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Introduction

The technology of classical realizability was developed in [15, 18] in order to extend the
proof-program correspondence (also known as Curry-Howard correspondence) from pure
intuitionistic logic to the whole of mathematical proofs, with excluded middle, axioms of ZF,
dependent choice, existence of a well ordering on 2 (N), ...

We show here that this technology is also a new method in order to build models of ZF and
to obtain relative consistency results.

The main tools are :

e The notion of realizability algebra [18], which comes from combinatory logic [2] and plays
arole similar to a set of forcing conditions. The extension from intuitionistic to classical logic
was made possible by Griffin’s discovery [7] of the relation between the law of Peirce and the
instruction call-with-current-continuation of the programming language SCHEME.
In this paper, we only use the simplest case of realizability algebra, which I call standard
realizability algebra ; somewhat like the binary tree in the case of forcing.

e The theory ZF, [13] which is a conservative extension of ZF, with a notion of strong mem-
bership, denoted as e¢.

The theory ZF; is essentially ZF without the extensionality axiom. We note an analogy with
the Fraenkel-Mostowski models with “urelements” : we obtain a non well orderable set,
which is a Boolean algebra denoted ]2, all elements of which (except 1) are empty. But
we also notice two important differences :

e The final model of ZF + = AC is obtained directly, without taking a suitable submodel.

« There exists an injection from the “pathological set” J2 into R, and therefore R is also not
well orderable.

We show the consistency, relatively to the consistency of ZF, of the theory ZF + DC (depen-
dent choice) with the following properties :

there exists a sequence (Z,)en Of infinite subsets of R, the “cardinals” of which are
strictly increasing (this means that there is an injection but no surjection from &, to ¥,,11),
and such that &, x%, is equipotent with &, for m,n=>2;

there exists a sequence of infinite subsets of R, the “cardinals” of which are strictly de-
creasing.



More detailed properties of R in this model are given in theorems 35 and 39.

As far as I know, these consistency results are new, and it seems they cannot be obtained by
forcing. But, in any case, the fact that the simplest non trivial realizability model (which I
call the model of threads) has a real line with such unusual properties, is of interest in itself.
Another aspect of these results, which is interesting from the point of view of computer sci-
ence, is the following : in [18], we introduce read and write instructions in a global memory;,
in order to realize a weak form of the axiom of choice (well ordering of R). Therefore, what
we show here, is that these instructions are indispensable : without them, we can build a
realizability model in which R is not well ordered.

Standard realizability algebras

The structure of realizability algebra, and the particular case of standard realizability algebra
are defined in [18]. They are variants of the usual notion of combinatory algebra. Here, we
only need the standard realizability algebras, the definition of which we recall below :

We have a countable set I1y which is the set of stack constants.
We define recursively two sets : A (the set of terms) and I1 (the set of stacks). Terms and stacks
are finite sequences of elements of the set :
IMyu{B,C,E,I,K,W,cc,c,k,(,),[,], ¢}
which are obtained by the following rules :

e B,C,E,I,K,W,cc,¢ are terms (elementary combinators) ;

each element of Iy is a stack (empty stacks) ;

if ¢,n are terms, then ()7 is a term (this operation is called application) ;

if ¢ is a term and 7 a stack, then ¢« 7 is a stack (this operation is called push) ;

if 7 is a stack, then k[7x] is a term.

A term of the form k(] is called a continuation. From now on, it will be denoted as k.

A term which does not contain any continuation (i.e. in which the symbol k does not appear)
is called proof-like.

Every stack has the form 7 =¢1e... ¢, emp, where¢y,..., ¢, € A and g € Iy, i.e. g is a stack
constant.

If { € A and 7 €11, the ordered pair (¢, ) is called a process and denoted as ¢ * 7 ;
¢ and & are called respectively the head and the stack of the process ¢ * 7.
The set of processes A xIT will also be written A x II.

Notation.

For sake of brevity, the term (...((({)n1)7n2)...)n, will be also denoted as (£)n172...n, or
¢nin2...n,, if the meaning is clear. For example : ¢{nd = (&)nd = ¢ = ((E)n)C.

We now choose a recursive bijection from A onto N, which is written {+—— n;.

We put o = (BW)(B)B (the characteristic property of o is given below).

For each n €N, we define n € A recursively, by putting: 0=KI; n+1=(o)n;

nis the n-th integer and o is the successor in combinatory logic.

We define a preorder relation > on A 1. It is the least reflexive and transitive relation such
that, for all ¢,n,{ € A and 7, ® € I1, we have :



En*m>Exnem.

Ixéem>¢&xm.

Kx{enerr > ¢ *m.

Ex&enem > ()N k.

Whéenem >ExNenert.

CkCeNelem>EXx{eNeT.

B*x¢enel(em> (&) * .

ccxéemm>Exkyom.

kp ko> ¢ x .

CXCeleTl > X NyeTl.

For instance, with the definition of 0 and o given above, we have :
OXxéener>nkm; O*xéeNel o> (EN) (M) * 7.

Finally, we have a subset 1L of A % IT which is a final segment for this preorder, which means
that: ¢xmel, &xna'>&xm = Exn'el.

In other words, we ask that L has the following properties :

CEnk negl=>Exneme L.

Ixéemg Ll =>Exme 1.

Kxéenem¢ L =>E¢xme L.

Ex¢enem¢ L= (E)n*me L.

WHhéenem¢g L =>Ekneneme L.
CxleNelemt L =>ExLeneme¢ L.
Bxéeneleme¢ L= ()M xme¢ L.

ccxéem¢ Ll =>Exkeme A

kpx&eg L=>Exme AL,

CxCeNem¢ L =>CkNpemé L.

Remark. Thus, the only arbitrary elements in a standard realizability algebra are the set Iy of stack
constants and the set L of processes.

c-terms and A-terms

We call c-term a term which is built with variables, the elementary combinators B, C, E, I,
K, W, cc, ¢ and the application (binary function). A closed c-term is exactly what we have
called a proof-like term.

Given a c-term ¢ and a variable x, we define inductively on ¢, a new c-term denoted by Ax ¢,
which does not contain x. To this aim, we apply the first possible case in the following list :

1. Ax t = (K) t if t does not contain x.

2. Axx=1.

3. Axtu= (CAx(E)t)u if u does not contain x.

4. Axtx = (E)tif t does not contain x.

5. xtx=(W)Ax(E)t (if ¢t contains x).

6. Ax(t)(w)v=Ax(B)tuv (if uv contains x).

In [18], it is shown that this definition is correct. This allows us to translate every A-term into
a c-term. In the following, almost every c-term will be written as a A-term.

The fundamental property of this translation is given by theorem 1, which is proved in [18] :
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Theorem 1. Let t be a c-term with the only variables x1,...,x, ; let ¢1,...,é{, € A and n € T1.
ThenAxy.. Axpt*x&1e...olpem>tl&1/x1,...,Enl xp] * 7.

Remark. The property we need for the term o (the successor) is 0 x&enel e > ((n)(N){ x 7 (t0 prove
theorem 18). Therefore, by theorem 1, we could define o = AnAfAx(nf)(f)x. The definition we
chose is much simpler.

The formal system

We write formulas and proofs in the language of first order logic. This formal language con-
sists of :

e individual variables x,y,...;

e function symbols f, g, ... ; each one has an arity, which is an integer ; function symbols of
arity 0 are called constant symbols.

« relation symbols; each one has an arity ; relation symbols of arity 0 are called propositional
constants. We have two particular propositional constants T, L and three particular binary
relation symbols € ,¢,<.

The terms are built in the usual way with individual variables and function symbols.
Remark. We use the word “term” with two different meanings : here as a term in a first order language,
and previously as an element of the set A of a realizability algebra. I think that, with the help of the
context, no confusion is possible.

The atomic formulas are the expressions R(ty, ..., t;), where R is a n-ary relation symbol, and
fi,..., [y are terms.

Formulas are built as usual, from atomic formulas, with the only logical symbols —,V :
¢ each atomic formula is a formula ;

e if A, B are formulas, then A — B is a formula ;

o if Aisaformula and x an individual variable, then Vx A is a formula.

Notations. The formula A; — (A> — (--- (A,, — B) --+)) will be written A;, A», ..., A, — B.

The usual logical symbols are defined as follows :
—“A=A—-1;AvB=(A—1),B—-1)—>1;AANB=AB—1)— 1;qxF=Vx(F—1)— L.
More generally, we shall write 3x{Fj,..., Fi} for Vx(Fy,...,Fr— 1) — L.

We shall sometimes write F for a finite sequence of formulas Fi,..., Fy;

Then, we shall also write F — G for F,...,Fx — G and 3x{F} for Vx(F — 1) — L.

A < B is the pair of formulas {A— B,B — A}.

The rules of natural deduction are the following (the A;’s are formulas, the x;’s are variables
of c-term, ¢, u are c-terms, written as A-terms) :

1L.x1:A1,...,xn At X0 A

2.X1:A1,..,Xn Ay t:A—B, x1:A,...,xn: Ay u:A = x1:A1,..,xn Ay tu:B.
3.X1:A1,..., XA, x: AFE:B = x1:A1,...,x,: A, Axt: A— B.

4.x1:A1L,.., X Ayt A > x1:Ay,..., X, Ay t: VX A where x is an individual variable
which does not appear in Ay, ..., Aj.

5.X1:A1,..,Xp: Ay t: VXA => x1:A1,...,x,: Ay t: Alt/x] where x is an individual
variable and 7 is a term.



6.x1:A1,...,x,: A, Fcc: ((A— B) — A) — A (law of Peirce).
7.%X1: A1, XxpApkt:L = x1:A;,...,x,: Ay £: A forevery formula A.

The theory ZF,

We write below a set of axioms for a theory called ZF,. Then:

o We show that ZF; is a conservative extension of ZE

» We define the realizability models and we show that each axiom of ZF; is realized by a
proof-like c-term, in every realizability model.

