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Introduction

Classical realisability (c.r.) is an extension of forcing which gives models of ZFε
(a conservative extension of ZF, with a non extensional symbol ε).

These new realizability models (r.m.) are much more complicated.

It is a bit like passing from commutative to non commutative groups.

By the way, A. Miquel calls c.r. : ”non commutative forcing”.

To understand the scale of the problem, compare the stucture

of realizability algebra with that of set of forcing conditions.

I will speak about available tools in order to study these models,

in the general case and in some particular ones.

They are much fewer and less powerful than for forcing.

But the theory is very young and more difficult.

Another reason to work hard is the connection with computer science.
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Realizability algebra (r.a.)
A realizability algebra A is a 3-sorted first order structure, which consists of :
• Three sets : Λ the set of terms (programs), Π the set of stacks (environments),

Λ?Π the set of processes (executable).
• Six distinguished terms : B, C, I, K, W, cc (elementary combinators).
• Four operations :

Application : Λ×Λ→Λ denoted (ξ)η, (or often ξη) where ξ,η are terms ;
Push : Λ×Π→Π denoted ξ .π, where π is a stack ;
Continuation : Π→Λ denoted kπ ;
Process : Λ×Π→Λ?Π denoted ξ?π.

• A preorder on processes, denoted Â (execution)

• A distinguished subset ⊥⊥ of Λ?Π (the pole) such that : p ′ ∈⊥⊥, p Â p ′⇒ p ∈⊥⊥.
• A distinguished subset PL of Λ (proof-like terms) such that :

B, C, I, K, W, cc ∈ PL ; ξ,η ∈ PL ⇒ ξη ∈ PL ;
(∀ξ ∈ PL)(∃π ∈Π)(ξ?π ∉⊥⊥) (coherence).
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Axioms of r.a.

The preorder Â represents execution in a weak head reduction machine :

ξη?πÂ ξ?η .π (push)

I?ξ .πÂ ξ?π (no operation)

K?ξ .η .πÂ ξ?π (delete)

W?ξ .η .πÂ ξ?η .η .π (duplicate)

C?ξ .η .ζ .πÂ ξ?ζ .η .π (swap)

B?ξ .η .ζ .πÂ ξ?ηζ .π (apply)

cc?ξ .πÂ ξ?kπ .π (save the stack)

kπ?ξ .$Â ξ?π (restore the stack).
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A Curry-style translation of λ-calculus

It is possible to translate λ-terms to accommodate weak head reduction :

λx1 . . .λxn t ?ξ1 . . . . .ξn .πÂ t [ξ1/x1, . . . ,ξn/xn]?π.

I do not give here the precise translation [cf. Kr2].

Remark. The usual KS -translation does not work. For instance :

λx(x)xx?ξ .π≡ ((S)(S)I I) I?ξ .πÂ ξ? Iξ . Iξ .π instead of (ξ)ξξ?π.

We use λ-calculus only as a convenient way of writing combinatory terms,

because it is much more intuitive for programming than combinatory logic.

But combinatory logic is much better for theory

because it is a first order structure, λ-calculus is not.
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The theory ZFε
A conservative extension of ZF with a non extensional well founded symbol ε

(strong membership). The usual membership ∈ is obtained by collapsing ε.

Remark. The theory ZFε appears already naturally in forcing :

a εb is (∃p ∈G)((a, p) ∈ b) where G is the generic.

Given a r.a. A , each formula F (~a) of ZFε with ~a ∈M , gets

a falsity value ‖F (~a)‖ ⊂Π and a truth value |F (~a)| ⊂Λ. They are linked by :

t ∈ |F (~a)|⇔ (∀π ∈ ‖F (~a)‖)(t ?π ∈⊥⊥)

If t ∈ |F (~a)|, we say that t realizes F (~a) and write t ∥−A F (~a) or even t ∥−F (~a).

We write ∥−F (~a) to mean that some proof-like term of A realizes F (~a).

The following is essential for applications in computer science :

Theorem. Let F be a formula ot ZFε. Then ∥−F iff every r.m. of A satisfies F .
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Realizability models (r.m.)

They are built like forcing models, but with a r.a. in place of a set of conditions.

The ground model (M ,∈) satisfies ZFC or even ZFL.

We get the realizability model (N ,ε) which satisfies ZFε.

N ⊃M strictly except in the case of forcing, because

there are, in N , objects which are not named in M .

We define in N a Boolean algebra 2ג which is trivial in the case of forcing.

N has a structure of boolean model on ,2ג here denoted as M2ג.

It is an elementary extension of the ground model (M ,∈).

The boolean value in M2ג of a formula Φ of ZF is denoted by 〈Φ〉.
Thus M2ג satisfies ZFC or even ZFL for the relations 〈x ∈ y〉 = 1,〈x = y〉 = 1

(which is the same as x = y) and all the functionals on M .
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Realizability models (r.m.)

