥⊥.
This gives the desired result, since θ?ξ.η.πτ0 Â ξ?ϑη.πβτ0 .

Q.E.D.

Countable downward chain condition

In this section, we consider a standard realizability algebra A and a A -model M . We sup-
pose that the set P (domain of variation of individual variables) has a power≥ 2ℵ0 . We choose
a surjection ε : P →P (Π)N and we define a binary predicate in the model M , which we de-
note also by ε, by putting :

‖n εp‖ = ε(p)(n) if n ∈N ; ‖n εp‖ =; if n ∉N
(we use, for the predicate ε, the notation n εp instead of ε(n, p)).
Therefore, the predicate ε enables us to associate, with each individual, a set of integers
which are its elements. Proposition 35 shows that the following axiom is realized :

For every set, there exists an individual which has the same integer elements.

This axiom will be called axiom of representation of predicates on N and denoted by RPN.

Proposition 35 (RPN).
λx(x)00 ||−∀X∃x∀nent(X n ↔ n εx).

This formula is ∀X (∀x[∀n(ent(n), X n → n εx),∀n(ent(n),n εx → X n) →⊥] →⊥).
Thus, we consider a unary parameter X : P →P (Π) and a term ξ ∈Λ such that :

ξ ||−∀x[∀n(ent(n),X n → n εx),∀n(ent(n),n εx →X n) →⊥].

27



We must show that λx(x)00?ξ.π ∈⊥⊥, or else ξ?0.0.π ∈⊥⊥ for every stack π ∈Π.
By definition of ε, there exists p0 ∈ P such that X n = ‖n εp0‖ for every integer n.
But, we have : ξ ||−∀n(ent(n),X n → n εp0),∀n(ent(n),n εp0 →X n) →⊥.
Thus, it suffices to show that 0 ||−∀n(ent(n),X n → n εp0) and 0 ||−∀n(ent(n),n εp0 →X n).
Recall that the predicate ent(x) is defined as follows :

|ent(n)| = {n} if n ∈N and |ent(n)| =; if n ∉N.

Therefore, we have to show :
0?n .η.ρ ∈⊥⊥ for all n ∈N, η ||−X (n) and ρ ∈ ‖n εp0‖ ;
0?n .η′ .ρ′ ∈⊥⊥ for all n ∈N, η′ ||−n εp0 and ρ′ ∈X (n).
But this follows from η?ρ ∈⊥⊥ and η′?ρ′ ∈⊥⊥, which is trivially true, since X n = ‖n εp0‖.

Q.E.D.

We suppose now that {C,∧,1} is a forcing structure in M . Then we define also the symbol ε
in the B-model N by putting :
‖|n εp‖| = ‖n εp‖×{1} for n, p ∈ P . In other words
‖|n εp‖| = {(π,1); π ∈ ε (p)(n)} if n ∈N ; ‖|n εp‖| =; if n ∉N.

Proposition 36. The predicate ε+(q,n, p) is q = 1 7→ n εp.
The formula q []−n εp is C[q∧1] → n εp.

Immediate, by definition of ‖|n εp‖|.
Q.E.D.

Proposition 37.
i) ξ ||− (C[p] → n εq) ⇒ (δξ, p) ‖|−n εq where δ=λx(χ)λy(x)(α)y and α :: p∧1 ⇒ p.
ii) (ξ, p) ‖|−n εq ⇒ δ′ξ ||− (C[p] → n εq) where δ′ =λxλy(χ′x)(α′)y and α′ :: p ⇒ p∧1.

We have (ξ, p) ‖|−n εp ⇔ (ξ, p)? (π,1) ∈⊥⊥⊥ for all π ∈ ‖n εp‖, or else :
(ξ, p) ‖|−n εp ⇔ ξ?πτ ∈⊥⊥ for each τ ∈ C[p∧1] and π ∈ ‖n εp‖.
i) Suppose that ξ ||− (C[p] → n εq), τ ∈ C[p∧1] and π ∈ ‖n εp‖. Then,we have :
δξ?πτ Â ξ?ατ.π ∈⊥⊥, since ατ ∈ C[p].
ii) Suppose that (ξ, p) ||−n εq , τ ∈ C[p] and π ∈ ‖n εp‖. Then,we have :
δ′ξ?τ.πÂ ξ?πα′τ ∈⊥⊥, since α′τ ∈ C[p∧1].

Q.E.D.

The notion of first order formula has been defined previously (see theorem 31). We extend
this definition with the following clause :

• t εu is first order, for all terms t ,u.

Proposition 37 shows that theorem 31 remains true for this extended notion.

We say that the forcing structure {C,∧,1} satisfies the countable downward chain condition
(in abridged form c.d.c.) if there exists a proof-like term cdc such that :

cdc ||−∀X [∀nent∃p X (n, p),∀nent∀p∀q(X (n, p), X (n, q) → p = q),
∀nent∀p∀q(X (n, p), X (sn, q) → q v p) →
∃p ′{∀nent∀p(X (n, p) → p ′ v p), (∀nent∀p(X (n, p) → C[p]) → C[p ′])}].

The intuitive meaning of this formula is :

If X (n, p) is a decreasing sequence of conditions, then there exists a condition p ′ which is less than all

of them ; moreover, if all these conditions are non trivial, then p ′ is non trivial.

We intend, in this section to prove the :
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Theorem 38 (Conservation of reals).
If the c.d.c. is verified, then there exists a proof-like term crl such that :
(crl,1) ‖|−∀X∃x∀nent(X n ↔ n εx).

This means that the axiom RPN, which is realized in the A -model M (see proposition 35) is
also realized in the generic B-model N .

Notation.
The formula ∀q(C[p∧q], q []−X n → p []−X n) reads as “ p decides X n ”, and is denoted by
p []−±X n.
It can also be written as ∀q∀r (C[p∧q], q []−X n,C[p∧r ] → X +(r,n)).
If X : P →P (Π×P ) is a unary predicate in the B-model N ,
and X + : P 2 →P (Π) is the corresponding binary predicate in the standard A -model M ,
the formula ∀q(C[p∧q], q []−X n → p []−X n) is thus also denoted by p []−±X n.

Theorem 39. If the c.d.c. is verified, there exists a proof-like term dec such that :
dec ||−∀X∀p0∃p ′{(C[p0] → C[p ′]), p ′ v p0,∀nent(p ′ []−±X n)}.

Remark. This formula means that, for any predicate X , the set of conditions which decide X n for all

integers n is dense.

We first show how theorem 38 can be deduced from this theorem 39.
From theorem 30, it is sufficient to find a proof-like term crl0 such that :
crl0 ||−1 []−∀X∃x∀nent(X n ↔ n εx)
or else, since 1 []−¬A ≡∀p0((p0 []− A),C[1∧p0] →⊥) :
crl0 ||−∀X∀p0[(p0 []−∀q{∀nent(X n ↔ n εq) →⊥}),C[1∧p0] →⊥].
From theorem 39, it is sufficient to find a proof-like term crl1 such that :
crl1 ||−∀X∀p0∀p ′{(C[p0] → C[p ′]), p ′ v p0,∀nent(p ′ []−±X n),

(p0 []−∀q(∀nent(X n ↔ n εq) →⊥)),C[1∧p0] →⊥}.
It is sufficient to find a proof-like term crl2 such that :
crl2 ||−∀X∀p0∀p ′{(p0 []−∀q(∀nent(X n ↔ n εq) →⊥)), p ′ v p0,∀nent(p ′ []−±X n),C[p ′] →⊥}.
Indeed, we take then crl1=λxλyλzλuλv((x)(crl2)uy z)(δ)v with δ :: 1∧p ⇒ p ;
(recall that the formula C[p0] → C[p ′] is written, in fact, as ¬C[p ′] →¬C[p0]).

We fix X + : P 2 → P (Π), p0, p ′ ∈ P , ξ ||− (p0 []−∀q(∀nent(X n ↔ n εq) → ⊥)), η ||−p ′ v p0,
ζ ||−∀nent(p ′ []−±X n) and τ ∈ C[p ′]. We must have (crl2)ξηζτ ||−⊥.
We choose q0 ∈ P such that we have ‖n εq0‖ = ‖p ′ []−X n‖ for all n ∈N, which is possible, by
definition of ε. We trivially have ξ ||− (p0 []− (∀nent(n εq0 →X n),∀nent(X n → n εq0) →⊥)).
But, the formula p0 []− (∀nent(n εq0 →X n), ∀nent(X n → n εq0) →⊥) is written as :
∀r∀r ′(r []−∀nent(n εq0 →X n), r ′ []−∀nent(X n → n εq0), C[(p0∧r )∧r ′] →⊥).
Replacing r and r ′ with p ′, we obtain :
ξ ||− (p ′ []−∀nent(n εq0 →X n), p ′ []−∀nent(X n → n εq0), C[(p0∧p ′)∧p ′] →⊥).
From τ ∈ C[p ′] and η ||−∀r (¬C[p0∧r ] →¬C[p ′∧r ]), we deduce that :
λh((η)λx(h)(β)x)(α)τ ||−¬¬C[(p0∧p ′)∧p ′]
where α,β are C-expressions such that α : p ⇒ p∧p ; β :: p∧q ⇒ (p∧q)∧q .
Thus, we have :
(1) λyλz((η)λx(ξy z)(β)x)(α)τ ||− (p ′ []−∀nent(n εq0 →X n)), (p ′ []−∀nent(X n → n εq0)) →⊥.

• The formula p ′ []−∀nent(n εq0 →X n) is written as ∀nent∀r (r []−n εq0 → p ′∧r []−X n).
But r []−n εq0 ≡ C[r∧1] → n εq0 (proposition 36) ≡ C[r∧1] → p ′ []−X (n) by definition of q0.
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Therefore p ′ []−∀nent(n εq0 →X n) ≡∀nent∀r ((C[r∧1] → p ′ []−X (n)) → p ′∧r []−X n) ≡
∀nent∀r∀q ′[∀q(C[r∧1],C[p ′∧q] →X +(q,n)),C[(p ′∧r )∧q ′] →X +(q ′,n)].
Thus, we have :
(2) λdλxλy((x)(α′)y)(β′)y ||− (p ′ []−∀nent(n εq0 →X n))
with α′ :: (p∧r )∧q ⇒ r∧1 and β′ :: (p∧r )∧q ⇒ p∧q .