It follows that the axioms of ZF are also realized by proof-like c-terms in every realizability
model.

We write the axioms of ZF, with the three binary relation symbols &,¢,<. Of course, xey
and x € y are the formulas xd y— L and x¢ y — L.

The notation x = y — F means x € y,y € x — F. Thus x = y, which represents the usual
(extensional) equality of sets, is the pair of formulas {x <y, y < x}.

We use the notations (Vxea)F(x) for Vx(-F(x) — xd a) and

(3xea)F(x) for “Vx(F(x) — xd a).

For instance, (3xey) t = u is the formula “Vx(tcu,uct— xdy).

The axioms of ZF, are the following :

0. Extensionality axioms.

VxVylxey— Qzey)x=2z];VxVylxcy— (Vzex)z€ y].

1. Foundation scheme.

Vx1..Vx,ValVx((Vyex)Fly, x1,..., Xyl — Flx,x1,...,x5]) — Fla, x1,...,Xz])

for every formula F[x, x1,..., x,].
The intuitive meaning of axioms 0 and 1 is that € is a well founded relation, and that the
relation € is obtained by “ collapsing ” € into an extensional binary relation.

The following axioms essentially express that the relation ¢ satisfies the axioms of Zermelo-
Fraenkel except extensionality.

2. Comprehension scheme.

Vx1..Vx,VaabVx(xeb— (xeanF[x,x1,...,X])

for every formula F[x, xi,..., x,].

3. Pairing axiom.

VYaVb3axiaex, be x}.

4. Union axiom.

Yaib(Vxea)(Vyex) yeb.

5. Power set axiom.

VaidbVx(Jyeb)Vz(zey — (zea A z€ x)).

6. Collection scheme.

Vx1..Vx,Yaab(Nxea) Ay FIx,y,x1,...,Xn]l — 3Qyeb)FIX, ¥, X1,..., Xnl)
for every formula Flx, y, x1,..., X,].

7. Infinity scheme.

Vx1...Vx,VYa3ablaeb,(Nxeb)3yFIx,y,x1,...,Xp] = Qyeb)F[x, y,Xx1,..., Xn])}



for every formula Flx, y, x1,..., X,].

The usual Zermelo-Fraenkel set theory is obtained from ZF, by identifying the predicate
symbols ¢ and ¢. Thus, the axioms of ZF are written as follows, with the predicate symbols
¢,< (recall that x = y is the conjunctionof x € yand y € x) :

0. Equality and extensionality axioms.

VxVylxey— 3Qzey)x=z];VxVylxcy— (Vzex)zeyl.

1. Foundation scheme.

Vxi..Vx,ValVx((Vy e x)Fly, x1,..., X5l — Flx,x1,...,x3]) — Fla, x1,..., x3])
for every formula F|[x, xi, ..., x,] written with the only relation symbols ¢, <.
2. Comprehension scheme.

VaibVx(xeb<— (xeanF[x,x1,...,X,]))

for every formula F|[x, x1, ..., x,] written with the only relation symbols ¢, <.
3. Pairing axiom.

YaVb3ix{ace x,be x}.

4. Union axiom.

Yadb(Vxea)(Vyex)yeb.

5. Power set axiom.
VaabVx(Iye b)Vz(zey — (z€ an z€ x)).

6. Collection scheme.

Vx1...Yx,Yaab(Nx € a)3yFlx, y,x1,...,X,] = @y € b)F[x,y, X1,..., Xnl)

for every formula F[x, y, x1,..., x,] written with the only relation symbols ¢, <.

7. Infinity scheme.

Vx1...Vxy,VYa3ablae b, (Vxe b)3yFIx,y,x1,...,Xp] = @y € b)FIX,y, X1,..., Xn])}

for every formula F|x, y, x1,..., x,] written with the only relation symbols ¢, <.
Remark. The usual statement of the axiom of infinity is the particular case of this scheme, where a
is @, and F(x, y) is the formula y = x U {x}.

Let us show that ZF, is a conservative extension of ZF. First, it is clear that, if ZF, - F, where
F is a formula of ZF (i.e. written only with ¢ and <), then ZF - F ; indeed, it is sufficient to
replace ¢ with ¢ in any proof of ZF, - F.

Conversely, we must show that each axiom of ZF is a consequence of ZF,.

Theorem 2.
i) ZF; = Ya(a < a) (and thus a = a).
ii)) ZF, -VavVx(xea— x € a).

i) Using the foundation axiom, we assume Vx(xea — x < x), and we must show a € a ;
therefore, we add the hypothesis x € a. It follows that x < x, then x = x, and therefore :
dy{x =y, ye a}, that is to say x € a. Thus, we have Vx(xe a — x € a), and therefore a < a.
ii) Just shown.
Q.E.D.

Corollary 3. ZF; - Vx(x€ea—xeb)—ach.



We must show xea — x € b, which follows from x € a — x € b and xea — x € a (theo-
rem 2(ii)).
Q.E.D.

Lemmad4. ZF, -ac b Vx(xeb—xec)—acc.

We must show x e a — x € ¢, which follows from xea—xeband xe b — x € c.
Q.E.D.

Theorem 5. ZF, - VxVyVz(x Sy, y<Sz— X< z2).

Let F(b) =VxVz(x< b, b< z— x < z). We show F(b) by foundation :
thus, we suppose a < b, b < ¢, ue a and we want to show u € c.
From uea, a< b, we get u € b and thus, u = v for some veb;
from veb, b < c, we get v € c and thus, v = w for some wec.
Now, we have u € v, v € w and ve b ; by the foundation axiom hypothesis, we get u < w ;
but we have also w < v, v < u and ve b, so that we get w < u.
Finally, we have u = w and w e ¢, and therefore u € c.
Q.E.D.

Corollary 6. ZF; Facb—VYx(x€ea— x€Db).

By corollary 3, we have only to show a< b — Vx(x€ a— x€ b).
From x € q, it follows x = y for some yea ; from a < b, we get y € b, and therefore y = z
for some ze b. Now, from x = y, y = z and theorem 5, we get x = z. But, we have z¢e b, and
therefore x € b.

Q.E.D.

It is now easy to deduce the equality and extensionality axioms of ZF :
Vx(x=x);VxVy(x=y—-y=x);VxVyVz(x=y,y=z—->x=2);

VaxVX'VyVy (x=x",y=y , x¢ey—x'¢y);VaVyNNz(z¢ x> z¢ y) > x=y);
VxVy(xcy—Vz(z¢ y— z ¢ x)).

Remark. This shows that = is an equivalence relation which is compatible with the relations € and

< ; but, in general, it is not compatible with . This is the equality relation for ZF ; it will be called
extensional equivalence.

Notation. The formula Vz(zd y — z¢d x) will be written x c y. The ordered pair of formulas
xc y,ycx will be written x ~ y.

By theorem 2, we get ZF, - VxVy(x c y — x € y). Thus < will be called strong inclusion,
and ~ will be called strong extensional equivalence.

¢ Foundation scheme.

Let F[x] be written with only ¢,< and let G[x] be the formula Vy(y =~ x — F[y]). Clearly,
VxG[x] is equivalent to Vx F[x]. Therefore, from axiom scheme 1 of ZF,, it is sufficient to
show: Vb(Vx(x e b — F[x]) — F[b]) = (Vx(xea — Glx]) — Glal), i.e. :

Vb(Vx(xe€b— F[x]) — F[b]),VxVy(xea,y =x— Flyl),a=b— F[b].

Therefore, it is sufficient to prove: VxVy(xea,y =x— Flyl),a=b— VYx(x € b— F[x]).
From x € b,a = b, we deduce x € a and therefore (by axiom 0), x’'¢ a for some x’ =~ x. Finally,
we get F[x] from VxVy(xea,y = x— Fly]).



o Comprehension scheme : VaibVx(x € b — (x € a A F[x]))

for every formula F[x, x1,..., x,] written with ¢, <.

From the axiom scheme 2 of ZF,, we get Vx(xeb — (xeaA F(x])). f x€ b, then x = x', X' ¢ b
for some x'. Thus x’'¢ a and F[x']. From x = x" and x’ € a, we deduce x € a. Since € and € are
compatible with =, it is the same for F ; thus, we obtain F[x].

Conversely, if we have F[x] and x € a, we have x ~ x" and x’ea for some x'. Since F is
compatible with =, we get F[x'], thus x’ e b and x € b.

e Pairing axiom : VxVy3z{x€ z,y € z}.

Trivial consequence of axiom 3 of ZF,, and theorem 2(ii).

e Union axiom: Va3bVxVy(xe€a,ye x — y€b).

From x € a we have x = x’ and x'¢ a for some x’ ; we have y € x, therefore y € X/, thus y = y/
and y'e x’ for some y'. From axiom 4 of ZF,, x' e a and y' € x', we get y' € b ; therefore y € b, by
y=y.

o Power set axiom : Va3bVx3y{ye b,Vz(zey — (z€eanz€ x))}

Given a, we obtain b by axiom 5 of ZF, ; given x, we define x’ by the condition :

Vz(zex' — (zea A z € x)) (comprehension scheme of ZF,). By definition of b, there exists
yebsuchthatVz(zey < zean zex'), and therefore Vz(ze y — ze an z € x). It follows easily
thatVz(ze y—~zeanzex).

¢ Collection scheme: Ya3ib(Vx e a)(dyFlx,yl — (3y e b)F[x, yl)

for every formula F[x, y, x,..., X,] written with the only relation symbols ¢, <.

From x € a and 3y F[x, y], we get x = x', x’€a for some x/, and thus 3y F[x/, y] since F is
compatible with =. From axiom scheme 6 of ZF,, we get (3ye b)F[x', y], and therefore :

(Ay € b)F[x, yl, by theorem 2(ii), again because F is compatible with =.

e Infinity scheme: Ya3ib{ae b,(Vx € b)(Iy Flx,y] — Ay € b)F[x, y1}

for every formula F[x, y, x,..., x,] written with the only relation symbols ¢, <.

