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PREFACE

This book presents the principles of the Axiomatic Method, here
formulated in set theoretic, also called: semantic, terms.

The basic notions involved are: different kinds of languages; their
realizations (types of mathematical structures); and models (of a formula
in the language considered, i.e., the realizations of the language which
satisfy the formula). From them are derived the notions of consequence
(a conclusion A4 being a consequence of “axioms’ .7, formulated in a
language .Z, if every realization of % which satisfies each formula of ./
also satisfies 4) and of definability (in a realization of .# by means of a
formula of .#). Consequence and definability are the two main topics
here studied.

The most general results on the Axiomatic Method known, apply to
axiomatic systems formulated in the language of predicate logic of first
order restricted to finite formulas. Much of this theory can be generalized
to suitable infinite formulas of first order, less to languages of higher
order, even when they are restricted to finite formulas. The last chapter
contains some information on such generalizations.

The treatment is set theoretic in that the basic notions above are de-
fined in the vocabulary of current set theory: sets, membership relation,
logical operations.

This book contains the elementary, more or less classical, results of its
subject. Each of its eight chapters is preceded by a summary which not
only indicates the general content of the chapter, but also the relation of
the exercises to the main theorems.

Appendix I gives an idea of the kind of applications to current mathe-
matics that can be expected from a general theory of the Axiomatic
Method. Knowledge of the main text is not assumed.

Appendix [I is intended for readers with some interest (and back-
ground!) in the philosophy of mathematics. Parts A and B sketch the
so-called semantic and syntactic (better: set theoretic and combinatorial)
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foundations with special reference to Godel’s completeness and incom-
pleteness theorems, of which proofs are given in Part A. Part C discusses
the relation between these foundational schemes: semantic analysis is
developed, and not superseded, by syntactic analysis, which, incidentally,
1s a reason for adopting a semantic introduction to logic, as in the present
text. The Introduction to Appendix II may be of use to those readers who,
consciously or unconsciously, are influenced by positivistic, in particular
formalistic philosophical doctrines which are widely quoted. If one accepts
the doctrines, which reject the foundational notions of both Parts A and
B, one is bound to be ill at ease with these notions and hence to find them
difficult. (It is true that a consistent formalist would also be ill at ease with
mathematical practice where the same notions occur constantly; how-
ever, with this psychologically important difference: they function as a
tool, and not as a principal object of study.) The introduction, by pointing
out, without technicalities, some of the most obvious weaknesses of the
formalist position, is intended to overcome this, quite unnecessary diffi-
culty. The knowledge acquired by study of these notions then permits a
more searching criticism of the formalist position; cf. Parts A, B in fine.
Appendix IT can be read without specialized knowledge of mathematical
logic, except for certain passages in square brackets([ ]) which concern ques-
tions that are either raised or solved by results established in the main text.

This text developed from a graduate course (““Cours de troisiéme
cycle™) first given in 1960/61, and hectographed in 1962, at the University
of Paris. The present version of Chapters 0-5, except for some exercises,
is due to J. L. Krivine; it is, in most respects, a definite improvement on
the original. More recently I added Chapters 6 and 7 which bring the
course up to date and contain material needed in Appendix IIL. J. P. Res-
sayre, who translated into French an earlier version (or, rather, several
versions) of Parts A-C of this appendix, has helped me much by his
questions and constructive criticism.

Chapters 0-7 and Appendix 1 were translated from the French by
A. Slomson except for some additions and changes made after he had
completed the translation.

The collaboration of my friends Hubert Faure and Raymond Queneau
deserves special notice. Faced with the translation (into French) of a
hopelessly long preface, they led me, by acute questions, to separate the
material into the present preface and the introduction to Appendix II;
Hubert Faure helped me with the former, Raymond Queneau with the
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latter. Finally, my old friend Christopher Fernau translated the French
text of this introduction, changing and suppressing freely whatever dis-
pleased him.

Uses of the book. Experience with students suggests the following comments. The
(very natural) idea of keeping the treatment purely model theoretic really seems to
work: for instance, rules of inference would not have helped the presentation. Also
the separation of the main theorems from illustrations and refinements in the form of
exercises scems successful. By way of criticism: some relatively small changes in
Chapters 0-7 (which, however, would have required a good deal of work by somebody)
could have much improved the whole presentation, in particular Appendix II, Part A,
Specifically, Chapter 0 could establish the properties of formal languages needed for
Godel’s incompleteness theorems, and a separate chapter containing a brief formal
development of set theory would certainly be preferable to the relevant exercises in
Chapter 5 and Appendix 11, Part A. Concerning more technical points, the theory of
p-adic fields should probably replace the theory of (certain) Boolean rings considered
in Chapter 4; the elimination of quantifiers for the latter was given to stress two points
not well illustrated by the other axiomatic systems studied in that chapter: (i) the need
for introducing ‘many’ new relations; (i) a theory that permits elimination of quanti-
flers but is ‘far’ from being saturated. Both points would equally well be illustrated by
the elimination of quantifiers for p-adic fields, which is mathematically much more
interesting and worth some extra labour. In the exercises of Chapter 5 the only (non
principal) models of languages of higher order are provided by various systems of
hereditarily finite sefs: some specific models used in A. Robinson’s Non-standard
Analysis would be more interesting.

Originally a companion volume was planned, as purely proof theoretic as the present
text is model theoretic: Part B of Appendix IT would have properly belonged there.
Though such a volume is both feasible and desirable, T doubt whether I shall write it.
In the absence of such a book, Part B might be of use to somebody in preparing a
course in proof theory, in conjunction with recent detailed literature on the subject.

(. KREISEL
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CHAPTER O

PRELIMINARIES

This chapter contains elementary results about classes of functions defined by
finite schemas. Such schemas are frequently used in mathematics (e.g. polynomials
over a given ring, rational functions over a given field); here they are mainly used
for the construction of languages. Theorem 2 establishes the existence of bracket-
free notations.

The notions of this chapter can also be defined using only (hereditarily} finite
sets; see Chapter 5§, Exercise 6 or Appendix 11, pp. 169-170.

We begin with a countable family F,(n=0, 1, ...) of disjoint sets. An
element of F, is called an n-ary function symbol.

We let F=_J, F, and o(F) be the set of all finite sequences of elements
of F. (A finite sequence of elements of F is, for example, (fi, /3, ... /)
written for short as £ ... fi.) We consider those subsets M of ¢(F) which
have the following property:

If ay, ..., a, are elements of M and feF, then fa, ... a,e M. (We will call
this property “property S”.)

All intersections of sets which have the property S also have this
property. Hence the intersection of all the subsets of o (F) having property
S has this property. This intersection is called the functional ciosure of the
family (F,) and is denoted by F. An element of F is called a function
schema (constructed by means of symbols in F). F is not empty if and only
if F, is not empty. (That is, if F contains O-ary function symbols. 0-ary
function symbols are also called constants.) For suppose that F, is not
empty and that ae F,. Then « is in all the sets which have the property S
and so aeF. Conversely if F, is empty, the empty set { has the property S
and so F=9.

All the elements of F are of the form fa, ... a, with feF, and a,, ..., a,
e F. For suppose E is the set of all elements of this form. Since F has the
property S it is clear that all the elements of E are in F. Conversely, since
E also has the property S, F< E. This concludes the proof.
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If x and yeF, acF, and (the finite sequence) z is obtained by replacing
an occurrence of a in x by v then also zeF.

The proof is by induction on the length of x, which we may take to be
= f,ay ... 4, If n=0c¢ither x=q and z=y or x#a and z=x: in each case
zeF. If n>0, each a; has length less than that of x, and eF. So, if b, is the.
result of replacing the occurrence of a considered by y, also b,eF; z=

£by ... b,

LemMA 1: If aeF and ueo(F) with u # § then au ¢F.

Proor: The proof is by induction on the length of a. If a is of length 1
then we must have aeF,. So if au € F' it follows that au=fa, ... a, with
feF,a,, ..., aq,eF and hence a=f. (Equating the first symbol of each
expression.) Hence k=0, so gu=a and therefore u=0.

Now suppose that the lemma is true for all xeF of length less than n
and let @ be an element of F of length n. Then a=fa, ... g, with fe F, and
a, ... e F. If au e F we have au=gb, ... b, with geF; and b,, ..., b,eF.
Hence fa, ... qqu=gb, ... b, and so f=g. Let i be the least integer such
that a;#b;. Therefore a,a;,, ... quu=5b;,, ... b, Hence for some ve
o(F)with v # 0 we have either a;p=>5, or a;=b,v. But the length of g, is less
than that of g and so is less than #. Hence ap=>5;&F contradicts our
induction hypothesis. If bp=a, then the length of 5, is less than the length
of a; and since b,pe F we again have a contradiction.

THEOREM 2: Each xeF can be written uniquely in the form fay ... a, with
JeF,anday, ..., a,cF.

ProOF: If there were two ways of writing x in this form we would have
fay ...a,=gb, ...b,withfeF, geF,and ay, ..., a,, by, ..., b,e F. Thus f=g.
Let i be the least integer such that a;#5,. Then g; ... a,=b; ... b, and so
a;=byv or by=ap with v#0. But in either case this would contradict
Lemma 1.

We will find that the next Theorem proves to be very useful,
"THEOREM 3: Let X be a set and for each integer n let f—f be a mapping from
F, to the set of maps of X" into X. Then there is a unique map x—% from F

into X such that for all feF, and all a,, ..., a,eF we have

fal aas anmf(él, eey dﬁ)‘
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PrOOF:

Uniqueness: suppose that there are two such maps from Fto X. Let U
be the set of all those elements of F for which these two maps agree. Then
U has the property S and hence F< U. Therefore F=U and so the two
maps are the same.

Existence: let @, be the set of elements of F which have length n. We
define by induction on n, a map ¢, from &, to X as follows: for n=1,
since @, =F,, for all xeF, we put ¢;{x)=2%. Suppose now that ¢; has
been defined for all i<n. If xe®,, x can be written uniquely in the form
Ja; ... a, with fe F, and for i <k each g; is an element of F of length /,<n.
Therefore we put

¢n(x) = f((ph (611), tey ¢lk(ak)) .

The desired map x-X is then given by X=¢,(x) if x is of length n. It
follows at once that this map satisfies the conditions of the Theorem.

In particular we have the case when, for each feF,, f is the n-ary
function on F defined by f(a;, ..., a,)=fa, ... a, for all ai, ..., a,e F. This
function fis called the natural value of f on the functional closure of F.



CHAPTER 1

PROPOSITIONAL CALCULUS

This chapter treats grammatical connectives (or operators) such as negation,
conjunction and disjunction. These connectives are used to form new propositions
from given ones. The particular connectives considered here are called “‘Aris-
totelian™, ““classical” or “i{wo-valued”, because they were first brought into
prominence by Aristotle and because they are applied to propositions with well
defined values (true or false) and not to indeterminate propositions. Further, we
restrict our atiention to those connectives which produce propositions whose truth
or falsity depends only on the truth or falsity of the propositions to which. they are
applied. This condition is not satisfied by, for example, the usual meaning of
implication (A4 implies B} where the hypothesis A is supposed to have “something
to do”” with the conclusion B.

We call the operators considered “truth-functions’. The structure which these
operators make up is that of the class of all functions from {0,1}" into {0,1}.
Exercise 1 shows the precise sense in which the collection of all these operators can
be built up by superposition of the connectives mentioned in the text. Since the
structure in question is very simple the only mathematically interesting questions
are those about infinite sets of propositional formulas.

The basic notions we use are those of “propositional formula™, which is
defined in terms of the notions of the previous chapter, and of “model” of a given
collection of formulas. This second notion is a particular case of the general
concept of model in predicate logic. The main result is the Finiteness Theorem
which can be proved by a simple application of compactness (there is also a proof
by transfinite induction which generalises to languages considered in Chapter 7).
Some algebraic applications are given in Exercises 4 and 5 (they are special cases
of Theoretn 13 in Chapter 3).

Let P be a given set. We denote by Prop(P) the set of function schemas
constructed from the following symbols (supposed to be distinct from one
another):

1) The O-ary function symbols are T, 1 and the elements of P T is read
“true” and L “false”).

2) =1 (read “‘not’’) is the only unary function symbol.

3) v (read “‘or”) is the only binary function symbol.

The elements of P are called propositional variables. The elements of
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Prop{P) are called formulas. We call Prop (P) “the propositional calcu-
lus on P”.

For A, BeProp(P), we will usually denote vAB by (4)v(B);
~((m4) v (11B)) by (4) A (B); (14) v (B) by (4)~(B) and ((4)~(B) n
((B)—(4)) by (4)«>(B). We read A as “and”, — as “implies” and <> as
“is equivalent to”. For readability we sometimes omit {round) brackets if
no confusion is likely, and use square brackets; e.g. [(4)—(B)] for
()~ (B)).

A realization of the propositional calculus on P is a map & from P to
{0,1} (or, more generally, from P to an ordered set of two elements).

It follows from the fundamental theorem on function schemas (Theo-
rem 0.3) that each realization & can be extended to a mapping (also de-
noted by 6) from Prop(P) into {0,1}if T is given the value 1, L is given the
value 0 and —1, v are given the following values (functions with val-
ues in {0,1}, defined on {0,1} and {0,1}%): =0=1, °11=0; v00=0,
vO0l=v10=v1l=1. We say that a realization ¢ of Prop (P) satisfies
a formula A4 in Prop (P) or is a model of A if 5(4)=1.

We say that a realization & satisfies a set ./ of formulas, or is a model
of o if o satisfies each formula in /.

A formula A jn Prop (P) is said to be a theorem of propositional
calculus if it is satisfied by all realizations. Two formulas 4 and B are
said to be equivalent if A—B is a theorem or if 6(4)=4J(B) in all reali-
zations, which is obviously the same thing.

LemMMA 1. THE INTERPOLATION LEMMA FOR PROPOSITIONAL CALCULUS:
If Av B is a theorem of Prop (P) there is a formula C whose propositional
variables occur in both A and B such that A~ C and 1 C v B are theorems
of Prop (P).

ProoF: The proof is by induction on the number £ of propositional
variables which occur in 4 but not in B. If =0 it is sufficient to put
C=1A4. Now suppose that the lemma has been established for k=n—1.
Let 4 be a formula such that 4 v B is a theorem and 4 contains exactly
n propositional variables which do not occur in B. Let p be one of these
variables and let 4; and A4, be the formulas obtained by substituting
Tand Lforpin A. A; v Band 4, v B are theorems and so (4; A 4,) v B
is a theorem to which we may apply the induction hypothesis. Thus there
is some formula C, containing only propositional variables common to
A, A4, and B, such that (4; A4,)vC and 1 Cv B are theorems. It
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follows from the definitions of 4, and 4, that 4v C is also a theorem.
This completes the proof. (Cf. also Exercise 2.)

If we replace 4 by =34 in this lemma we get the following result:

If A—B is a theorem of Prop (P) there is a formula C, containing only
propositional variables common to A and B such that A—C and C— B are
also theorems of Prop (P).

We call C an interpolation formula for A and B. As a corollary of
this result we have

THEOREM 2. THE DEFINABILITY THEOREM FOR PROPOSITIONAL CALCULUS!:
Let A(p) be a formula which contains the propositional variable p, and let
A(p’) be the result of substituting p’ for p in A(p), where p’ is a propo-
sitional variable which does not occur in A(p). Then, if (A(p)AAQ@'))—~
{(p—p’) is a theorem there is a formula F containing only propositional
variables which occur in A(p), but not p nor p’, such that A(p)—(p«+F)
is a theorem.

Prook: Since (A(p) AA(p))—(p—p’) is a theorem we also have that
(A(p) Ap)—(A4(p’)—p’) is a theorem. Hence by the Interpolation Lemma
there is a formula F, not containing p nor p’, such that (4(p) Ap}—F and
F—(A(p")-p’) are both theorems. It follows that A(p)—{poF) isa
theorem. ‘

We can be precise about the form of the formula F. If we replace
(A(p) Ap)=(A(p')—p') by (1 4(p)v —p)v(T4(p)vp) the proof of
the Interpolation Lemma yields (A(T)A T)v(4A{Ll)A L} for F,
which reduces to the formula A(T). Thus F is A(T), the resuit of
substituting T for p in 4(p). (More directly, we could argue as follows.
For all 4, A(p")—(p'-+A(T)), is a theorem; substituting T for p we
have A(p")>(4(T)—p’) is a theorem, and hence A(p')—=(p'=4(T)).)

We will make use of the next Theorem for the elimination of quantifiers.

THEOREM 3: Each formula A of Prop (P) is equivalent to a formula of the
form A;v A,V -+ v A, where each A, (1 <i<k) is of the form oy A A g,
where a;(1<j<r;) is either p or —\p, and p is either one of the proposi-
tional variables occurring in A oris T.

Thus we say that A4 can be written as a “disjunction of conjunctions”.
The Theorem is also true for a “conjunction of disjunctions™ and can be
proved in the same way.

ProoF: The proof is by induction on the number k£ of propositional
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variables occurring in 4. If k=0, A4 is equivalent to T or 1, i.e. = T,

Suppose now that the Theorem has been proved for k=n—1 and
let A(p) be a formula containing » propositional variables of which p
is one. Let B and C be the results of substituting T and L, respectively,
for p in A(p). B and C each contain n—1 propositional variables and
clearly A(p) is equivalent to (p AB)v(—1p A C).

By the induction hypothesis B is equivalent to B, v---v B, and C is
equivalent to C;v-.-v C,. Therefore A(p) is equivalent to (pA B,)v
(pAB)V--V(pAB)V(TIpACv - v(T1pAaC,) which is of the de-
sired form.

This completes the proof.

THEOREM 4. THE FINITENESS THEOREM FOR PROPOSITIONAL CALCULUS:
Let o be a set of formulas of Prop (P) such that every finite subset of <&
has a model. Then ¢ has a model.

Proor: We will first prove the result for the most commonly occurring
case, namely when P (and hence also &) is countable.

Let py, ..., Py, ... be an enumeration of P. Suppose that we have found a
map 6 of {p,, ..., p,} into {0,1} such that each finite subset of &7 has a
model in which p,, ..., p, take the values é(p,), ..., d(p,). Then we show
that we can extend J to {p,, ..., P, Pn+1) SO that this same property
holds. For suppose that this is not true if we put §(p,+,)=0. Then there is
some finite subset U, of & such that there is no model of U, in which
D1s -5 Du» Pu+1 take the values 8(p,), ..., d(p,), 0. Let U be any arbitrary
finite subset of .o7. Then U, u U is a finite subset of .27 and so by hypothe-
sis it has a model in which py, ..., p, take the values é(p,), ..., 6(p,). By
the choice of U,, in this model p,., must take the value 1. Hence if
(p,+1)=1 every finite subset U of & has a model in which py, ..., p,+1
take the values 5(py), ..., 6(Pp+1)-

Thus we can define, by recursion on n, a realization 6 of Prop (P) such
that, for each n, every finite subset of &/ has a model in which p,, ..., p,
take the values 8(p,), ..., 6(p,). It follows that J satisfies =7 : for suppose
A is a formula of &7 ; in order to see that J satisfies A it is sufficient to take
n so large that all the propositional variables occurring in A appear
among py, ..., P,

Clearly this proof can be extended to the general case when P is not
countable provided that we have a well-ordering of P. For the general
case we also have the following proof.
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For each formula 4 of Prop (P) the set of realizations which satisfy 4 is
open in the space {0,1}”, with the product topology, since 4 only contains
a finite number of propositional variables., This set is also closed since
the realizations which do not satisfy A are precisely those which satisfy — 4.
For each formula 4 of &7 let A be the set of realizations which satisfy 4.
It follows from the hypothesis of the theorem that all finite intersections
of the sets 4 are non-empty. Since {0,1}F is compact the intersection of all
the sets 4 for A€o is non-empty.

This completes the proof.