• The formula p ′ []−∀nent(X n → n εq0) is written as ∀nent∀r (r []−X n → p ′∧r []−n εq0),
or else : ∀nent∀r (r []−X n,C[(p ′∧r )∧1] → n εq0), that is, by definition of q0 :
∀nent∀r (r []−X n,C[(p ′∧r )∧1] → p ′ []−X n). But, we have :
ζ ||−∀nent(p ′ []−±X n), in other words ζ ||−∀nent∀r (r []−X n,C[p ′∧r ] → p ′ []−X n). Therefore :
(3) λnλxλy(ζnx)(α′′)y ||−p ′ []−∀nent(X n → n εq0) with α′′ :: (p∧r )∧1 ⇒ p∧r .

It follows from (1,2,3) that :
((λyλz((η)λx(ξy z)(β)x)(α)τ)λdλxλy((x)(α′)y)(β′)y)λnλxλy(ζnx)(α′′)y ||−⊥.
Therefore, we can put crl2 =
λx0λy0λz0λu((λyλz((y0)λx(x0 y z)(β)x)(α)u)λdλxλy((x)(α′)y)(β′)y)λnλxλy(z0nx)(α′′)y .

Q.E.D.

The remaining of this section is devoted to the proof of theorem 39.

Definition of a sequence by dependent choices

In this section, we are given a fixed element p0 ∈ P and a finite sequence of formulas with
parameters ~F (n, p, p ′). We are also given a proof-like term dse such that :
dse ||−∀n∀p∃p ′~F (n, p, p ′).

Remark. The aim of this section is to write down a formula Φ(x, y) which represents the graph of

a function φ : N→ P such that the formulas φ(0) = p0 and ∀nent~F (n,φ(n),φ(n + 1)) are realized by

proof-like terms. We shall only apply the results of this section to a particular sequence ~F of length 3.

From theorem 16(i) (axiom of choice for individuals), there exists a function f : P 3 → P such
that : ς ||−∀n∀p(∀kent(~F (n, p, f (n, p,k)) →⊥) →∀p ′(~F (n, p, p ′) →⊥)).

It follows that λx(dse)(ς)x ||−∀n∀p(∀kent(~F (n, p, f (n, p,k)) →⊥) →⊥).

We define a function denoted by (m<n), from P 2 into P , by putting, for m,n ∈ P :
(m<n) = 1 if m,n ∈N and m < n ; (m<n) = 0 otherwise.

Obviously, the relation (m<n) = 1 is well founded on P .
Thus, from theorem 11(ii), we have :
Y ||−∀k(∀l (ent(l ),~F (n, p, f (n, p, l )) → (l <k) 6= 1),ent(k),~F (n, p, f (n, p,k)) →⊥)

→∀k(ent(k),~F (n, p, f (n, p,k)) →⊥).
Therefore, if we set Y′ =λx(Y)λyλz(x)z y , we have :
Y′ ||−∀kent{∀l ent(~F [n, p, f (n, p, l )] → (l <k) 6= 1),~F [n, p, f (n, p,k)] →⊥}

→∀kent(~F [n, p, f (n, p,k)] →⊥).
Thus, we have :
λx(dse)(ς)(Y′)x ||−∀kent{∀l ent(~F [n, p, f (n, p, l )] → (l <k) 6= 1),~F [n, p, f (n, p,k)] →⊥} →⊥.

We define the formula G(n, p,k) ≡ ∀l ent(~F (n, p, f (n, p, l )) → (l <k) 6= 1) and the finite se-
quence of formulas ~H(n, p,k) ≡ {G(n, p,k),~F (n, p, f (n, p,k))}. Then, we have shown :

Lemma 40. dse0 ||−∀n∀p∃kent{~H(n, p,k)}, with dse0 =λx(dse)(ς)(Y′)x.

Remark. The intuitive meaning of ~H(n, p,k) is “k is the least integer such that ~F (n, p, f (n, p,k))”.
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Lemma 41. Let cp be a proof-like term such that, for every m,n ∈N, we have :
cp?m .n .ξ.η.ζ.πÂ ξ?π (resp. η?π, ζ?π) if m < n (resp. n < m, m = n). Then :
i) cp ||−∀ment∀nent((m<n) 6= 1,(n<m) 6= 1,m 6= n →⊥).
ii) dse1 ||−∀n∀p∀kent∀k ′ ent(~H(n, p,k), ~H(n, p,k ′),k 6= k ′ →⊥)
with dse1= λkλk ′λxλ~yλx ′λ~y ′((cp k ′k)(x)k ′~y ′)(x ′)k~y, where ~y ,~y ′ are two sequences of dis-
tinct variables of the same length as the sequence ~F .

i) Trivial.
ii) Let ξ ||−G(n, p,k),~η ||−~F (n, p, f (n, p,k)), ξ′ ||−G(n, p,k ′),~η′ ||−~F (n, p, f (n, p,k ′))
and ζ ||−k 6= k ′. We must show cp?k ′ .k . (ξ)k ′~η′ . (ξ′)k~η.ζ.π ∈⊥⊥.
If k = k ′, it remains to prove ζ?π ∈⊥⊥ ; but this is true because we then have ζ ||−⊥.
If k ′ < k, it remains to prove ξ?k ′ .~η′ .π ∈⊥⊥. This results immediately from :
ξ ||−∀k ′ ent(~F (n, p, f (n, p,k ′)) → (k ′<k) 6= 1) and thus ξ ||−ent(k ′),~F (n, p, f (n, p,k ′)) →⊥,
since k ′ < k.

Q.E.D.

We now define the binary predicate :
Φ(x, y) ≡∀X (∀n∀p∀kent(~H(n, p,k), X (n, p) → X (sn, f (n, p,k))), X (0, p0) → X (x, y))
and we show thatΦ(x, y) is a sequence of conditions (functional relation onN) and also some
other properties ofΦ.

Remark. Intuitively, the predicate Φ is the graph of the function φ of domain N, recursively defined

by the conditions : φ(0) = p0 ; φ(n +1) = f ′(n,φ(n))

where f ′(n, p) is f (n, p,k) for the least k such that F (n, p, f (n, p,k)). Unfortunately, we cannot intro-

duce f ′ as a function symbol because, unlike f , it is not defined in the ground model.

Lemma 42.
i) λxλy y ||−Φ(0, p0).
ii) λx(x)I I ||−∀y(Φ(0, y) → y = p0).
iii) rec ||−∀x∀y∀kent(~H(x, y,k),Φ(x, y) →Φ(sx, f (x, y,k)))
where rec =λkλxλ~yλx ′λzλu(zkx~y)(x ′)zu
and ~y is a sequence of distinct variables of the same length as ~F .

i) Trivial.

ii) We define the binary predicate X : P 2 →P (Π) by putting :
X (0, q) = ‖q = p0‖ and X (p, q) =; for p 6= 0.
We replace X with X in the definition ofΦ(0, y). Since we have sn 6= 0 for all n ∈ P , we obtain
‖Φ(0, y)‖ ⊃ ‖>, p0 = p0 → y = p0‖ ; hence the result.

iii) Let ξ ||−G(x, y,k),~η ||−~F (x, y, f (x, y,k)), ξ′ ||−Φ(x, y),
ζ ||−∀n∀p∀kent(~H(n, p,k), X (n, p) → X (sn, f (n, p,k))),
υ ||−X (0, p0) and π ∈ ‖X (sx, f (x, y,k))‖.
Then ξ′ζυ ||−X (x, y), therefore ζ?k .ξ.~η.ξ′ζυ.π ∈⊥⊥ i.e. (rec)kξ~ηξ′ζυ?π ∈⊥⊥.

Q.E.D.

Lemma 43. cdc1 ||−∀nent∃pΦ(n, p) where cdc1=λn((n)λxλy(x)λz(cd1)z y)λx(x)λxλy y
with cd1=λxλy(dse0)λlλ~z(y)(rec)l~zx ;
~z is a sequence of distinct variables of the same length as ~H.
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Proof by recurrence on n ; we have λxλy y ||−Φ(0, p0), therefore λx(x)λxλy y ||−∃yΦ(0, y).
We now show that cd1 ||−Φ(x, y) →∃yΦ(sx, y).
Thus, we consider ξ ||−Φ(x, y), η ||−∀y(Φ(sx, y) →⊥).
We have rec ||−∀l ent(~H(x, y, l ),Φ(x, y) →Φ(sx, f (x, y, l ))) (lemma 42iii),
η ||− (Φ(sx, f (x, y, l )) →⊥), and therefore :
λlλ~z(η)(rec)l~zξ ||−∀l ent(~H(x, y, l ) →⊥), where~z has the same length as ~H .
Now, we have dse0 ||−∃kent{~H(x, y,k)} (lemma 40) ; therefore :
(dse0)λlλ~z(η)(rec)l~zξ ||−⊥, that is (cd1)ξη ||−⊥.

Thus, we have shown that cd1 ||−∀y(Φ(x, y) →∃yΦ(sx, y)), and it follows that :
λxλy(x)λz(cd1)z y ||−∃yΦ(x, y) →∃yΦ(sx, y).

Q.E.D.

Lemma 44. There exists a proof-like term cdc2 such that :
cdc2 ||−∀nent∀p∀q(Φ(n, p),Φ(n, q) → p = q).

We give a detailed proof, by recurrence on n. It enables us to write explicitly the proof-like
term cdc2.

For n = 0, the lemma 42(ii) gives the result : Φ(0, p),Φ(0, q) → p = q .
Let us fix m and suppose that ∀p∀q(Φ(m, p),Φ(m, q) → p = q).
We define the binary predicate :
Ψ(n, q) ≡∀p∀kent(n = sm, ~H(m, p,k),Φ(m, p) → q = f (m, p,k)).