Same proof.
Q.E.D.

Realizability models of ZF,

As usual in relative consistency proofs, we start with a model .4 of ZFC, called the ground
model or the standard model. In particular, the integers of ./ are called the standard integers.
The elements of .# will be called individuals.

In the sequel, the model .# will be our universe, which means that every notion we consider
is defined in .4 . In particular, the realizability algebra (A, II, 1) is an individual of .Z .

We define a realizability model ./, with the same set of individuals as .#. But .4 is not a
model in the usual sense, because its truth values are subsets of II instead of being 0 or 1.
Therefore, although .# and .4/ have the same domain (the quantifier Vx describes the same
domain for both), the model .#" may (and will, in all non trivial cases) have much more
individuals than .4, because it has individuals which are not named. In particular, it will
have non standard integers.



Remark. This is a great difference between realizability and forcing models of ZF. In a forcing model,
each individual is named in the ground model ; it follows that integers, and even ordinals, are not
changed.

For each closed formula F with parameters in .4, we define two truth values :
|F||cIland |F| < A.
|F| is defined immediately from || F| as follows :
Ee|F| © (Vme||Fl)éxme L.
Notation. We shall write ¢ |- F (read “¢ realizes F ”) for & € |F|.
| F|l is now defined by recurrence on the length of F :

e Fisatomic;
then F has one of the forms T, L, ad b, a< b, a ¢ b where a, b are parameters in .4 . We set :

ITIh=a; IILI=II; llad bl = {m €ll; (a,n) € b}.

la< bl,lla ¢ bl are defined simultaneously by induction on (rk(a)urk(b),rk(a)nrk(b))
(rk(a) being the rank of a).

lacbl=Jienm; E€A, nell, (c,m)€a, & |-cé¢ b}
(o]

lag bl = Ji€e& em; E,E €N, mel, (c,meb, élace, & Fecal.

s F=A—Bjthen |Fll={.n;|-A nelBl}.
o F=VxA:then |F|l=JllAla/x]|.

a
The following theorem is an essential tool :

Theorem 7 (Adequacy lemma).
Let Ay,..., Ap, A be closed formulas of ZF,, and suppose that x;: Ay,...,Xp: Ayt A.
If $1 IFAy,....¢n - Ay, then t[Ey/xy,...,Enl xn] - A. In particular, if & t: A, then t |- A.

We need to prove a (seemingly) more general result, that we state as alemma :

Lemma8. Let A[Z],..., AylZ], AlZ] be formulas of ZF;, with Z = (z,..., z) as free variables,
and suppose that x1: A(Z],...,xn: AplZI F £ A[Z].
If & |- Aqldl,..., ¢ |- Apldl for some parameters (i.e. individuals in 4 ) d = (ay,...,ax),

then t(é1/xy,...,En1x,] |- Ald].

Proof by recurrence on the length of the derivation of x;: A;[Z],...,x,: A,[Z] F+ t: A[Z].
We consider the last used rule.

1. x1: A1[Z],..., x5 AL[Z] F x; 2 A;[Z]. This case is trivial.

2. We have the hypotheses :

x1:A1[Z], ..., xn  AplZ) - u: B[Z] — A[Z] ; x1:A1(Z2),...,x,: AylZlFv:B[Z] ; t=uv.

By the induction hypothesis, we have u[f/?c] |- Bla/Z] — AlalZ] and v[g/?c] |- Bla/Z].
Therefore (uv) [E /X] |- Ala/Z] which is the desired result.

3. We have the hypotheses :

x1: A2, .., xnt AplZl,y:BIZI - u:CI(Z] ; AlZl=B[Z] — CIZ] ; t=Ayu.

We want to show that (1y u) [2‘/5&] |- Bld/Z] — Cldl/Z]. Thus, let :

n |- Bld/Z] and & € ||Clad/Z]|. We must show :



(Ayu)[f/x’] *nem el orelse u[f/a‘c’,n/y] *me L.

Now, by the induction hypothesis, we have u[g? 1%,n/yl I-Clalz],

which gives the result.

4. We have the hypotheses :

x1:A1Z], ..., x,  AplZ) =t B(Z] ; AlZ1=Vz1BI(Z] ; & - Ailarlz, a2l zo,. .., ar! 21 ;

the variable z; is not free in A;[Z],..., A,[Z].

We have to show that ¢[E/%] |FVz Bld/Z] i.e. t[E/%] Yz Blaz!zp,...,ar! zx]. Thus, we take
an arbitrary set b in .# and we show t[E/?c] - B[blz1,ax!zp,...,ax! zi].

By the induction hypothesis, it is sufficient to show that ¢; |- A;[b/z, a2/ zy, ..., arl zkl.

But this follows from the hypothesis on ¢;, because z; is not free in the formulas A;.

5. We have the hypotheses :

x1:AlZ]..., xnt AglZ) - £: VY Bly, 2] 5 AlZ1 = BlT[Z]/y,Z] ; &i - Ailal.

By the induction hypothesis, we have ¢[¢/X] |-V y Bly,d/Z] ; therefore t[¢/X] |- Blb/y,adlZz]
for every parameter b. We get the desired result by taking b = t[d].

6. The result follows from the following :
Theorem 9. For every formulas A, B, we have cc |- ((A— B) — A) — A.

Let {|F(A— B) - A and m € ||All. Then ccx&e.m > & *xk;emr which is in 1, because
kr |- A— B bylemma 10.
Q.E.D.

Lemma 10. If 7 € || Al, then k, |- A — B.

Indeed, let ¢ |- A;then k; x&on’ > Exme I for every stack 7’ € || BJ.
Q.E.D.

7. We have the hypothesis x;: A;[Z],..., X, : AplZ] - t: L.
By the induction hypothesis, we have ¢[{/X] |- L. Since || L|| =11, we have t[{/X] xm € L for
every 7 € || Ald/Z]|, and therefore t[{/X] |- Ald/Z] which is the desired result.

This completes the proof of lemma 8 and theorem 7.
Q.E.D.

Realized formulas and coherent models

In the ground model .#, we interpret the formulas of the language of ZF : this language
consists of ¢,< ; we add some function symbols, but these functions are always defined,
in ./, by some formulas written with ¢, <. We suppose that this ground model satisfies ZFC.
The value, in .4, of a closed formula F of the language of ZE with parameters in .#, is of
course 1 or 0. In the first case, we say that ./ satisfies F, and we write ./ = F.

In the realizability model .4/, we interpret the formulas of the language of ZF;, which con-
sists of &,¢,< and the same function symbols as in the language of ZF. The domain of A
and the interpretation of the function symbols are the same as for the model .#.

The value, in /4, of a closed formula F of ZF, with parameters (in . or in &, which is the
same thing) is an element of 22(I1) which is denoted as || F||, the definition of which has been
given above.

Thus, we can no longer say that .4 satisfies (or not) a given closed formula F. But we shall
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say that A realizes F (and we shall write A |- F), if there exists a proof-like term 6 such
that 0 |- F. We say that two closed formulas F, G are interchangeable if /" |- F — G.

Notice that, if | F|| = |G||, then F, G are interchangeable (indeed I |- F — G), but the converse
is far from being true.

The model .4 allows us to make relative consistency proofs, since it is clear, from the ad-
equacy lemma (theorem 7), that the class of formulas which are realized in .4 is closed by
deduction in classical logic. Nevertheless, we must check that the realizability model A" is
coherent, i.e. that it does not realize the formula L. We can express this condition in the
following form :

For every proof-like term 0, there exists a stack m €Il such that O xmw ¢ L.

When the model ./ is coherent, it is not complete, except in trivial cases. This means that
there exist closed formulas F of ZF, such that A" |- F and A | —F.

The axioms of ZF, are realized in A

» Extensionality axioms.
We have |Vz(z¢ b— zd a)ll = U{f.n; (lFeceb melcd al}

by definition of the value of ||VZC(Z ¢b—zda)l;

and llac bl = J{€.7; (c,n) € a, £ |- c ¢ b} by definition of [la < b.

Therefore, we the lac bl =Vz(z¢ b— zd a)||, so that :
IFVxVy(xcy—Vz(z¢y—2zdx)) and [ |FVxVy(Vz(z¢y—zdx) = x< ).

In the same way, we have :

IVz(acz,zca—zd b)| =& em; EIFacc, &' eca; melcd b}

by definition of the value of Tl‘v'z(a Cz,zSa—zdb)|;

and lla¢ bl = J&& em; (M) eb, EFacc, &' |-c<a}} by definition of |a ¢ bl

C
Therefore, we have ||a¢ b|| = ||Vz(a< z,z< a— zd b)|, so that:
I'FVxVy(x¢y—Vz(xcz,zcx—2zdy); I IFVxVy(Vz(x<Sz,zSx—2zdy)—x¢ ).

lyotation. We shall write E for a finite sequence (¢,...,¢,) of terms. Therefore, we shall write
El-Aforé; |FA; (i= 1,...,n).

In particular, the notation ¢ |-Fa=bmeans ¢, |Fa<h, ¢ l-b<a;

the notation & |- A — Bmeans &; |FA— B, & |- B — A.

e Foundation scheme.

Theorem 11. For every finite sequence F[x, x1,..., X, of formulas, we have :
YIFVx(Vy(Flyl = yd x), Flx] — L) = Vx(F[x] — 1)
with Y = AA and A= AaAf(f)(a)af (Turing fixed point combinator).

Leté |- ‘v’x(‘v’y(ﬁ[y] — yd x), ﬁ[x] — 1). We show, by induction on the rank of g, that:
Yx&eneme 1L, forevery melland 7 I Flal.

Since Yx{efjem > & xYE oo, it suffices to show xYéenjeme L.

Now, ¢ |-Vy(Flyl — yd a),Flal — L, so that it suffices to show Y¢ |-V y(F[y] — y€ a), in
other words Y¢ |- Flb] — bd a for every b. Let f I E[b] and @ € |bd al|. Thus, we have
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(b, ) € a, therefore rk(b) < rk(a) so that Y x&ele@ € I by induction hypothesis. It follows
that Yéx(.® € I, which is the desired result.
Q.E.D.