The Finiteness Theorem can also be expressed in the following form:

THEOREM 5: If each realization satisfies one of the formulas of a set % of
formulas then there are formulas By, ..., B, in # such that B, v ---v B, isa
theorem.

ProOF: Suppose such a set {B,, ..., B,} does not exist. Then for each
finite subset {By, ..., B,} of # there is some realization which does not
satisfy B, v -+ v B, and which therefore satisfies 1By A+-- A1 B,. Let &/
be the set of formulas —1 B for Bin %, Then every finite subset of .7 has a
model and so, by the Finiteness Theorem, 7 has a model. This contra-
dicts the assumption that each realization satisfies some formula of 4.

A formula A is said to be a consequence of a set &7 of formulas if each
realization which satisfies &/ also satisfies A. In particular, the con-
sequences of the empty set are the theorems. The consequences of a
finite set & ={A,, ..., 4,} are those formulas 4 suchthat(4, A --- A 4,)—> 4
is a theorem.

THEOREM 6: A is a consequence of a set of of formulas if and only if A isa
consequence of some finite subset of <.

Proor: The condition is clearly sufficient. It is also necessary since to say
that A4 is a consequence of &/ is equivalent to saying that the set
o7 u{1 A} does not have a model. This set does not have a model only if
some finite subset &7’ of o exists such that /" {14} does not have a
model. And this set does not have a model only if 4 is a consequence
of &',

Exercises

1. Clearly each formula 4 having p,, ..., p, as its propositional variables
defines a map of {0,1}" into {0,1}. Show that each map of {0,1}" into
{0,1} is obtainable in this way.
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Let U, be the set of maps of {0,1}* into {0,1} and let U=Jyen U,. A
subset S of Uis said to be complete if all the elements of U/ can be obtained
by composition from the elements of S.

Show that the sets S={¢}, where ¢(p, 9)="1pA g, and {—, L} are
complete and thatthesets S={ T,—»}and{ T, —, A, v } are not complete.

Answer. We prove that all maps from {0,1}" into {0,1} can be obtained,
by induction on n. Suppose that the result has been established for n=k
and let f(py, ..., P Pes1) be @ mapping from {0,1}**! into {0,1}. By
hypothesis f(py, ..., o 1)=A(p1, ..., i) and f(py, -, Pi 0)=B(py, -, Pi)
where 4 and B are two formulas whose variables are p,, ..., p,. It can be
seen at once that /' (py, ..., Px, Pr+1) 1S given by the formula

[Pr+1 —’A(Pl, ---apk)] AL prer = B(Pp ---st)]'

This shows that the set {—, v} is complete. Now —ip=¢(p, p) and
pvq=-1¢(p, q)="1p—g and so the sets {¢} and {—, L} are also both
complete,

Now consider the function schemas that can be constructed from
{T, >} and a set P of propositional variables. These represent all the
functions that can be obtained from { T, —»} by composition. Let A(p)
be one such function schema which contains only the propositional
variable p. It can be seen by induction on the length of A(p) that either
A(p)— T or A(p)e—p is a theorem as follows: if 4(p) is of length »n then
A(p)=B(p)— C(p), where B(p) and C(p) are both of length less than .
It follows that A(p) is equivalent to one of the formulas p—p, T—p,
p— T, T—->T,ie.to T orp.

Consequently the function —1 cannot be obtained by composition
from {T, -, v, A}

2. Let A, ..., A,eProp (V) where V is a set of propositional variables.
The class of formulas built up from the propositional connectives (de-
fined by} 4, ..., 4, is, by definition, the least class ¢ such that

(i) each 4;,€€ (1<i<n), and T and Le% if there is a formula 4e%
such that A4, resp. 14 is a theorem of Prop (¥);

(ii) if Ae¥ and Be% and C is obtained from A4 by substituting either
a variable eV or the formula B for each occurrence of a variable in A4,
then Ce¥.
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Show that, if P, @, R are disjoint subsets of V, 4Ae¥, Be¥, AcProp
(PUR), BeProp (QUR) and A— B is a theorem, then there is a formula
Ce¥, CeProp (R) such that 4 »C, C— B are theorems. (Interpolation
Lemma for arbitrary sets of propositional connectives.}

Answer. If P=0 or Q=0 there is nothing to prove.

Case 1: R=0. In this case either B is a theorem or —1 4 is a theorem
(and C= T or C= 1 satisfies the condition above). Suppose —14 is not a
theorem; then there is a realization pp of P for which 4=1, and since
AeProp (P), A=1 for every extension p (=ppuUp,) of pp. Since A>Bisa
theorem, B=1for p, Hence, since BeProp{Q), for any p’ whose restriction
to 0 is pg, B=1. Since po Was arbitrary, this means that B is a theorem.

Case 2: R#0. We consider first the case when T or Le¥%. Suppose
P={p,...p} C={qs, ... gn}. f TeF and n=1, or Le¥, and m=1,
we write A=4(p,), B=B(q,) and C=A(A(T)) or C=B(B(1)) is a
solution. By Lemma 1 it is enough to show that

(A(T)v A(L))>A(A(T)) and (B(T) A B(L))«B(B(1))

aretheorems, since both 4( T )v A(L)and B( T ) A B(1) are interpolation
formulas. Let p be any realization of V, and so T= 1, 1 =0, and either
A(T)=1o0r A(T)=0;if A(T)=1, A(A T)=A(T),ie.=1, and also
A(T)vA(L)=1;ifA4(T)=0, A(A(T))=A(L),=A(T)v A(L);inboth
cases, A( T)vA(L)=A(A(T)); since p is arbitrary this shows that
A(T)v A(L)=A(A(T)) is a theorem. The proof for (B(T)AB(L))~
B(B(1))is similar. (Note that Lemma 1 itself provides a solution only if
both T and L €% and either v or A occurs in %.)

To treat n>1, we define a sequence C;{1 <i<n) where (i) each C;eProp
({Ps+1s --» P V}UR) (i<n), C,eProp ({vt}UR) and v¢PUR (e.g. veQ
since Q+#0), (ii) each C; is obtained from A by substitution for the
variables py, ..., p. We write C;=C,(p;41), C;=C;[v] and denote by
C;(F), C;[F] the result of substituting F for each occurrence in C; of
Pi+1, TeSp. of v,

Ci= AW, Cuy=G(G) (1<i<n).

Then, for 1<i<n, AC[TLCG[T]-Ci [T CG[T]=B(1<i<n).
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For i=1, we have the case above because C; [ T Jis 4(4( T)). Suppose
true for i<j, and write C;[ T ]=C}(p;+1); since C;— B, again C}(C;{T))
is an interpolation formula, and this, by definition, is C; [ T ].

If 1e¥, a similar construction of D;eProp ({¢.x1 -..s Gy W}IUR)
(w¢QuR) yields a formula D, [ L] where D, =B(B(v)), D;=D;(g;4,)=
D;[w], and D, ., = D;(D;(w)).

For the general case, note first that, for any formula F, C,[F]-—+Bis a
theorem because C,[v] is got from A4 by substitutions for py, ..., p, and
the p do not occur in B. In particular, for F= B, where B, is obtained
from B by substituting elements of R for ¢, ..., g,,. We shall show that
A Cn [B 0]‘

Let py be any realization of R. We distinguish two cases: (i) There is a
realization p5 on P such that =1 for ppupy, (i) for each extension pp,
A=0for ppupg. In case (i), since 4— B in a theorem, for each realization
pgof O, B=1{for pyuprup,; since the p do not occur in B, B=1 for each

extension of pg, and, in particular, By=1. So C,[B]=C,[ T ], and we
know that A—C,[ T J=1.1In case (ii), since for all pp, A=0 for pgpp,

and hence for all ppupppgy, A4 being in Prop (PUR), A—C,[By]=1
for all extensions pruppupy. Since py is arbitrary, 4—C,[B,] is a
theorem.

Similarly, D,,[ 4, ] is an interpolation formula if 4, is obtained from A
by substituting elements of R for py, ..., p,-

3. A set o7 of formulas is said to be independent if no formula 4 in &7 is
a consequence of 7 —{4}. Show that

a) a set &7 of formulas is independent if and only if each finite subset of
& is independent;

b) each finite set o/ of formulas has an independent equivalent subset
& (in the sense that each formula of & is a consequence of &, and
conversely);

¢) each countable set of formulas .2/ has an independent equivalent set
of formulas.

We remark that there is a countable set &/ of formulas which does
not have any equivalent independent subset. Let p,,...,p,, ... be a
sequence of distinct propositional variables and let, for example,
L ={p, PiAPzs ... Py A*** APy -..}. Clearly each independent subset of
& consists of a single formula and &7 is not equivalent to any single
formula in o7,
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Answer.

a) This is an immediate consequence of the Finiteness Theorem.

b) We prove the result by induction on the number of elements k in 7.
If k=0 the result is trivial; suppose it is true for k=n and let &/ =
{Aq, ... Ay A1} be a set of n+1 formulas. If this set is already in-
dependent we are home. If not, then 4,,,, say, is a consequence of
{A;, ..., A,} and it is sufficient to apply the induction hypothesis to this set.

c) Let A, ..., 4,, ... be an enumeration of the formulas of =7. Let A, be
the first formula in this enumeration which is not a theorem. Put B, = 4,
and in general let B,,,=B,A A; where A; is the first formula in the
enumeration which is not a consequence of B,. Clearly the formulas
B, B,, ..., B,, ... are all consequences of .2/ and, conversely, each 4, is a
consequence of the formulas {B,, B, ..., B,, ...}. In the sequence B,, ...,
B,, ... each formula 1s a consequence of the one following it but not of the
one preceding it. If this sequence is finite let B, be its last term. Then
{B,} is the desired independent set of formulas. It is independent since if
B, were a theorem then, because B,— B, is clearly a theorem, B, would
also be a theorem, which it is not. (If each 4, is a theorem, 7 is equivalent
to the empty set.)

If this series is infinite, put C; =B, C,=B,—B,, ...,C,=B,_,—>B,, ....
It follows at once that

1) no C, is a theorem, and

ii) the set {Cy, ..., C,, ...} is equivalent to .7

The set {Cy, ..., C,, ...} is, in fact, independent. For by i) there is a
realization which satisfies 71 C,, i.e. which satisfies B,_, and —1B,. Since
—1B,— 1B, for n<mis a theorem, this realization also satisfies —1.B,, for
n<m and hence satisfies C,, for n<m. But we also have that B,—»B,is a
theorem for p <# and so this realization also satisfies C,, for p <n. That is,
this realization satisfies all the formulas C, for g## but it does not
satisfy C,. Therefore C, is not a consequence of {C;, ..., C,_;, Cpiyqs ...}

This completes the proof.

4, a) A group G is said to be ordered if there is a total ordering < of G
such that ¢ < b implies ac < bc and ca < cb for all ¢ in G. Show that a group
G can be ordered if and only if every subgroup of G generated by a finite
number of elements of G can be ordered.

b) Deduce that a commutative group can be ordered if and only if it is
torsion free, i.e. no element other than the identity is of finite order.
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Answer.

a) The condition is obviously necessary; we will show that it is also
sufficient.

Consider the propositional calculus on G x G, i.e. the propositional
calculus having the elements of & x G as propositional variables. Let &/ be
the set consisting of the following formulas:

i) (a,a)for all ain G,

i) (a,b)v(b,a)foralla, b in G,

iii) (a, b)— (b, a) for all a, b in G with a#b,

iv) (a, by a(b, ¢)—(a, c) for all g, b, ¢ in G,

v} {a, b)—(ac, be) Alca, cb) for all a, b, c in G.

In any finite subset of &, say U, there occur only a finite number of
elements of G. If Gy is the subgroup which they generate, since Gy can be
ordered, by hypothesis, there is a realization of the propositional calculus
which satisfies U, namely the realization in which (g, b) gets the value 1 or
0 according as a<b or a>b, for a, b in G, and which is arbitrary other-
wise, By the Finiteness Theorem it follows that there is a model of the
whole set 7. It is now sufficient to put a<b when (g, b)=1 in this model
and a> b otherwise to obtain an ordering of G.

b) If G is an ordered commutative group then & is clearly torsion free.

Conversely if G is torsion free the sub-groups generated by finite
subsets of G are free groups which are isomorphic to Z" for some integer
n. But Z" can be ordered by the lexicographical ordering where (a,, ..., a,)
<(by, ..., b,) if iis the least integer such that a;,# b; and a; <b,.

5. A graph (a non-reflexive symmetric relation} defined on a set M is
said to be k-chromatic, where k is a positive integer, if there is a partition
of M into k disjoint sets Cy, ..., C;, such that two elements of M connected
by the graph do not belong to the same C;. Show that for a graph to be
k-chromatic it is necessary and sufficient that every finite sub-graph be
k-chromatic.

Answer. The condition is clearly necessary since each partition of M
induces a partition of each of its finite subsets. We will show that the
condition is also sufficient.

Consider the propositional calculus on {1,2, ..., k} x M. Let &7 be the
set of the following formulas

i) (i, a)—1(j, a) for all i, j <k with is and all ae M,
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iiy (1, @)v(2,a)v - v(k, a) for all aec M,

itiy (i, @)= (i, b) for all i<k and all pairs (g, b) of elements of M
connected by the graph.

If each finite sub-graph is k-chromatic it follows at once that each
finite subset of &/ has a model. Hence & has a model. Then if we put
aeC,; if and only if (7, @) has the value 1 in this model we obtain a partition
of M with the required properties.



CHAPTER 2

PREDICATE CALCULUS

The discussion of the previous chapter is here extended by taking into a¢count
the quantifiers “for all’” and “‘there exists”. These quantifiers do not operate on
propositions but on relations. They are applied to define n-ary relations from
(r + )-ary relations and, in particular, propositions (i.e. 0-ary relations) from
unary relations. We also extend the use of the propositional connectives defined
in the previous chapter so that they can be used as operations on relations.

The language obtained turns out to be adequate for the expression of most
mathematical concepts and is therefore a useful framework for a general theory
of axiomatic systems. For further analysis see also Appendix 1, p. 169 and pp.
130-191.

Unlike the case of propositional calculus, when one defines the general notion
of “quantifier” it is not true that all quantifiers can be defined in terms of the two
gquantifiers mentioned above. For more details about this see Mostowskr, On a
Generalization of Quantifiers, Fund. Math, 44 {(1957) pp. 12-36.

The main notions used are those of “formula™ and ‘“‘language™ of first order
predicate logic, and that of a “realization” of a language, from which the notion
of a “model” of a collection of formulas is defined. A particularly important case
is that of “cancnical” models in which each object {i.e. element of the model) has
a name in the language under consideration.

The chief tool used in this chapter is that of the construction of canonical
models by means of function schemas. This method leads to the following results:

i) Each model of a finite or countable set of formulas & has a countable
subsystem which is also a model of &7,

ii} The Finiteness Theorem. This is proved by reduction to the case of propo-
sitional calculus.

iii) The Uniformity Theorem. Exercise 6 shows that this useful result is the best
possible from several points of view,

Other results on the main topics of this chapter can be found in Chapters 3 and
3. This last chapter contains a second method for constructing canonical models
(and alternative proofs of the main results of the present chapter).

The methods of this chapter permit an extension to predicate logic of the
interpolation lemma, given in the preceding chapter for propositional logic; but its
main interest derives from applications to definabilily such as those in Chapter 6.

For an interesting analysis of the special role played by the usual propositional
operations applied to relations (and not only to truth values, discussed in Chapter
1, Exercise 1), see CralG, Boolean notions extended to higher dimensions, in:
The Theory of Models (North-Holland Publ. Co., Amsterdam, 1965) pp. 55-69.
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A language ¥ consists of

1) A set V, of elements called variables.

2) A sequence of sets Fg{n=0, 1, ...). The elements of Fj are called
r-ary function symbols. F,=\_), F and is called the set of function sym-
bols.

3) A sequence of sets Rg(n=0,1, ...). The elements of Ry are called
n-ary relation symbols.

We assume that the sets V,,, Fg, R% are all pairwise disjoint.

The set of function schemas built up from FJ U V,, as the set of 0-ary
symbols and Fg as the set of n-ary symbols (n=1, 2, ...) is called the set
of terms of £ and is denoted by T,. We denote by T, the set of terms
which contain » distinct variables.

The set |, [Ry x(T%)"] is called the set of atomic formulas of the
language % and is denoted by At,. Thus an atomic formula of . is a
sequence Rt ... t, where R is an n-ary relation symbol and ¢, ..., f, are
terms of the language.

The set of formulas of the language %, denoted by & 4, is the set of
function schemas built up from the following list of symbols supposed
to be distinct from one another:

i) The O-ary symbols are the atomic formulas of &, T (read “‘true’)
and L (read “false’). Thus the set of 0-ary symbols is the set At,u
{T,1}.

i1) The unary symbols are =1 (“not”) and the elements of a set Q,
disjoint from the sets already mentioned, and in one-one correspondence
with V. The element of Q corresponding to the variable x is denoted
by Vx (read “there is an x”).

iii) A single binary symbol v (“or™).

We remark that & ,=Prop(P), in the sense of the previous chapter,
where P is the subset of %, consisting of those elements (formulas) of
F ¢ whose first symbol is not a propositional constant (T, L, 71 or v).

A realization of the language % is defined to consist of

1) A non-empty set E called the domain of the realization.

ii) For each n>0 a map of F, into the set of functions defined on E"
and having values in E. From this we can derive (by Theorem 0.3) a map
of T into the set of functions defined on E” with values in E.

iii) For each n>0 a map of R}, into Z(E"), the power set of E" (or set
of all subsets of E"). From this we derive a map of At, into Z(E"¥) as
follows: the image of the atomic formula R¢, ... #, in this mapping is the
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set {deE"Z:(d1y, ..., 0t,)e R}, where R< E” is the image of R under the
given map and ¢, is the value taken by the function derived from the
term £, when the variables take the values given by J. (6e EY¥ is a map of
Vg into E.)

It follows from the fundamental theorem on function schemas (Theo-
rem (0.3) that to each formula of the language % corresponds under the
realization a subset of E¥¥ if we define T, L, 11, v, Vx as functions on
P(EV¥) as follows:

T is the constant EV <,

1 is the constant @,

= is the map of Z(E"¥) into #(E¥%) which sends each X into cX, the
complement of X in E¥Z,

v is the map from [Z(E"%4)]? into #(E"¥) which sends (X, ¥) into
XuYt.

\/ x is the map of Z(E¥ ¢) into #(E¥¥) which sends X into the projection
of X along x, i.e. to {de E¥¥#: for some &€ X, ' =0 except possibly at x}.

{In Exercise 1 we give a simple example of a language and of a reali-
zation of this language which helps to explain the construction we have
described here.)

Each time we are considering only a single realization of the language
# we will denote by A the value taken by the formula A4 in this realization
(A< EV¥ if E is the domain of this realization.)

We say that a subset X of E¥¥ depends only on the variables xy, ..., x,
if there is a set Y= E™t™) sych that X= Y x EVZ~ 1),

LemMmA 1: Let A be a formula and let xy, ..., x, be the only variables
occurring in the terms of A. Then in each realization, A depends only on the
variables xq, ..., X,.

Proor: This result is obvious if 4 is atomic. If it holds for formulas 4 and

B then it holds also for 4 v B, since v AB= AUB, for -1 4, since " A =cA,

and also for \/ x4 since Vx4 is the projection of 4 along x. Therefore, by
the definition of the set of formulas, the result is true of all formulas,

So that we can use this sort of argument easily we will call the length of
a formula A the number of symbols occurring in A4 of types 1), ii) and 1iii).
That is, the length of A is the sum of the number of atomic formulas
occurring in 4 and the number of symbols T, L, 1, v, VX in A4,
separate occurrences being counted as distinct.
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We associate with each formula A4 of the language % a finite set of
occurrences of variables, called the free occurrences of variables in 4. We
do this by recursion on the length of 4 as follows: If A4 is of length 1, and
so is an atomic formula or 7 or L, the free occurrences of variables in A4
are the occurrences of variabies in the terms of 4. Now suppose that we
have defined the set of occurrences of free variables for each formula of
length less than # and that A is a formula of length »n. If 4 is of the form
— B the free occurrences of variables in 4 are those of B, and if 4 is of
the form v BC the free occurrences of variables in 4 are those in B
together with those in C. Finally, if 4 is of the form \/xB the free oc-
currences of variables in A4 are those in B except x, if x has a free oc-
currence in B.

