
Bar recursion in classical realizability :

Dependent choice and Continuum hypothesis
Jean-Louis Krivine

I.R.I.F. - University Paris-Diderot

krivine@pps.univ-paris-diderot.fr

Marseille, August 30, 2016

1

Brief history

The bar recursion operator was introduced by C. Spector in 1962

in order to prove (?) the consistency of Analysis, i.e. :

2nd order Arithmetic + DC (axiom of dependent choice)

or CC (axiom of countable choice) which is slightly weaker.

In 1998, S. Berardi, M. Bezem and T. Coquand used a similar operator,

to obtain programs from classical proofs in Analysis.

In 2001 this fundamental work was refined and

translated in denotational semantics (domains) by U. Berger and P. Oliva.

In 2013, T. Streicher managed to use this operator in classical realizability

which permits to get programs from proofs in set theory with dependent choice.

Moreover, as we shall see today, we can also use the following axioms :

Well ordering of R (and therefore Ultrafilters on P (N)) and Continuum hypothesis.

2

What is the bar recursion operator ?

Simply a λ-term, somewhat like the fixpoint operator

just a little more complicated. But its execution is difficult to understand.

Define first the λ-term χ=λkλ f λzλn(if n < k then f n else z).

If f is a function of domain N, then χk f z is the same function

in [0 · · ·k −1] and the constant z in [k · · · ∞].

Let k+=λ f λx(f)(k) f x be the successor of the integer k .

Define now a λ-term Φ=ΨGU which depends on two arbitrary terms G ,U :

Φk f = (U)(χk f)(G)λz(Φk+)(χ)k f z

The recursive definition of Ψ is therefore :

Ψ=λgλuλkλ f (u)(χk f)(g)λz(Ψg uk+)(χ)k f z .

We are interested mainly by the value Φ0 ; indeed, the bar recursion operator is :

BR=λgλuΨg u 0.

3

The programming language : the BBC-algebra

In classical realizability, we use a realizability algebra which is a complicated form

of combinatory algebra. Let us describe the particular one we need here

which is simply the λ-calculus with some additions.

We call it the BBC-algebra (for Berardi-Bezem-Coquand).

Λ is the set of closed λ-terms with the following supplementary instructions :

cc (call/cc), A (abort), p (stop) and a (very big) set of oracles :

there is an oracle ∧i ti for every infinite sequence ti (i ∈N) of terms.

They are needed for the theory but (fortunately) do not appear in real programs.

Π is the set of stacks (or environments) which are finite sequences of terms.

We write such a stack π= t0 . t1 tn−1 .π0 with ti ∈Λ ; π0 is the empty stack.

Define the continuation kπ=λx(A)(x)t0 . . . tn−1.

Because of the oracles, the cardinality of Λ and Π is 2ℵ0.

4

Execution of processes

We execute not a term but a process i.e. a pair t ?π (t ∈Λ,π ∈Π). The rules are :

p?πÂ (stop)

tu?πÂ t ?u .π (push)

λx t ?u .πÂ t [u/x]?π (pop)

A?t .πÂ t ?π0 (delete the stack) or (abort)

cc? t .πÂ t?kπ .π (save the stack)

∧i ti ?n .πÂ tn?π (oracle) ; n is a Church integer.

This last rule is never used in real computations.

From the rule for A, it follows easily that :

kπ? t .π′Â t ?π (restore the stack).

Finally, we define ⊥⊥ : the set of all processes which reduce to p?π

with π ∈Π⊥ some fixed set of stacks.

5

Formulas and realizability

Usual set theory ZF with the relation symbols ∈,⊂ and function symbols ;

ZFε is a conservative extension of ZF with a new relation symbol :

ε (strong, non extensional membership relation).

We use only >,⊥,→,∀ as logical symbols.

For each formula F , we define two values, by induction :

the truth value |F | ⊂Λ ; the falsity value ‖F‖ ⊂Π.

They are connected by the relation t ∈ |F |⇔ (∀π ∈ ‖F‖)(t ?π ∈⊥⊥).

If t ∈ |F |, we say that t realizes F and we write t ∥−F .

Definition by recurrence :

‖⊥‖=Π ; ‖>‖=; ; ‖a 6εb‖ = {π; (a,π) ∈ b} ; a 6= b ≡> or ⊥.

‖F →G‖ = {t .π; t ∥−F , π ∈ ‖G‖} ; ‖∀x F [x]‖ =⋃
x ‖F [x]‖.

6

Proofs and programs

Proofs are done by means of classical natural deduction. Therefore :

Each proof gives a program written in λcc-calculus (λ-calculus with cc).

We call such a program a proof-like term.

The essential property is the adequation lemma : If ` t : F then t ∥−F

i.e. : any term you get from a proof of a formula F is a realizer of F .

If we want to get (useful) programs from proofs in ZFε
we must realize each axiom of ZFε by a proof-like term.

This is done, once and for all, by the theory of classical realizability

for every realizability algebra.

7

Proofs and programs

Now, if we want to get programs from proofs in ZFε + CC (countable choice)

we must realize CC by a proof-like term.