It follows from theorem 11 that the axiom scheme 1 of ZF, (foundation) is realized.

¢ Comprehension scheme.

Let a be a set, and F[x] a formula with parameters. We put b = {(x,{«7); (x,7) € a, ¢ |- Flx]};
then, we have trivially ||x& b| = ||F(x) — x4 all.

Therefore I |- Vx(xd b— (F(x) — xda)) and I |FVx(F(x)— xda)— xdDb).

e Pairing axiom.

We consider two sets a and b, and we put ¢ = {a, b} xI1. We have |ad c| = |bd c| =|L|, thus
IlFaecand I | bec.

Remark. Except in trivial cases, ¢ has many other elements than a and b, which have no name in ..

e Union axiom.

Given a set a, let b = Cl(a) (the transitive closure of a, i.e. the least transitive set which
contains a). We show ||ydb— xdal <|lyd x — xd all : indeed, let{.m €| yd b— xd al, i.e.
¢ IFydb and (x,7) € a. Therefore, x < Cl(a),i.e. x< b andthus ||yd bl >|yd x|.

Thus, we have ¢ |- y € x, which gives the result.

It follows that I |- VxVy((yd x — xd a) — (yd b — xd a)).

e Power set axiom.
Given a set a, let b = 22(Cl(a) xIT) xII. For every set x, we put :
y=1{(z,{em); ¢ |Fzex, (z,7) € a}. We have y ={(z,{«71); ¢ |F2€x, m € |24 all}, and therefore :
lzd yll = lzex — z4d all. Thus :
I|-Vz(zd y— (zex—zd a)) and I |FVz((zex— zd a) — zd y).
Now, it is obvious that y € 22(Cl(a) xI1), and therefore (y, ) € b for every 7 € I1.
Thus, we have ||yd b|| =11 =|L]|. It follows that :
Af(OITIFVYx(Vy(Vz(zd y — (zex — zd a),Vz((zex — zd a) — zd y) — yd b) — 1).
e Collection scheme.
Given a set a, and a formula F[x, y] with parameters, let :
b =U{®(x,&)xCl(a); x eCl(a),é € A} with
®(x,¢) = {y of minimum rank; ¢ |- F[x, yl} or ®(x,¢) =@ if there is no such y.
We show that [|Vy(F[x,y] = xd a)l < IVy(Flx,yl — yd b)| :
Suppose indeed that .7 € [|Vy(F[x,y] — xd a)l,i.e. (x,m)€a and ¢ |- F[x,y] for some y.
By definition of ®(x, ), there exists y' € ®(x,&). Moreover, we have x € Cl(a), 7 € Cl(a), and
therefore (y',7) € b ; it follows that 7 € ||y’ b||. But, since y' € ®(x,¢), we have & |- F[x, ']
and thus ¢.7 € ||F[x,y'] — y'd b||, which gives the result.
We have proved that I |-Vx(Vy(Fl[x,yl — yd b) — Vy(Flx,y] — xd a)).

e Infinity scheme.
Given a set a, we define b as the least set such that :
{a}xIIcb and Vx(VreID)(Vée A)((x,m) e b = D(x,E) x{m} S b)
where ®(x,¢) is defined as above.
We have {a} xII < b, thus |lad b| = ||L]l, and therefore I |- aeb.
We now show that |Vy(F[x,yl — xd b)l| < IVy(Flx,yl — ydb)| :
Suppose indeed that {.m € |Vy(F[x,y] — xd b)|,i.e. (x,m)€ b and ¢ |- F[x, y] for some y.
By definition of ®(x,¢), there exists y' € ®(x,&). By definition of b, we have (y/,7) € b, i.e.
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n e |ly'd bll. Now, since y' € ®(x,¢), we have ¢ |- F[x, y'] and thus:
¢eme ||Flx,y'] — y' @ bll, which gives the result.
We have proved that I |-aeb and I |FVx(Vy(Flx,y] — yd b) — Yy(F[x,yl — xd b)).

Function symbols and equality

According to our needs, we shall add to the language of ZF,, some function symbols f, g, ...
of any arity. A k-ary function symbol f will be interpreted, in the realizability model ./, by
a functional relation, which is defined in the ground model .4 by a formula F|[x,..., Xk, V]
of ZF. Thus, we assume that .# = Vx;...Vx; 3y Flxy,..., Xk, VI

(3'y Fly] is the conjunction of VyVy'(F[yl,Fly'] — y=y') and 3y F[y)).

The axiom schemes of ZF,, written in the extended language, are still realized in the model
N, because the above proofs remain valid.

On the other hand, in order to make sure that the axiom schemes of ZF, which use a k-ary
function symbol f, are still realized, one must check that this symbol is compatible with =,
i.e. that the following formula is realized in A" :

Vxp..Vxeag =y, o Xe = ye— fx1...xe = fy1... ye)-

We now add a new rule to build formulas of ZF; :

If t, u are two terms and F is a formula of ZF,, then ¢t = u — F is a formula of ZF,.

The formula t=u — 1 isdenoted ¢ # u.

The formula t#u— 1,i.e. (t=u — 1) — 1 isdenoted t=u.

The truth value of these new formulas is defined as follows, assuming that ¢, u, F are closed,
with parameters in A :

lt=u—Fl|=¢ ift#u; lt=u— F|=|F| ift=u.

It follows that :

ltZull=p=ITIiftAu;lltAul=M=|L1]l ifr=u;

lt=ul=IT— Ll iftZu;llt=ul=1L— Ll ifr=uwu.

Proposition 12 shows that t=u — F and ¢ =u — F are interchangeable.

Proposition 12.
DAxX)IF(t=u—F)— (t=u<F);
ii) AxAy(cOAk(y)(k)x |-(t=u — F),t=u—F.

i)Leté|Ft=u—F and n€|t=u — F|. Thus,wehave t=u and me€ | F].
We must show Ax(x)I*x¢eme I, thatis ¢ x I.m € 1. This is immediate, by hypothesis on ¢,
since I |-t = u.
i)let {|Ft=u—F, nl-t=u and = € | F||. We must show that :
AxAy(cAk(y)(k)x *Eeneme I, soit Nk kyEeme L.
If t # u, then n |- T — L, hence the result.
If t = u, then ¢ |- F, thus é x € I, therefore k;¢ |- L.
But we have 7 |- L — 1, and therefore nxk,{.m€e 1.
Q.E.D.

Proposition 13 shows that the formulas ¢ = u and Vx(ud x — td x) (Leibniz equality) are
interchangeable.
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Proposition 13.
DIFt=u—Vx(udx—tdx);
i) IIFVx(udx—tdx)—t=u.

i) It suffices to check that I |- Vx(ud x — td x) when ¢ = u, which is obvious.
ii) We must show that I|-Vx(udx — tdx),t # u— L. Thuslet ¢ |FVx(udx — td x),
Nt # uand xell; we must show that { xneme L.
We have ¢ |-ud a— td aforevery a; we take a = {t} xIl, thus | g al| =1, hence m € || £ ¢ all.
If t = u, we have n |- L, thus n |- uéd a, hence the result.
If t #u,wehave |[ud all =@ =TI, thus 1 | ud a, hence the result.

Q.E.D.

We now show that the axioms of equality are realized.

Proposition 14. [ |FVx(x=x); I |FVxVy(x=y —y=Xx);
I|FVxVYWz(x=y — (y=2—x=2));
I |FVYxVy(x=y — (Flx] — Fly]) forevery formula F with one free variable, with parameters.

Trivial, by definition of —.
Q.E.D.

Conservation of well-foundedness

Theorem 15 says that every well founded relation in the ground model .4, gives a well foun-
ded relation in the realizability model 4.

Theorem 15. Let f be a binary function such that f (x, y) =1 is a well founded relation in the
ground model 4 . Then, for every formula F|x] of ZF, with parameters in /4 :
YIFVx(Vy(f(y,x) =1 — Fly]) = Flx]) = Vx F[x]

with Y =AA and A= AalLf(f)(a)af.

Let us fix a and let ¢ [FVx(Vy(f(y,x) =1 — F[y]) — F[x]). We show, by induction on a,
following the well founded relation f(x,y) =1, thatY x{«m € I for every m € | Flall|l.
Thus, suppose that 7 € || F[a]ll ; since Y*¢{em > *Y¢om, we need to show that {xYEeme L.
By hypothesis, we have ¢ [-Vy(f(y,a) =1 — F[y]) — Flal ; thus, it suffices to show that :
Y¢ - f(y,a) =1 — Fly] for every y. This is clear if f(y, a) # 1, by definition of —.
If f(y,a) =1, we mustshow Y¢ |- F[y], i.e. Yx¢ep € 1 forevery p € | F[yl]ll. But this follows
from the induction hypothesis.

Q.E.D.

Sets in ./ give type-like sets in A

We define a unary function symbol J by putting J(a) = axII for every individual a (element
of the ground model .#).

For each set E of the ground model .4, we also introduce the unary function 1g with values
in {0,1}, defined as follows :

lp(a)=1ifae E;1g(a)=0ifa¢ E.

The formula 1g(x) =1 — A will also be denoted as x&JE — A.
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In particular, ad JE isidentical with aeJE — L thatis 1g(a) # 1.