An occurrence of a variable which is not free in 4 is said to be boundin A.

A variable is called a free variable of A if it has a free occurrence in A4,
and bound if it has not. In particular, all those variables which do not
occur in 4 are bound in 4. Note that a free variable of 4 may have
bound occurrences in 4.

THEOREM 2: Let A be a formula whose free variables are x,, ..., x,. Then in
all realizations A depends only on the variables x, ..., x,.
Proor: The proof is immediate by induction on the length of 4.

A formula A is said to be closed if it has no free variables. It follows from
Theorem 2 that in a realization with domain E, if A4 is closed, either A =0
or A=E"¥.

We say that a realization, with domain E, satisfies a closed formula A4 if
in the realization 4=E"¥. In this case we say that the realization is a
model of A. If 57 is a set of closed formulas of . we say that a realization
of & satisfies .7, or is a model of o, if it satisfies each formula of 7.

We will adopt the following notation. If 4 and B are two formulas of
& we will write (4) v (B) for v AB; A—B for (—4)v(B) and (4) A(B)
for 1 ((—4) v (T B)). Wewrite AxA4 for =1V x—14, Axis read “for all x”".
If 4 is a formula whose free variables are x;, ..., x,, by the closure of A4
we mean the formula Ax; ... Ax,4. Thus the closure of A4 is a closed
formula,

We sometimes write A(xy,...,x,) for 4 and A{t,...,t,) for the
formula obtained by substituting the terms ¢,, ..., t, for each occurrence
of xy, ..., x, respectively. By chapter 0, A(¢,, ..., ¢,)is a formula if A is one.
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A (not necessarily closed) formula A is called a theorem of the language
Z if in each realization we have 4= E"¥, where E is the domain of the
realization. This is equivalent to saying that each realization satisfies the
closure of A,

If A=A(xy, ..., x,) and no variable that occurs in t;(1 <i<n) has a bound
accurrence in A then A(t,, ..., t,) is a theorem provided A is one. The proof
is immediate by induction on the length of 4 with use of Theorem 2.
QUANTIFIER FREE FORMULAS: A formula of the propositional calculus on
At is called a quantifier free formula of the language .. Evidently
such a formula is a formula of the language #. 1t is called “quantifier
free” because the symbols \/ x, Ax are called “quantifiers”.

PRENEX FORMULAS: A formula is said to be in prenex normal form or to be
a prenex formula if it is of the form QA, where @ is a finite sequence of
symbols =1 and Vx;, x;€ V5, and A is a quantifier free formula.

LeMMA 3: If A and B are prenex formulas and V is infinite there is a prenex
Jormula C which is equivalent to Av B.

ProoF: The proof is by induction on the length of Av B. If 4 and B are
quantifier free the lemma is obvious. Suppose, for example, that A
contains quantifiers. Let \/ x be the first quantifier occurring in A4. It will
be preceded by symbols =1 which we may clearly assume to be not more
than one in number.

Let x’ be a variable not occurring in A4 nor in B. Since V, is infinite
such a variable exists.

If 4i1s VxA4', let A” be the formula obtained by replacing each oc-
currence of x in 4" by x’. Then 4 v B is equivalent to (\Vx"4") v Band so
to Vx'(4” v B) since x” does not occur in B. Since 4” v B is shorter than
Av B and A" and B are prenex formulas we can apply our induction
hypothesis to obtain a prenex formula C’ which is equivalent to 4" v B.
Then C= \/x'C’ is the required prenex formula equivalent to 4 v B.

If Ais =1V xA’, let A" again be the formula which is obtained from A4’
by replacing each occurrence of x by x’. Clearly 4 is equivalent fo
=1V x'A”, which is equivalent to Ax'—14", and —14” is shorter than A.
Hence by the induction hypothesis there is a prenex formula C’ which is
equivalent to —A"v B. Put C==1Vx'"1C’. Then C is equivalent to
Ax'(— A" v B) which is equivalent to Ax'(—14” v B) since x” does not
occur in B. Thus C is equivalent to 4Av B.

This completes the proof of the lemma.
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We are now able to prove

THEOREM 4: If V, is infinite, then for each formula A there is a prenex
formula A’ which is equivalent to A, i.e. A—A' is a theorem or A=A in
each realization of .

PrOOF: We prove the theorem by induction on the length of 4.

If 4 is an atomic formula we put A'=A. If 4 is 18 or \/xB then, by
the induction hypothesis, there is a prenex formula B’ which is equivalent
to B. We put A’=—1B"or A=\ xB'. If A4 is Bv C then, by the induction
hypothesis, there are two prenex formulas B” and C’ equivalent to B and
C respectively. We can apply Lemma 3 to obtain a prenex formula A4’
which is equivalent to B’ v C’ and hence to A.

A prenex formula can always be written in the form Q,x; ... O, x,H,
where each Qs a quantifier, \/ or A, and H is quantifier free. The for-
mula is said to be existential if each Q,is \/ and universal if each Q;is A.

Let & be a set of formulas of #. The language of &, denoted by
Z(&), is the language whose variables are those of # and whose rela-
tion and function symbols are those which occur in the formulas of &.

A canonical realization of & is a realization of #(&) with domain
Ty (), the set of terms of &, in which the function symbols are given their
natural or canonical values as functions on Ty 4. The choice of values for
the relational symbols is left free.

The aim of the theorems that follow, up to the Uniformity Theorem,
is to answer the question of how we can tell whether a given formula is a
theorem or not. We concern ourselves only with prenex formulas (see
also Appendix I A, Lemma 3).

THEOREM 5: Let & be a set of closed universal prenex formulas. If & has a
model then it has a canonical model.

PrOOF: Put %’ =% (&). Each formula of & is, by hypothesis, of the form
AXx{ ... Ax,A, where 4 is a formula of the propositional calculus on the
set of atomic formulas of .#’. Let E be the domain of the given model of
&, and let R< E" be the value in this model of the relational symbol R
in R%. Let & be an arbitrary fixed element of EV#’. We derive from it a map
t—i of T, into E. We now define an canonical realization of & by giving
to Re R, the value R={(t,, ..., t,)eTo:(f,, ..., 7,)eR}. The map t—7 of
T, into F defines a map ¢: T"¥ - E"¥ and from this, the inverse map
oL P(EVL)-(TV).
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If A is a quantifier free formula of %, 4 the value it has in the given
model and A its value in the canonical realization, then 4=¢~!(4). This
is obvious if 4 is atomic and we know that ¢! commutes with the
operations of unions and taking complements,

Now let Ax; ... Ax,4 be a formula of &, By hypothesis A=E"Z",
Hence A=¢~(A)=(T)" ¥ Therefore Ax; ... Ax,d is satisfied by the
canonical realization we have constructed.

This completes the proof.

We have the following dual result.

THEOREM 6: If 4 is a closed existential prenex formula then A is a theorem
if and only if all canonical realizations satisfy it.

Proor: The condition is obviously necessary. It is also sufficient since if
all canonical realizations satisfy 4 none satisfies = 4. Hence by Theorem 5
—1A4 does not have a model.

THEOREM 7: To each prenex formula F there corresponds a universal prenex
Fformula F, whose language does not differ from that of F except for the
addition of a finite number of function symbols, such that

a) In each realization of Z(F), F  F, that is, F—>F is a theorem and

b) Each realization of £(F) can be extended to a realization of ¥ (F)
in such a way that F=FE.
Proor: The proof is by induction on the number of quantifiers in F. If F
has no quantifiers in it we put F=F.

If F= AxG, then by our induction hypothesis, there is a formula G
which satisfies the theorem for G. It is sufficient to put F=AxG.

If F=\/xG, we again let G be the formula which satisfies the theorem
for G. Let x,, Xy, ..., X, be the free variables of G. If x is not free in G then

in each realization VxG=G and so it is sufficient to take F=G. If x is
free in G, say x is x,. Let ¢ be an n-ary function symbol which does not
occur in Z(G). Let F be the formula obtained from G by replacing each
occurrence of x by ¢x; ... x,. Clearly, because G is universal so is £,

We first show that F satisfies condition a). Let E be the domain
of a realization of & (F—"). Fis the set of all (ay, ..., a,)e E®"* such
that (g(al, ey @)y Ay e an)eégé c Et oo ) Thus for each element
(ay, ..., a,) of F, (ay, ..., a,)e VxG=F. Hence F<F.
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Finally we show that F satisfies condition b). Let E be the domain of a
realization of .Z(F). By hypothesis this realization can be extended to
Z(G) in such a way that G= G. Thus we then have F=\/xG = V xG. So
(ay, ..., a,) is in EZ=*) if and only if there is some acE such that
(@, agy .. a,,)eﬁ. We now define ¢ as follows (since, by hypothesis,
¢¢%(G), we still have this definition to make):

dlay,....,ay=a if (ay,...,a,)efF

and ¢(ay, ..., a,)=a, is an arbitrary element of E, otherwise.
In this way we obtain a realization of #(F). In this realization Fis the
set of those (a, ..., ,) such that (¢(ay, ..., a,), a;, ..., a,,)e@. Hence F=

vxG=F.
This completes the proof.

We again have a dual result.

THEOREM 8: To each prenex formula F there corresponds an existential
prenex formula F whose language does not differ from that of F except for
the addition of a finite number of function symbols, such that

a) In each realization of £(F), Fc F, that is, F-F is a theorem, and
b) Each realization of £ (F) can be extended to a realization of £ (F) in

such a way that F=F, -
Proor: It is sufficient to put F=—1(—1F),

COROLLARY 1: For a closed prenex formula F to be a theorem it is necessary
and sufficient that F be satisfied by all canonical realizations.
ProoF: If F is a theorem then because F—F is a theorem, F is also a
theorem. Hence, in particular, F is satisfied by all canonical realizations.
Conversely, suppose F is satisfied by all canonical realizations. Then
by Theorem 6, since Fis existential, Fis a theorem. Given any realization
of Z(F) it can be extended so that F=F, But F is satisfied by this ex-
tension and so F is satisfied by the original realization and hence is a
theorem.

COROLLARY 2: Let & be a countable set of closed formulas. If & has a model
then & has a countable model. .
PrOOF: We may assume that & consists of prenex formulas. Let & be the
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set of formulas F for Fin &. (We assume that the function letters added
to Z(&) for different formulas F are different.) If € has a model this

model can be extended to a model of &. Now & consists of universal
prenex formulas and so if it has a model it has a canonical model.
Clearly such a model is countable,

This concludes the proof.
Later (in Exercises 4 and 5) we shall give more precise formulations of this
result.

Consider a language #. If we have a canonical realization of % we
have at the same time, for each n20, a map of R% into 2((T,)")=
{0,132, From this we can obtain a map of R% x(Ty)" into {0,1} and
thus, for each 720, a map of At,, the set of atomic formulas of %, into
{0,1}. Thus we have seen that

THEOREM 9: Having a canonical realization of a language £ is equivalent
to having a realization of the propositional calculus on the set of atomic
formulas of &.

Lemma 10: Let F(xy, ..., x,,} be a quantifier free formula of £ with free
variables xy, ..., x,, and let t, ..., t, be terms of £. Then in a given
canonical realization of £, (4, ..., t,,)eF if and only if the corresponding
realization of the propositional caleulus on Aty satisfies F(iy, ..., 1,,)-
Proor: The lemma is obvious if Fis atomic. Also if F satisfies the lemma
then clearly so does =1 F.

Now suppose that G and H satisfy the lemma. (¢,, ..., 7,,)eG v H if and
only if (¢, ...,,)eG or (1, ..., t,)eH, that is, if and only if either
G(ty, ..., ty,) Or H(t, ..., 1,,) is satisfied by the corresponding realization
of the propositional calculus on Aty, and hence if and only if F(z,, ..., 1,,)
is satisfied by this realization.

THEOREM 11. THE UNIFORMITY THEOREM: Let F(x, ..., x,,) be a quantifier
free formula with free variables x,, ..., x,,. Then \/xy ... VX, F(x{, ..., %,,)
is a theorem if and only if there are terms t%, ..., 1., 1 <i<k, of the language
of F such that the formula

F(tl ot v F(t], . nt2) v v F(H, 10

is a theorem of the propositional calculus on Aty ).
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PRroOF: The condition is sufficient. For suppose that the formula
F(ti,nti) v F(8, . t2) v v F(>65, . 08)

is a theorem of the propositional calculus on Aty . Now consider an
arbitrary canonical realization of £ (F). In the corresponding realization
of the propositional calculus on Aty the formula above is satisfied.
Hence for some i, 1 <i<m, the formula F(f}, ..., t},) is satisfied in this
realization. Therefore, by Lemma 10, in the given canonical realization
(£, ..., £ )eF, and so Vxy ... VX, F(xy, ..., X,,) is satisfied. Since this
existential formula is satisfied by all canonical realizations it is a theorem.
Conversely, we will show that the condition is necessary. Suppose that
VX oo VX, F(xy, ..., x,,) is a theorem, then it is satisfied by all canon-
ical realizations. Thus for each canonical realization of £ (F) there are
terms #,, ..., I, such that (¢, ..., t,,)e F. By Lemma 10, it follows that for
each realization of the propositional calculus on Atg r, there is a sequence
of terms¢,, ..., t,suchthat F(¢,, ..., t,)is satisfied in the realization. Hence,
by the second version of the Finiteness Theorem for propositional calculus
(Theorem 1.5), there are terms #5, ..., t},, 1 <i<Kk, such that F(t{, ..., 13)
VoV F(ff, s Iﬁ,) is a theorem of the propositional calculus on Aty f,.
This completes the proof.

These results give us the following method for verifying that a prenex
formula 4 is a theorem. We construct the formula 4 which, being exis-
tential, can be written in the form Vx; ... Vx,, F(xy, ..., X,,), where Fisa
quantifier free. Then it is sufficient to look at all the formulas of the form

F(t, . th) vV F(6, .., 1%)

where the ¢} are terms of #(F) until you come across one which is a
theorem of the propositional calculus on Atg . (For each formula of this
form we can test in a finite number of steps whether or not it is a theorem,
by the definition of a theorem of the propositional calculus.)

Then A4 will be a theorem if and only if you finally discover a theorem
of the propositional calculus in this way.

THEOREM 12. THE FINITENESS THEOREM FOR PREDICATE CALCULUS: 4 set
& of closed formulas has a model if and only if each finite subset of & has a
model,

Proor: Trivially, if & has a model so does every finite subset of &.
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Now suppose that every finite subset of § has a model., We will prove
that & has a model.
Let % be the language of &. Clearly we can assume that all the formulas

of & are in prenex normal form. Let &={4:4e&}. We will assume that
the function symbols that we use to construct different A are distinct,

Since A— 4 is a theorem for each A, it will be sufficient to prove that &
has a model. .
Each finite subset of & has a model. For suppose {4, ..., 4,} is a finite

subset of &. Then, by hypothesis, {4,, ..., 4,} has a model and, by
Theorem 7, this can be extended to a model of {4, ..., 4,}. Therefore we
need only consider the case when & consists of universal prenex formulas.

Let each formula A of & be of the form Ax; ... Ax,do(xy, -..s X,),
where A, is quantifier free, Let &/ ={A4,(t;, ..., 1,): AeF and (1, ..., )€
(T¢)'}. So o is a set of formulas of the propositional calculus on Atg.

Every finite subset of & has a model and so has a canonical model.
Hence, by Lemma 10, every finite subset of .« has a model, in the sense of
propositional calculus. Therefore, by the Finiteness Theorem for propo-
sitional calculus, .7 has a model. It follows, again from Lemma 10, that
the canonical realization corresponding to this model satisfies &

This completes the proof.

We will use the following notation in what follows:

1. Let & and &’ be two languages. Then Zu.#’ will be used to denote
the language whose function and relation symbols are those of &£ to-
gether with those of ¥’ and #n.¥#" is the language whose function and
relation symbols are those common to % and .%’. We write £ <.#’ to
indicate that the function and relation symbols of # belong also to Z£".
For example, (A v B)=Z(A)uZ(B).

2. If A4,, ..., 4, are formulas we write W A; for the formula

1€ig<k
A;v--vA,(and M A, for the formula A, A - A AL,
I1gigk

THEOREM 13, THE INTERPOLATION LEMMA FOR PREDICATE CALCULUS:

If A v Bis a theorem, there is a formula C such that £ (C) < £ (A)nZ (B)
and such that Av C and Bv —1C are theorems.
ProOF: We show first that it is sufficient to consider the case when 4 and
B are both closed formulas. For suppose that we have proved the Theo-
rem for this case and that 4(z,, ..., z;) and B(z,, ..., z;) are two formulas
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whose free variables occur among zy,...,z, such that A{z,,....,z)Vv
B(z,,...,z) is a theorem. Let 4;,..., 4, be k constant symbols (0-ary
function symbols) which are not in £ (4)u.Z(B). Then A{ay,...,a)Vv
B(ay, ..., ;) is a theorem and so, by hypothesis, there is a formula D such
that Z(D)s(ZL(AnZF(B))v{ay, ..., a} and such that A(a,, ..., q)v D
and B(a,, ..., q)v 1D are theorems. Let C be the formula obtained
from D by substituting zy, ..., zfora,, ..., @,.. Thenclearly A(zy, ...,z ) v C
and B(zy, ..., z;) v =1C are theorems.

So from now on we shall assume that 4 and B are closed. We shall now
show that it is sufficient to consider the case when they are existential
formulas. For suppose that we have proved the theorem for this case
and let 4 and B be two closed prenex formulas such that Av B is a
theorem. We construct the formulas 4 and B using distinct function
symbols which do not occur in Z(4)U.Z(B), so that L (A)NL(B)=
L(4)ynZ(B). Since A—A and B— B are theorems, 4 v B is a theorem.
Therefore, by hypothesis, there is a formula C such that 4v C and
Bv —C are theorems and £(C)=#(4)nZ(B). All realizations of

#(A) can be extended to realizations of #(4}in such a way that 4 =4,
Hence each realization of #(4 v C) can be extended to a realization of

Z(Av C) in such a way that AvC=AvC. It follows that Av C is
satisfied by each realization and hence is a theorem. Similarly Bv —1C
is a theorem.

So we can assume that A=\Vx ... Vx, H(x, ..., x,) and B=
V¥ .o V¥, K(yy, ..., ¥,) where H and K are quantifier free. Av B is a
theorem, and so, by the Uniformity Theorem, there are terms ¢] and u% of
Z(A v B) such that if

Ai = WH(#;, "'52}1;1)

and h

Bl == WK(uI;,...,&i)
£

then A4, v B, is a theorem of the propositional calculus on Aty ., 5.
Then, by the Interpolation Lemma for propositional calculus, there is a
formula C whose propositional variables occur both in 4, and B, such
that 4, v Cand B; v —1C are both theorems of the propositional calculus.