We show that ||−∀p∀kent(~H(n, p,k),Φ(n, p) →Ψ(sn, f (n, p,k))), that is to say :
||−∀p∀q∀kent∀l ent{~H(n, p,k),Φ(n, p), sn = sm, ~H(m, q, l ),Φ(m, q) → f (n, p,k) = f (m, q, l )}.
But we have ‖sn = sm‖ = ‖n = m‖, Φ(m, p),Φ(m, q) → p = q by hypothesis of recurrence ;
~H(m, p,k), ~H(m, p, l ) → k = l (lemma 41(ii)), and it follows that f (n, p,k) = f (m, q, l ).

If we put Ψ′(x, y) ≡Φ(x, y)∧Ψ(x, y), we have :
||−∀p∀kent(~H(n, p,k),Ψ′(n, p) → Ψ′(sn, f (n, p,k))) ; we have also ||−Ψ′(0, p0). This shows

that ||− (Φ(x, y) →Ψ′(x, y)) by making X ≡Ψ′ in the definition ofΦ.
Thus, we have ||−Φ(sm, q) →∀p∀kent(~H(m, p,k),Φ(m, p) → q = f (m, p,k)). It follows that :
||−Φ(sm, q),Φ(sm, q ′) →∀p∀kent(~H(m, p,k),Φ(m, p) → (q = f (m, p,k))∧ (q ′ = f (m, p,k)))

and therefore ||−Φ(sm, q),Φ(sm, q ′) →∀p∀kent(~H(m, p,k),Φ(m, p) → q = q ′).
Thus, we obtain ||−Φ(sm, q),Φ(sm, q ′) → q = q ′, since we have cdc1 ||−∃pΦ(m, p) by
lemma 43 and dse0 ||−∀p∃kent{~H(m, p,k)} by lemma 40.

Q.E.D.

End of the proof of theorem 39

In order to show theorem 39, we fix p0 ∈ P and a binary predicate X : P 2 →P (Π).
We have to find a proof-like term dec such that :
dec ||−∃p ′{(C[p0] → C[p ′]), p ′ v p0,∀nent(p ′ []−±X n)}.

We apply the above results, taking for ~F (n, p, p ′) the sequence of three formulas :
{(C[p] → C[p ′]), (p ′ v p), p ′ []−±X n}.
Lemma 45 below gives a proof-like term dse such that dse ||−∀n∀p∃p ′{~F (n, p, p ′)}.
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Lemma 45. dse ||−∀p∃p ′{~F (n, p, p ′)}
where dse=λa(λh(aI I )λxλy h)λz(cc)λk((aλx xz)β′)λxλy(k)(y)(α)x
with β′ =λxλy(x)(β)y, α :: (p∧q)∧r ⇒ r∧q and β :: (p∧q)∧r ⇒ p∧r .

The formula we consider is written as ∀p ′[(C[p] → C[p ′]), p ′ v p , (p ′ []−±X n) →⊥] →⊥.
Thus, let ξ ||−∀p ′[(C[p] → C[p ′]), p ′ v p , (p ′ []−±X n) →⊥]. We must show (dse)ξ ||−⊥.

• We show that λh(ξI I )λxλy h ||−¬(p []−X n) :
Let ζ ||− (p []−X n) ; therefore, we have λxλy ζ ||− (p []−±X n) ; indeed :
p []−±X n ≡∀q(C[p∧q], q []−X n → p []−X n).
But, we have ξ ||− (C[p] → C[p]), p v p , (p []−±X n) →⊥ ;
we have I ||−C[p] → C[p] and I ||−p v p (since p ′ v p ≡∀q(¬C[p∧q] →¬C[p ′∧q])).
Thus (ξI I )λxλy ζ ||−⊥, hence the result.

• We now show λz(cc)λk((ξλx xz)β′)λxλy(k)(y)(α)x ||− (p []−X n).
Thus, let τ ∈ C[p∧q] and π ∈X +(q,n). We must show :
((ξλx xτ)β′)λxλy(kπ)(y)(α)x?π ∈⊥⊥. But, we have λx xτ ||−¬¬C[p∧q],
β′ ||−p∧q v p (lemma 46) and ξ ||− (¬C[p∧q] →¬C[p]), p∧q v p , (p∧q []−±X n) →⊥ ; thus :
(ξλx xτ)β′ ||− ((p∧q []−±X n) →⊥). Therefore, it is sufficient to show :
λxλy(kπ)(y)(α)x ||− (p∧q []−±X n), i.e. :
λxλy(kπ)(y)(α)x ||−∀r (C[(p∧q)∧r ], r []−X n → p∧q []−X n). In fact, we show :
λxλy(kπ)(y)(α)x ||−∀r (C[(p∧q)∧r ], r []−X n →⊥).
Thus, let υ ∈ C[(p∧q)∧r ] and η ||− (r []−X n). We must show :
(kπ)(η)(α)υ?ρ ∈⊥⊥ for all ρ ∈Π, i.e. (η)(α)υ?π ∈⊥⊥. But, we have (α)υ ∈ C[r∧q],
therefore (η)(α)υ ||−X +(q,n), hence the result, since π ∈X +(q,n).

• It follows that (λh(ξI I )λxλy h)λz(cc)λk((ξλx xz)β′)λxλy(k)(y)(α)x ||−⊥
i.e. (dse)ξ ||−⊥, which completes the proof.

Q.E.D.

Lemma 46. Let β :: (p∧q)∧r ⇒ p∧r . Then λxλy(x)(β)y ||−∀p∀q((p∧q) v p).

This formula is written ∀p∀q∀r (¬C[p∧r ],C[(p∧q)∧r ] →⊥).
Therefore, let ξ ||−¬C[p∧r ],τ ∈ C[(p∧q)∧r ], thus βτ ∈ C[p∧r ] and (ξ)(β)τ ||−⊥.
Thus, we obtain λxλy(x)(β)y ?ξ.τ.π ∈⊥⊥ for every π ∈Π.

Q.E.D.

We propose now to apply the countable downward chain condition to the binary predicate
Φ(x, y). Lemmas 43 and 44 show that the first two hypothesis of the c.d.c. are realized by
cdc1 and cdc2. The third one is given by lemma 47 below.

Lemma 47. There exist two proof-like terms cdc3 and for such that :
i) cdc3 ||−∀nent∀p∀q(Φ(n, p),Φ(sn, q) → q v p).
ii) for ||−∀nent∀q(Φ(sn, q) → q []−±X n).

By lemma 42(iii), we have :
rec ||−∀kent(~H(n, p,k),Φ(n, p) →Φ(sn, f (n, p,k))). Using cdc2 (lemma 44), we get :
||−∀kent(~H(n, p,k),Φ(n, p),Φ(sn, q) → q = f (n, p,k)).

Now, ~H(n, p,k) is a sequence of four formulas, the last two of which are :
f (n, p,k) v p and f (n, p,k) []−±X n.

33



i) It follows first that ||−∀kent(~H(n, p,k),Φ(n, p),Φ(sn, q) → q v p).
Hence the result, since we have dse0 ||−∃kent{~H(n, p,k)} (lemma 40).
ii) It follows also that ||−∀kent(~H(n, p,k),Φ(n, p),Φ(sn, q) → q []−±X n).
Thus, we obtain ||−∀nent∀q(Φ(sn, q) → q []−±X n) since we have cdc1 ||−∀nent∃pΦ(n, p)
(lemma 43) and dse0 ||−∀n∀p∃kent{~H(n, p,k)} (lemma 40).

Q.E.D.

We can now apply the c.d.c. to the predicateΦ(x, y), which gives a proof-like term cdc0 such
that cdc0 ||−∃p ′{~Ω(n, p, p ′)} with :
~Ω(n, p, p ′) ≡ {∀nent∀p(Φ(n, p) → p ′ v p), ∀nent∀p(Φ(n, p),¬C[p] →⊥),¬C[p ′] →⊥}.

Therefore, in order to complete the proof of theorem 39, it is sufficient to find proof-like
terms dec0,dec1,dec2 such that :

dec0 ||−∀p ′(~Ω(n, p, p ′),¬C[p0],C[p ′] →⊥) ;
dec1 ||−∀p ′(~Ω(n, p, p ′) → p ′ v p0) ;
dec2 ||−∀p ′(~Ω(n, p, p ′) →∀nent(p ′ []−±X n)).

Thus, let ω0,ω1 ∈Λ be such that :
ω0 ||−∀nent∀p(Φ(n, p) → p ′ v p) and ω1 ||−∀nent∀p(Φ(n, p),¬C[p] →⊥),¬C[p ′] →⊥
Applying lemma 42(i) with n = 0, p = p0, we obtain (ω0)λxλy y ||−p ′ v p0.
Therefore, we can take dec1 =λaλb(a)λxλy y .

Lemma 48. cdc4 ||− (C[p0] →∀nent∀p(Φ(n, p),¬C[p] →⊥))
where cdc4=λaλbλc((bλx0λx1λx2λx3λxλy(x)(x1)y)λx xa)c.

Let τ ∈ C[p0], ξ ||−Φ(n, p) and η ||−¬C[p].
Making X (x, y) ≡¬¬C[y] in the definition deΦ, we get :
ξ ||−∀n′∀p ′∀kent(G[n′, p ′,k],~F [n′, p ′, f (n′, p ′,k)],¬¬C[p ′] →¬¬C[ f (n′, p ′,k)]),

¬¬C[p0],¬C[p] →⊥.
We have λx(x)τ ||−¬¬C[p0].
Moreover, since ~F [n′, p ′, q] ≡ {(¬C[q] →¬C[p ′]), (q v p ′), q []−±X n}, we easily get :
λx0λx1λx2λx3λxλy(x)(x1)y ||−

∀n′∀p ′∀kent(G[n′, p ′,k],~F [n′, p ′, f (n′, p ′,k)],¬¬C[p ′] →¬¬C[ f (n′, p ′,k)]).
It follows that ((ξλx0λx1λx2λx3λxλy(x)(x1)y)λx(x)τ)η ||−⊥, i.e. (cdc4)τξη ||−⊥.