We shall write Vx?EA[x] for Vx(xeJE — A[x]).
Proposition 12 shows that xeJE — A and xeJE — A are interchangeable.
Therefore Vx*EA[x] and Vx(xeJE — Alx]) are also interchangeable. We have :

IVxE Alxll = | IlAla/x1Il and [VxPEALx]| = () 1Ala/ x].

acE acE

As already said, we shall add to the language of ZF., some function symbols of any arity,
which will be interpreted in the ground model .4 by some functional relations. Then every
formula of the form VX(#; [X] = u1[X],..., tx[X] = ur[X] — t[X] = u[X]) which is satisfied in the
model 4, is realized in the model A (¢, uy, ..., ty, g, t, u are terms of the language).
Indeed, we verify immediately that :
VIR [X] = [X] = (.. = (G[X] = ug[X] < t[X] = ulx])...).
It follows that if, for instance, t[xg, x1] sends Eyx E; into D in the model .4, then it sends
JEyxJE; into 1D in the model .#. Indeed, we have then :
M E Y xoVx1(1E,(x0) = 1,1, (x1) =1 — 1p(t[xp, x1]) = 1) and therefore, we have :
I'FVxoVx1(1g (x0) =1 — (1g, (x1) =1 — 1p(t[xo, x1]) = 1)), in other words :

T - Vx2ov B (t1x0, x,1 £ ID).

Notice, in particular, that the characteristic function 1g, which takes its values in the set
2 =1{0,1} in the model .4, sends JE into ]2 in the realizability model /.

We shall denote »,v,- the (trivial) Boolean algebra operations in {0, 1} (they should not be
confused with the logical connectives A, v, ). In this way, we have defined three function
symbols of the language of ZF, ; thus, in the realizability model ./, they define a Boolean
algebra structure on the set J2.

Remarks.

i) A setof the form JE behaves somewhat like a type, in the sense of computer science, because any
function of the model .# with domain (resp. range) E; x- - x Ex. becomes a function of the model A
with domain (resp. range) JEj x---x1Ey.

ii) The Boolean algebra J2 is, in general, non trivial i.e. it has e-elements # 0, 1. Notice that they are
all empty : indeed, it is easy to check that I |- vxR2y yix#1—ydx).

The set N of integers in .4

We add to the language of ZF; a constant symbol 0 and a unary function symbol s. Their
interpretation in the model ./ is as follows :

0 is @; s(a) is {a}xII for every set a, in other words s(a) = J({a}).

In the realizability model .4/, s(a) is the singleton of a. Indeed, we have trivially :

Ibd s(a)ll = |b# all (i.e. @ if a # b and I1 if a = b) and it follows that :
I-VxVy(ydsx—x#Zy);IIFVxVy(x#y— yd sx).

For each n € N, the term s"0 will also be written n.

Remark. In the definition of the set of integers in the realizability model 4", we prefer to use the
singleton as the successor function s, instead of the usual one x — xU{x}, which is more complicated
to define. It would give : s(a) ={(a,Ken); 1 €I} U{(x,0e7); (x,7) € a}.
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Theorem 16. The following formulas are realized in N :
) VXVy(sx=sy —x=Y);

ii) Vx(sx#£0);

i) VxVy(x=y— sx=sy);

iv) VxVy(sx=sy—x=y).

This shows, in particular, that the function s is compatible with the extensional equiva-
lence ~.

i) We check that I | sa = sb — a=b. We may suppose sa = sb, because
sa=sb— a=Db|=¢ if sa# sb.But, in this case, we have a = b, by definition of sa, sb.

ii) We have |la ¢ 0|l = |[Vx(x = a — xd0)|| = @, since ||[xd 0| = @. Now |lad sall = Il and
therefore we have, forany { € A, Ax(x)¢ |-(a¢ @ — ad sa) — L ; thus:

Ax(x)¢ |FVx(x ¢ @ — xd sa) — L. But this means exactly that Ax(x)¢ |-sa<0— 1, and
therefore AxAy(x)¢ |Fsa=0— L.

iii) We show that the formula a =~ b — sa = sb is realized ; it suffices to realize the formula
a=b — sa< sb. We prove it by means of already realized sentences.

We need to prove a = b,x ¢ sb — xd sa. But xd sa has the same truth value as x # a. Thus,
we simply have to prove a = b — a € sb. But a € sb follows from be sb and a = b.

iv) In the same way, we prove the formula sa = sb— a=b and, infact sa<sb— a=b.
The formula sa < sb is Vx(x € sb — xd sa) ; but xd sa is the same as x # a. Thus, from
sa S sb we obtain a € sb, i.e. (Axesb)x = a. But xesb is the same as x = b, so that we
obtain a = b.

Q.E.D.
The individuals s"0 are obviously distinct, for n € N. Therefore, we can define :

N ={(s"0,n.7); neN, r €I}

and we have :
lad N| = @ if a is not of the form s"0, with n € N ;
5”08 N|| = {nem; m eI},
The formula x&N will also be written ent(x). B
In the sequel, we shall use the restricted quantifier vxN, which we also write Vx®™, with
the following meaning :
IVx™F[x]|| = |YXNF(x]| = {nem; neN, € |Fs"0]]}.
The restricted existential quantifier 3xN or 3x°Mis defined as :
Ix®MF[x] = IxN Fx] = =V x® = F[x].
Proposition 17 shows that these quantifiers have indeed the intended meaning: the formulas
Vx®" F[x] and Vx(xeN — F[x]) are interchangeable.

Proposition 17.
D) AxAyAz(y)(x)z |- Vx F[x] — Vx(~F[x] — xd N) ;
i) AxAy(cOAk(x)ky |- Vx(—F[x] — xd N) — Vx F[x].

i) Let ¢ |-Vx®™F[x], n|--Fl[a] and @ € |agN]|. Thus, we have a = s"*0 for some n € N
(since |ad N|| # @) and @ = ne.7n1. We must show that nx¢ne.me L.

Now, by hypothesis on ¢, we have {xn.p € I for any p € |F[s"0]|| ; thatis ¢n |- F[s"0].
Since 7 |- F[s"0], we have n*{ne.m € 1L, which is the desired result.
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i) Let ¢ |FVx(~F[x] — x&gN) and n.7e |Vx*" F[x]|, with n€N and 7 € | F[s"0]|.
We have : AxAy(cAAk(x)ky*Eenem><¢xKyenem.
Now, we have k; |- —F[s"0] and n.n € |s"0&N|. Therefore & xk;en.me 1.

Q.E.D.

Theorem 18 (Recurrence scheme). For every formula F[X, y] :
DIl V?cVn'\L(Vy(F[?c, syl — FIX, y), FIX, n] — FI[X,0]).
ii) I-YXVnN(Vy(F[%,y] — FIX, sy), FI%,0] — F[%, n]).

i) Let neN, d asequence of individuals, ¢ |-V y(Fld, syl — Fla,yl), m € |Fla,0]].

We must show that, for every a |- F[d,n], wehave I x neleaeme 1.

In fact, we show, by recurrence on n, that nx{.aeme L.

This is immediate if 7 = 0. In order to go from n to n+ 1, we suppose now « |- F|d, sn] ;

wehave N+ 1*xe@eT>0N*Ee@eTT >0 *kNeeQel >NKkEelAoT.

But, by hypothesis on ¢, we have ¢ |- Fld, sn] — Fld, n] ; thus ¢a |- Fld, n].

Hence the result, by the recurrence hypothesis.

ii) Let n € N, 4 a sequence of individuals, ¢ |-VYy(Fld,yl — Fla,syl), a|-F[d,0] and

m € ||F[a,0]]l. We must show that I x n«{+a«m € L ; this follows from lemma 19, with k = 0.
Q.E.D.

Lemmal9. Letn,keN, & |-V y(Flyl — Flsyl), a |- F[s*0] and n €| F[s*n]|.
Then nxéeaeme L.

The proof is done for all integers k, by recurrence on n. This is immediate if n = 0.
In order to go from n to n+ 1, we suppose now 7 € ||F[sk(n + D], i.e. mwe ||F[sk+1n] Il.
Wehave n+1*e@elT >0N*kCeQeT >0 *kNeCelel >NK ST,
But, by hypothesis on ¢, we have ¢ |- F[s*0] — F[s**10] ; thus ¢a |- F[s*+10].
Hence the result, by the recurrence hypothesis.
Q.E.D.

Definition. We denote by int(n) the formula Vx(Vy(syd x — yd x),nd x — 04 x).

Theorem 21 shows that the formulas int(n) and neN are interchangeable, i.e. the formula
Vn(int(n) < neN) is realized by a proof-like term : this is the storage theorem for integers.

Lemma 20. AgAx(g)(0)x |-Vy(sydN— ydN).

We show that AgAx(g)(0)x |-sbdN— bgN for every individual b.
This is obvious if b is not of the form s"0, since then ||bd N| = @. Thus, it remains to show :
AgAx(g)(0)x |-5s"*'0¢ N — s"04 N. Thus, let ¢ |- s"*10¢ N ; we must show :
AgAx(g)(o)x*¢eneme 1L, ie. { konem e 1L, whichis clear, since on=n+1.

Q.E.D.

Theorem 21 (Storage theorem).
D) IFYxNing(x).
ii) T |FVx(int(x),xd N— 1) with T = AnAf(n)AgAx(g)(o)x)fo0.
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i) Itis theorem 18(i), if we take for F|[x, y] the formula yéd x.

ii) Let v |- int(a), ¢ |-ad N and 7 € I1. We must show THvepeme 1L, thatis:
Vi AgAx(g)(O)xepeOeme L.
By hypothesis, we have v |-Vy(syd N — yd N),ad N — 0¢ N.
But we have Q.7 € [|0¢ N| by definition of N and, by lemma 20 :
AgAx(g)(o)x |FYy(syd N — yd N). Hence the result.
Q.E.D.
From theorem 18(ii), it follows immediately that the recurrence scheme of ZF is realized
in A ;itis the scheme:
VX(Vy(F[X,yl — FIX,syl),F[X,0] — (Vne N)F[%,n]) for every formula F[X, y] of ZF (i.e. writ-
ten with ¢,<,0, 5).
Then, indeed, the formula F is compatible with the extensional equivalence =.
Since the function s is compatible with =, we deduce from lemma 20 that the formula :
Vy(y e N — sy eN) is realized in .# ; the formula 0 € N is also obviously realized.
From the recurrence scheme just proved, we deduce that :

N is the set of integers of the model &, considered as a model of ZF.