Let &, ..., & be the terms which occur in the atomic formulas of C.
So C=C,(¢4, ..., &) where Cy(zy, ..., z)) is a formula with free variables
Zy, ..., z; which does not contain any function symbols and whose re-
lation symbols are all in &£ (4)nZ(B).
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We construct, by recursion on p, a sequence of quantifier free formulas
C,(zy, ..., z;,) whose language is contained in Z(A4)n.%(B), and for
each p a sequence &Y, ..., &7 of terms of £ (4)nZ(B) so that C=
C,(&5, ..., &), as follows:

For p=1 the formula is C,(zy, ..., 7) and the terms are ¢&,, ..., &,
Suppose we have carried out this construction as far as p so that
C=C, (&, ..., éfp). We choose a &7 of maximum length that begins with a
function symbol ¢e.£(4) L (B), if one such &, exists. If, say &7, is this
term, we have & =, ... 77, where 7, ..., 7, are terms of £ (4) N £ (B).
We then put C, (2, ..oy 21, +0) = Cpl21s -5 21, _y» $2y, --- 2y, +,) and we let
the corresponding sequence of terms be &7, ..., & _1. %o o e

Clearly when p is increased by one the sum of the lengths of the terms
&P decreases by one. Consequently this construction must stop after a
finite number of steps. Thus we eventually obtain a quantifier free
formula M(zy, ...,z,) and a sequence of terms #;,...,7, such that
C=M(ny, ..., n,), the language of M(zy, ..., z,) is contained in £ (4) N
Z(B) and none of the terms 7y, ..., 7, begins with a function symbol of
F(A)n Z(B).

Since A; v C and B, v —1C are theorems of the propositional calculus
on Aty 4, p it follows from Lemma 10 that Vx; ... VX, H(x;, ..., X)) V
My, ..ong) and Vyy ... V3. K(yi, oo yu)v T M(ny, ..., 1,) are both
theorems. Suppose that #,, ..., #, are arranged in order of decreasing
length (in such a way that no term can be a sub-term of any that follows
it).

Put D=Qz, ... Q;z;M(zy, ..., z,), where Q;= A if #; begins with a
symbol ¢ which is in Z£(B), and hence not in £(4), and G;=V if #,
begins with a symbol ¢ which is in #(4), and hence not in #(B). We
will see that D is the desired formula,

Clearly £ (D)= Z(A)n L (B) since L(M)< L (A)n L (B). Suppose
that for /< g we have shown that

AV Q1 ziey... QM (zy, 2y M ees )
and
BvQ4zimq QziM(zgy oy 2y gy s o5 1)

are both theorems. (Note that this is certainly true when /=1.)
Put U(z))=Qy_ 12711 - @i2iM(Z1s -5 Zi_1, Z1-15 Z1s Mg 15 -5 T,)- SO BY
our hypothesis 4 v U(y,;) and Bv —1U(y,) are both theorems. Suppose,
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say, that », begins with a symbol ¢ of Z(B),s0 ¢ ¢ £ (A). Lety, =1, ... 7,,
where 1y, ..., 7, are terms of £ (4)u £ (B). We have to show that both
Av ANzU(z;) and Bv \Vz,~1U(z) are both theorems. Clearly the latter is
because Bv 1 U(y,) is a theorem.

Put Av U(z)=V(z;, 141, ..., 4,) Where

V(Z[, Zi41s ...,Zq) = A4 v lelzl_.l cas lelM (215 vees 2119 ZD’"?ZQ)'

Then we have to show that Az V{z, 7,4, ..., #,) is a theorem. This is a
consequence of the following lemma.

Lemma 14: Let V(z, zy, ..., z,) be a formula with free variable z and let ¢
be a function symbol which does not occur in V(z,zy, ..., z,). Let 5=
¢ty ... 7, be a term beginning with ¢ distinct from and at least as long as
each of the terms 1y, ..., 1. Then, if V(n, 1y, ..., n,) is a theorem so is
/\Z V(z’ Hys -5 ”q)'

The lemma reduces to its special case of purely existential V. For, if
V{n, 11, .., n,) is a theorem, so is ¥(i, 7y, ..., n,) and hence, by applying
the lemma to this existential formula, sois Az 17’(2, His os y) Let abe an
individual constant or variable not occurring in ¥(n, #y, ..., #,) (by
assumption that there are infinitely many variables there always is such
an a). So ¥(a, 1y, ..., n,), i.e. [AzV(z, 1y, ..., m,)]" is a theorem, and so
is Az V(z,n,....n,). Suppose then that V(z,#n, ..,7)=Vx ...V X,
W(z, nys ...s s Xy .., Xp), and that @ is a new constant or variable. We
wish to show that V(a, ,, ..., #,) is a theorem or, equivalently, that it is
satisfied in each canonical realization M. Let M’ be the realization
obtained from Mt by changing the value of ¢ at the place (74, ..., 7,) by
putting @(y, ..., 7,)=a instead of ¢=1, ... 1, (its value in the canonical
realization ). Now N’ satisfies ¥(n, ,, ..., #,) since this is a theorem;
also the values of #y, ..., 77, in M and P’ are the same, namely #,, ..., 7,
because none of these terms contains # as a part. Since W(z, zy, ..., z,,
Xy -5 X,,) dOES NOt contain ¢, its values in 9 and N’ are the same: let W
be the common value. Since M’ satisfies Vx; ... Vx,, W{(n, 7, ..., 7,0 Xy,
<ous Xp) and the domain of M’ is the set of terms, there are terms 1,, ..., 1,
suchthat (7, fiy, ..., figs tis -0 1) €W. But fj, =n,, ..., 7,=n, and f=a. So
(@, 74, «.os s tys ovs By)€ W which means, since 74, ..., 1, are also elements
of the domain of I, that VVx; ... Vx,, W(a, #y, ..., n,, Xy, ..., X,,) is satis-
fied in I and hence also V(a, 74, ..., 7,).

This concludes the proof of the lemma and hence of Theorem 13.
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In the Exercises we give an example where the formula C is obtained by
following the above proof.
We can restate the result as

THEOREM 15: If A— B is a theorem there is a formula C such that A— C and
C— B are theorems and L (CYc £ (A) n ZL(B).
We have as a corollary

THEOREM 16. THE DEFINABILITY THEOREM FOR PREDICATE CALCULUS:
Let & be a set of formulas, R an n-ary relation symbol of £ () and 7'
the set of formulas obtained by substituting for R in each formula of o7
an n-ary relation symbel R’ which does not occur in £ (7). Thenif (Rx, ... x,
—R'x; ... x,) is a consequence of &/ U ', there is a formula F such that
L (Fyc L (), R¢ZL(F) and (F-Rx, ... X,) is a consequence of 7.

PrOOF: Since (Rx; ...x,—R'x; ... x,) is a consequence of .7 u.s?’, by the
Finiteness Theorem, there is a finite subset 2/, of & such that (Rx, ... x,
- R'x, ... x,) is a consequence of &7, U &. If 4 is the conjunction of the
formulas in &7, and A’ is the conjunction of the formulas in &7 then

(AAA)>(Rxy...x, > R'xg ... x,)
is a theorem and hence so too is
(A ARxy..x,)= (A" > R'xy...%,).
Therefore, by the Interpolation Lemma there is a formula F such that
L(F)cZ(A)nF(4'), and both
(AARx,...x,)»F and  F-(A'-R'x ... x,)

are theorems. Therefore A—(Rx; ... x,»F) and A'—»(F->R'x, ... x,) are
theorems, which gives the desired result.

Exercises

1. The language .# is given as follows:
Vg is the two element set {x, y},

R, contains two elements, a unary symbol U and a binary symbol R,

F, contains one unary symbol f.

Consider the following realization of #. The domain is R, the set of
real numbers, the value of U is the closed interval [0,1], R has the value
R={(x, y)eR*:x <y}, the value of fis given by f(f)=1>+1.

What is the set of terms of .#?
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The values of the formulas of £ can be represented as subsets of the
plane R™ ¥, Which subsets of the plane correspond to the following
formulas:

Ux, Ufx, VvxUfx, R(x, fy), AxR{y, fx), AxR(x, fy),
AXR(x, fx), Ay(Uy-R(fy, x)).

2. Give a formula in prenex normal form which is equivalent to
AxXVyAzAxyz— Ay \VzByz (AeR}, BeR2).

3. Consider the formula F= Ax Vy Vz Au Vv A(x, y, z, u, v), where 4
is a S-ary relation symbol.
Give two formulas £ and F which satisfy Theorems 7 and 8.

Answer. The proofs of these Theorems give the following formulas
F= Ax Au A(x, fx, gx, u, h(x, fx, gx, u))

where f and g are unary function symbols and % is a 4-ary function

symbol. F=\yvzVvAla,y, z, ¢{a,y, z),0)

where a is a 0-ary function symbol and ¢ is a ternary function symbol.

4. Let & be a set of formulas of cardinal N> N,. Show that if & has a
model then, for each cardinal X" = N, ¢ has a model of cardinal ¥’.

Answer. Let & ={F:Fe &)}, where we use distinct function symbols not
occurring in #(&) to form F for different F. & has a model and this can be

extended to 2 model of &, We add to Z(&) a set C of constant symbols of

cardinal ¥X’'. Since é; has a model it has a canonical model for this new
language. Clearly this canonical model is of cardinal N’.

5. If R is a realization of a language .# with domain E, a realization R’
of % with domain E'S E and such that for each ¢eFg, ¢(E™)<E’ and
the values of the function and relational symbols are the restrictions to E’
of their values in R is called a sub-realization of R.

a) Show that if € is a set of universal prenex formulas then every sub-
realization of a model of € is a model of &.

b) Let & be a set of prenex formulas of cardinal N > N,. Show that if &
has a model then this model has a sub-realization, whose domain is of
cardinal <N, which 1s a model of &.



PREDICATE CALCULUS 31

Answer.

a) Let F be a quantifier free formula, F the value which it has in the
realization R, (F< E¥¥), and F the value which it has in the sub-realization
R of R, (FSEYYcE"?),

Then we show that F = Fr E'Y<. This is clear if Fis atomic; also if it is
true for F and G then it is true also for =1 F and Fv G and hence for all
quantifier free formulas. Now suppose that 4= Ax, ... Ax,F, where F
is quantifier free, is a formula of &, It is satisfied by the realization R and
so F=FE"¥ Therefore F=E'Y¥¢ and so A is satisfied also in the sub-
realization R’ R

b) We construct the set &= {F:Fe&} using distinct function symbols
not in £ (&) for different formulas F. The given model R of & can be

extended to a model of &. Let E be the domain of this model and let T
be the set of terms of #(&). Clearly the cardinal of T'is less than or equal
to W.

Let  be an arbitrary fixed element of E¥¥. From J we can derive a map

t—f of T into E such that X=4(x) for each variable x, and ¢r, ... 7,=
&(F, ..., t,) for each ¢ in Fj, where ¢ is the value of ¢ in the model R of

&. Let E’ be the image of T under this map. Clearly £’ is of cardinal

< W. Also if ¢ is an n-ary function symbol of g(é;) and a, ..., a,cE’
then ¢(q, ..., a,)e E’. Consequently there is a sub-realization R’ of R
with domain E. R

By a) R’ satisfies & and so R’ is a model of &.

6.2) If R is a binary relation symbol, show, by using the method on page
24, that the formula Ax Vy Az(R{x, y)v -1 R(x, z))is a theorem.

b) Give an example of a quantifier free formula 4 (y) such that \/ y4(»)
is a theorem but for no term ¢ of £ (A) is A(¢) a theorem.

¢) Give an example of a quantifier free formula 4(x, y, z) such that
Ax Vy AzA(x,y, z) is a theorem but for each sequence #,(x), ..., 7,(x)
of terms of #(A) having only x as free variable the formula 4(x, #,(x), z)
v oo v A(x, £,(x), z) is not a theorem.

Answer.

a) It is obvious that this formula is a theorem; in fact it is the closure of
VyR(x, ¥)v Az1R(x, z) which is of the form A v 1 4.
If F=Ax Vy Az(R(x,p)v-1R(x,z)) then F=Vy(R(a y)v
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—1R(a, ¢y)), where a is a constant symbol and ¢ is a unary function
symbol. It follows from the Uniformity Theorem that there are terms
ty ..., I, formed from a, ¢ and variables such that

(R(a, t;) v R(a, ¢t1)) v---v (R(a, 1) v 1 R(a, 1))
is a theorem of the propositional calculus. In this case it is clear that we
need only take ¢; =a and ¢, = ¢a to obtain the formula

R{a, a) v =1 R(a, ¢a) v R(a, ¢a) v =1 R{a, d¢a)

which is obviously a theorem of the propositional calculus.

b) Put A{y)=R(a, y)v 1 R(a, ¢y). Clearly \VyA(y)is a theorem. But
for any term t, A(t)=R(a,t)v —1R(a, ¢t) is a theorem only if it is a
theorem of the propositional calculus on {R(a, t), -1.R(a, ¢$t)} which it
plainly is not.

¢) Put A(x, y, z)=R{x, y) v 1 R(x, z). We have seen that Ax Vy Az
A(x,v,z) is a theorem. However A(x,t,(x),z)v v A(x, t,(x), z) is
equivalent to = R(x, z} v R(x, t,(x)) v --- v R(x, t,(x}) which cannot be a
theorem if none of the terms #,{x) is equal to z.

7. Consider a formula F. Let £ and F be constructed using distinct
function symbols. Show that F— F is a theorem. Which is the corre-
sponding interpolation formula?

Let F= Ax Vy Az A(x,f(»), z), where A is a ternary relation symbol
and fis a unary function symbol. Find the corresponding interpolation
formula given by the proof of the Interpolation Lemma.

Answer. We have already shown that F— F and F-» F are both theorems.
It follows that F— F is a theorem. On the other hand since F and F are
constructed with distinct function symbols we have Z(F)c Z(F) n Z(F)
and so Fis an interpolation formula.

If F= Ax Vy AzA(x,f(¥), z) then F= Ax AzA(x, f(¢x), z) and F=
VyA(x, f(), ¥(x, y)), where a, ¢, ¥ are, respectively, 0-ary, unary and
binary function symbols. Thus the theorem —1Fv F is

Vx VzA(X, f(dx), 2) v VyA (e f(3), ¥ (2, )
which, in order to follow the proof of the Interpolation Lemma, we can
write as Vx VVzH(x, z} v VyK(¥).
It can be seen at once that H(x, ¢ (o, ¢a)) v K(¢a) is a theorem of the
propositional calculus. (It can be written in the form N v =1N where N is
Al f(da), Y(a, da)).) The corresponding interpolation formula is N.
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We write N=C(&,, ..., &,), the formula C(z,, ..., z,) in this case is
Az, z,, z3) with & =a, &,=f(da) and 3=y (o, pa). We choose the
longest &; beginning with a function symbol common to F and F (here
&) and put C,(zy, 24, 23) =C; (21, /22, 23) =A(z4, fz,, 25). Thus we have
E=a, &3=¢a and 3=y (a, pa), and the sequence of formulas C, stops
here. The formula M(z,, ..., z,) in this case is therefore 4(zs, /2, z;) and
=y (o, pa), y,=¢x and ny=o, the » being arranged in descending
order of length., Therefore the interpolation formula we seek is
03250,2,0,2, A(zs, fz,,2;) with Q;= A, because 5, begins with
vef(F), Q,=V because 5, begins with ¢peL(F), and Qs= A,
because 55 begins with ae#(F). Thus the interpolation formula is
Nz3 Vz, Nzy A(23, 2,5, 21} which is equivalent to Ax Vy Az4 (x, fy, z).
Thus we have again arrived at the same interpolation formula,

8. A formula A is said to be a consequence of a set & of formulas if all
realizations of & which satisfy & also satisfy 4.

a) Show that A is a consequence of a finite set {4, ..., 4,} of formulas
if and only if (4, A--- A A4,)—A is a theorem.

b) Show that A is a consequence of a set & of formulas if and only if it
is a consequence of a finite subset of &.

¢) A set & of formulas is said to be independent if no formula of £ is a
consequence of the other formulas of €. Show that & is independent if and
only if every finite subset of & is independent.

d) Show that each finite set of formulas has an equivalent independent
subset and that for each countable set of formulas there is an equivalent
independent set.

Answer. The proofs of these results are similar to those already given
for the case of propositional calculus.



CHAPTER 3

PREDICATE CALCULUS WITH EQUALITY

We now consider those languages studied in the preceding chapter which
contain the symbol =, and we only consider those realizations in which = rep-
resents the identity relation. It turns out that the study of these normal realizations
can be reduced to the general theory of the previous chapter. It should be noted
that when a given relation symbol is required to have some definite realization then
the class of models so obtained will in general have a somewhat different theory,
cf. the co-models of Chapter 7, Exercise 4.

The chief result given in the text provides a convenient set of necessary and
sufficient conditions for a given realization to be embeddable in a model of a given
set of formulas. These conditions are, incidentally, also significant in the case of a
language without equality. As an interesting consequence we have a general
result about the existence of “‘symmetric laws™ in the sense of Bourbaki, and
purely algebraic conditions for the existence of an ordering compatible with a
given structure,

The result on embeddability is a particular case of a general result on the
equivalence of certain second order (or higher order) axioms and certain sets of
first order axioms. (See Chapter 7 where the notion of “second order axiom” is
studied.) Exercise 5 provides an example of a second order axiom which is equiva-
lent to an infinite set of first order axioms (of the same language) but which is not
equivalent to any finite set of such axioms. This proves the existence of an infinite
set of first order axioms constructed from a finite number of relation symbols
which Is not equivalent to any of its finite subsets.

Exercises 1 and 2 establish some important non~categoricity properties of first
order axiom systems {even for normal realizations). In fact, neither the notion of a
finite set, nor that of a countable set, nor that of the set of natural numbers (with
the successor relation) can be characterized by means of first order formulas. We
shall show in Chapter 7 that the usual characterizations of these notions (those due
to Dedekind and Peano) are in fact second order formulas. Thus these second
order conditions are not equivalent (in the sense of having the same class of models)
to any set of first order formulas,

A language & is said to be with equality if R% 50 and there is a singled
out element E of RZ (called the identity or equality symbol).
A realization of a language with equality with domain U is said to be
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normal if in this realization F is the diagonal of U, i.e. the set of all pairs
(x, x) with x in U.

A formula A of Z is called a theorem of the predicate calculus with
equality if in each normal realization of %, A=U"¥, where U is the
domain of the realization, i.e. if each normal realization of .# satisfies A.

Given a language % with equality we denote by &, the set consisting
of the following formulas

1. AxExx.
2. For each Pe R% (including P= E) the formula

/\xl sev /\xn /\yl"' /\yn((Exlyl A A Exnyn A le "'xn)_)Pyl"'yn)‘

3. For each ¢eFg the formula

AXy oo AXy Ay oo AV(Ex 5 Ave A EX, Yy = E(Xy . X @Y1 ... V).

Clearly, each formula of &4 is a theorem of the predicate calculus with
equality.

Let M be a realization of # which satisfies &,. I therefore satisfies
the formulas AxExx and Ax; Axy Ayy AYa(Exyy; A Exyy, A Exyx,—
Ey,y,) which shows that E, the value of E in 9, is the graph of an
equivalence relation on U, the domain of Y. Since M satisfies all the
formulas of 2), for each Pe R, P is closed with respect to the equivalence
relation E. That is, if (ay, ..., a,)eP and @, ~b,, ..., a,~b, under the
relation E, then (by, ..., b,)eP. We let N’ be the following realization of
. The domain of M’ is U’'= U/E, the quotient of U with respect to E,
that is, the set of equivalence classes of elements of U under the equiva-
lence relation E. For each Pe R}, P, the value taken by P in W', is P/E.
For each ¢peF., ¢ the value of ¢ in M’ is given by

$(GI/E5 ---:an/E) = a(alg ...,a,,)/E.

This is a good definition since It satisfies all the formulas of 3).

LEMMA 1: For each formula A of ¥, A, the value of A in the realization N,
is closed with respect to the equivalence relation E, and A= A/E.
ProOOF: We prove the lemma by induction on the length of A, The result
is obvious if A is atomic. Also if the result holds for formulas B and C it
holds also for — B and for Bv C. For example, if 4 is 1B then 4=cB
and 4=cB, therefore since B is closed so is ¢B and cB=cB/E.
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Now suppose that 4 is VxB, where B satisfies the lemma and let
X, Xy, ..., X, be the free variables of B, 4 is (up to a factor of V£~ &1 ¥nl)
the set of (ay, ..., @,)e U ¥ =" such that, forsome ae U, (a, ay, ..., a,)€B.
Now if @, ~d), ..., a,~a, under the relation E, since by hypothesis B is
closed, if (a, ay, ..., a,)eB then (a, ai, ..., a,)eB and so (a}, ..., a,)ed.
Hence A is also closed;

A= {{xg,...,x,)e U for some acU’,(%,%,...,0,)€B}.