There are two important equivalence relations on the r.m. (N ,ε) :

' extensional equivalence ;

=D equivalence for the canonical ultrafilter D on 2ג (defined in [Kr3]).

The quotient models are respectively : N∈ |= ZF and MD ÂM .

Remark. In the forcing case, N∈ is the forcing model and MD =M2ג =M .

In c.r. we consider primarily the model (N , ε ). An essential tool is :

Every functional defined in MM can be extended to this model

keeping the truth of all Horn formulas of the form

∀~x(t1[~x] = u1[~x], . . . , tn[~x] = un[~x] → t [~x] = u[~x])

where t [~x],u[~x] are terms built with these functionals.

8



Realizability models (r.m.)

For instance, any functional f : M×X ×Y →M×Z can be extended to N

into a functional f : N Xג× Yג× →N Zג× with Xג = X ×Π.

It is in this way that we define the Boolean algebra 2ג ;

and also the value 〈Φ〉ε2ג of any formula Φ of ZF in the boolean model M2ג.

For every X ∈M we define the quantifier ∀xגX by ‖∀xגX F (x)‖ =⋃
a∈X ‖F (a)‖.

It is equivalent to ∀x(x εגX → F (x)) but much simpler to use.

The model N is an algebra over 2ג : we define the product N×2ג →N

as the extension of the trivial functional 2×M →M :

(0, x) 7→ 0 ; (1, x) 7→ x .
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Realizability models (r.m.)

Each ultrafilter U on ,2ג in particular each atom, gives a model MU ÂM

which is well founded iff U =D (by definition of D).

If a is an atom, we have Ma = aN which is a class.

For instance, if 2ג is finite, with the atoms a0 (canonical), a1, . . . , an−1, we have :

N =Ma0×Ma1×·· ·×Man−1 and Ma0 =MD is the only well founded one.

More generally, aN ÂM for all a ε2ג ; aN is a a2ג-boolean model.

If ab = 0, the classes aN and bN are somewhat ”incompatible” [Kr2] :

Any functional F : aN → bN has for image a set

because there is a surjection from Λג onto Im(F ).
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Realizability models (r.m.)

The functional ג is very interesting : for each set X in the ground model M ,

Xג = X ×Π defines the type associated with X .

For instance 2ג is the type of booleans and Nג the type of integers.

If we identify the r.m. N with the boolean model M2ג |= ZFC

the meaning of Xג becomes clear : a εגX means 〈a ∈ X 〉 = 1

i.e. a is always in X . Indeed, we have trivially ‖a 6εגX ‖ = ‖〈a ∈ X 〉 6= 1‖.

For instance νεגN means 〈ν ∈N〉 = 1, i.e. ν is always an integer

(not always the same, not even always standard in N ).

But ν ∈N means : ”ν is always the same integer” (necessarily standard in N ).

This is clearer in the particular case where 2ג is finite, with N =Ma0×·· ·×Man−1.

Ma0 =MD is the only one which is well founded in N .

We have ν= (ν0, . . . ,νn−1) ; νεגN means : νi is an integer of Mi for each i .
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The generic

In the case of forcing, the generic is G = {(p, q) ; q ≤ p}. In the general case

we define the generic G = {(t , t .π) ; t ∈Λ,π ∈Π} ; we have ∥−G ⊆ .Λג And also :

‖(∀t εG)F (t )‖ = ‖∀tגΛ({t } → F (t ))‖ = {t .π ; t ∈Λ,π ∈ ‖F (t )‖}.

Truth lemma. For every formula F (~a) with parameters in N , we have :

N |= F (~a) ⇔ (∃t εG)
(
M2ג |= 〈t ∥−F (~a)〉 = 1

)
.

Proof : ‖¬F (~a)‖ = {t .π ; t ∥−F (~a),π ∈Π} = ‖∀t (〈t ∥−F (~a)〉 = 1 ,→ t 6εG)‖. QED

In particular, we have : a εb ⇔ (∃t εG)(〈(a, t ) ∈ b〉 = 1).

In the particular case of forcing, the truth in (N ,ε) is determined by means of

G and the truth in (M ,∈). This is no longer sufficient in the general case

(the model of threads is an extreme case where G is already in M !)

We must consider G and the truth in the boolean model (M2ג,∈) Â (M ,∈).
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The generic

The situation is therefore much more complicated than in forcing.

We have I ∥−∀tגΛ({t } →〈t ∥−⊥〉 6= 1) and

λxλyλz(z)x y Λ({tג′∀Λג∀−∥ }, {t ′},¬{t t ′} →⊥).

Therefore t εG →〈t ∥−⊥〉 6= 1 et t εG , t ′εG → t t ′εG as in the case of forcing.