The same for the Well ordering of R or the Continuum hypothesis.

We now show that in the particular realizability algebras we have just defined

the bar recursion BR realizes CC

and there is a (not so simple) proof-like term which realizes

the Continuum hypothesis and even the stronger axiom :

Every real is constructible.

8

Realizing countable choice

The axiom of countable choice is : ∀x∃y F [x, y] →∃ f ∀nintF [n, f (n)].

The quantifier ∀nint is restricted to N. It is realized as follows (Kleene realizability) :

t ∥−∀nintF [n] iff tn ∥−F [n] for all integers n.

Now, we have to show BRGU ∥−⊥ with the hypotheses :

G ∥−¬∀y¬F [x, y] for all x and U ∥−¬∀nintF [n, f (n)] for all f .

With the above recursive definition Φkφ= (U)(χkφ)(G)λz(Φk+)(χ)kφz .

We have to show Φ0 ∥−⊥ and, in fact, we show Φ0φ0 ∥−⊥ for every φ0.

Now suppose Φ0φ0 6∥−⊥. We define recursively φk ∈Λ such that :

Φkφk 6∥−⊥ and φkn ∥−F [n, fk(n)] for n < k (for some function fk) ;

there is no condition on φkn for n ≥ k . But we want fk ⊂ fk+1.

9

Realizing countable choice (cont.)

We have Φkφk = (U)(χkφk)(G)τk 6∥−⊥ (recurrence hypothesis)

with τk =λz(Φk+)(χ)kφk z . It follows that (χkφk)(G)τk 6∥−∀nintF [n, fk(n)].

Therefore (G)τk 6∥−⊥ so that τk 6∥−∀y¬F [k, y].

It follows that there exist ζ ∈Λ and ak such that :

ζ ∥−F [k, ak] and τk ζ 6∥−⊥. But we have τk ζ=Φk+φk+1 with φk+1 = (χ)kφkζ.

This gives the recurrence step.

Observe that, until now, our reasoning is valid for every realizability algebra.

The sequences φk , fk are increasing : the (k+1)th function is an extension of the k th.

Let f ,φ be their extensions to the whole of N ; φ is given by an oracle.

By construction of φ, we have φ ∥−∀nintF [n, f (n)] and therefore Uφ ∥−⊥.

10

Realizing countable choice (cont.)

Now, the realizability algebra has the following property, known as :

Continuity. If φ is an oracle and Uφ ∥−⊥, then there exists an integer k

such that Uψ ∥−⊥ for every ψ such that ψn =φn for n < k .

Proof. The execution of Uφ is finite, thus uses only finitely many φn. ■
But then, we can take ψ= (χkφk)η for any η ∈Λ and, in particular :

ψ= (χkφk)(G)τk .

Now, we have Uψ=Φkφk 6∥−⊥ by construction of φk . Contradiction !

11

Realizing more axioms

It would be nice to find a λcc-term which realizes the full axiom of choice.

In addition to CC, this is only done for the following particular case :

There exists a well-ordering on R.

This implies the existence of ultrafilters on P (N) which is useful

for proving combinatorial properties in arithmetic (Ramsey theory).

Moreover, this well-ordering is isomorphic to ℵ1, which is

The continuum hypothesis (CH).

The programs for these axioms contain BR but are more complicated.

For the moment, their behaviour is not well understood.

12

Sketch of proof

In fact, we have shown more than CC, namely :

BR ∥−∀x∃y F [x, y] →∃ f ∀nintF [n,app(f ,n)]

where app is, in set theory, a new functional symbol for application.

Suppose that F [x, y] defines a real, i.e. an application N→ {0,1}.

We can replace F [x, y] with F [x, y]∧ (y = 0∨ y = 1) so that we have

BR’ ∥−∃ f ∀nint (F [n,app(f ,n)]∧ (app(f ,n) = 0∨app(f ,n) = 1)
)
.

Now, the general theory of classical realizability gives a realizer for :

∀ f
(
∀nint(app(f ,n) = 0∨app(f ,n) = 1) → f is a constructible real

)
Thus, the following is realized when F [x, y] defines a real :

∃ f
(
(f is a constructible real)∧∀nintF [n,app(f ,n)]

)
i.e. Every real is constructible.

Everything we want follows from this !

13

Using these axioms

Any proof of a formula F by means of the axioms of ZF + DC + CH

gives a program (proof-like term) θ ∥−F . This is often very useful.

The simplest well kown example is F ≡∀mint∃nint(f (m,n) = 0).

Then, we have θm ∥−¬∀nint(f (m,n) 6= 0).

Now, choose ⊥⊥= {p?n .π ; π ∈Π, f (m,n) = 0} ; then p ∥−∀nint(f (m,n) 6= 0).

Thus θm?p .π0 ∈⊥⊥ and therefore θm?p .π0 Â p?n .π with f (m,n) = 0.

The program θ computes a solution of f (m,n) = 0 for every m.

Observe that, since it comes from a proof, it contains no oracle.

14