Let a, ay, ..., a, be elements of U whose equivalence classes under £ are
o, &y, ..., &, Since B satisfies the lemma, (a, a,, ..., a,}€ B and therefore
(a5 ..., a,)edand so A= A[E. '

THEOREM 2: A4 set &7 of formulas has a normal model if and only if the set
&y has a model.
Proor: The condition is obviously necessary since each formula of £, is a
theorem of the predicate calculus with equality.

Conversely if &,u% has a model MM, then in the normal realization
P obtained from I as above A=A/E for all formulas 4. Therefore
since M is a model of &7, M’ is also a model of 7.

COROLLARY 1: A countable set <& of formulas of & which has a normal
model has a countable or finite normal model,

PROOF: Since &g, is countable if & is, €4y W&/ has a countable
model. The domain of the normal model of &7 obtained from this model
is the quotient of the domain of the original model with respect to an
equivalence relation (see above). It follows that the domain of the normal
model is finite or countable,

COROLLARY 2: A formula A is a theorem of the predicate calculus with
equality if and only if it is a consequence of & o).

Proor: The condition is obviously sufficient. It is also necessary. For
suppose 4 is a theorem of the predicate calculus with equality, then =1 4
does not have a normal model. Hence, by Theorem 2, &4, U {14} does
not have any model. This shows that 4 is a consequence of &4 ).

THEOREM 3. THE FINITENESS THEOREM FOR PREDICATE CALCULUS WITH
EQUALITY: A set &7 of formulas of £ has a normal model if and only if
every finite subset of &7 has a normal model.
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Proor: The condition is obviously necessary. It is also sufficient, since,
if it holds then every finite subset of &g, U o/ has a model. Therefore
€ y(syY & has a model and so &7 has a normal model.

THEOREM 4, THE INTERPOLATION LEMMA FOR PREDICATE CALCULUS WITH
EQUALITY: If A— B is a theorem of the predicate calculus with equality then
there is a formula C such that both A—C and C-»B are theorems of the
predicate calculus with equality and £(C)s F(A4)n Z(B).

PrOOF: By an abuse of language we shall use &4 to denote the con-
junction of all the formulas in €44, which is finite. Since A—>B is a
theorem of the predicate calculus with equality it is a consequence of
Epy N Eppy. 80 (Egiay A€ gp)){A—B) is a theorem and hence
(€ peay A A)={€ 23— B) is a theorem. Therefore, by the Interpolation
Lemma for predicatecalculus, thereisaformula C,such that(€ g4 A A)—C
and C-(& gy, B) are theorems and .£(C)= £ (4)n £ (B). It follows
that &g —(A—C) and &4 —(C—B) are both theorems and hence
A-C and C— B are theorems of the predicate calculus with equality.
(See also Exercise 4 of Chapter 5.)

THEOREM 5. FIRST DEFINABILITY THEOREM FOR THE PREDICATE CALCULUS
WITH EQUALITY: Let 4 be a formula, R an n-ary relation symbol of £(A)
and A’ the formula obtained from A by substituting for R an n-ary relation
symbol R’ which does not occur in & (A). Then if

(AAAYy>(Rxy...x,— R'x{...x,)

is a theorem of the predicate calculus with equality, there is a formula F
such that L (F)= £ (A), R¢ L(F) and A—~(F—Rx, ... x,) is a theorem of
the predicate calculus with equality.

Proor: The proof is the same as before, from the Interpolation Lemma.

THEOREM 6. SECOND DEFINABILITY THEOREM FOR THE PREDICATE CALCU-
LUS WITH EQUALITY: Let A be a formula, ¢ an n-ary function symbeol of
ZL(A) and A’ the formula obtained from A by substituting for ¢ an n-ary
Sunction symbol ¢’ which does not occur in £ (A). Then if

(AAAY>(dxy...x,=d'x;...x,)

is a theorem of the predicate calculus with equality, there is a formula F of
F(A) such that $¢ L (F) and such that A—~(F—y=¢x, ... x,) is a theo-
rem of the predicate calculus with equality.
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(Note that in the statement of this Theorem we have written ¥ =vp instead
of Euv: we shall continue to do so below.)
PrROOF: (AAA ' A(y=¢x, ... x,))=>{y=¢'x; ... x,) I8 a theorem and
hence sois (AAy=¢x; ... x,)> {4 >y=0¢"x; ... X,).

The result now comes by applying the Interpolation Lemma to this
formula.

We have the following theorems which are immediate consequences of the
analogous results of the previous chapter.

THEOREM 7: For each prenex formula F there is a universal prenex formula
F and an existential prenex formula F such that a) F—F and F—F are
theorems of the predicate calculus with equality, and b) each realization of

L(F) can be extended to ¥ (F) and to Z(F) so that F=F and F=F.

THEOREM 8. THE UNIFORMITY THEOREM FOR PREDICATE CALCULUS WITH
EQUALITY: The formula \/xy ... \/x, A(x{ ... x,), where A is quantifier
Jree, is a theorem of the predicate calculus with equality if and only if there
are terms t{, ..., ti(1<i<k), such that the formula

W A(f, ..., 1)

1sisk

is a consequence, in the sense of the propositional calculus on Aty 4, of the
Jollowing set of formulas:

1) For each term te #(A), 1=t.

2) For each n-ary relation symbol R of £ (A) and each pair of n-tuples

(trs oos t) and (24, ..., ;) in (Tyeay)"
(ty=ti A---At,=t, ARt;...t,)> Rt} ... 1.

3) For each n-ary function symbol ¢ of F(A) and each pair of n-tuples
(ts s ) and (1, ..., 1) in (Tya))

(=11 A At =18)> ¢t .1, = 1] ... 1,.

ProorF: It is sufficient to apply the Uniformity Theorem to the formula
TE g4y v A

EXTENSIONS OF REALIZATIONS

Given a realization 9 of the language % with domain U, by an extension
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of Y we mean a realization M’ of a language ¥’ containing & such that

a) the domain U’ of P’ contains U,

b) for each n-ary relation symbol R of %, if R, R are its values in the
realizations IR, W', respectively, then R=Rn U",

¢) for each n-ary function symbol ¢ of .2, if @, @ are its values in the
realizations 9, M, respectively, then ¢ is the restriction of ¢ to U™

LEMMA 9: Let W' be an extension of IN. Let F be a quantifier free formula
with values F and F in N, M’ respectively. Then F=F n U¥?.
ProOF: The proof is by induction on the length of F. If Fis atomic then
F=Rt, ... t, say. Let x,, ..., x, be the variables of F. F={(a;, ..., )€
Utees® (G, .., F)eRy =R U" Sinceon U™ ™ 7= 1, (1<i<k)
we certainly have that F=F A v >

Clearly if F and G satisfy the lemma then so too do —F, because

—F= cF, and Fv G, because Fv G=FuUG. This completes the proof.

THEOREM 10: If W' is an extension of M all closed universal formulas of &£
satisfied in M are satisfied also in M.

Proor: If Ax; ... Ax, A(xy, ..., x,), where A is quantifier free, is satis-
fied in I’ the value of 4 in M’ is U'V¥. Hence A is also satisfied in 1.

For the remainder of this chapter we shall assume that all the languages
we consider are languages with equality and that all realizations are
normal.

Let M be a realization of a language ¥ whose domain is U. By the
diagram of MM, which we denote by D(), we mean the set of the fol-
lowing formulas of the language %’ which is obtained from % by ad-
joining the elements of U as constant symbols. (We assume that Un £ =0.)

a) for each ReR), and each (ai, ..., a,)e U" the formula Rq, ... a, or
~1Ray ... a, according as (ay, ..., a,)eR or (uy, ..., a,)¢ R,

b) for each ¢eFy and each (a,4,,...,a,)eU""! the formula a=
da, ... a,ora#da, ... a,accordingasa=¢ (a, ..., a,)ora# (ay, ..., a,).
In particular D(IR) contains for each pair (a, b)e U? the formulaa=5 or
a#b according as a=b or a#b.

THEOREM 11: A realization W' of £ is (up to isomorphism) an extension of
IR if and only if M can be extended 1o ¥’ so as to satisfy D(IN).

Proor: It has a sub-realization isomorphic to M if and only if there is a
one-one map of U into U’ which preserves the values of the function and
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relation symbols of & in the two realizations. The existence of such a
map is equivalent to being able to extend I’ to #' so as to satisfy D(IR).

THEOREM 12. THE EMBEDDING THEOREM: Let IR be a realization of the
language £, and <7 be a set of formulas of a language £,. Then IR has an
extension which is a model of <7 if and only if M satisfies all the universal
Sformulas of &, which are consequences of <.
PRrROOF: The condition is necessary, since if 9’ is an extension of I, M
satisfies all the universal formulas of %, satisfied by I

Conversely suppose that there is no extension of YR which satisfies .7,
Then, by Theorem 11, the set D(M)u 7 is inconsistent. Hence there is
some finite subset 4 of D(IN) such that AU o is inconsistent. Let U be
the domain of 9N and ¢, ..., @, the elements of U which occur in 4. Let
F(ay, ..., a,) be the conjunction of all the formulas of 4. F(xy, ..., x,)is a
quantifier free formula of .#,. Clearly F(ay, ..., a,) is satisfied by I if we
putd, =a,, ..., 4,=a, Hence Vx, ... Vx, F(x,, ..., x,) is satisfied by .
Now 7 U{F(ay, ..., a,)} is inconsistent and hence —F(ay, ..., a,) is a
consequence of 7, Since the constant symbols q, ..., a, do not occur in
A, ANxq ... AX,F(xy, ..., x,) is a consequence of &7. Thus we have
found a universal formula, which is a consequence of &, but which is not
satisfied by IR.

This completes the proof.

We have the following application of this result. We take as %, the
language which has a single binary function symbol x . (We will write xy
for x xy). Then there is a (clearly countable) set ¢ of closed universal
formulas of .# such that a monoid is embeddable in a group if and only
if it satisfies %.

Any monoid is a realization of £, If %7 is the following set of formulas
of #,, the language which has the binary function symbol x, the unary
function symbol "' and the constant e;

Ax Ay Az(x(yz)=(xp}z), Ax(xe=x), Ax(xx"'=e¢)

then Theorem 12 gives us the existence of the set %.
We note that one of the formulas of ¥ is the cancellation rule

AX Ay Au Av(uxo = uyp— x = y).

This formula is sufficient, by itself, if the monoid is commutative.
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Let Mt be a realization of a language £ with domain U and let U’ be a
subset of U. U’ is the domain of a sub-realization " of N if and only
if for each w-ary function symbol ¢ of ¥ and each n-tuple (q, ..., a,) of
elementsof U', ¢ (ay, ..., a,)eU’, where ¢ is the value of ¢ in the realization
M. Clearly the intersection of any collection of subsets of I/ having this
property also has this property. We therefore give the following definition.

For eachsubset U’ of U, the sub-realization IR’ of N generated by U’ is
the sub-realization whose domain is the smallest subset of U which
contains U’ and has the above property. The following Theorem gener-
alizes Exercises 4 and 5 of Chapter 1.

THEOREM 13: Let M be a realization of a language £, and let <7 be a set of
Jormulas of a language &,. Then I has an extension which is a model of =/
if and only if every sub-realization of M generated by a finite set has such an
extension.

Proor: The condition is necessary since, obviously, an extension of Y}t is
an extension of every sub-realization of JJt.

Conversely, let # be the set of universal formulas of ¥, which are
consequences of &7, By the Embedding Theorem, if 9 does not have an
extension which is a model of 7, then there is some formula of # which is
not satisfied by 9. Let F= Ax, ... Ax; G(xy, ..., x;) be this formula,
where G(xy, ..., x;) is quantifier free. Let G be the value of G in 9. Then
there are elements a,, ..., g, in E, the domain of I, such that (ay, ..., a,)
¢G. Let M’ be the sub-realization of I generated by {q,, ..., a}. Let E’
be the domain of 9’ and G be the value of G in M. Since G is quantifier
free G=GnE' ™" ™ Hence (a, ..., ,)¢G and I does not satisfy F.
Hence I’ does not have an extension which satisfies &7,

This completes the proof.

We give some more applications of these results in the Exercises.

Exercises

{(In these Exercises we shall write=, instead of E, for the identity symbol
and x=y for =xy.)

1. Two realizations It and M’ of a language ¥ with domains U and U’
are said to be isomorphic if there is a one-one map ¢ of U onto U’ such
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that for all Re R, R=¢(R) and for all fe Fj, }' =¢(F),where R, fare the

values of R and fin M and R, f are their values in M.

A set .o/ of formulas of & is said to be categorical with respect to a set
of realizations of the language % if all the models of =7 in this set are
isomorphic.

a) Show that if a set .o/ of formulas is categorical with respect to
the class of all realizations then it does not have a model, i.e. & is
inconsistent.

b) Show that if .27 is categorical with respect to the class of all normal
realizations then all models of & have the same finite number of elements
in their domains.

Answer.

a) Let o7 be a set of formulas which has a model. If N is the cardinal of
this model we show that .7 has also a model of cardinal ¥’ > . This will
prove that &7 is not categorical.

Let o = {d: Ae o}, where we use distinct function symbols not
occurring in #(&) to construct different formulas 4. Let %’ be the
language which is obtained by adding to £ (%) a set of constant symbols

of cardinal ¥ > . Since .2 has a model so too does 7. Hence & has a
canonical model with respect to the language %', i.e. a model with
domain T This model is of cardinal X' = N">N.

b) Let o7 be a set of formulas of the language &, with equality, which
has an infinite normal model of cardinal ¥. We shall show that %/ hasa
normal model of cardinal greater than N.

We add to £ (/) a set C of constant symbols of cardinal greater than
XR. Let # be the set of formulas obtained by adding to 7 all the formulas
a#b for a, be C with as# b. Clearly each finite subset of & has a normal
model (e.g. the given normal model of &7, since this is infinite}. Hence %
itself has a normal model. Clearly the normal model is of cardinal
greater than or equal to that of C and hence greater than X.

2. Consider the following language % with equality. The only relation
symbol of # is =, there is one constant symbol 0, a unary function
symbol s (read “successor”) and two binary function symbols +, x.
Given two terms ¢, ¢', we will write ¢+ for 4+ #' and tx ¢’ (or just 1)
for x 1t'. The standard realization of % is the realization whose domain
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is N, the set of natural numbers, and in which the symbols 0, s, +, x,
take their natural values in N, namely zero, successor, addition and
multiplication.

Now consider the following formulas, &7, of Z:

Ax(sx #0), AXAY(Ex=sy—>x=y), AxVy(x=0v x=sy),
Ax(x+0=0), Ax Ay(s(x+y)=x+sy),
Ax{x x0=0), AxAy(xxsy=(xxy)+y).

a) Show that the standard realization of . is a normal model of &7
(the standard model of <7) and that all normal models of &« have a sub-
model isomorphic to the standard model. The elements of this submodel,
i.e. the values of the terms 0, 50, s50,... are called the narural numbers of
the model.

b) Show that given any set # of formulas of .# which contains % and
has a model, there is no formula A{x) of .# with a single free variable
whose value in a// models of # is the set of natural numbers of that model.

¢) Show that given any countable set & of formulas of % which
contains %/ and has a model, there is a countable normal model of #
which is not the standard model of «/( in particular, & is not categor-
ical with respect to the class of all countable models).

d) (An improvement of b).) We obtain the system called first order
arithmetic by adding to &7 the countable set of the following formulas:

for each formula A (x) having as free variables x, x,, ..., x; we include
the formula

AXy e AXJAQ) A Ax(A(x) = A(sx))) — AxA(x)].

The set of these formulas represents the principle of induction for
properties definable in the language .2,

Show that for each formula 4 of & with a single free variable and for
all non-standard models M of first order arithmetic, the value 4 of 4 in
I is not the set of natural numbers of IN.

Answer.

a) Clearly the standard realization satisfies 7. Conversely if 9 is a
normal model of o7 the first three formulas of .7 entail that the values in
I of the terms of the form 50 form a set isomorphic to N, under the map

%—-»n, in which O and s have their natural values, The other formulas
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of & entail that + and x have as values addition and multiplication
on this set. This subset of M closed under 5, T and X is a sub-model
of M.

b) Add the constant symbol a to % and consider the set of formulas
{A(a),a#0, a#50, ...,a#5"0, ...} where A(x) is a formula of £ with
one free variable. If the value of A(x) in each model of & is the set of
natural numbers then each finite subset of this set has a model which
satisfies # (it is sufficient to take for the value of a a sufficiently large
natural number). Therefore the whole set has a model which satisfies #.
In this model 4(x) is satisfied by an element, the value of ¢, which is not a
natural number.

¢) Take as 4(x) in b) the formula x=x. The normal model which we
have contains the standard model as a proper sub-model, since the value
taken by a is different from all the natural numbers, which is not iso-
morphic to it.

d) If —14(x) is the empty set, A—(_;) contains non-standard elements

since, by hypothesis, I is non-standard. If 71.4(x) is not empty, since

(A0} A Ay(A(y) > A(sy)) > AVA(Y)
is equivalent to

Ax(TAx) > (mA0) v Vy(m1A(sy) A A())))
either O¢ A(x) or there is a non-standard jeA(x) or there is a natural

number j of M such that e A(x) and 57¢ A(x). In each case A(x) is not
the set of natural numbers of .

We can see now why Peano’s postulates are categorical while those
of first order arithmetic are not. Peano’s axioms state that the induction
principle can be applied to any property of the elements of the domain of
the realization (of &) we are considering. In particular it can be applied
to the property of being a natural number of that realization. However
this property cannot be defined in the language % for any realization of
Z other than the standard realization.

3. Consider the following language .#. The only relation symbol is =;
there are two constant symbols 0 and 1 and two binary function symbols
+ and x. Show that given any formula 4 of % which is satisfied in all
commutative fields of characteristic zero, there is an integer P such that A4
is satisfied in all commutative fields of characteristic p= P,
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Answer. Let € be the following set of formulas of #Z.
Ax Ay Az(x+(y+2)=(+p)+z2)  Ax Ay Az(x(yz) = (xy)2)

Ax Ay(x+y=y+x) Ax Ay(xy = yx)

Ax(x +0=0) Ax(x-1=x)

Ax Vy(x+y=0) Ax Vy(x=0vxy=1)
Ax Ay ANz{x(y + z) = xy + xz) 1#0

(here we have written xy instead of x xy).

Clearly the normal models of ¥ are precisely the commutative fields.
Let F, be the formula 1+1+---+1=0, where 1 is repeated p times.
Clearly the normal models of €U {—F,: pprime} are precisely the
commutative fields of characteristic zero. Thus any formula 4 which is
true in all commutative fields of characteristic zero is a consequence of
% {1 F,: pprime}. Hence it is a consequence of some finite subset
€ u{F,, ..., 1Fp} of this set and hence is satisfied by all commutative
fields of characteristic p > P.

4 (StEINITZ’Ss THEOREM). Consider a commutative field K, Show that there
is an extension field L of K in which all polynomials with coefficients in X
decompose into linear factors. Deduce from this the existence of the
algebraic closure of K.

Answer. Consider the language % of Exercise 3. The field Kis a realization
of . Let the diagram of this realization be D. Clearly every normal
model of € L Dy, where % is the set of formulas defined in Exercise 3, is
an extension field of K.