Q.E.D.

From lemma 48, we immediately deduce λx(ω1)(cdc4)x ||−C[p0],¬C[p ′] →⊥.
Therefore, we can put dec0 =λaλbλx(b)(cdc4)x.

Lemma 49.
i) lef0 ||−∀p∀q(p []−X n, q v p → q []−X n) with lef0=λxλyλz(cc)λk((y)λu(k)(x)u)z.
ii) lef1 ||−∀p∀q(p []−±X n, q v p → q []−±X n) with
lef1=λxλyλzλu((lef0)(cc)λh((y)λv(h)(x)vu)z.

i) This is immediate, if we write explicitly the formulas :
p []−X n ≡∀r (C[p∧r ] →X +(r,n)) ;
q v p ≡∀r (¬C[p∧r ] →¬C[q∧r ]) ;
q []−X n ≡∀r (C[q∧r ] →X +(r,n)).
We declare x : p []−X n, y : q v p, z : C[q∧r ], k : ¬X +n.
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ii) We write down the formulas :
p []−±X n ≡∀r (C[p∧r ],r []−X n → p []−X n) ;
q v p ≡∀r (¬C[p∧r ] →¬C[q∧r ]) ;
q []−±X n ≡∀r (C[q∧r ],r []−X n → q []−X n).
We declare x : p []−±X n, y : q v p, z : C[q∧r ], u : r []−X n, v : C[p∧r ], h : ¬(p ||−X n).

Q.E.D.

By means of lemmas 47(ii) and 49 and also ω0 ||−∀nent∀p(Φ(n, p) → p ′ v p), we obtain :
λnλx((lef1)(for)nx)(ω0)nx ||−∀nent∀q(Φ(sn, q) → p ′ []−±X n).
But, we have cdc1 ||−∀nent∃pΦ(n, p) (lemma 43) ; it follows that :
λn(cc)λk((cdc1)(s)n)λx(k)((lef1)(for)nx)(ω0)nx ||−∀nent(pX []−±X n).
Thus, we can put dec2 =λaλbλn(cc)λk((cdc1)(s)n)λx(k)((lef1)(for)nx)(a)nx.

This completes the proof of theorem 39.
Q.E.D.

The ultrafilter axiom onN

Let us consider a standard realizability algebra A and a A -model M in which the individual
set (which is also the set of conditions) is P =P (Π)N.
The binary relation ε is defined by ‖n εp‖ = p(n) if n ∈N ; otherwise ‖n εp‖ =;.
1 is defined by 1(n) =; for every n ∈N ;
∧ is defined by ‖n ε (p∧q)‖ = ‖n εp ∧n εq‖ for every n ∈N.

The axiom of representation of predicates onN (RPN)

We define the following recursive function of arity k, denoted by (n1, . . . ,nk ) (coding of k-
uples) : (n1,n2) = n1 + (n1 +n2)(n1 +n2 +1)/2 ; (n1, . . . ,nk+1) = ((n1, . . . ,nk ),nk+1).

Proposition 50. ||−∀X∃x∀y int
1 . . .∀y int

k ((y1, . . . , yk )εx ↔ X (y1, . . . , yk )) where X is a predicate
variable of arity k.

Let X : P k →P (Π) be a predicate of arity k. We define a ∈ P by putting :
a(n) =X (n1, . . . ,nk ) for n ∈N, n = (n1, . . . ,nk ). Then, we have immediately :
I ||−∀yent

1 . . .∀yent
k ((y1, . . . , yk )εa →X (y1, . . . , yk )) and

I ||−∀yent
1 . . .∀yent

k (X (y1, . . . , yk ) → (y1, . . . , yk )εa).
It follows that :
λx(x)I ||−∀X∃x∀yent

1 . . .∀yent
k ((y1, . . . , yk )εx → X (y1, . . . , yk )) and

λx(x)I ||−∀X∃x∀yent
1 . . .∀yent

k (X (y1, . . . , yk ) → (y1, . . . , yk )εx).

Then, it suffices to apply theorem 13.
Q.E.D.

The comprehension scheme forN (CSN)

Let F [y, x1, . . . , xk ] be a formula the free variables of which are taken among y, x1, . . . , xk .
We define a k-ary function gF : P k → P , in other words gF : P k ×N → P (Π) by putting
gF (p1, . . . , pk )(n) = ‖F [n, p1, . . . , pk ]‖ for every n ∈N.

35



Proposition 51. We have ||−∀x1 . . .∀xk∀y int(y εgF (x1, . . . , xk ) ↔ F [y, x1, . . . , xk ]) for every for-
mula F [y, x1, . . . , xk ].

Indeed, we have trivially :
I ||−∀x1 . . .∀xk∀yent(y εgF (x1, . . . , xk ) → F [y, x1, . . . , xk ]) and
I ||−∀x1 . . .∀xk∀yent(F [y, x1, . . . , xk ] → y εgF (x1, . . . , xk )).

Then, it suffices to apply theorem 13.
Q.E.D.

Remark. The binary function symbol ∧ is obtained by applying CSN to the formula y εx1 ∧ y εx2.

The generic model

We denote by C[x] the formula ∀mint∃nint(m +n)εx, which says that the set x of integers is
infinite. The predicate C is defined by this formula : for every p ∈ P , |C[p]| is, by definition,
the set {τ ∈Λ; τ ||−C[p]}.
It follows that the condition γ :: t (p1, . . . , pn) ⇒ u(p1, . . . , pn) is written as :
λxγx ||−∀p1 . . .∀pn(C[t (p1, . . . , pn)] → C[u(p1, . . . , pn)]).

Therefore, in order to complete the definition of the algebra B (and of the B-model N ), it
remains to find proof-like terms α0,α1,α2,β0,β1,β2 such that :

α0 ||−∀p∀q∀r (C[(p∧q)∧r ] → C[p∧(q∧r )]) ; α1 ||−∀p(C[p] → C[p∧1]) ;
α2 ||−∀p∀q(C[p∧q] → C[q]) ; β0 ||−∀p(C[p] → C[p∧p]) ; β1 ||−∀p∀q(C[p∧q] → C[q∧p]) ;
β2 ||−∀p∀q∀r∀s(C[((p∧q)∧r )∧s] → C[(p∧(q∧r ))∧s]).

Now, we easily have, in natural deduction :
` θ : ∀n(n εx → n εx ′) → (C[x] → C[x ′]) with θ =λ f λuλmλh(um)λnλx(hn)( f )x.
Therefore, by theorem 3 (adequacy lemma), we can put αi = θα∗

i and βi = θβ∗
i , with proof-

like terms α∗
i ,β∗

i (0 ≤ i ≤ 2) such that :
`α∗

0 : ∀X∀Y ∀Z {(X∧Y )∧Z → X∧(Y ∧Z )} ; `α∗
1 : ∀X {X → X∧>} ; `α∗

2 : ∀X∀Y {X∧Y → Y } ;
`β∗

0 : ∀X {X → X ∧X } ; `β∗
1 : ∀X∀Y {X ∧Y → Y ∧X } ;

`β∗
2 : ∀X∀Y ∀Z∀U {((X ∧Y )∧Z )∧U → (X ∧ (Y ∧Z ))∧U }.

The countable downward chain condition

In this section, we show the :

Theorem 52.
The forcing structure {C,∧,1} satisfies the countable downward chain condition in M .

Remark. The proof of this theorem is a formalization of the following simple result :

The set of infinite subsets of N with the preorder “p v q ⇔ p \ q is finite”, satisfies the countable

downward chain condition.

The proof is as follows : let pn be a decreasing sequence for this preorder ; put hn =⋂
i≤n pi , kn = the

first element of hn which is ≥ n, and consider {kn ; n ∈N} which is an infinite subset of N.

We have to find a proof-like term cdc such that :
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cdc ||−∀X∃x{∀nent∃p X (n, p),∀nent∀p∀q(X (n, p), X (n, q) → p = q),
∀nent∀p∀q(X (n, p), X (sn, q) → q v p) →
∀nent∀p(X (n, p) → x v p)∧ (∀nent∀p(X (n, p) → C[p]) → C[x])}

where p v q is the formula ∀r (C[p∧r ] → C[q∧r ]).

By theorem 13, this amounts to find a proof-like term cdc’ such that :

cdc’ ||−∀X∃x{∀nint∃p X (n, p),∀nint∀p∀q(X (n, p), X (n, q) → p = q),
∀nint∀p∀q(X (n, p), X (sn, q) → q v p) →
∀nint∀p(X (n, p) → x v p)∧ (∀nint∀p(X (n, p) → C[p]) → C[x])}.

By theorem 3 (adequacy lemma), given a formula F , we can use the following method to
show ||−F :
First, show ||− A1, . . . , ||− Ak , then show A1, . . . , Ak ` F by means of the rules of classical
second order natural deduction (which contains the comprehension scheme), and of the
following axioms which are realized by proof-like terms in the A -model M :

• t 6= u for all closed terms t ,u which take distinct values in M .
• ∀xint

1 . . .∀xint
k (t (x1, . . . , xk ) = u(x1, . . . , xk )) for all the equations between terms which are

true in N.
• The foundation scheme (SCF, see theorem 11ii) which consists of the formulas :
∀X1 . . .∀Xk {∀xint[∀y int(X1 y, . . . , Xk y → f (y, x) 6= 1), X1x, . . . , Xk x →⊥]

→∀xint(X1x, . . . , Xk x →⊥)}
where f : P 2 → P is such that the relation f (y, x) = 1 is well founded on N.
• The axiom of choice scheme for individuals (ACI, see theorem 16) which consists of the
formulas ∀~x(∀y intF (~x, fF (~x, y)) →∀y F (~x, y)) ;
~x = (x1, . . . , xk ) is a finite sequence of variables, ∀~x∀y intF is an arbitrary closed formula, and
fF is a function symbol of arity k +1.
• The axiom of representation of predicates on N (RPN, see proposition 50) which consists
of the formulas ∀X∃x∀~y int((y1, . . . , yk )εx ↔ X~y) ;
~y = (y1, . . . , yk ) is a sequence of k variables and X is a predicate variable of arity k.
• The comprehension scheme for integers (CSN, see proposition 51), which consists of the
formulas ∀~x∀y int(y εgF (~x) ↔ F [y,~x]) ;
~x = (x1, . . . , xk ) is a sequence of k variables, ∀~x∀y intF is an arbitrary closed formula, and gF

is a function symbol of arity k.