Theorem 22.

i) Let f :NF — N be a recursive function. Then, the formula :
‘v’xlN...Vx,@(f(xl,...,xk)eN) is realized in N .

ii) Let g :N* — 2 be a recursive function. Then, the formula :
‘v’xlN...Vx,@(g(xl,...,xk) =1vg(xy,...,xx) =0) isrealized in N .

i) This can be written font ... ‘v’xint ent(f(xy,...,xx)). The proofis done in [18, 15].
ii) We have A |- (Vx1€IN)...(VxreIN) g(xy,..., xx) €2.
Now, since g is recursive, we have, by (i) :
N - (‘v’xleN)...(kasN)g(xl,...,xk)eN.
Hence the result, by lemma 23.
Q.E.D.

Lemma 23. AxAyAf(f)xy FVx2(x#1,x#0— xgN).

We have to show :
AXAYAF(Hxy IFT,L — 08N and AxAyAf(f) fxy|-L,T—1gN.
Thuslet ¢ [T (i.e. £ € A arbitrary) and 7 |- L. We have to show :
AXAYAf(f)xy*&eneQeme 1L and AXAYAf(f)Xy*Neleleme 1L
which is trivial.

Q.E.D.

Remarks. i) In the present paper, theorem 22 is used only in trivial particular cases.

ii) Let us recall the difference between JN and N (the set of integers in the model .A") ; we have :
EIFYxINFIx] iff (YneN)(Vr e |F[s"0]I) ¢ me AL

- VN Flx] iff (VneN)(Vr e |F[s™0]]) Exneme Il

Notice that we have K |- Vx(xdIJN — xdN), in other words K |-N < IJN. This means that, in .#,
the set N of integers is strongly included in JN. In the particular realizability model considered below
(and, in fact, in every non trivial realizability model), the formula JN & N is realized.
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Non extensional and dependent choice

For each formula F(x, y,..., ym) of ZF;, we add a function symbol fF of arity m + 1, with the
axiom : Vj/'(VkNF[fF(k, ¥),y1 = VxF[x,¥])

orelse: Vy(Vk™F[fr(k,¥), ] — VxF[x,¥]).

It is the axiom scheme of non extensional choice, in abbreviated form NEAC.

Remarks. i) The axiom scheme NEAC does not imply the axiom of choice in ZF, because we do not
suppose that the symbol fr is compatible with the extensional equivalence =. It is the reason why
we speak about non extensional axiom of choice. On the other hand, as we show below, it implies DC
(the axiom of dependent choice).

ii) It seems that we could take for fr a m-ary function symbol and use the following simpler (and
logically equivalent) axiom scheme NEAC’ : Vy(F[fr(¥),y] — Vx F[x, y]).

But this axiom scheme cannot be realized, even though the axiom scheme NEAC is realized by a very
simple proof-like term (theorem 24), provided the instruction ¢ is present.

More precisely, we can define a function fr in .4, such that NEAC is realized in ./, but this is impos-
sible for NEAC'.

Theorem 24 (NEAC).
For each closed formula ¥ xVy F, we can define a (m + 1) -ary function symbol fr such that :
Ax(©)xx |-V (VK™ F| fr(k,7)/x, y1 — Yx F[x, J]).

Foreach ke Nweput Pr={mell;{xkem ¢ I, k=n¢}.
For each individual x, we have : ||Vx F[x, y]Il = U | Fla, y1ll.

Thus, there exists a function fr such that, givenak e N and y such that P, n |[Vx F[x, Il # @,
we have Py n||F[fr(k, ), VIl # @.
Now, we want to show Ax(¢)xx |- Vk®™F[fr(k, 7), 7] — Flx, ¥, for every individuals x, .
Thus, let & | VE®™F|fr(k, ), ] and 7 € | Fla, ¥1| ; we must show Ax(¢)xxxEeme L.
If this is false, we have ¢ *x (.o ¢ I and therefore ¢ x jom ¢ I with j =n;.
It follows that 7 € P; n||F[a, y1| ; thus, there exists 7’ € f’j NIFLfr(j, ), 1.
Now, we have j.7n’ € [|[VK®™F[fr(k, ), ¥1l, and therefore, by hypothesis on ¢, we have :
&% jeonr' € 1. This is in contradiction with 7’ € P i
Q.E.D.

NEAC implies DC

Let us call DCS (dependent choice scheme) the following axiom scheme :

VZ(Vx3yFlx,y,2] — Yn®™ 3y Sp(n, y, 21 AVn®™3y3y'{Sk(n, y, 2], Srlsn, ', 21, Fly, ¥, Z21}).
where F is a formula of ZF, with free variables x, y, Z ; the formula Sr is written below.

In the following, we omit the variables Z (the parameters), for sake of simplicity.

The usual axiom of dependent choice DC is obtained by taking for F[x, y, zo, z1] the formula
VEZYN (XEZy — <X, y>E€21).

We now show how to define the formula Sg, so that ZF,, NEAC  DCS ; we shall conclude
that DC is realized.

So, let us assume Vx3y F[x, y]. By NEAC, there is a function symbol f such that:
Vx3k®™F[x, f(k, x)]. We define the formula Rr[x, y] as follows :
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Rrlx,yl = Ik"YF[x, f(k, )], Vi®™(i < k — ~F[x, f(i,X)]),y = f(k,x)}.

This means: “y = f(k, x) for the first integer k such that F[x, f(k, x)] ".

Therefore, Rr is functional, i.e. we have Vx3'y Rp(x, ).

Sr is defined so as to represent a sequence obtained by iteration of the function given by Rp,
beginning (arbitrarily) at 0 :

Sp(n,x) =VzI[VmVyVy' (<m,y>ez,Rp(y,y) — <sm,y'>€z),<0,0> ez — <n,x>¢ez].

It should be clear that, with this definition of Sg, we obtain :

VYn®™M3ly Sg(n,y] and VYn®™3Ay3y'(Sk(n, yl,Sklsn, y'1, Fly, y'1.

Thus, DCS is provable from ZF, and NEAC.

Remark. We have used the binary function symbol <x, y> which is defined, in the ground model .4,
in the usual way : <a,b> = {{a},{a, b}}. The formulas VxVx'VyVy'(<x,y> = <x/,y'> — x = x),
VxVx'Vyvy'(<x,y>=<x',y'> — y=1y"), are trivially realized by I.

Properties of the Boolean algebra ]2

Let (x<y) be the binary recursive function defined as follows in ./ :
(m<n)=1ifm,neN,m<n; else (m<n)=0.

Theorem 25. For every choice of L, the relation (x<y) =1 is, in A, a strict well founded
partial order, which is the usual order on integers (i.e. onN).

Indeed, the formulas : Vx((x<x) #1) and VxVyVz((x<y) =1 — ((y<z) =1 — (x<z) = 1))
are trivially realized.
Moreover, since the relation (x<y) =1 is well founded, we have (theorem 15) :
YIFVx(Vy((y<x) =1 < Fly]) — Flx]) = Vx F[x]
for every formula F[x] with parameters and one free variable.
By theorem 22(ii), the binary recursive function (x<y) sends N? into {0, 1}, in the model 4.
Therefore, it suffices to check that the following formulas are realized in A" :
ViV Ny s x — (x<p) #1); VANV N <y — (x<p) = D).
Now the following formulas are trivially realized :
VxJNVyJNVzJN(x =y+z—(x<y)#1); VxJNVyJNVzJN(y =x+z+1—(x<y)=1).

Q.E.D.
In the ground model .4, we put, for each integer n :

n=1{0,1,...,n—1}={0,s0,...,s" 10}

The functions n— n and n+—— In are defined in the realizability model .#", with do-
main IN.

Theorem 26.

The following formulas are realized in N :

i) VxINYmAN((x<m) = 1 — xeIm) ;

i) Ym*NYniN((m<n) =1 — Imc In) ;

i) VXNV mIN(x<m) =1 = 3y Nm=x+y+1)).

Remember that x c yis the formula Vz(zd y — z4d x).
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i) We have trivially ||(a<m) # 1|| = ||ad Jm|| for every a, m € N.

ii) By transitivity of the relation (m<n) =1 (theorem 25).

iii) We observe that |[(a<m) # 1| = |(VyeIN)(m # a+ y+1)| forevery a,meN.
Q.E.D.

For each ne]N (and, in particular, for each neN, i.e. for each integer of /), the set de-
fined, in A, by (x<n) =1 (the strict initial segment defined by n) is therefore extensionally
equivalent to Jn.

Theorem 27. In .V, the application (x,y) — my + x is a bijection from JmxIn onto J(mn).

Indeed, the following formulas are realized in N by I :

i) Y mANY ndNY x ™y I (my + x) e Jmn) ;

i) VmANY pdNy pdmy ydmy pdny im0 4 =y 43" — x=x') ;
VmJNVI’lJNVmeVx/vayjnVy,jn(my+x —my +x —y=y);

iii) Y mANY pdNy ZImngdmgn s — gy 4 x).

i) and ii) We simply have to replace vmAN and Vx"™ with their definitions, which are :
VvmNF=VYmQn(m) =1 — F); Yx™F = Vx((x<m) =1 — F).
We see immediately that these two formulas are realized by I.
iii) We show that :
I FYmANY ANV 2Ny xINY ) AN (x<m) = 1 — (y<n) =1 — 2 # my + x)) — (z<mn) # 1).
Thus, we consider :
m,n,z0€N; E€ A, E VIV yIN(x<m) =1 — (y<n) =1 — 2 # my +x))
and 7w € ||(zg<mn) #1||. We must show Ix¢.me 1, thatis xme L.
We have ||(zop<mn) # 1| # @, therefore zy < mn. Thus, there exist xo, yo € N, xo < m, yp < n
such that zy = mxg + yo. Now, by hypothesis on ¢, we have :
¢ (xo<m) =1 — ((yo<n) =1 — zo # myy + Xo), in other words & |- L.
Q.E.D.