For each polynomial P(x)=ay+ax+ - +a,_(x" '+x", with coef-
ficients in K, we consider the formula

VXgooe V(0 4o 4 e X" 4 X" = (x + %) (x + %,))

of the language ¥, in which the diagram of X is expressed. Let =7 be the
set of all these formulas. For each finite subset &7, of &/ we know that
there is a normal model of €U DU/, since we can construct an
extension of K, of finite dimension over K, in which a given polynomial
splits into linear factors. Thus every finite subset of ¥ u Dy o7 has a
normal model. It follows that ¥ uDyu .o/ has a normal model. This
model, L say, is a commutative field which is an extension of X in which
all polynomials with coefficients in K can be split into linear factors. Let
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Q be the subfield of L consisting of all those elements of L which are
algebraic over K. Then clearly Q is the algebraic closure of K,

5. Consider the language %, which has a single binary relation symbol P.
Show that there is a set % of universal formulas of %, such that given a
realization I of &,, P, the value of Pin 9N, can be extended to an order
relation if and only if 9t satisfies %. Give an example of such a set  and
show that it is not equivalent to any finite subset of the consequences of %.
Show that P can be extended to a rotel ordering if and only if M satisfies .

Answer. Consider the language ., with two binary relation symbols P
and <. Let &/ be the set of the following formulas of .%; :

Ax Ay(Pxy > x<y)

Ax(x < x)
AXAY(x<yAy<xo>x=y)
Ax Ay Az(x <y Ay<z—>x<z).

By the Embedding Theorem a realization I of #,, can be extended to a
model of &7 if and only if it satisfies the set % of universal formulas of Z,,
which are conseguences of 7. But clearly ¥t can be extended to a model
of &7 if and only if P can be extended to an order relation. Hence % is the
desired set of universal sentences.

It 1s at once evident that % contains the formula

Fy= AXy.oo AX((Px1x3 Ao A PXy_q X, A Px,x;)—
= (xy = x5 == X,))

for each n>1. We now show that given a realization Yt which satisfies all
these formulas, F,, P can be extended to a total ordering or, equivalently,
that 9 has an extension which satisfies

B=o0{AxAy(x<yVvy<x)}.

To show that I has such an extension it is sufficient to show that every
sub-realization M’ of IR, generated by a finite set, has such an extension.
Any such sub-realization IR has a finite domain E’. We prove that I’
can be extended to a model of & by induction on the number of elements,
k,in E’.

If k=1 the result is trivial. Suppose it is true for k=r—1 and let E’
contain the relements a,, ..., a,. There is some i, 1 <i<r, such that for all
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J#i(a;, a j)éf", for otherwise there is a sequence n,, ..., n,, ... of integers
between 1 and r such that (ay, @), (s @p,)s -5 (@, 15 @), - are all in
P, which would contradict one of the formulas F,,

We will therefore assume that a,, say, is such that, for 1 <i<r, (a,,a,)¢P.
Since E”={a,,....a,_,} contains only r—1 elements, by our induction
hypothesis, P can be extended to a total ordering of E”. It is sufficient
to put g;<a, for 1 <i<rin order to extend P to a total ordering of E’.

Consider the relation 2 on the set {1, ..., n}, whose elements are the
pairs (1, 2), (2, 3), ..., (n—1, #), (n, 1). Clearly this is a model of {F,, ...,
F,_,, —1F,} which, by the Finiteness Theorem, shows that the set of all
F,’s is not equivalent to any finite subset of its consequences.

6. a) Consider the language %, which has the single binary function
symbol x. Show that there is a set % of closed universal formulas of %,
such that an arbitrary group G can be totally ordered if and only ifitisa
model of . Give such a set of formulas # for the case of commutative
groups.

b) Consider the same problem for a field. In this case the language has
two binary function symbols 4+, x and a single constant 0,

Answer. This is an easy consequence of the Embedding Theorem.

For the case of a commutative group the set of universal formulas
sought for is { Ax Ap(x"=y"—>x=y): n=1}. The commutative groups
which are models of this set are the torsion free groups.

In the case of a commutative field the desired set of formulas is
{AX) . AX, (34 +x)=0-x,==x,=0):n>1}. The commutative
fields which are models of this set are the real fields.

7. Let % be a language with equality which contains a binary relation
symbol R different from =. Show that there is no set &/ of formulas of &
which has an infinite normal model and is such that in all normal models
of &7, R represents a well-ordering of the domain.

Answer. Let o7 be a set of formulas of . and let I be an infinite normal
model of ¢ with domain E, such that the value R of R in this model is a
well-ordering of E. E therefore contains an infinite strictly increasing se-
quence of elements &,, ..., &, .... Therefore, for each integer ,(;, &;4+,)€R
and &;# &, ;. We add to .# an infinite sequence of constanta,, ..., a,, ....
For each integer n the set

o U{Rayay A ay # ay,....,Ra,a, | Aa,#a,_}
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has a model, namely the model IN with 4, =¢&,, ..., 4,=¢,. Hence, by the
Finiteness Theorem, the set

A {Ran+lau Ayt # Ay 1 Z 1}

has a model. In this model the sequence 4, ... 4,, ... is an infinite strictly
decreasing sequence and hence R does not represent a well-ordering.

8 (Existence of free models). Let & be a language with equality and 7 a
set of closed formulas of Z of the form Ax; ... Ax, [(4, A+ AA4,)>B]
where m is possibly zero, and all 4;(1<i<») and Bare atomic formulas.

a) Show that &7 is satisfied by the normal realization whose universe
consists of (equivalence) classes of terms ¢’ of & ie. []={t":t'=tis a
consequence of =7} for each term ¢ of .#; for each function symbol f of
2z, f({t], ... [, D=Lf(t, ..., 1,)]; and for each relation symbol R of &,
([#:1, ---> [#.]) €R if and only if the formula R(r,, ..., #,) is a consequence
of 7.

b) Deduce that if each C;is an atomic formula, possibly containing free
variables, and if Cy v -+ v C, is a consequence of &7, some C;(1<i<p)is
a consequence of &7.

Answer.

a) The equality axioms for & have the form Ax, ... Ax,[(4 A+ A
A, )= Blwith m=1and m=2. Consider ¢, ..., 1,2 if ([#,], ..., [#,]) satisfy
eachd,(1<i<m), each formula 4,(7,, ..., t,) is consequence of & and so
is B(ty, ..., t,), i.e. ([#,]1, ..., [7,]) satisfies B.

b) Each C; has the form R;(1y, ..., t,,) where R, is a relation symbol of
Z and 1, ..., t,, are terms of & or C;is t,=1,. Since C;v---v(,is a
consequence of &7, it is satisfied in the realization given in a), and so
C,v v C,is true, i.e. either the formula C, is a consequence of < or
the formula C, is a consequence of & ... or the formula C, is a con-
sequence of 7.



CHAPTER 4

THE ELIMINATION OF QUANTIFIERS

The general theory given in the previous chapters is here applied to axiomatic
systems having the following property: each formula (in the language of the
axiomatic system considered) is equivalent to a quantifier free formula. The
examples of such systems given in the text are: certain discretely (and totally)
ordered commutative groups; algebraically closed fields; real closed fields; certain
Boolean rings. This property has the following important consequences:

1) A complete characterization of all those relations explicitly definable in the

axiomatic systems considered;

2) (Usually) Completeness.

Among the useful applications of this second result we have: in the case of
algebraically closed fields the “Nullstellensatz” of Hilbert (Exercise 4) and in the
case of real closed fields Artin’s Theorem on the representation of positive forms
(Exercise 5).

A simple model theoretic condition is formulated (p. 50) which can often be
used to show the impossibility of eliminating quantifiers. (Exercises 1 and 2
provide examples, even in the case of complete axiomatic systems.) A partial
converse of this condition is given in Exercise 1 of Chapter 6. Exercise 5 contains an
algebraic application obtained by combining the result 1) above with the theorem
on definability given in the previous chapter.,

In Exercise 3 we describe a method for proving that certain axiomatic systems
are complete without eliminating quantifiers {using, instead, morestrictly aigebraic
methods). For the use of the more general method of ultraproducts in dealing
with this type of guestion, see Kocuen, Ultraproducts in the Theory of Models,
Annals of Maths. 74 (1962) pp. 229-261 and KesLer, Ultraproducts and Elemen-
tary Classes, Proc. Kon. Ned, Akad. Wet. 64 (1961) pp. 477-495 and its appli-
cation to p-adic fields in Ax-KocHEN, Diophantine Problems over Local Fields,
Amer. J. of Maths. 87 (1965) pp. 605-648. (For an alternative freatment without
the use of ultrapowers, see their paper, Annals of Maths. 83 (1966) pp. 437-456,
where the method of Chapter 6, Exercise 1, is employed.) References to the
older literature are to be found in Exsuov, Lavrov, TamManov and TAITSLIN,
Elementary Theories, Russian Math. Surveys 20 (1965) pp. 35-106.

The results of this chapter are used below only for some counter-examples.

In this chapter all the languages that we shall consider wilt be languages
with equality and all the realizations will be normal realizations.
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Suppose that we have a language .% and a set &7 of formulas of ¥. We
say that &7 allows the elimination of guantifiers in a formula F of ¥ if there
is a quantifier free formula F’ of & such that FeF' is a consequence of
& or, equivalently, such that F=F’ in every normal model of 7. 7 is
said to allow the elimination of quantifiers in £ if it allows the elimination
of quantifiers in every formula of .#.

Clearly we can show, by induction on the number of quantifiers in F
which we assume is in prenex normal form, that =7 allows the elimination
of quantifiers in % if &/ allows the elimination of quantifiers in all
formulas of the form V xHx, where Hx is quantifier free. By Theorem 1.3
of the propositional calculus, each quantifier free formula H is equivalent
to a formula of the form H, v ---v H, where each H; is of the form
ay A--- Ag,, and each «; is an atomic formula of the language % or the
negation of such a formula. Therefore, because Vx(H,v ---v H,) is
equivalent to VxH; v .-+ v \V xH,, we have the following theorem.

THEOREM 1: A set o/ of formulas of ¥ allows the elimination of quantifiers
in & if and only if it allows the elimination of quantifiers in all formulas of
the form V x(o, A - Aw,) where each o; is an atomic formula or the
negation of an atomic formula of £

A set o7 of formulas is said to be complete for ¥ if for each closed
formula F of .Z either F or —1 Fis a consequence of ..

THEOREM 2: If o allows the elimination of quantifiers in & and D(IR) is the
diagram of a model W of o then sZ U D(IM) is complete (for the language
&L’ of 57U D(IN)).
Proor: We first note that if o/ allows the elimination of quantifiers in %
then 1t allows the elimination of quantifiers in all languages %’ obtained
from .# by the addition of a set C of individual constants. For suppose F
is a formula of such a language #”’. Let F, be the formula of % which is
obtained by substituting for each 4 in € which occurs in F a variable x
which does not occur in F, substituting distinct variables for distinct
elements of C. There is a quantifier free formula F; which is equivalent
to Fy. If we substitute back the constants in F{ we obtain a quantifier free
formula which is equivalent to F.

Now suppose that #' is the language of o/ U D(IM) and that Fis a
closed formula of .#”’. If Fis satisfied in the model 9 then F=EY¥¢, where
E is the domain of IN. Now every model of D(IMN) is an extension of YN.
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Consider a model ' of o/ U D(IR). In W and W', which are both models
of &/, F is equivalent to a quantifier free formula. Hence by Lemma 3.9,
if F is the value of F in ', we have F=F N E"¢=E"¥. Hence F is not
empty, but Fis a closed formula and so N’ satisfies F. Thus if Fis satisfied
by IR it is satisfied by all models of /U D(IR) and hence is a con-
sequence of .27 u D(IN). But for each closed formula F either For -1 F is
satisfied by M. Thus for each closed formula F either F or 1 F is a
consequence of o7 u D(IN).

This completes the proof.

We devote the rest of the chapter to the consideration of some particular
cases.

I. DENSE ORDERS WITH FIRST AND LAST ELEMENT

We consider the language % which has two constant symbols 0,1 and
two binary relation symbols <, =. (We will write x<y for <xy.)
Let & be the set of the following formulas of #:

Ax—1(x<x)
AX Ay ANz(x<yAy<z—-rx<z)
Ax Ay{(x=yvx<yvy<x)

Axioms for a
total ordering.

AX Ay Vz{x<y-ox<zAz<y) Axiom for a dense ordering.
Ax{x=0v0<x) ) Axioms for first and
Ax(x=1vx<l) y last elements.

We will show that .7 allows the elimination of quantifiers in 2.

Suppose that we have a formula of the form Vx(o; A ---Aa,) where
each o, is either an atomic formula of # or the negation of an atomic
formula of .. Thus for each «; there are four possibilities: ¢, <t,, t, =1,
—(t, <t,), t; #1,, Where 1, t, are terms of & and so either 0,1 or a variable.

From & it follows that —1(#; <t,)is equivalent to (1, <t} v (¢; =1,) and
that 1, #¢, is equivalent to (1, <#,) v {7, <1#,). Using the facts that 4 A
(Bv C)is equivalent to (4 A B)v{4 A C)and V x(AV B) is equivalent to
\VxA v VxB we can therefore reduce the problem to that of eliminating
quantifiers in a formula of the form \/ x(x, A --- A2,) where each «; is of
the form ¢, =t, or ¢, <ft,.

We proceed by recursion on r. If r=1 the formula is Vx(t; <t;) or
Vx(t,=1t,} where t, t, are 0,1 or a variable. The elimination of the
quantifier for this case is obvious.
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Now suppose that we have eliminated quantifiers for all formulas
where r<h, and consider the formula Vx{x; A ---Aa,). If one of the «,,
say o, does not contain x, the formulaisequivalenttoa; A Vx{a; A - Ad)
and we are reduced at once to the case r=h—1. So we will assume that
all the o; contain x so that we can write the formula as Vx(x<# A - A
X<l AU <XA - AU<XAX=D A+ AX=U,) Where the 7, u, v are terms
which we can assume are different from x (if, for example, #; =x the
formula is equivalent to L, and if, for example, v, =x we are reduced to
the case r=h—1).

If £>>1 the formula is equivalent to

(ty<t AVX(Xx <t AX<t3..))V
v(mty <t A Vx{x <t Ax<t3...))

and we are again reduced to the case r=hA—1.
We obtain a similar reduction if /> 1.
If k=1I=1 the formula can be written

VX(X <t AU <XAX=0; A+ A X=10,)
which for m#0 is equivalent to
(vy=vy="=0,) A(ug <vy <ty)

and for m=0 is equivalent to u; <¢,.
For k=0 the formula can be written

Vx(u; <x AX =0y A" AX=1,)
which for m#0 is equivalent to
(uy<v) Aoy =v;=2-=1,)

and for m=20 is equivalent to u, # 1.
We obtain similar results when /=0.
This completes the proof.

The reader can investigate in a similar way dense orders with first but
without last element (drop the constant 1 and add the axiom Ax Vy(x<y))
with last but without first element, and without first or last element.

It should be noted that the quantifier free formula which is equivalent
to Vx{ay A+ Ax,) contains the same variables as this formula, other
than x. Thus for each closed formula F the quantifier free formula
associated with it contains no variables. The propositional variables in it
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are therefore all equivalent to either 0<1, 0=1 or 1 <0 which are in turn
equivalent to T or L. Therefore F is equivalent to either T or 1 and
hence the set o7 is complete for its language .

II. DISCRETE ORDERS WITHOUT FIRST OR LAST ELEMENT

We consider the language % which has one unary function symbol s
(read “‘successor’’) and the two binary relation symbols < and =. The
terms of . are therefore of the form s”x (s repeated p times followed by a
variable x).

Let «/ be the set of the following formulas: a) the axioms for a total
ordering (see I above), and b) the formulas

Ax Ay(x <ye(y=sxvsx<y))
Ax Vy(x=sy).

We will show that &7 allows the elimination of quantifiersin #.

Asin Iabove, weneed only consideraformulaof theform Vx(o, A -+ Aw,)
where each a; is of the form #; <7, ort; =t,i.e. 58" x; <5*x, or s7'x, =5"2x,.

We proceed by recursion on r. The case r=1 is trivial, Suppose we
have dealt with the case r<#/ and that we have a formula of the form
Vx(oy Ao Ao). As before it is immediate that in each atomic formula
sPix < sPx, or sP'x, =s"2x, at least one of x; and x, is x or else we can
immediately reduce the problem to the case r=»A—1. If both x, and x, are
x in some o; then this «; is of the form s”'x <s”2x or s"'x=s"*x which
is equivalent to s”'x" <s7x" or s¥'x"=s5"x" with x#x’ so that we can
again reduce the problem to the case r=h—1.

As a simplification we will write the formulas s?x<x, and s’Px=x, as
x<s”Px; and x=5"Px;. Thus the formulas s’x <s"'x; and s’x=s"2x, are
equivalent to x<s**"?x, and x=s""2x,. Therefore the formula we are
considering can be written as

VX(X <A CAXS<HEAU <XAAUW<SXAX=U A AX=0,)

where the terms ¢, u, v are of the form s”y, p some integer.

If k or / is bigger than 1 we can reduce the problem to the case r=h—1
as before. We therefore need only consider the formula Vx(x<t A
U <XAX=0; A+~ AXx=0,) and this can be reduced to a quantifier free
formula in a way similar to that which we used in 1.

It follows, just as in I, that &7 is complete for the language Z.
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I11. SOME COMMUTATIVE GROUPS WITH DISCRETE TOTAL ORDERINGS

We consider the language .# which has, in addition to the binary relation
symbol =, two constant symbols 0,1, a unary function symbol —, a
binary function symbol + and a unary relation symbol >0.

The terms 1+---41 and #+---4+7 (1 and ¢ repeated p times) will be
written as p and pt, and the term t, +(—1,) as ¢, — 1,.

Let o7 be the set of the following formulas
(@) The axioms for a commutative group:

AX Ay Az((x +y)+z=x+(y + z))
AXAY(x +y=y+x)
Ax{x +0=1x)
Ax{x — x =0).

(b) The axioms for a total ordering compatible with the group structure:

Ax AY(x>0Ay>0~»x+y>0)
Ax 1 (x>0A~x>0)
Ax(x=0vx>0v—x>0).

(¢) The axioms for a discrete ordering
Ax(x>0e(x=1vx~—1>0)).

It is clear (by induction on the length of ¢}, that for each term ¢ of &
there are integers 4, ..., a,, b€Z and variables x,, ..., x, such that
t=a,x;+ - +ax,+b is a consequence of &7, (In fact we only need the
axioms of (a).)

We can show (see Exercise 2) that the set &/ does not allow the elimi-
nation of quantifiers in .Z. Let %’ be the language obtained from &, by
adding, for each integer n>1, the unary relation symbol n| (read “n
divides”) and let &7’ be the set of formulas obtained by adding to 7 the
formulas

(d) Ax(nlxe Vy(x =ny)) foreach n>1
and
(e) Ax(nlxvalx+1v--vnlx+n—1) foreach n>1.
It is clear that each model of .o, that is each commutative group with a

discrete total ordering, is also a model of (d), or, more precisely, given a
model of «#, there is a unique value of nj so that (d) is satisfied. On the
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other hand (e} is not a consequence of the set (a) U{b) U (c)u(d). (We will
write (a, b, ¢, d) for this set in future.) We can show (see Exercise 2) that
{a, b, ¢, d} does not allow the elimination of quantifiers in % but we will
see that (a, b, ¢, d, e)= &7’ does allow it. To do this we consider a formula
F of the form Vx(x; A -+ Aa,) where each «; is an atomic formula of
&' or the negation of an atomic formula of %', Thus «; is of one of the
forms t, =1, (which, by ', is equivalent to r=0 with r=t, —¢;}, t#0,
t>0,(t>0), njt or 11(nj2).

It follows from &7’ that £#0 is equivalent to ¢>0v —¢>0, that
—{t>0) is equivalent to t=0v —7>0 and that —i(njt) is equivalent to
njt+1v---vajt+n—1. Hence we can suppose that each «; is of one of
the forms =0, >0 or nlt.