Lemma 53. `∀p∀q(p v q ↔∃mint∀nint(n +m εp → n +m εq)).

We apply the CSN to the formula F [y, x] ≡ y ε/ x ; thus, we obtain :

`∀x∀y int(y ε¬x ↔ y ε/ x)
using the notation ¬x for gF (x).

We have p v q ≡∀r (C[p∧r ] → C[q∧r ]) and therefore p v q ` C[p∧¬q] → C[q∧¬q].
But, we have C[q∧¬q] `∀mint∃nint(m +n εq ∧m +n ε/ q) `⊥, and thus :
p v q `¬C[p∧¬q], that is ` p v q →∃mint∀nint¬(m +n εp ∧¬(m +n εq)).

Conversely, from the hypothesis :
∀n′ int(m′+n′εp → m′+n′εq),∀mint∃nint(m +n εp ∧m +n εr ), we deduce :
∀mint∃nint((m′+m)+n εp ∧ (m′+m)+n εr ), then :
∀mint∃nint(m + (m′+n)εq ∧m + (m′+n)εr ) then :
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∀mint∃nint(m +n εq ∧m +n εr ). Therefore :
∀n′ int(m′+n′εp → m′+n′εq) ` C[p∧r ] → C[q∧r ] and thus :
∃m′∀n′ int(m′+n′εp → m′+n′εq) ` C[p∧r ] → C[q∧r ].

Q.E.D.

Applying RPN and the comprehension scheme, we obtain :
||−∀X∃h D(h, X ) with D(h, X ) ≡∀k int∀nint((k,n)εh ↔∀q∀i int(i ≤ n, X (i , q) → k εq)).

Remark. The intuitive meaning of D(h, X ) is : h is the individual associated with the decreasing

sequence of conditions X ′, the n-th term of which is the intersection of the n first terms of the se-

quence X .

We apply CSN to the formula F (k,n,h) ≡ (k,n)εh. Thus, we obtain :
`∀n∀h∀k int∀n(k εgF (n,h) ↔ (k,n)εh).
We shall use the notation hn for gF (n,h). Therefore, we have :

`∀n∀h∀k int(k εhn ↔ (k,n)εh).

and it follows that :
D(h, X ) `∀k int∀nint(k εhn ↔∀q∀i int(i ≤ n, X (i , q) → k εq))

We put Φ(k,h,n) ≡∃i int{∀ j int( j +n εhn → ( j < i ) 6= 1), i +n εhn , k = i +n}.
Remark. The intuitive meaning ofΦ(k,h,n) is : “ k is the first element of hn which is ≥ n ”.

We apply CSN to the formula F (k,h) ≡∃nintΦ(k,h,n). Thus, we obtain :
`∀h∀k int(k εgF (h) ↔∃nintΦ(k,h,n)).
We shall use the notation inf(h) for gF (h). Therefore, we have :

`∀h∀k int(k ε inf(h) ↔∃nintΦ(k,h,n)).

The hypothesis of the c.d.c. are :

H0[X ] ≡∀nint∃p X (n, p) ;
H1[X ] ≡∀nint∀p∀q(X (n, p), X (n, q) → p = q) ;
H2[X ] ≡∀nint∀p∀q(X (n, p), X (sn, q) → q v p) ;
H3[X ] ≡∀nint∀p(X (n, p) → C[p]).

We put ~H [X ] ≡ {H0[X ], H1[X ], H2[X ], H3[X ]} and ~H∗[X ] = {H0[X ], H1[X ], H2[X ]}.

Thus, it is sufficient to show :
D(h, X ), ~H∗[X ] `∀nint∀p(X (n, p) → inf(h) v p) and
D(h, X ), ~H [X ] ` C[inf(h)].

Notation. The formula ∀nint(n εp → n εq) is denoted by p ⊆ q .

Lemma 54. D(h, X ) `∀mint∀nint(hn+m ⊆ hn).

This formula is written ∀mint∀nint∀k int(k εhn+m → k εhn). Now, we have :

D(h, X ) `∀mint∀nint∀k int(k εhn+m →∀q∀i int(i ≤ n +m, X (i , q) → k εq)) ;
`∀mint∀nint∀k int[∀q∀i int(i ≤ n +m, X (i , q) → k εq) →∀q∀i int(i ≤ n, X (i , q) → k εq)] :
D(h, X ) `∀mint∀nint∀k int(∀q∀i int(i ≤ n, X (i , q) → k εq) → k εhn).

Q.E.D.

Lemma 55. D(h, X ), H0[X ], H1[X ] `∀nint∀kint∀p(X (sn, p), k εp, k εhn → k εhsn).

We have D(h, X ), int(k), int(n) `∀p∀i int(i ≤ sn, X (i , p) → k εp) → k εhsn .
But, we have int(n), int(i ), i ≤ sn ` i ≤ n ∨ i = sn, and therefore :
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int(n), ∀p∀i int(i ≤ n, X (i , p) → k εp), ∀p(X (sn, p) → k εp) `
∀p∀i int(i ≤ sn, X (i , p) → k εp).

It follows that :
D(h, X ), int(k), int(n) `∀p∀i int(i ≤ n, X (i , p) → k εp),∀p(X (sn, p) → k εp) → k εhsn , i.e. :
D(h, X ), int(k), int(n) ` k εhn ,∀p(X (sn, p) → k εp) → k εhsn . Therefore :
D(h, X ), int(k), int(n), H0[X ], H1[X ] `∀p(k εhn , X (sn, p),k εp → k εhsn).

Q.E.D.

Lemma 56. D(h, X ), ~H∗[X ] `∀nint∀p(X (n, p) → p v hn).

Proof by recurrence on n. We must show :
D(h, X ), ~H∗[X ], int(n) ` ∀p∃mint∀l int(X (n, p), l +m εp → l +m εhn).
For n = 0, we have D(h, X ) `∀k int(∀q(X (0, q) → k εq) → k εh0). Thus, it suffices to show :
D(h, X ), ~H∗[X ] ` ∀p∃mint∀l int∀q(X (0, p), l +m εp, X (0, q) → l +m εq),
which follows, in fact, from H1[X ], that is X (0, p), X (0, q) → p = q .
The recurrence hypothesis is ∀p(X (n, p) → p v hn) ;
H2[X ] is ∀p∀q(X (n, p), X (sn, q) → q v p) ; H0[X ] is ∃p X (n, p).
Moreover, we have easily q v p, p v r ` q v r . Thus, it follows that :
∀p(X (sn, p) → p v hn), i.e. ∀p∃mint∀l int(X (sn, p), l +m εp → l +m εhn).
Now, we have, by lemma 55 :
D(h, X ), H0[X ], H1[X ] ` X (sn, p), l +m εp, l +m εhn → l +m εhsn .
Therefore, we have ∀p∃mint∀l int(X (sn, p), l +m εp → l +m εhsn) that is :
∀p(X (sn, p) → p v hsn), which is the desired result.

Q.E.D.

Lemma 57. D(h, X ), ~H(X ) `∀nintC[hn].

We have ∀nint∀p(X (n, p) → C[p]) from H3. Moreover, we have easily :
`∀p∀q(C[p], p v q → C[q]). Thus, applying lemma 56, we obtain :
D(h, X ), ~H(X ) `∀nint∀p(X (n, p) → C[hn]). Hence the result, from H0[X ].

Q.E.D.

Lemma 58. D(h, X ), ~H [X ] `∀nint∃kintΦ(k,h,n).

By the foundation scheme (SCF), we have :
` ∀i int{∀ j int( j +n εhn → ( j <i ) 6= 1), i +n εhn →⊥} →∀i int(i +n εhn →⊥).
But, we have D(h, X ), ~H [X ] `∀nintC[hn] (lemma 57), therefore :
D(h, X ), ~H [X ] `∀nint∃i inti +n εhn . It follows that :
D(h, X ), ~H [X ] `∀nint∃i int{∀ j int( j +n εhn → ( j <i ) 6= 1), i +n εhn}.

Q.E.D.

Lemma 59. D(h, X ), ~H [X ] ` C[inf(h)].

We have C[inf(h)] ≡∀mint∃i int(i +m ε inf(h)).
Now, by definition of the function symbol inf, we have :
`∀h∀k int(k ε inf(h) ↔∃nintΦ(k,h,n)).
Therefore ` C[inf(h)] ↔∀mint∃i int∃nintΦ(i +m,h,n).
By definition deΦ, we have trivially `∀nint∀k int(Φ(k,h,n) →∃i int(k = i +n)).
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Moreover, we have D(h, X ), ~H [X ] ` ∀nint∃k intΦ(k,h,n) (lemma 58).
Therefore D(h, X ), ~H [X ] ` ∀nint∃i intΦ(i +n,h,n), thus D(h, X ), ~H [X ] ` C[inf(h)].

Q.E.D.

Lemma 60.
D(h, X ), ~H∗[X ] `∀h∀kint∀k ′int∀nint∀n′int(Φ(k,h,n),Φ(k ′,h,n′),k ′ > k → n′ > n).