Injection of Jn into 2 (N)

Remember that we have fixed a recursive bijection : { — n¢ from A onto N. The inverse
bijection will be denoted n+— ¢,,.
This bijection is used in the execution rule of the instruction ¢, which is as follows :

CX oMol > X NpeTl.
We define, in .4, a function A:N— 2 by putting A(n) =0« ¢, |- L.
In this way, we have defined a function symbol A, in the language of ZF,. In the realizability
model ./, the symbol A represents a function from JN into J2. In particular, the function A
sends the set N of integers of the model .4 into the Boolean algebra J2.

Theorem 28. Let us put 0 = AxAy(g) yxx ; then, we have :
0 |- Vx2(x #0 — In®™{A(n) £0,A(n) < x})
where < is the order relation of the Boolean algebra 12 : y < x is the formula x = (yvx).

We must show 0 | Vx72(x #0,Vne™(A(n) #0 — x # A(m)vx) — L).
Thus, let a€{0,1}, E|-a#0, n|FVYn®Y(A(n) #0 — a # A(n)va) and m eIl
We must show O x¢eneme L thatis ¢*negedemell, orelse nxn;eeme L.
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By hypothesis on 7, it suffices to show ngefeme | VnM(A(n) #0 — a # A(n)va)||, thatis, by
definition of the quantifier Vn®™: ¢.me AN #0— a #A(ng)vall.
This amounts to show ¢ |-A(ng) #0 and a = A(ng)va.
» Proofof ¢ |-A(ng) #0: if A(ng) = 1, this is trivial, because |[A(ng) #0] =@ ;
if A(ng) =0, then¢ |-, by definition of A.
e Proofof a=A(n¢g)va: thisisobviousifa=1;if a=0, then ¢ |1, by hypothesis on ¢.
Therefore A(ng) =0 by definition of A, hence the result.
Q.E.D.

By theorem 28, the set {A(n); neN,A(n) # 0} is, in the realizability model .4/, a countable
dense subset of the Boolean algebra ]2 : this means that each element # 0 of this Boolean
algebra has a lower bound of the form A(n), with neN and A(n) #0.
It follows that the application of J2 into 2 (N) given by :

x+— {neN; A(n) < x,A(n) # 0}
is one to one : indeed, if a, beJ2 with a # b, then a+ b # 0 ; thus, there exists an integer ne N
such that A(n) # 0 and A(n) < a+ b. Therefore, we have A(n) <a iff (baA(n)) =0.
But, since A(n) #0,weget: A(n)<a iff A(n)£Db.
We have shown :

Theorem 29.
The formula : “there exists an injection of 12 into 2(N) ” is realized in the model N .

”

Corollary 30. The formula: “for every integer n there exists an injection of In into 2(N)
is realized in the model N .

Using theorem 27 we see, by recurrence on m, that the model .4 realizes the formula :
“ VmN((.'IZ)m is equipotent to J(2™)) ”; and therefore also the formula :
“ymN (there exists an injection of J(2™) into PN)) "
Finally, by theorem 26(ii), we see that the following formula is realized :
“vnN(there exists an injection of In into 2(N)) ”.
Q.E.D.

Realizability models in which R is not well ordered

J2 atomless

Theorem 31. We suppose there exist two proof-like terms wg,w, such that, for every m €],
we have woky |- L or wiky |- L. Then, the Boolean algebra 12 is non trivial. Indeed :
Ol-Vx(x#1,x#0— xdJ2) — L with 0 =Af(cQAk((f)(w1)k)(we)k.

Let EFVx(x#1,x#0— x4 ]2) and 7 € I1. We must show :
Ox&éeme I, thatis ¢ xwik;ewokeme L.
But, by hypothesis on ¢, we have ¢|-T,L — 1 and ¢ |1, T — L. Hence the result, by
hypothesis on w1, wy.
Q.E.D.
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Remark. When the Boolean algebra J2 is non trivial, there are necessarily non standard integers in
the realizability model ./, i.e. integers which are not in .#. Indeed, let a£J2,a # 0,1 ; by theorem 28,
there is an integer n such that A(n) # 0,A(n) < a ; thus A(n) # 1. The integer n cannot be standard,
since A(m) =0orlif misin . 4.

Theorem 32. We suppose that there exists three proof-like terms a, a1, a» such that, for every
e\ and mwell, we have kiéag |- L or kpéaq |- L or kzéas |- L.

Then, the Boolean algebra 12 is atomless. Indeed :

O IFVYxIVy(xay #0,xry #x — yd12),x #0 — xd 12]

with 6 = AxAy(cAAk((x)(k)yao) (x)(k)ya1) (k) ya,.

By a simple computation, we see that we must show :
DOFL,L—-1),1L—1.
WoeFIT,L—-1n|LT—1],T— 1.
Proofof (i):let ne|l,L — 1| and ¢ €|L|. We must show O xn.f.me L, thatis:
nxkz§age (M) (kp)§ar)(k)lazeme L.
But, from ¢ |- L, we deduce k;¢C |- L forevery { € A..
Since n |1, L — 1, we have (()(k;){a1)(kz)éaz |- L and therefore :
n* knf“O . ((77) (kn)éal) (kn)faZ e .
Proof of (i) : let ne|T,L — L|n|L, T — 1] and ¢ € A.. Again, we must show that :
Nxkzlage (M kp)éay) (kp)éazeme L. If this is false, then :
kp&ao - L (because n|-L, T — 1) and ((n) (kp)éay) (ky)éay - L (becausen |-T, L — 1).
But, since 1 |-L, T — L (resp. T,L — 1), we have k;{a; |- L (resp. ky&az |- 1).
This contradicts the hypothesis of the theorem.

Q.E.D.

R not well orderable

Theorem 33.
We suppose that there exists a proof-like term w such that, for every &, € A, & # & andm €T,
we have wk;¢ |- L or wk;¢& |- L.
Then we have, for every formula F with three free variables :
0 I-VmINY NV z[(m<n) =1 —

(VxVyVy (F(x,7,2), F(x,¥,2),y # Y — 1), Yy m=vxIm=F(x,y,2) — 1)]
with 0 = AxAx' (cOAk(x")Az(xzz)(w)kz.

Remark. This shows that, if (m<n) = 1, then (Jm c In and) there is no surjection of Jm onto Jn :
indeed, it suffices to take, for F(x, y, z), the formula <x,y>¢z.

Assume this is false ; then, there exist m,n € N with m < n, an individual ¢, two terms
¢, e A and astack 7 €I such that:

Oxéeleme IL;

{IFVXVYYVY'[F(x,y,0),F(x,y,0),y #y — 11;

& |-V ymavxima F(x, y, c).

Therefore, we have ¢ xn.m ¢ 1L with 1= 1z(zz)(w)k;z. By hypothesis on ¢’ we have, for
every integer i <n: n - VxI™=F(x,i,c). Thus, there exists an integer m; < m such that
n - —F(m;,i,c). It follows that there exist ¢; € A and m; € IT such that ¢; |- F(m;,i,c) and
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nN*x¢;em; ¢ 1. By definition of 7, we get ¢ % ;eljewkyE;em; ¢ 1. By hypothesis on ¢, it

follows that wk,¢&; If-i # i ; in other words, we have wk,¢; - L for every integer i < n.

By the hypothesis of the theorem, it follows that we have ¢; =¢; forevery i, j <n.

But, since m; <m<n and i<n, thereexist i,j<n,i# j suchthat m; =m; =k.

Then, ¢;=¢; - F(k,i,c),F(k, j,c) and wk;¢; |-i# jsince [li # jl = @.

Therefore, by hypothesis on ¢, we have & x¢;e;ewk,;&;em; € 1L, which is a contradiction.
Q.E.D.

Now, we see that, with the hypothesis of theorem 33, there is no surjection from J2 onto
J2xJ2. Indeed, by theorem 27, there exists a bijection from J2xJ2 onto J4 and, by theorem 33,
there is no surjection from J2 onto J4. But, by theorem 32, J2 is infinite ; it follows that J2
cannot be well ordered.
Now, by theorem 29, J2 is equipotent with a subset of 2 (N). Therefore, the hypothesis
of theorems 32 and 33 are sufficient in order that the following formula be realized in the
model A :

There is no well ordering on the set of reals.

In fact, the hypothesis of theorem 33 is sufficient : this follows from theorem 34.

Theorem 34.

Same hypothesis as theorem 33 : there exists a proof-like term w such that, for every w € Il and
EE €N E#£E, wehave wkyé |- L or wk;& |- L.

Then we have, for every formula F with three free variables :

0 |-VYz{Vx[Vn®" F(n,x,z) — xd J2,YnVxVy[~F(n,x,z)F(n,y,2),x#y — 1] — 1}

with 0 = AxAx' (cOAk(x)An(cc)Ah(x'hh) (wk)Af(f)hn.

Remark. This formula means that, in the realizability model ./, there is no surjection from the set of
integers N onto J2: it suffices to take for F(x, ¥, z) the formula <x, y>¢ z (the graph of an hypothet-
ical surjection being <x, y> ¢ z).
Reasoning by contradiction, we suppose that there is an individual ¢, a stack 7 € I1, and two
terms &, ¢ such that
EIFVYxIVRE™ F(n, x,¢) — x4 12]; &' |- VYnVxVy[-F(n,x,c)7F(n,yc),x#y— L] and
OxéEel'eme L.
Therefore, we have ¢ xnem ¢ 1L, with n = An(cc)Ah(E hh)(wk)Af(f) hn.
By hypothesis on &, we have 7 |- Ve F(n,0,c¢) and n |- Vn®" F(n,1,c). Thus, we see that
there exist ng, n; €N, 7o € | F(no,0,c)ll and my € [[F(ny,1,¢)| suchthat nx n,.m ¢ I and
n* n,«m; ¢ 1. By performing these two processes, we obtain :
f'*kno.kn().(o.ﬂo ¢l eté’*km .km o(1em g A,
with (o = (wkn)/lf(f)knoﬁo and (1= (wkn)/lf(f)knlﬁl
By hypothesis on ¢’, we have ¢’ |- —1F(ny,0, ¢), 7 F(n9,0,¢),0 #0— L. Since kg, |- —F(no,0,¢),
we see that (o - L and, in the same way, {; |- L.
Thus, by the hypothesis of the theorem, we have :
Af(Nkgyng = Af(f)ks, 1, and therefore ng=n; and mo=m;.
But, we have ¢’ |F—F(ny,0,c),F(ng,1,c),0 #1 — L. Moreover, we have :
g € || F(no,0,c)|| and 7y € |F(ny,1,c)ll, thus mg € ||F(ng,1,c)| since ng = ni, mg = m;.
Therefore kg, [-—1F(ny,0,c) and —F(no,1,c). Moreover, we have obviously (o |0 # 1, since
0 # 1|l = @. Therefore, we have &' % kg, o« ky, ¢ (0«70 € L, which is a contradiction.