We can generalize the property “ G meets all dense subsets of Λ which are in M ” :

A set D ∈M, D ⊂Λ will be said dense if there is some θ ∈ PL s.t. :

(∀ξ ∈Λ)(θξ 6∥−⊥⇒ (∃t ∈ D)(ξt 6∥−⊥)). Then we have θ ∥− (∃t εG)(〈t ∈ D〉 = 1).

Indeed θ ∥−∀tגΛ(〈t ∈ D〉 = 1 ,→ t 6εG) →⊥.
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The model of threads

The r.a. has two new instructions : quote and eval.

Each stack is terminated by a stack constant πn(n ∈N).

PL is the set of terms which do not contain any continuation kπ.

Let θn(n ∈N) be an enumeration of PL. We define ⊥⊥ by :

ξ?π ∉⊥⊥⇔∃n(θn ?πn Â ξ?π).

Λn (resp. Πn) is the set of terms (resp. stacks) which contain

the only continuation kπn . We have essentially Λ=⋃
nΛn and Π=⋃

nΠn .

For t ∈Λ,π ∈Π, we define n[t ],n[π] ∈N such that t ∈Λn[t ],π ∈Πn[π].

Execution of quote and eval : quote?ξ . t .πÂ ξ?n[π] .ν[t ] .π ;

where ν[t ] is the number of t in an enumeration of Λn[π].

eval?ξ .ν .πÂ ξ? t .π where t ∈Λn[π] is such that ν[t ] = ν.
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The model of threads

Remark. We might think to list Λ= (tn)n∈N and define the execution of eval by :

eval?ξ .n .πÂ ξ? tn .π.

But if tn ∥−⊥ then eval I n ∥−⊥ and is proof-like. The r.a. is incoherent.

Let us define γ= {(n,π) ; n ∈N,π ∈Πn}. We have easily :

λx(K)(q)(K)x ∥−∃nint(n εγ) ; λxλyλz z ∥−∀n∀n′(n εγ,n′εγ→ n = n′).

Therefore γ has exactly one element which is an integer denoted by n[g].

It is non standard : indeed, ω0 or ω1 ∥−n 6εγ for each standard integer n.

The notation n[g] means that it is the number of a proof-like term g.

Thus g is a program and it has extraordinary properties.

For instance, every cooperative process is executed inside g.

It is a pity it is non standard.
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The model of threads

Let us show the remarkable fact that N |=G =Λn[g].

In other words, the generic is the set of terms which contain only kπn[g].

Indeed, G ⊂Λn[g] because I ∥−∀tגΛ(n[t ] 6= n[g] →¬{t }).

Moreover Λn[g] ⊂G because eval ∥−∀tגΛ(t 6εG , t εΛ→ n[t ] 6= n[g])

i.e. ∀tגΛ(¬{t }, {ν[t ]} → n[t ] 6= n[g]). QED

Therefore GG is a recursive real !

It is natural to call n[g] the generic integer since G is determined by it.
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Realizing DC with fresh constants

Here is a new way of realizing NEC (non extensional choice) and therefore DC.

We need for this a countable realizability algebra containing :

• the λ-calculus ;

• a sequence hn(n ∈N) of distinct term constants ;

• a new instruction κ with the following execution rule (introduction of hn) :

κ?ξ .πÂ ξ?hn .π
where hn is fresh, i.e. not appearing in ξ,π (for instance, the first such hn).

• a new instruction e with the following execution rule (elimination of hm,hn) :

e?hm ?hn ?ξ .η .πÂ ξ?π if m = n and η?π if m 6= n.

We shall show that ∥− Nג” is countable” and thus ∥− Πג” is countable”.

This implies, rather trivially, that NEC is realized (cf. [Kr2]).
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Realizing DC with fresh constants

We define in M the canonical projections p0,p1 :N→N

such that n = 1
2(p0[n]+p1[n])(p0[n]+p1[n]+1)+p0[n]

and also h :N→Λ such that h[n] = hn .

In N , we have p0,p1 : →Nג Nג and h : →Nג .Λג

Since h is injective in M , it is the same in N .

Now, we define H = {(hn,hn .π) ; n ∈N,π ∈Π}.

Then κ ∥−∀νגN∃µגN(∃h εH){h =h[µ],ν= p0[µ]}. In this way, we get

a surjection from H onto .Nג We finish by showing that H is countable.

This follows from : ∀µגN∀νגN(h[µ]εH, h[ν]εH,〈µ= ν〉εD → h[µ] = h[ν])

given by e ∥−∀µגN∀νגN(h[µ]εH, h[ν]εH,〈µ= ν〉 6= 0 → h[µ] = h[ν]).

The program obtained pour NEC and DC contains the instructions κ, e.