We have Φ(k,h,n) ≡∃i int~Ψ(k,h,n, i ), with :
~Ψ(k,h,n, i ) ≡ {∀ j int( j +n εhn → ( j <i ) 6= 1), i +n εhn , k = i +n}.
Thus, we have to show :
D(h, X ), ~H∗[X ], int(k), int(k ′), int(n), int(n′), int(i ), int(i ′) ` ~Ξ(h,k,n, i ,k ′,n′, i ′) →⊥
with ~Ξ(h,k,n, i ,k ′,n′, i ′) ≡ {~Ψ(k,h,n, i ), ~Ψ(k ′,h,n′, i ′), k ′ > k, n′ ≤ n} that is :
~Ξ(h,k,n, i ,k ′,n′, i ′) ≡
{∀ j int( j +n εhn → ( j <i ) 6= 1), i +n εhn , k = i +n,
∀ j ′ int( j ′+n′εhn′ → ( j ′<i ′) 6= 1), i ′+n′εhn′ , k ′ = i ′+n′,
k ′ > k, n′ ≤ n}.
From n′ ≤ n and k = i +n, we deduce n′ ≤ k, thus k = j ′+n′.
From k ′ > k, we deduce i ′+n′ > k, and thus j ′ < i ′.
Therefore, we have j ′+n′ε/hn′ , i.e. k ε/hn′ . But, from n′ ≤ n, we deduce hn ⊆ hn′ (lemma 54),
thus k ε/hn , which contradicts i +n εhn , k = i +n.

Q.E.D.

By definition ofΦ, we have trivially `∀nint∀k int(Φ(k,h,n) → k εhn).

By lemmas 54 and 60, we get :

D(h, X ), ~H∗[X ] `∀h∀k int∀k ′int∀nint∀n′int(Φ(k,h,n),Φ(k ′,h,n′),k ′ > k → k ′εhn).
Lemma 58 gives ∀nint∃k intΦ(k,h,n). It follows that :
D(h, X ), ~H∗[X ] `∀nint∃k int∀n′ int∀k ′ int(Φ(k ′,h,n′),k ′ > k → k ′εhn),
and therefore D(h, X ), ~H∗[X ] `∀nint(inf(h) v hn).

But, we have trivially D(h, X ) `∀nint∀k int∀p(k εhn , X (n, p) → k εp). Therefore, finally :
D(h, X ), ~H∗[X ] `∀nint∀p(X (n, p) → inf(h) v p).

We have eventually obtained the desired proof-like term cdc’, which completes the proof of
theorem 52.

Q.E.D.

The ultrafilter

In the model N , we have defined the generic ideal J , which is a unary predicate, by putting :
J (p) =Π×{p} for every p ∈ P .

By theorem 33, we have :

i) ‖|−¬J (1)
ii) ‖|−∀x(¬C[x] →J (x))
iii) ‖|−∀x∀y(J (x∧y) →J (x)∨J (y))
iv) ‖|−∀x(∀y(¬C[x∧y] →J (y)) →¬J (x))
v) ‖|−∀x∀y(J (x), y v x →J (y))

By theorem 31, we have ||−F ⇔ ‖|−F for every closed first order formula F .
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Remark. A “first order” formula contains quantifiers on the individuals which, by means of the sym-

bol ε , represent the subsets of N. Therefore, it is a second order formula from the point of view of

Arithmetic. But it contains no quantifier on sets of individuals.

By theorems 13 and 28, we can use, in F , the quantifier ∀xint, since the quantifier ∀xent is
first order.

Therefore, we have :

vi) ‖|−C[x] ↔∀mint∃nint(m +n εx)
vii) ‖|− y v x ↔∃mint∀nint(m +n ε y → m +n εx)
viii) ‖|−∀nintn ε1 ; ‖|−∀x∀y∀nint(n εx∧y ↔ n εx ∧n ε y)

since all these formulas are first order. Properties (i) to (viii) show that, in the B-model N ,
the following formula is realized :
J is a maximal non trivial ideal on the Boolean algebra of the subsets of N which are repre-
sented by individuals.

Now, by theorems 38 and 52, the following formula is realized in N :
Every subset of N is represented by an individual.

Thus the following formula is realized in N :
J is a maximal non trivial ideal on the Boolean algebra of the subsets of N.

Programs obtained from proofs

Let F be a formula of second order arithmetic, that is to say a second order formula every
individual quantifier of which is restricted to N and every second order quantifier of which
is restricted to P (N).
We associate with F , a first order formula F †, defined by recurrence on F :

• If F is t = u, F † ≡ F .
• If F is X t , F † is t εX −, where X − is an individual variable associated with the unary predi-
cate variable X .
• If F is A → B , F † is A† → B †.
• If F is ∀x A, F † is ∀xint A†.
• If F is ∀X A, F † is ∀X − A†.

We note that, if F is a formula of first order arithmetic, then F † is simply the restriction F int

of F to the predicate int(x).

Let F be a closed formula of second order arithmetic and let us consider a proof of F , which
uses the axiom of dependent choice DC and the axiom UA of ultrafilter on N, written in the
following form, with a constant J of predicate : “J is a maximal non trivial ideal on P (N) ”.
We can transform it immediately into a proof of F † if we add the axiom RPN of representa-
tion of predicates on N : ∀X∃x∀y(y εx ↔ X y). Thus, we obtain :
x : UA, y : RPN, z : DC† ` t [x, y, z] : F †.
Therefore, we have ` u :UA, RPN →G with u =λxλyλz t [x, y, z] and G ≡ DC† → F †.
Thus, G is a first order formula.
In the previous section, we obtained proof-like terms θ,θ′ such that (θ,1) ‖|−U A and
(θ′,1) ‖|− RPN (theorems 38 and 52).
Therefore, theorem 26 (adequacy lemma) gives (u∗,1u)(θ,1)(θ′,1) ‖|−G , that is to say :
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(v, (1u∧1)∧1) ‖|−G with v = ((α0)(α0)u∗θ)θ′.
By theorem 31, we thus have δ′G v ||−C[(1u∧1)∧1] →G , that is :
δ′G v ||−C[(1u∧1)∧1], DC† → F .
The axiom DC† is consequence of ACI (axiom of choice for individuals). Therefore, by theo-
rem 16, we have a proof-like term η0 ||− DC†.
Moreover, we have obviously a proof-like term ξ0 ||−C[(1u∧1)∧1].
Thus, finally, we have δ′G vξ0η0 ||−F .
Then, we can apply to the program ζ= δ′G vξ0η0 all the results obtained in the framework of
usual classical realizability. The case when F is an arithmetical (resp. Π1

1) formula is consid-
ered in [13] (resp. [14]).
Let us take two very simple examples :

If F ≡ ∀X (X 1, X 0 → X 1), we have ζ?κ.κ′ .π Â κ?π for all terms κ,κ′ ∈ Λ and every stack
π ∈Π.

If F ≡ ∀mint∃nint(φ(m,n) = 0), where φ is a function symbol, then for every m ∈ N, there
exists n ∈N such that φ(m,n) = 0 and ζ?m .Tκ.πÂ κ?n .π′.
T is the proof-like term for integer storage, given in theorem 13(i).
π,κ are arbitrary ; therefore, by taking a constant for κ, we obtain a program which computes
n from m.

Well ordering on R

The A -model M is the same as in the previous section : the set of individuals is P =P (Π)N.
Recall that an element of P is called sometimes an individual, sometimes a condition, de-
pending on the context.

We put (m,n) = m+(m+n)(m+n+1)/2 (bijection of N2 onto N). We define a binary function
γ : P 2 → P by putting :
γ(n, p)(i ) = p(i ,n) if n ∈N ; γ(n, p) is arbitrary (for instance 0) if n ∉N.

Notation. In the sequel, we shall write pn instead of γ(n, p). Thus, it is the same to give an
individual p or a sequence of individuals pn(n ∈N).
If i ,n ∈N, we have ‖(i ,n)εp‖ = ‖i εpn‖.

We fix a well ordering / on P = P (Π)N, which is strict (i.e. ∀x¬(x / x)) and isomorphic to
the cardinal 2ℵ0 : every proper initial segment of / is therefore of power < 2ℵ0 . We define a
binary function, denoted by (p /q) by putting (p /q) = 1 if p /q ; (p /q) = 0 otherwise.
Since the relation (p /q) = 1 is well founded on P , we have (theorem 11) :
Y ||−∀X [∀x(∀y((y /x) = 1 7→ X y) → X x) →∀x X x]
in the A -model M , but also in every B-model N .
We shall write, in abridged form, y /x for (y /x) = 1.
Thus, in M and N , the relation / is well founded but, in general, not total.
It is a strict order relation, in both models ; indeed we have immediately, in the model M :
I ||−∀x((x/x) 6= 1) ; I ||−∀x∀y∀z((x/ y) = 1 7→ ((y / z) = 1 7→ (x/ z) = 1)).
Since all these formulas are first order, by theorem 31, we have also, in the model N :
‖|−∀x((x/x) 6= 1) ; ‖|−∀x∀y∀z((x/ y) = 1 7→ ((y / z) = 1 7→ (x/ z) = 1)).

A condition p ∈ P is also a sequence of individuals pk . Intuitively, we shall consider it, as
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“ the set of individuals pk+1 for k εp0 ” ; we define accordingly the condition 1, the formula
C[p] which says that p is a non trivial condition, and the binary operation ∧.

1 is the empty set, in other words i ε10 (i.e. (i ,0)ε1) must be false. Therefore, we put :
1(n) =Π for every n ∈N.

A condition is non trivial if the set of individuals, which is associated with it, is totally ordered
by /. Therefore, we put :
C[p] ≡∀i ent∀ j ent(i εp0, j εp0 → E [pi+1, p j+1]) with :
E [x, y] ≡ (x = y ∨x/ y ∨ y /x) that is E [x, y] ≡ (x 6= y, (x/ y) 6= 1,(y /x) 6= 1 →⊥).

The set associated with p∧q is the union of the sets associated with p and with q ; therefore,
we put :
p∧q = r where r0 is defined by : ‖2i εr0‖ = ‖i εp0‖ ; ‖2i +1εr0‖ = ‖i εq0‖ ;
r j+1 is defined by : r2i+1 = pi+1 ; r2i+2 = qi+1.