Q.E.D.
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Theorems 33 and 34 show that J2 is infinite and not equipotent with J2xJ2, thus not well
orderable. Since ]2 is equipotent with a subset of 22(N) (theorem 29), we have shown that
92(N) is not well orderable, with the hypothesis of theorem 33.

More precisely, by corollary 30, we know that In is equipotent with a subset of 2(N) for
each integer n. Therefore, we have :

Theorem 35. With the hypothesis of theorem 33, the following formula is realized :

“There exists a sequence %, of infinite subsets of 2(N) such that, for every integers m,n =2 :
e thereis an injection from %, into Zu+1;

e thereis no surjection from &,, onto Z,+1;

o Xyx X, and X, are equipotent’.

For each integer n = 2, the setn={0,1,...,n— 1} is aring : the ring of integers modulo n ; the
Boolean algebra {0, 1} is a set of idempotents in this ring. These ring operations extend to the
realizability model, giving a ring structure on Jn, and J2 is a set of idempotents in In.

For each a¢J2, the equation ax = x defines an ideal in Jn, which we denote as aJn.

The application x — ax is a retraction from Jn onto aJn.

Proposition 36. The following formulas are realized in N :
i) VnJNVaJZ(the application x— (ax,(1—a)x) is a bijection

from In onto alnx(1 - a)ln).
ii) VmANY nINV a2(the application (x,y) — my + x is a bijection

from aJmxaln onto al(mn)).

i) Trivial : the inverseis (y,y)— y+7'.
ii) By theorem 27, this application is injective ; clearly, it sends aJmxaJn into aJ(mn).
Conversely, if ze al(mn), then there exists xe Jm and yeJIn such that z=my+ x;
thus, we have z = az = may + ax with axealm and ayealn.
Q.E.D.

Theorem 37. We suppose that, for each a € A, nt € 11, and every distinct {y,{1,{2 € A, we have
kzalo =L or kyaly |-L or kyals |- L.
Then, for each formula F(x, y, z) with three free variables, we have :
0 |-Vz¥m NV niNVa2[2m<n) =1 —

(a#0,YxVyVy' (F(x,7,2),F(x,¥,2),y #y — 1), Yy MIxMF(x, ay,z) — 1)]
with 0 = LaAlxAy(cQAk(y)Az(xzz)(k)az.

Remark. This formula means that, if n > 2m, acJ2,a # 0, then there is no surjection from Jm onto
aln: it suffices to take F(x,y,z) =<x,y>¢€z.

Reasoning by contradiction, let us consider m, n € N with n >2m, a € {0, 1}, an individual c,
three terms «,¢,n € A and 7 € I1 such that :

Oxaelenen¢ L, alFa#0, EIFVXVYVYY (F(x,y,0),F(x,y,c),y#y — 1),

1 - VyP=vx™=F(x, ay, c).

We have O x @elenerm >0 and therefore nx6'.mw ¢ 1L with 0’ = Az(ézz) (ky)az.

It follows that, for every y €{0,...,n—1}, we have 0’ |- Vx:'m—'F(x, ay,c).

Thus, there exist two functions y — xy, (resp. y+~—(y) from {0,...,n—1} into {0,...,m—1}
(resp. into A), such that ¢y |- F(xy, ay,c) and 0' % ye@y ¢ 1L (for some suitable stacks @,).
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Now, we have 0’ *x{ye@y, > %} e(yekye@y, wWith k), =k;al, ; therefore, we have :
ExCyelyekye@y ¢ I foreach ye{0,...,n—1}
By hypothesis on ¢ (with y = y"), it follows that x, |- L for every y < n.
It follows first that a |- L and therefore, we have a=1; thus () |- F(xy,y,0).
Moreover, since n > 2m, there exist y, y1, 2 < n distinct, such that x,, = x,, = x,.
But, following the hypothesis of the theorem, the terms (y,,(y,,(,, cannot be distinct, be-
cause Ky,,Ky,,Ky, - L. Therefore we have, for instance, (,, = (y, ; then, we apply the hy-
pothesis on ¢ with y = yp, ¥’ = y1, which gives Ex oy, ek e @ € I foreveryx € A and @ € I1.
But it follows that ¢ * (y, e}, ¢k, e @y, € 1L which is a contradiction.

Q.E.D.

Corollary 38. With the hypothesis of theorem 37, the following formulas are realized :
i) VnN~‘v’a32(a #0 — there is no surjection from Jn onto al(n+1)).

ii) YnNVa2¥bi2(anb=0,b#0 — there is no surjection from aln onto bl2).

iii) VNV a2vb2(anb=a,a# b — thereisno surjection from aln onto b12).

i) Suppose that there is a surjection from Jn onto aJ(n+ 1). Then, by the recurrence scheme

(theorem 18(ii)), we see that, for each integer k € N, there exists a surjection from (Jn)* onto

(aJm+1)*; and, by proposition 36(ii) and the recurrence scheme, it follows that there is a

surjection from J(m*) onto al((n+ 1)¥).

But, for k > n, we have (n+ 1)¥ > 2n¥ and this contradicts theorem 37.

ii) Since anb =0, the rings (a+ b)In and aln x bIn are isomorphic. Reasoning by contra-

diction, there would exist a surjection from (a+ b)Jn onto bJ2x bIn, thus also onto bJ(2n)

(proposition 36(ii)), thus a surjection from Jn onto b(2n), which contradicts (i).

iii) Otherwise, there would exist a surjection from aJn onto (b — a)J2, which contradicts (ii).
Q.E.D.

Applications.

i) By DC, since ]2 is atomless, there exists in J2 a strictly decreasing sequence. Hence, by
corollary 38(iii) and theorem 29, there exists a sequence of infinite subsets of 2(N), the “car-
dinals” of which are strictly decreasing.

ii) Applying corollary 38(ii) with 7 = 2, we see that there exist two subsets of 22(N) the “car-
dinals” of which are incomparable ; which means that there is no surjection of one of them
onto the other.

More precisely, let % be the image of ]2 by the injection in 22(N) given by theorem 29 ; then
we have :

Theorem 39. With the hypothesis of theorem 37, the following formula is realized in N :

There exists a subset B of 2(N) (the real line of the model ./ ), such that

9B is an atomless Boolean algebra for the usual order < on PN),

with ,Ne B ; abe B=>anbe 3.

Ifae B,a# @ then there is no surjection from 98 onto a98 x a8

(where a8 means{x € $B; x < a}).

Ifa,be B,a,b# @ andanb = @, then there is no surjection from a8 onto b2 (the “cardinals”
of a%B,b% areincomparable).

Ifa,be B,a< b and a # b, then there is no surjection from a%8 onto b2 (the “cardinal” of
a% is strictly less than the “cardinal” of b%).
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In other words, for a, b € 98, we have : a < b < there exists a surjection from b2 onto aZ8.
The order, in the atomless Boolean algebra 2, is the order on the “cardinals” of its initial
segments.

The model of threads

This model is the canonical instance of a non trivial coherent realizability model. It is defined
as follows :

Let n— m, be an enumeration of the stack constants and let n— 6,, be a recursive
enumeration of the proof-like terms. For each n € N, the thread with number n is the set of
processes which appear during the execution of the process 0, x m,. In other words, it is
the set of all processes ¢ % such that 8, xm;, > ¢ * 7.

Note that every term which appears in the n-th thread contains the only stack constant 7.

We define 1L¢ (the complement of L) as the union of all threads. Thus, a process ¢ x 7 is
inlCiff GneN) O, xm,>&xm.

Therefore, we have ¢ x 7 € L iff the process ¢ x ¥ never appears in any thread.

For every term ¢, we have ¢ |- L iff ¢ never appears in head position in any thread.

If ¢ is a proof-like term, we have ¢ = 0,, for some integer n, and therefore { x 7, ¢ L, by
definition of L. It follows that the model of threads is coherent.

If £ € A, ¢ |- L then ¢ appears in head position in at least one thread. This thread is unique,
unless ¢ is a proof-like term, because it is determined by the number of any stack constant
which appears in ¢.

Theorem 40. The hypothesis of theorems 31, 32, 33 and 37 are satisfied in the model of threads.

The hypothesis of theorems 33 and 31 are trivially satisfied if we take :

w=MAxxx)Axxx, wo= ()0, and w; = (w)1.

Moreover, the hypothesis of theorem 37 is obviously stronger than the hypothesis of theo-
rem 32.

We check the hypothesis of theorem 37 by contradiction : we suppose kyalo - L, kyal; |- L
and kypa(, |- L. Therefore, these three terms appear in head position, and moreover in the
same thread : indeed, since they contain the stack , this thread has the same number as the
stack constant of 7.
Let us consider their first appearance in head position, for instance with the order 0, 1, 2.
Therefore we have, in this thread : kyalo*xpo>a*xm>--->kal1 xp1>a*m>---
But, at the second appearance of a x 7, the thread enters into a loop, and the term k;a(, can
never arrive in head position, since {; # (2.

Q.E.D.
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