Each term ¢ can be written in the form px+¢’ with peZ and t’ a term
which does not contain x, To make things clearer we will write £, >1, for
t,—1t,>0.

Thus the formula F can be written in the form

VX(PIX> 8 A ADRX>HAQX=Ug A A X =1U A
ARgPX — U Aot A B PeX — 0y)

where the p, g, r are in Z and the ¢, u, v are terms which do not contain x.
It follows from &/’ that the formula »,|r; x — v, is equivalent to

(ndrix A nqlo) v (nglrix + 1 A ngloy + 1) v
Vv (nglryx + 0y — 1 A nygfoy +ny —1).

If we make this substitution in F and use the fact that AA(Bv C)is
equivalent to (4 AB)v(AAC) we can reduce the problem to that of
considering a formula of the same form of F except that the v; are integers
(positive, negative or zero).

Weputh=|p}+ - +lpd +Hlg+ - +lal -+ +bny+ir+ o+l
We proceed by recursion on /, which we will call the rank of F. Suppose
that we have eliminated quantifiers for all formulas of rank less than 4
and that F is a formula of rank 4.

If k=2, Fis equivalent to

(P2t 2 Pifa A VX(PX >t A p3x >3 A1)}V
v {pity > paty A VX(PaXx > 15 A p3x > 13 A--0))

and we are reduced to the case of a formula of rank #—1.
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If /22 we note that g, x=u; Ag,x=u, is equivalent to gx=1u A
(9:—q1) x=u, —u;. Thus with, say |g,|<[q.], we have [g,|+]q,—qil<
lg,|+1g,! and we can again reduce the problem to that of a formula of
rank less than 4. ,

If k=1 and /=1 the formula F can be written as

Vx{(px >t Agx=u A ngrx-—v; A Anglr,x —v,)
and this is equivalent to
(pu> qt A glu A qnyfrie — v Ao A qrylTalt — v,4)
which is quantifier free.
If k=0 and /=1, Fis equivalent to the same quantifier free formula
except that we drop “pu>gt”.

Suppose then that k=1 and /=0 (the case where k=0 and /=0 can be
dealt with in the same way). F can be written

VX(PX >t A By|riX — 0y A A By lraX — 1)

If one of the n;, say n,, can be written as n, =#n’, where n and »n’ are
coprime, m{rx—uv, is equivalent to nlr,x—uv AR |rix—vy. Since n+n’
<n, we are therefore reduced to a formula of rank less than 4. Thus we
can assume that all the n; are of the form nf’, where =, is a prime.

Let a,, ...,a, be the integers in the interval [0, n; —1] such that
nylra; —vy, ..., nylra,—v, (if any exist). It can easily be seen that the
formula n|r,x—v; is equivalent to n,|x—a, v -+- v #y|x —a,. Making this
substitution in F we are reduced to the case of k formulas each of rank
less than A.

Thus we can suppose that r, = ---=r, =1 and that F can be written

Vx(px >t Angdx —ov; A Anx —0,).

If, say, n;==n"* and n,=7n"* with p,<p,, the formula n|x—v, A
n,|x—v, is equivalent to ny|v; —v, An,|x—v,. Therefore we can assume
that the »; are of the form n*, where the =, are distinct primes.

Since the n; are pairwise coprime there is some integer u in the in-
terval [0, ny ... n,,— 1] such thatn;ju—v,, ..., n,jJu—v, and we can deduce
that Fisequivalentto T.For suppose that, for example, p>0; then,for />0,
x=u-+ny...n,t satisfies px>tAan|x—v; A+ AR, |x~v, and fort<0,x=u
satisfies it.

This completes our proof that &/’ allows the elimination of quantifiers
in &,
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As before, we see that if Fis a closed formula, F’ to which it is equiva-
lent contains no free variables. The atomic formulas of F’ are therefore
t=0, £>0 and n|#, where 7 1s a term of ¥’ without any variables and so is
an integer. Thus each of these atomic formulas is equivalent to T or L.
Therefore o7’ is complete for &£.

1V. ALGEBRAICALLY CLOSED FIELDS

The language % that we consider has two constant symbols 0, 1, a unary
function symbol —, two binary function symbols 4, x and no relation
symbols other than =. (We write xy for x xy and x+y for +xy.)

Let &7 be the set of the following formulas
(a) Axioms for a commutative group with respect to +:

Ax Ay Az{x+(y+2)={(x+y + z))

Ax Ay(x+y=y+x)

Ax{x +0=x)

Ax{x 4+ (= x)=0).

(b) Ax Ay Az(x(yz) = (xy) z)

Ax Ay(xy = yx)

Ax(x-1=x)

Ax Vy(x=0vxy=1)

Ax Ay Az(x(y + z) = xy + xz)
0#1.

It is clear that each model of (a, #) is a commutative field and that for
each term 7 of & there is a polynomial p(x, ..., x,) with coefficients in Z
such that r=p(x,, ..., x,) is a consequence of (a, b).

(We write p for the term 1+ ---+1(1 repeated p times) and ¢? for the
term ¢ X --- X #(¢ repeated p times).)

{(c) For each n>1 the formula

AXg AXyp e AXyog VX(Xg 4+ XX 4+ %, X" 7T+ x"=0).
Clearly each model of &7 =(a, b, ¢) is an algebraically closed field. We will
see that .7 allows the elimination of quantifiers in Z. To show this we

make use of

Lemma 3: Let p(xy, ..., X, x) and q(xy, ..., X, X) be two terms of Z, i.e.
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two polynomials with coefficients in L. Then there is a quantifier free
Sformula F of & such that in each model of (a, b), i.e. in each commutative
field K, Fis the set of those (€, ..., &)eK* such that p(&y, ..., &, x) divides
Q(‘fl’ sery ‘fks x)*

Proor: Let p(x)=a,+a;x+---+a,x" and g(x)=by+b,x+ - +5b,x"
where the ¢; and b; are polynomials in xy, ..., x;, with coeflicients in Z.

We obtain the desired formula F by recursion on m+n. Clearly for
m+n=0 the formula we want is ¢, #0v b,=0.

Now suppose we have found a formula F with the required property
whenever m+n<h and that the polynomials p(x) and ¢(x) are such that
m+n=h.

If n<m then, by our hypothesis, there is a formula F corresponding to
the polynomials p; =ay+a;x+ ---+a,_x" " and g(x). The formula we
want is therefore

(ﬂm?é{)/\b(;:él="'=bn=G)V(am=0f\F),

Ifm<nweputp, =ay+a;x+ - +a,. X" ‘andg, =a,q(x)—b,x"""p(x),
so g, is of degree less than n. By hypothesis there is a formula F cor-
responding to the pair of polynomials p;, ¢ and a formula G corre-
sponding to the pair p, g,. The formula we want is therefore

(a,=0AF)v(a,#0AG).
This completes the proof of the lemma.

We now consider a formula F of % of the form Vx(x A --- Aw,), where
each o; is an atomic formula of & or the negation of an atomic formula of
#. Thus each «; is of the form ¢, =1, or ¢, #¢,, and so is equivalent to a
formula of the form r=0 or t#0 (where t=¢,—1,). But f; #0A .- A 1,£0
is equivalent to f;---£,#0, so we can see that F can be written as
Vx(t;=0A - At,=0A1#£0). '

Each ¢, is a polynomial in x whose coefficients are polynomials in the
other variables with coefficients in Z. Let the term of highest degree in ¢
be ax™. Clearly we can assume that no ; is zero since if, for example,
n; =0, F is equivalent to #; =0A Vx(t,=0A - Af,=0A1#0).

We now proceed by recursion on the sum of the n;, which we will call
the rank of F. If k>0 and, say, n,>n,, we put #{=a,f, —a,x" "™,
and t;=1¢,—a,x", Then ¢] is of degree less than #», and #] is of degree
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less than n,. The formula F is equivalent to

(a;=0A Vx(t;, =0Ath=0A- A, =0At#0))V
V{a,Z0A VXt =0At,=0A- Aty =0A1t#0))

and so we are reduced to two formulas of lower rank.

If k=1 the formula F can be written Vx(¢, =0A t#0). We know that
in any algebraically closed field K, given two polynomials p{x), g(x) with
one free variable x and coefficients in K, there is some x, in X such that
p(x,)=0 and g{x,)#0 if and only if p does not divide ¢", where n is the
degree of p with respect to x. Hence if G is the quantifier free formula
that, by Lemma 3, is associated with the pair f,, t"(n=degree ¢;) the
formula Fis equivalent to G (that is, it has the same value as —1G in all
algebraically closed fields).

If k=0 the formula F can be written \/ x(¢#0). Let t=a,+a,x+ -+
+a,x". Since all algebraically closed fields are infinite and each polynomial
in a single variable which is not identically zero has only a finite number
of roots we can see that Fis equivalent to gy #0v --- v q,#0.

This completes the proof that .o/ allows the elimination of quantifiers
in 2.

We see, as before, that each closed formula of % is equivalent to a
quantifier free formula whose atomic formulas are of the form £=0,
where ¢ is a term which does not contain any variables, and so of the
form n=0 where neN, the set of natural numbers. Now if »> 1 neither
n=0 nor n+#0 is a consequence of & because there are algebraically
closed fields of characteristic p for p=0 or any prime number. Therefore
& is not complete but it becomes so if we add any one of the formulas
p=0 for p prime (axiom for a field of characteristic p) or the ser of
formulas {p+0:p prime} (axioms for a field of characteristic 0).

We have the following application of this result.

THEOREM 4: If the polynomials p,, ..., p, in the variables x,, ..., x,, with
coefficients in the field K have a common zero in some extension field L of K,
then they have a common zero which is algebraic over K.

ProoF: Let £ be the algebraic closure of K and let D, be the diagram of
Q. The set & of axioms for an algebraically closed field allows the
elimination of quantifiers and so, by Theorem 2, &/ U Dy is complete.
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Let & be the language of 27 L D,,. The formula
\/x1 vee \\/xn(Pl = 0 FANRERRFAN b, = 0)

is a formula of .’ which is satisfied in a model of &7 U D, namely the
algebraic closure of L. Hence it is satisfied in all models of =/ U Dy, and,
in particular, in Q.

V. REAL CLOSED FIELDS

The language £ that we consider has two constant symbols 0, 1, one
unary function symbol —, two binary function symbols 4, x, one
unary relation symbol >0 and the binary relation symbol =.

Let &7 be the set of the following formulas
(@) The axioms for a commutative field (i.e. the sets (@) and (4) of IV).

(b) AXAY(x>0Ay>0-x-+y>0)
Ax(x=0vx>0v—x>0)
AxT1(x>0A—x>0)
AXAy(x>0Ay>0-xy>0).

Each model of (q, b) is an ordered field.

(© AxVy@x=y'v-x=)7)
AXg AXp o AXay VX(Xg + XX+ 4 X5, x°" 4+ x*" 71 = 0)

foreach n>=1.

The models of ./ =(a, b, ¢) are the real closed fields. (For the properties
of such fields that we use here see, for example, B. L.. VAN DER WAERDEN,
Modern Algebra.) We will show that .«7 allows the elimination of quanti-
fiers in 2.

For each term ¢ there is, as before, a polynomial p(x,, ..., x,) with
coefficients in Z such that r=p(x,, ..., x,) is a consequence of 7.

For simplicity we will write the formula t—#'>0 as t>¢" or ' <t and
the formula 1<t’'At'<t" as t<t'<t". Each atomic formula F of & is
equivalent to a formula of the formp(x, x4, ..., x,)=00r p(x, x;, ..., x,)>0.
Each quantifier free formula F is equivalent (in all models of /) to a
disjunction of formulas p;=0A--Ap,=0Ag,>0A--Ag>0. The
degree in x of an equation p;=0 is the highest degree of x in p;, and the
degree of an inequality ¢;>0 is 14 the highest degree of x in gq;. The
degree of Fitself is the maximum of the degrees of its atomic parts.
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LeMMA 5: For each quantifier free formula A of the form p,=0na - A
Px=0Aq >0 - Aq,>0, where the p, q; are polynomials in x, xy, ..., x,,
there is a quantifier free formula B which is equivalent to A (in all models
of &) such that the degree of x in B is less than or equal to the least
degree of x in the polynomials p; (which we assume is not zero).
PrOOF: We prove the lemma by induction on the sum of the degrees of
x in the p; and g, which we will call the rank of A. Suppose that we have
proved the lemma for all formulas of rank less than Aand let p; =0A -+ A
P=0Ag;>0A ---Aq,>0 be a formula of rank A.

If k=2, let g x™ and a,x™ be the terms of highest degree in p, and p,,
and put m; =d,p, —ax™ "™ (assuming m, =m,), and 7, =p, —a,x™.
Then the formula that we are considering is equivalent to

(a;=0Ap =0An,=0AAp=0Ag,>0AAg,>0)v
V(g Z0An, =0Ap,=0AAp,=0A¢g,>0A-Ag,>0)

and we are therefore reduced to the case of two formulas of rank less
than A.

If k=1 the formula can be written p=0A¢,>0A ---Ag,>0. If all the
g; are of degree in x less than the degree of x in p the formula itself
satisfies the lemma. If not, say, for example, g, is of degree greater than p
and let ax™ and bx" be the terms of highest degree in p and ¢,; so m<n.
Put P=p—ax™ and Q =a?q, —abx"~"p. Then the formula is equivalent to

(a=0AP=0Aqg,>0A-Ag;>0)v
V@#O0Ap=0A0>0Ag,>0AAq,>0)

and so we are again reduced to the case of two formulas of rank less
than 4.

If k=0 there is nothing to prove; so this completes the proof of the
lemma.

THEOREM 6: Let A(x, xy, ..., X,) be a quantifier free formula of degree h
in x. Let a, b be two variables other then x, x,, ..., x,. Then there is a
quantifier free formula F whose variables are a, b, x4, ..., x,, whose degree
in a and b is less than or equal to h, none of whose atomic formulas contains
both a and b and such that

Fovx(@<x<baA(x,xq,...,X,)

is a consequence of o/ U {a<b}.
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Proor: The proof is by induction on the degree of x in A. If this degree
is zero then A does not contain x. Therefore the formula Vx(a<x<b A A4)
is equivalent to 4 A a<b and so the formula F that we want is A4 itself.

Suppose now that we have proved the Theorem for formulas of degree
less than k and that the degree of xin 4 is 4.

A is equivalent to a disjunction of formulas of the form w; A - Au,
where each y; is an atomic formula or the negation of an atomic formula,
and hence is of one of the forms p=0, p+#0, p>0 and —(p>0). Since
p#0 is equivalent to p>0v —p>0 and —(p>0) is equivalent to
p=0v —p>0 we can assume that A is of the form p; =0A - Ap,=0A
g, >0A - Ag >0,

Lemma 5 shows that if k22, or if k=1 and one of the g; is of degree in
x greater than or equal to the degree in x of p; we can replace 4 by B;
so we are reduced to a formula of lower degree and can therefore apply
the induction hypothesis.

Thus we can assume that 4 is of one of the forms I: p=0Ag; >0A -+ A
4,>0, where the degree of g; is less than the degree of p, so the degree of p
equals the degree of 4, whichis A, or ll:q,>0A - Ag,>0.

We first consider A of degree i and form II. Let G= Vx{a<x<bna
g, >0A -+ Ag;>0), the degree in x of g,(1<j</) being <A. In any real
closed field, G is true if and only if in some open interval (a, f) con-
tained in (a, b) each g, is strictly positive. The following set of conditions
exhausts all possibilities:

Go(a,b)= nx[a<x<b—=(g; >0 A Ag,>0)]
Gi(a,b)= vula<u<baq(u)=0n Go(a,u)] v
vvola<o<bag(t)=0AG(v,b)] (I1<ig])
Hij(a,b)= Vuvv[a<u<v<bnag{u)=0na
g;(0)=0AGou,v)] (A<igLlIgj<).

We shall reduce each of these cases by use of the induction hypothesis. In
each model of &7,

Go(a, D)= [q (@) 20AAqa)20A 1 Vx{a<x<bArg, =0)A
ATt Vx(a<x <bag =0)].
Since the degree of g;=01s <A, the induction hypothesis applies to each

formula Vx(a<x<bAgq;=0). So Gy(a, b) is equivalent to a quantifier
free formula of degree <4 in g and b, whose components are of the form
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K.(a) A L.(b) (1<r<s). Gi(a, b) is equivalent to the disjunction (1 <r<s)
of formulas

K.(a) A Vula<u<bdbaqg(u)=0aALu)]v
L.(byar Vo[a<v<bAgq(v)=0na K, (v)];

to each component of G,{a, b) we can apply the induction hypothesis since
the degree in u of ¢;(u)=0A L,(u) and the degree in v of ¢;(v)=0 A K,(v)
are all <.

Finally H;,(a, b) is equivalent to the disjunction {1 <r<s) of formulas

Vula<u<baq(u)=0na K (u) A
Veolu<v<bagv)=0a L(v)]).

Since ¢;(v)=0A L,(v) is of degree </ in v, the induction hypothesis yields
formulas M, («) A N, (b) of degree < in u and b such that

Velu<v<bag{vj=0naL(0)]oWIM,, (u) A N, (b)].

So Hj;(a, b) is equivalent to the disjunction (over r and ) of
Nywo(B) A Viula << b A qu) =0 A K () A My ()],

to which the induction hypothesis evidently applies. This concludes the
reduction of formulas of form II and degree 4.

By Lemma 5 we need only consider formulas 4 of the form
p=0Aqg,>0A - Aq. >0 where the degree of p in x is A, and the degree
of each g ,(1<j<’)is less than 4. We shall reduce this case to formulas of
degree <7, and to formulas of form II of degree £; thelatter have just been
dealt with.

A is evidently equivalent to 4, v 4, v A; where

Ajisp=0Ap =0Ag, >0A--Agq,>0,
Ayisp=0Ap ' >0Aq,>0A--An¢g, >0,
Asisp=0A—-p >0Aq;,>0A--A g >0,

and p’ denotes the derivative of p with respect to x.

A, tepresents the case where p has a multiple zero. Since the degree of
p'in xis <h, by Lemma 5, 4, is equivalent to a formula of degree </
and the induction hypothesis applies.

Vx{a<x<baA,) is true in a real closed field if and only if there is
some open interval («, ) contained in (a, ) in which all the ¢;(1 <j<I’)
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and p’ are strictly positive, and p(x) <0, p(f)>0. Put /=1I'+1 and g,=p".
Using again the notation

Gola,b)= Ax[a<x<b-(q>0A--Aqg >0)],
we have: Vx(a<x<ba A4,) is equivalent to the disjunction of the for-

mulas p(a) <O A p(b) >0 A Gy(a, b),
play<0AaVula<u<bagu)=0napu)>0aGyla,u)] v
vp(B)>0A Ve[a<v<bag{t)=0A — p(t)>0 A Go(v,b)]
(Igigh,
VuvVofa<u<v<baq(u)=0aq;(v)=0A
—pW)>0Ap(B)>0AGo(u,v)] (I<i<g<l1<j<D).

G, has already been treated. All the other formulas are patently of degree
< h because all the g are of degree <#h.

A5 is treated by interchanging p” and —p’, p<0 and p>0.

This completes the proof of Theorem 6.

THEOREM 7: o7 allows the elimination of quantifiers in £,

Proor: It is sufficient to prove the Theorem for a formula of the form
VxA(x, xq, ..., X,). We add to & the two constants » and 1/u and to &7
the axiom u-1/u=1. By Theorem 6, the formula

1
\/x(«- l<x<lA A(x'-—, x;,...,x,,))
u

is equivalent to a quantifier free formula Q. Each atomic formula of Q is
of the form p(x*1/u)=0 or p(x-1/u)>0, and so, by the axiom u'l/u=1,
of the form p(x, u)=0 or p(x, u)>0. Hence there is a quantifier free
formula R(z), where z is a variable of %, such that w-l/ju=1-
Vx(~1<x<lad(x1/u, xq, ..., x,)) is equivalent to R(u). Clearly in
all models of 7 the two formulas Vx4 (x, x;, ..., x,) and Vz{0<z<1A
R(z)) are equivalent, But, by Theorem 6, this last formula is equivalent to
a quantifier free formula.
This completes the proof of Theorem 7.