The notation p ⊂ q means that the set associated with q contains the one associated with p.
Therefore, we put :
p ⊂ q ≡∀i ent(i εp0 →∃ j ent{ j εq0, pi+1 = q j+1}).

Lemma 61.
i) θ ||−∀p∀q∀r (p ⊂ q, q ⊂ r → p ⊂ r ) with θ =λ f λgλiλxλh( f i x)λ jλy(g ) j yh.
ii) θ′ ||−∀p∀q∀r (p ⊂ q → p∧r ⊂ q∧r ) with θ′ =λ f λiλyλu((ei )(u)i y)((( f )(d2)i y)λ j (u)(d0) j
where d0,d1,d2,e are proof-like terms representing respectively the recursive functions :
n 7→ 2n, n 7→ 2n +1, n 7→ [n/2], n 7→ parity of n (e returns boolean values).

i) We suppose :
f ||−∀i (ent(i ), i εp0,∀ j (ent( j ), j εq0 → pi+1 6= q j+1) →⊥) ;
g ||−∀ j (ent( j ), j εq0,∀k(ent(k),k εr0 → q j+1 6= rk+1) →⊥) ;
x ||− i εp0 ; h ||−∀k(ent(k),k εr0 → pi+1 6= rk+1) ; and we have i ∈ |ent(i )|.
It follows that f i x ||−∀ j (ent( j ), j εq0 → pi+1 6= q j+1) →⊥.
Suppose that y ||− j εq0 and let j ∈ |ent( j )|.
If pi+1 = q j+1, then g j yh ||−⊥ ; therefore g j yh ||−pi+1 6= q j+1. We have shown :
λ jλy(g ) j yh ||−∀ j (ent( j ), j εq0 → pi+1 6= q j+1). Therefore ( f i x)λ jλy(g ) j yh ||−⊥.

ii) We suppose :
f ||−∀i (ent(i ), i εp0,∀ j (ent( j ), j εq0 → pi+1 6= q j+1) →⊥) ;
y ||− i ′ε (p∧r )0 ; u ||−∀ j ′(ent( j ′), j ′ε (q∧r )0 → (p∧r )i ′+1 6= (q∧r ) j ′+1).
If we replace j ′ with 2 j ′′, and then with 2 j ′′+1, we obtain, by definition of ∧ :

(1) (u)(d0) j ′′ ||− j ′′εq0 → (p∧r )i ′+1 6= q j ′′+1 ;

(2) (u)(d1) j ′′ ||− j ′′εr0 → (p∧r )i ′+1 6= r j ′′+1.

Then, there are two cases :

• If i ′ = 2i ′′, we have y ||− i ′′εp0 and, by (1), (u)(d0) j ′′ ||− j ′′εq0 → pi ′′+1 6= q j ′′+1. Therefore :
λ j (u)(d0) j ||−∀ j (ent( j ), j εq0 → pi ′′+1 6= q j+1) and it follows that :

((( f )(d2)i ′)y)λ j (u)(d0) j ||−⊥.

• If i ′ = 2i ′′+1, we have y ||− i ′′εr0 and, by (2), (u)(d1) j ′′ ||− j ′′εr0 → ri ′′+1 6= r j ′′+1.

By making j ′′ = i ′′, we obtain (u)(d1)i ′′ ||− i ′′εr0 →⊥ and therefore :
(u)i ′y ||−⊥.
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Thus, in both cases, we get : ((ei ′)(u)i ′y)((( f )(d2)i ′)y)λ j (u)(d0) j ||−⊥.
Q.E.D.

Lemma 62.
i) θ ||−∀p∀q(p ⊂ q,C[q] → C[p]) with
θ =λ f λgλiλi ′λxλx ′λuλvλw( f i ′x ′)λ j ′λy ′( f i x)λ jλy(g ) j j ′y y ′uv w.
ii) ||−∀p∀q∀r (p ⊂ q,C[q∧r ] → C[p∧r ]) in other words ||−∀p∀q(p ⊂ q → q v p).

i) Let f ||−p ⊂ q, g ||−C[q], that is :
f ||−∀i (ent(i ), i εp0,∀ j (ent( j ), j εq0 → pi+1 6= q j+1) →⊥) ;
g ||−∀ j∀ j ′(ent( j ), ent( j ′), j εq0, j ′εq0 → E [q j+1, q j ′+1]) with :
E [x, y] ≡ (x 6= y, (x/ y) 6= 1,(y /x) 6= 1 →⊥).
Let x ||− i εp0, x ′ ||− i ′εp0,u ||−pi+1 6= pi ′+1, v ||− (pi+1/pi ′+1) 6= 1, w ||− (pi ′+1/pi+1) 6= 1.
Let y ||− j εq0, y ′ ||− j ′εq0.
We have g j j ′y y ′ ||−E [q j+1, q j ′+1] ; if pi+1 = q j+1 and pi ′+1 = q j ′+1, then :

g j j ′y y ′ ||−E [pi+1, pi ′+1], and therefore g j j ′y y ′uv w ||−⊥.

Thus, we have λ jλy(g ) j j ′y y ′uv w ||−ent( j ), j εq0 →⊥ if pi+1 = q j+1 and pi ′+1 = q j ′+1.
Therefore, λ jλy(g ) j j ′y y ′uv w ||−∀ j (ent( j ), j εq0 → pi+1 6= q j+1) if pi ′+1 = q j ′+1, thus :
( f i x)λ jλy(g ) j j ′y y ′uv w ||−⊥ if pi ′+1 = q j ′+1, thus :
λ j ′λy ′( f i x)λ jλy(g ) j j ′y y ′uv w ||−∀ j ′(ent( j ′), j ′εq0 → pi ′+1 6= q j ′+1). Therefore :
( f i ′x ′)λ j ′λy ′( f i x)λ jλy(g ) j j ′y y ′uv w ||−⊥.

ii) Follows immediately from (i) and ||−∀p∀q∀r (p ⊂ q → p∧r ⊂ q∧r ) (lemma 61).
Q.E.D.

The following lemma shows that we can build the algebra B and the B-model N .

Lemma 63. There exist six proof-like terms α0,α1,α2,β0,β1,β2 such that :
α0 ||−∀p∀q∀r (C[(p∧q)∧r ] → C[p∧(q∧r )]) ; α1 ||−∀p(C[p] → C[p∧1]) ;
α2 ||−∀p∀q(C[p∧q] → C[q]) ; β0 ||−∀p(C[p] → C[p∧p]) ; β1 ||−∀p∀q(C[p∧q] → C[q∧p]) ;
β2 ||−∀p∀q∀r∀s(C[((p∧q)∧r )∧s] → C[(p∧(q∧r ))∧s]).

We only show the first case. By lemma 62(i), it suffices to find a proof-like term :
θ ||−∀p∀q∀r (p∧(q∧r ) ⊂ (p∧q)∧r ). Thus, we suppose :
y ||− i ε (p∧(q∧r ))0 ; u ||−∀ j (ent( j ), j ε ((p∧q)∧r )0 → (p∧(q∧r ))i+1 6= ((p∧q)∧r ) j+1).
There are three cases :
• i = 2i ′ ; then, we have y ||− i ′εp0. We make j = 2i = 4i ′, therefore u ||− ent(2i ), i ′εp0 →
pi ′+1 6= pi ′+1. Thus, we have : (u)(d0)i y ||−⊥.
• i = 4i ′+1 ; then, we have y ||− i ′εq0. We make j = i +2 = 4i ′+3, thus :
u ||− ent(i +2), i ′εq0 → qi ′+1 6= qi ′+1. Thus, we have : ((u)(σ)2i )y ||−⊥.
• i = 4i ′+3 ; then, we have y ||− i ′εr0. We make j = i −3 = 4i ′, thus :
u ||− ent(i −3), i ′εr0 → ri ′+1 6= ri ′+1. Therefore, we have : ((u)(p)3i )y ||−⊥
(p is the program for the predecessor).
Thus, we put θ = λiλyλu(((e4i )(u)(d0)i y)((u)(σ)2i )y)((u)(p)3i )y , where e4 is defined by its
execution rule : e4? i .ξ.η.ζ.πÂ ξ.π (resp. η.π, ζ.π) if i = 4i ′ (resp. 4i ′+1,4i ′+3).

Q.E.D.

We now show the :
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Theorem 64.
The forcing structure {C,∧,1} satisfies the countable downward chain condition in M .

The hypothesis of the c.d.c. are :

H0 ≡∀n∃p X (n, p) ;
H1 ≡∀nent∀p∀q{X (n, p),X (n, q) → p = q} ;
H2 ≡∀nent∀p∀q(X (n, p),X (sn, q) → q v p) ;
H3 ≡∀nent∀p(X (n, p) → C[p]).

Moreover, by theorem 16, we have a binary function f : P 2 → P such that :
ς ||−∀nent(∃p X (n, p) →∃kentX (n, f (n,k))).
Therefore, by H0, we can also use the hypothesis :

H ′
0 ≡∀nent∃kent X (n, f (n,k)).

Let us put ~H = {H0, H ′
0, H1, H2, H3} and ~H∗ = {H0, H ′

0, H1, H2}.

Lemma 65. ~H `∀p∀q∀ment∀nent(X (m, p),X (n, q) → C[p∧q]).

We show ∀mint∀nint(X (m, p),X (m +n, q) → q v p) by recurrence on n.
For n = 0, this follows from H1, H3. For the recurrence step, we use H2.

Thus, we have ∀p∀q∀ment∀nent(X (m, p),X (n, q) → p v q ∨q v p).
From p v q , we deduce C[p∧p] → C[q∧p], and the result follows, by H3 and C[p] → C[p∧p].

Q.E.D.

We define the wanted limit h by defining h0 and hm+1 for each m ∈N.
For m = (i ,n,k) (that is (i , (n,k)) ), we put ‖m εh0‖ = ‖X (n, f (n,k))∧ i ε ( f (n,k))0‖ ;
then hm+1 = ( f (n,k))i+1.
Intuitively, X defines a sequence of countable sets, and h is the union of these sets.