It is rather complicated, because the proof involves the ultrafilter D.
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Realizing WOC

The well ordered axiom of choice (WOC) is the following :

The product of a family of non empty sets indexed by an ordinal is non empty.

It implies DC (cf. [J]).

We show that this axiom is satisfied in the last realizability model considered in [Kr2].

This has two interesting consequences :

1. We can write a program which realizes WOC.

This program contains the parallel instruction γ defined below.

2. A new proof of the independence of AC from ZF + WOC (cf. [J]).

This a joint work with L. Fontanella.
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Realizing WOC

The realizability algebra considered in [Kr2] is obtained as follows :

Consider first the algebra A0 the terms of which are the λ-terms

with two supplementary instructions : stop and γ.

Recursive definition of ⊥⊥ i.e. execution of stop and γ :

• stop?π ∈⊥⊥ ;

• if two processes among ξ?π,η?π,ζ?π are in ⊥⊥, then γ?ξ .η .ζ .π ∈⊥⊥.

This implies that 2ג has 4 elements at most.
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Realizing WOC

Now we extend the realizability model N by forcing

so that Nג becomes countable and therefore NEC is satisfied.

We get a new r.a. A1 and a new r.m. with the same Nג (cf. [Kr2]).

Let a0, a1 be the two atoms of 2ג ; we have aiN =Mai ÂM and Ma0 =MD .

And also N =MD×Ma1.

Since MD is well founded, its class of ordinals OnD is isomophic with On.

If α is an ordinal, let αD be its image in OnD .

The axiom NEC implies that the product of a family of non empty sets

indexed by αD is non empty. QED
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Realizing AC

We will now build a realizability algebra :

1. Of the ”informatic kind” i.e. the terms are real programs.

2. Every realizability model satisfies AC.

Thus, there exists a program, i.e. a proof-like term, which realizes AC.

The forcing models satisfy 2 but not 1.

This is the first instance of an algebra, not coming from forcing (i.e. 2ג 6= 2)

the models of which satisfy AC.

We start with the algebra A1 and the r. m. N of the previous slides,

in which Nג is countable and NEC and WOC are realized [Kr2].

Let a0, a1 be the two atoms ; we have aiN =Mai ÂM and N =Ma0×Ma1.

Let us assume that M |= V = L. Then Ma0 =MD = L.
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Realizing AC

We will show that the extensional model N∈ has the following property :

(∗) There exists an X and a functional Φ which is a surjection from L×X onto N∈
Remark. It matters that X be in N∈, not only in N .

Now, by means of a generic extension N [G] of N , we make this set X countable.

Then, by (∗), the new model N∈[G] satisfies AC.

It is shown in [Kr1,Kr2] that N [G] is a realizability model.

for an algebra A2 ∈M which has the same terms, stacks and PL than A0 or A1

but neither the same ⊥⊥ nor the same execution.

Moreover, we have (N [G])∈=N∈[G] because X is in N∈ (cf. remark above).

Therefore, (N [G])∈ |= AC, and there exists a proof-like term for AC.
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Realizing AC

Remark. In a recent and very useful discussion with A. Karagila, I asserted that

no generic extension of N∈ satisfies AC. This is a (welcome) counter-example.

Now, it remains to prove property (∗) above.

We use the fact that Ma0 and Ma1 are ”incompatible”, i.e. :

For every functional F : Ma1 →Ma0 , its image Im(F ) = F (Ma1) is a set.

Indeed, there exists a surjection from Λג onto Im(F ) (cf. [Kr2]).

Let Φ be the collapsing functional from N =MD×Ma1 onto N∈.

We show there is some Y in Ma1 s.t. Φ(MD×Y ) =N∈ :

If it’s false, define F : Ma1 →MD by F (Y ) = the least α s.t. Vα 6⊂Φ(MD×Y ).

The image of F is a set, so it has an upper bound in On

which contradicts Φ(MD×Ma1) =N∈.

24



Realizing AC

Therefore N∈=Φ(N ) =Φ(MD×Y ) =⋃
a εMD

Φ({a}×Y ).

The sets Xa =Φ({a}×Y ) are in N∈, images of a unique set Y which is in N .

Each one is equipotent to a quotient of Y by an equivalence relation.

Now, these e.r. form a set (subset of P (Y 2)).

By means of the collection axiom, we obtain a set X in N∈
which contains at least one representative Xa for each e.r.

Therefore, there is, in N∈, a surjection from X onto each Xa .

Using NEC, we get a surjection of MD×X onto
⋃

a Xa =N∈. QED

Note that the program for AC uses the instruction γ (which ensures 2ג = 22).

It is a parallel instruction : in order to run γ?ξ .η .ζ .π
we must launch the three processes ξ?π, η?π, ζ?π.
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