• Proof of ~H∗ `X (n, p) → h v p.
By lemma 62(ii), it suffices to show X (n, p) → p ⊂ h, that is :
X (n, p), i εp0,∀ment(m εh0,→ hm+1 6= pi+1) →⊥, for n, i ∈N.
We fix k ∈N and we put m = (i ,n,k). By definition of h, it suffices to show :
X (n, p), i εp0,∀kent(X (n, f (n,k)), i ε ( f (n,k))0,→ ( f (n,k))i+1 6= pi+1) →⊥.
Now, from H1,X (n, p),X (n, f (n,k)), we deduce f (n,k) = p and therefore :
( f (n,k))0 = p0 and ( f (n,k))i+1 = pi+1. Thus, it remains to show :
X (n, p), i εp0,∀kent(X (n, f (n,k)), i εp0 → pi+1 6= pi+1) →⊥.
But this formula follows immediately from H ′

0.

• Proof of ~H ` C[h].
We must show C[h], that is m εh0,m′εh0 → E [hm+1,hm′+1]. Now, we have :

m = (i ,n,k) ; ‖m εh0‖ = ‖X (n, f (n,k))∧ i ε ( f (n,k))0‖ ; hm+1 = ( f (n,k))i+1 ;
m′ = (i ′,n′,k ′) ; ‖m′εh0‖ = ‖X (n′, f (n′,k ′))∧ i ′ε ( f (n′,k ′))0‖ ; hm′+1 = ( f (n′,k ′))i ′+1.

From X (n, f (n,k)),X (n′, f (n′,k ′)), we deduce C[u] with u = f (n,k)∧ f (n′,k ′) (lemma 65).
Therefore, we have :
‖i ε ( f (n,k))0‖ = ‖2i εu‖ ; ‖i ′ε ( f (n′,k ′))0‖ = ‖2i ′+1εu‖ ; hm+1 = u2i+1 ; hm′+1 = u2i ′+2.
From C[u], we deduce E [u2i+1,u2i ′+2], that is E [hm+1,hm′+1].

This completes the proof of theorem 64.
Q.E.D.
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The well ordering on P (N)

In the model N , we define the unary predicate G (x) ≡∃p∃i ent{¬J (p), i εp0, x = pi+1}.

Lemma 66. ‖|−G (x),G (y) → E [x, y].

We must show ‖|−¬J (p),¬J (q), i εp0, x = pi+1, j εq0, y = q j+1 → E [x, y], that is :
‖|−¬J (p),¬J (q), i εp0, j εq0 → E [pi+1, q j+1].

By theorem 33(ii) and (iii), we have ‖|−¬J (p),¬J (q) → C[p∧q].
Therefore, it is sufficient to show that ‖|−C[p∧q], i εp0, j εq0 → E [pi+1, q j+1].
We show below that we have I ||−C[p∧q], i εp0, j εq0 → E [pi+1, q j+1]. Since this is a first
order formula, this gives the desired result, by theorem 31.
Indeed, we have : pi+1 = (p∧q)2i+1 ; q j+1 = (p∧q)2 j+2 ;
‖i εp0‖ = ‖2i ε (p∧q)0‖ ; ‖ j εq0‖ = ‖2 j +1ε (p∧q)0‖.
Therefore, it remains to show :
I ||−C[p∧q],2i ε (p∧q)0,2 j +1ε (p∧q)0 → E [(p∧q)2i+1, (p∧q)2 j+2]
which is obvious, by definition of C[p∧q].

Q.E.D.

Lemma 66 shows that / is a total relation on G . But, moreover, / is a well founded relation
in N . Therefore, we have :

‖|− G is well ordered by /.

We define now two functions on P :

• a unary function δ : P → P by putting ‖i εδ(p)0‖ = ‖i +1εp0‖ ; δ(p)i+1 = pi+2.
• a binary function φ : P 2 → P by putting ‖0εφ(p, q)0‖ =; ; ‖i +1εφ(p, q)0‖ = ‖i εp0‖ ;
φ(p, q)1 = q ; φ(p, q)i+2 = pi+1 for every i ∈N.
Therefore, we have δ(φ(p, q)) = p and φ(p, q)1 = q for all p, q ∈ P and thus :
I ||−∀p∀q(δ(φ(p, q)) = p) ; I ‖|−∀p∀q(δ(φ(p, q)) = p) ;
I ||−∀p∀q(φ(p, q)1 = q) ; I ‖|−∀p∀q(φ(p, q)1 = q).

Intuitively, δ(p) defines the set we obtain by removing p1 from the set associated with p ;
φ(p, q) defines the set we obtain by adding q to the set associated with p.

Lemma 67. If p, q ∈ P, there exists q ′ ∈ P such that δ(q ′) = q and pi /q ′ for every i ∈N.

For each a ∈ P , we have δ(φ(q, a)) = q . But the application a 7→φ(q, a) is obviously injective,
since φ(q, a)1 = a. Thus, the set {φ(q, a); a ∈ P } is of cardinal 2ℵ0 . Now, by hypothesis on /,
every proper initial segment of P , for the well ordering /, is of cardinal < 2ℵ0 . Thus, there
exists some a0 ∈ P such that pi /φ(q, a0) for every i ∈N. Then, it suffices to put q ′ =φ(q, a0).

Q.E.D.

Therefore, we can define a binary function ψ : P 2 → P such that we have :
δ(ψ(p, q)) = q and (pi /ψ(p, q)) = 1 for all p, q ∈ P and i ∈N. Thus, we have :

I ||−∀p∀q(δ(ψ(p, q)) = q) ; I ‖|−∀p∀q(δ(ψ(p, q)) = q).
K I ||−∀p∀q∀i ent(pi /ψ(p, q)) ; KI ‖|−∀p∀q∀i ent(pi /ψ(p, q)).

Lemma 68. We have ‖|−∀q∃x{G (x),δ(x) = q}.
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This is written as ‖|−∀q[∀x∀p∀i ent(δ(x) = q, i εp0, x = pi+1 →J (p)) →⊥] or else :
‖|−∀q[∀p∀i ent(i εp0, δ(pi+1) = q →J (p)) →⊥].

By making i = 0, it is sufficient to show :
(1) ‖|−∀q[∀p(0εp0,δ(p1) = q →J (p)) →⊥].

By replacing p with φ(p,ψ(p, q)) in (1), we see that it remains to show :
‖|−∀q¬∀p J (φ(p,ψ(p, q))).

Lemma 69. ||−∀p∀q(C[p] → C[φ(p,ψ(p, q))]).

We have C[r ] ≡ ∀i ent∀ j ent(i εr0, j εr0 → E [ri+1,r j+1]). Therefore, in order to show that
||−C[p] → C[r ], it suffices to show :

(1) ||−C[p] →∀i ent∀ j ent(i +1εr0, j +1εr0 → E [ri+2,r j+2]) and
(2) ||−C[p] →∀ j ent(0εr0, j +1εr0 → E [r1,r j+2]).
We apply this remark by putting r = φ(p,ψ(p, q)). Then (1) is written as ||−C[p] → C[p]
since ‖i +1εr0‖ = ‖i εp0‖ and ri+2 = pi+1 and the same for j .
Thus, it suffices to show (2), that is :
||−C[p] →∀ j ent(0εφ(p,ψ(p, q))0, j +1εφ(p,ψ(p, q))0 → E [φ(p,ψ(p, q))1,φ(p,ψ(p, q)) j+2]).

But, we have I ||−∀p∀q(0εφ(p, q)0) ; I ||−∀p∀q( j εp0 → j +1εφ(p,ψ(p, q))0) ;
I ||−∀p∀q(φ(p,ψ(p, q))1 =ψ(p, q)) ; I ||−∀p∀q(φ(p,ψ(p, q)) j+2 = p j+1).
Therefore, it remains to show :
||−C[p] →∀ j ent( j εp0 → E [ψ(p, q), p j+1])

which is trivial, since we have K I ||−∀p∀q∀ j ent(p j+1/ψ(p, q)).
Q.E.D.

Lemma 70. λiλxλy((y)(σ)i )x ||−∀p∀q(p ⊂φ(p, q)).

This is written as :
λiλxλy((y)(σ)i )x ||−∀i (ent(i ), i εp0,∀ j (ent( j ), j εφ(p, q)0 →φ(p, q) j+1 6= pi+1) →⊥)
which is immediate, by making j = i +1.

Q.E.D.

We have ||−p ⊂φ(p,ψ(p, q)) (lemma 70), and it follows that :
||−φ(p,ψ(p, q)) v p (lemma 62ii), and thus ||−C[φ(p,ψ(p, q))] → C[p∧φ(p,ψ(p, q))].

Therefore, by lemma 69, we have :
||−∀p∀q(C[p] → C[p∧φ(p,ψ(p, q))]). Since this is a first order formula, we have, by theo-

rem 31 : ‖|−∀p∀q(C[p] → C[p∧φ(p,ψ(p, q))])
and therefore, by theorem 33(ii) : ‖|−∀p∀q(¬C[p∧φ(p,ψ(p, q))] →J (p)).
Then, we apply theorem 34, which gives : ‖|−∀q¬∀p J (φ(p,ψ(p, q)))
which is the desired result.

Q.E.D.

Theorem 71. The following formulas are realized in N :
i) There exists a well ordering on the set of individuals.
ii) There exists a well ordering on the power set of N.

i) Lemma 68 shows that, in N , the function δ is a surjection from G onto the set P of indi-
viduals. But, we have seen that the formula : “ G is well ordered by / ” is realized in N .
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ii) By theorems 38 and 64, the following formula is realized in N : “ Every subset of N is
represented by an individual ”. Hence the result, by (i).

Q.E.D.

Theorem 71(ii) enables us to transform into a program any proof of a formula of second order
arithmetic, which uses the existence of a well ordering on R. The method is the same as the
one explained above for the ultrafilter axiom.
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