In particular, we.can deduce that .o/ is complete, since the atomic for-
mulas of & without variables are of the form n=0 and »>0, where
neZ. The first of these is equivalent to 1 unless n=0, since all real closed
fields are of characteristic zero, and the second to T or L.
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VI.‘ SEPARABLE BOOLEAN RINGS

The language ¥ that we consider has two constant symbols 0,1, two
binary function symbols +, x and the binary relation symbol =. (As
usual we write £, +¢, for +1#,¢, and 1,1, for x#t,.)

Let &7 be the set of the following formulas
(a) Axioms for a commutative group with respect to -+ :

Ax Ay Az{(x+(y +z)=(x + y) + z2)
Ax Ay(x+y=y+2z)

Ax(x +0=x)
Ax Vy(x +y=0).
®) Ax Ay Az{x(yz) = (xy)z)

Ax(x-1=1-x=x)
AX Ay Az(x(y + z) = xy + xz2)
1+#0.
(c) Ax{x? = x).

{a) and (b) together make up the axioms for a ring with identity, (@), (b)
and (¢) those for a Boolean ring.

All Boolean rings are commutative and satisfy A x(2x=0); this follows
because (x+1)?=x+1=x*+2x+1 and so 2x=0, and also (x+y)*=
x+y, whence xy+ yx={0and so xy=yx.

If x, y are terms of ¥ we will write xu y for the term x+ y+ xy and
xcy for the formula xy=x. Clearly the terms of ¥ are polynomials
p(xy, ..., x,) which are of degree one in each of the variables x;,, ..., x, and
in which all the coefficients are 0 or 1.

Let F(x) be the formula x#0A Ay(yex—y=0v y=x). The elements
which satisfy this formula are called aroms.

We add to .Z an infinite sequence of unary relational symbols B, 4,
Ayyeiny Ay ..., and to o7 the following set of formulas (in the notation of
Chapter 2, p. 25):

(d) for each positive integer » the formula
Ax(Apxo Vi o Vx, (O 8 x#x; 8 A (F(x) A x;ax)),
1€i<j€n 1<ign

Ax(Bxe Ay(y e x— A4;9)]).

It is clear that given any model of (a, b, ¢) we can define the values of
B A, ..., A, ..., in a unique way so as to satisfy the formulas of (d).
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The elements which satisfy A4,x are those which contain # distinct atoms.
B is satisfied by those, possibly empty, elements all of whose subsets
contain an atom and are called atomic.
We shall write /" for the set of formulas (a, b, ¢, d), and 7'+ 4 for:
Ais aconsequence of ./’ where 4 isaformula in the language ¥’ of &/,
We shall show that =7’ together with the axiom

AxVy[yex ABy A 14,(x+y)].

i.e., every element x is separable into disjoint parts such that one of
them is atomic and the other contains no atoms, allows elimination of
quantifiers in its language ¥’. (The axiom follows from its particular
case Vy [Bya14,{1+y)}in &)

Remarks. For an application, see Exercise 7. By extending the language
further one obtains an elimination for arbitrary boolean rings, but the
known methods are too long to be included here.

Note that for each term 7 of ¥’ which contains x there are terms a and
b not containing x such that «/'Fr=ax+5, and all atomic formulas are
(equivalent in each model of & to) ax+b=0, Blax+b), A,(ax+b)
(rz=1) for some terms g and b not containing x.

We collect simple distributive laws and simple properties of disjoint
elements that are consequences of 7",

LeMMA 8: (i) (gyx=0A - Agx=0)(a, U --ua,) x=0, (i) T4, (xuy)
—(m14;x A 14y y), (i) B(x Uy} (Bx A By).

ProOF: (i) follows by induction with respect to k. Evidently (ax=0A
bx=0)—(aub)x=0. Suppose (aUb)x, i.c. (a+b+ab)x,=0; then

a(a+b+ab)x=(a®+ab+a*b)x=(a+ab)x=ax=0,

and hence (ax=0Abx=0)e(aub)x=0, (ii) As in (i), one uses elementary
properties of set theoretic union and intersection which hold formally for
U, tesp. for -t zex—zax Uy, and (zx)u(zy)=z(xUy), from which (ii)
and (iii) follow.

LeMMA 9: (i) x-(14+x)=0, (ii) xy=0-x-+y=x Uy and, in particular,
xu(l+x)=1 (x is the complement of 1+x), (iii) xy=0-[x+y=0>
(x=0Ay=0}], (V) if G{x) are formulas of £’ then

M (xx; =0 N VuG(xu)eo Vu M Gixu)l.

1gi<i<n i<ign 1€i<n
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ProoF: (1)-(iii) follow by computation.
(v) [Ve X Glxu)]-> M VuG(xu)
1<i<n 1<i<n
is a theorem of predicate calculus. Put w=) ax;; then
A (= 0)—uw = ux;,
1<i<j<n
since up;x;=0 for j#i, and u’x;=ux;. So
[ A Gi(xu)] = G(u;w)
1<i<j<n
for 1< j<n, and hence (iv).
The first elimination result will concern atoms.

LeMMA 10: Suppose neither a nor b contains x. (i)-(v) are consequences of
" and Fx where

i (ax+b=barax=0)v(ax+b=b+xA(l+a)x=0),
(i) (b+tx=buxabx=0vExub+x)=bAa(l+b)x=0),
(i) ax+b=0e[(ax=0Ab=0)v {1 +a)x=0Ax=>b)],
ax+b#0=[(ax=0Ab#0) v (1l +a)x=0Ax#b)],
(iv) B(b+ x)«>Bb,
W) fornz1, A, (b+x)e{(bx=0AA4,_:b)v
v ((1+b)x=0A 4,,,b)], where 4,b = T by definition.

Proor: (i) Since x is an atom, ax=0vax=x; ax=xe(l+a)x=0,
(i) Again, x being an atom, bx=0vbx=x; bx=0-b+x=bux by
Lemma 9(ii); bx=x—-x (b+x)=0 and so, by Lemma 9 (i), x+{b+x)=
xu{b+x),= b since 2x=0. (iii) is clear. (iv) Note that Fx— Bx; by (ii)
and Lemma 8(iii), if bx=0, B(b+x)—(Bb A Bx), hence B(b+x)—Bb;
similarly, if x(b+x)=0, [BxA B(b+x)]—Bb, and so again B(b+ x)—
Bb. (v) Note that Fx—A4,x and Fx—x#0; if bx=0, xcb+x, and so if
A, b, A,(b+x); if A,(b+x), b contains at least (n—1) atoms, x being
one, and 1xcb. Similarly, if x< b, 4,(b+x)—A4,4,b.

COROLLARY 11: If Fx then every formula (—)(ax+b=0) (i.e. every
formula of the form ax+5=0 or —1(ax+5b=0)), A,(ax+b), B(ax+b),
where a and b do not contain x, is equivalent to a disjunction of conjunctions
of formulas not containing x and of equations of the form ax=0, x=b, x#c.
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THEOREM 12: Let G(x) be a quantifier free formula of £, Then \/ x[F(x) A
G(x)] is equivalent to a quantifier free formula.
Proor: By Cor. 11, it is sufficient to consider G(x):a,x=0A A
ax=0AXx=b - AX=DAXFCI A AXFEC,

If x=b,; appears, Vx[G(x)A F(x)]G(b) A F(b;); applying Lemma
8 (i) it is sufficient to consider

Vx[F(x)aax=0AXx#c; A" AXFCpl.
By induction on m:

Vx[F(x)aAax=0A M x#¢]

1<€i€m
is equivalent to the disjunction of the following formulas:

) Vx(m[Fle)nrae=0]AF(Xx)Aaax=0AMx#c;) (1<j<m)
j#i
(iiy Flc)mnac,=0AF(c)Arac;=0An
ag=¢;AVX[F(x)=0Anax=0A A x#c;J(1<i<j<m)
FES)

(i) M [Fle)rag=0A Nc;#c]n VX[F(x)A
1<i<n i*i
ax=0A M x#c].
1<i<m
We can apply the induction hypothesis to (i) and (ii), and (iii) is equivalent
to
Apri(L+a)n X [Fe)rae,=0n &c;#¢].
1<i<m j#i
The Theorem just proved establishes elimination of quantifiers for
formulas in which all quantifiers range over atoms. To treat the general
case one uses the following construction of disjoint cases.

LemMA 13: Let a,, ..., a, be terms of &' (and hence of ) not containing
x. Then there are terms 1, ..., ty, also not containing x, and subsets

Ly o Loof {1, ..., N} such that
Artt;=01<i<j<N),&ba, =) t(r=1,..,n).

iely
Proor by induction on n: If uy, ..., u, satisfy the conditions of the lemma
(on the ) for a,, ..., a, then aju,, ..., a,u, (L+a)u, ..., (1+a)u,
a,(1 +uy+ ... +u) satisfy the lemma.
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COROLLARY 14: Let G(x) be a conjunction of formulas H,(a,x+b,) (1<r<n)
where H{z) is —1A,(z) or (—) (z=0) or (1) B(z). Then G(x} is equivalent
to a disjunction of conjunctions of formulas H'(c;x), H'(¢;x+¢;), H'(d;) of
the same type where ¢; and d, do not contain x, and such that, for distinct
terms c;, c;, SAtcic;=0.
Proor: Note first that by Lemma 8 (i1) and (iii) and by Lemma 9 (ii), either
A txy=0-[H(x+y)o(HxAHy)} or & txy=0-[H(x+y){Hxv
Hy}]. By the lemma, if 4, ..., ty correspond to ay, ..., a,, by, ..., b,
ax+b,=(x) t)+ > ¢

iecl, iedy

for suitable subsets 1, J, of {1,2, ..., N}. Hence
arx+br=(x+1) Z t§+(x" Z ti)+ Z t
i

ielinJ, ielp~Jp ieJ,—Ip
where, clearly, I.nJ,, I.—J,, J,— I are pairwise disjoint.
So H(a.x+b5,) is either equivalent to
AN H@x+)a A H{gx)an XN H(z)

iel.nJp iel,—J, ieJp—Ip

or to the formula obtained by replacing the conjunctions by disjunctions:

W H(tx+1)v W H((tx)v W H(1).
ielpnd, fefp=Je iedp—Ir
Substituting these formulas for each H.(a,x+b5,) in G(x), and using
distributivity of A over v, we obtain the desired result.

Lemma 15: VVx[Hi(a,x+b)A ... AHfa,x+b,)] is equivalent to a quan-
tifier free formula ( for H;, 1 <i<n, of the type considered in Corollary 14},
ProoOF: By Corollary 14 it is sufficient to consider the formulas

Vx[K{ax) A A K, (a,x)]

where each K(z) is a conjunction of —4,z, —14,(1+2),(71)(z=0)},
() (z=1), (M) B(2), (M) B(1+z), and for i#/, &/ Faa;=0.

By Lemma 9 (iv) it is then sufficient to consider v xK(ax).

We may suppose that neither ax=0 nor ax+a=0 is a component of
the conjunction K(ax), since if ax=0 or ax+a=0 is then VxK{(ax)—
K(0), respectively \/xK{ax)-K(a) is a theorem. We may suppose that
ax#0 appears in K(ax), since K(ax)o([ax=0aK(ax)]vlax#0A
K{ax)); similarly ax+a#0.
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Note that x#0-(Bx—A4;x) and hence x#0-(—4,x->"1Bx). So
K(ax) is equivalent to a conjunction of ax#0 A ax+a+#0, and one of the
following formulas: L or
a) 14 {ax) A — 4, (ax+a) (since if e.g. B{ax) occurs the conjunction is

contradictory, and —1B(ax) is redundant by above),

b) (1) 14, (ax) A B(ax+a) or (i)—1A4,(ax)A 1 B(ax+a) and similarly
with ‘ax’ and ‘ax+ @’ interchanged,
¢) (i) B(ax) A B(ax+a), (ii) B(ax) A —1B{ax+a) or —1B(ax) A B(ax+a),

(iii) -1 B{ax) A 1 B(ax+a).

In case (a) VVxK(ax)—(a#0A T14,a);— is evident. 1 4,¢4— 1 Fa and
(a#£0A "1 Fa)> Vx(x#£0AxcaAx+#a); so Vx(ax#0Aax+a#0), ap-
ply Lemma 8 (ii).

In case (b) (i) VxK(ax)—(4,a A —1Ba). By separability, if Ajan 1Ba
we have boa A —1A4b, with B(a+b); since Aa, b#a; since 1Ba, b#0.
For (b) (i), VxK(ax)—("1Bana#0). If 1 Ba, by separability, we have
b#0, bca, 1A.b A B(a+b) where a-+b is possibly=0. Since —1.4,b— Fb,
thereis c#0, c#b, ccb,and "1 4 ¢, 1 A (c+b). Takeax=c,ax+a=c+a.

In case (c) (i) VxK (ax)«>(Ban A,a). If A,a, there are at least two
atoms one of which =b(with bca), the other contained in a+b. By
Lemma 8 (iii) and disjointness of b and a+b, Bb A B(a+b). (ii) \/ xK{ax)
«(T1Ban Aya). Since A;a, there is bcaa Fb. Since Fb— Bb, for ax=
a+b, B(ax+a), and since —1.Ba, 1 B(ax). (iii) VxK(ax)~(1Bara#0).
By separability, if =1 Ba, there is bea, —14,b A B(a+b) with #0 (but
possibly=a). Again, since —14,b—~1Fb, and b#0 there is ccbAc#0,
with -1 4;¢c A 14, (b+¢). Then -1 Bc A 1 B(a+¢).

This takes care of all cases,

THEOREM 16: Let G(x) be a quantifier free formula of £’. Then \/ xG(x)
is equivalent to a quantifier free formula of &' (in all separable Boolean
rings).

Proor: By Theorem 1 it is sufficient to consider conjunctions G(x) of
atomic formulas and negations of such formulas. Writing

E,(x) (read: x contains exactly n atoms) for A, (x) A—14,4,(x)
(n=1), Ey(x) for =1.4,(x)wehave
) —4&Fe[4&x)vEF) vV E_(x)] (n=1)

Also, if y is a variable not occurring in 4,(x), resp. E,(x), using the defi-
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nition: A,(x)= T in Lemma 10(v), we have

() Ao VyFyayexad,x+y)] (=1

(i) E,(x)e Vy[FyaycxAE,_ (x+¥y)] (rz1).

By (i) it is sufficient to consider G(x) of the form G'(x)A G,(x) where
G’ (x) is of the type listed in Cor. 14 and G{{x) is a conjunction of un-
negated atomic formulas 4,{(ax+0b), E,(ax+b).

The degree of G(x) in x is, by definition, the ordered pair (0, 0) if
G, (x) is empty, and (h, k) if A1 is the length (i.e., number of conjuncts)
of G,(x) and G,(x) is Clax+b)AG,(x) where C,(ax-+b) is either
A (ax+b) or E;(ax+b)(the first conjunct in G, (x)}. For k> 1, the degree
of G,(x}is <(h. k) in the lexicographic ordering of pairs of integers.

Since this is a well-ordering we can use induction on the degree of G (x).

If the degree is (0, 0) the Theorem reduces to Lemma 15.

If the degree is (h, k), k> 1, and y does not occur in G (x), by (ii),

VxG(x)o Vx(G'(x)A Vy[Fyaycax+ba
Ce-1(ax + b+ y)] A G2(x))
and so,
VxG(x)e> Vy[Fy A VxH(x, y)]

where H(x, y) is G'"{(x}nayx+by+y=0A C,_,(ax+y+b}A G,(x), since
yeax+beayx+(by+y)=0.

The degree (in x) of H is less than (k, k). Since ayx +by+y=01is of the
type considered in Cor. 14, the degree of H is that of C,_;{(ax+y+b) A
G, (x). We have two cases. If k> 1, the degree of H is (h, k—1), and so
<(h, k); if k=1, the degree of H is that of G,, and also <(h, k). This
proves the Theorem.

Exercises

1. Show that in Section II the use of the symbol s was necessary to ensure
that we could eliminate quantifiers. To be more precise, we consider the
language ¥ which has the single binary relation symbol < other than =
and we let .o/ be the following set of formulas of %

a) the axioms for a total ordering

b) AXVy Az(x<zey=zvy<i)
AXVy hz{z<xe>y=zvz<y).
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The models of =7 are the same as those of Section II, namely discretely
ordered sets without first or last element, but &7 does not allow the
elimination of quantifiers in 2.

Answer. We consider the model of </ which is the ordered set Z of
integers. If D, is the diagram of this model and if =/ allows the elimi-
nation of quantifiers the set =7 v D, is complete. However if we add the
number $ to this model we still have a model of & U Dy, but the formula
Vx(0<x<1) is not satisfied in the first model and is satisfied in the
second. This shows that /U D, is not complete and so &7 does not
allow the elimination of quantifiers.

2. Let &, .#’ be the languages of Section III. Let (a), (b), (¢), (d) be the
sets of axioms given in that section.

i} Show that the set (a, b, ¢) does not allow the elimination of quanti-
fiers in &Z.

i) Show that the set (a, b, ¢, d) does not allow the elimination of
quantifiers in %",

Answer, We consider the group G=Z x Z ordered as follows: {a, b)>01f
and only if either >0 or ¢=0 and 5>0. G is a model of (a, b, ¢) which
contains ¢ as a sub-model (identifying (0, n) with n). Let D, be the
diagram of Z. Then (a, b, ¢, d, Dg) is not complete since the formula
AxVy(x=2yvx+1=2y)istrue in Z but notin G.

3. a) Let ¢ be a countable set of formulas in a language with equality.
Show that if .27 has an infinite normal model then for each infinite cardinal
N, o7 has a model of cardinal ¥,

b) Prove that if &/ has only infinite models and for some infinite
cardinal N all the models of .o of cardinal X are isomorphic, that is if <7 is
categorical for the class of realizations of cardinal X, then &7 is complete.

c) Show that all countable models of the axioms of Section I, that is all
countable densely ordered sets with first and Iast element, are isomorphic
to the segment [0, 1] of the set of dyadic numbers (rationals whose
denominator is a power of 2). Deduce that these axioms are complete.

d) For this question we use the properties of transcendental bases of
extensions of a field K (see BourBakI, Algébre, Ch. 3).

Show that if @ is an algebraically closed field and K and K’ are alge-
braically closed extensions of Q with transcendental bases of the same
cardinal then K and K'are isomorphic,
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Deduce that two algebraically closed fields of the same characteristic
and of cardinal 2™ are isomorphic and hence that the axioms for an
algebraically closed field of characteristic p, where p is zero or a prime,
are complete.

Answer.

a) We add to & a set C of constant symbols of cardinal N. Let & be the
set of all the formulas a# 5 for distinct elements a, b of C. Every finite
subset of .« U # has a model, nameiy the given mﬁmte model of &7, and

hence .7 U % has a model. Let .7 = {A:Ae s}, then o /U2 has a canoni-
cal model which is clearly of cardinal X.

b) Let F be a closed formula of % which is not a consequence of =7,
Hence 7w {1 F} has a model and consequently a model of cardinal X
since .7 has only infinite models. Since all models of 7 of cardinal N are
isomorphic 1 F is satisfied in all models of &7 of cardinal N. Therefore
—1F1is a consequence of .« since if &/ U {F} has any model it has a model
of cardinal N, It follows that .« is complete.

¢) Clearly every densely ordered set is infinite. Let {0, a,, ..., a,, ...} U
{1} be a countable densely ordered set whose first element is 0 and whose
last element is 1.

We define an order preserving map ¢ of {0, a,, ..., a,, ...} v {1} into
the segment [0, 1] of the dyadic numbers as follows.

Let ¢(0)=0, ¢(1)=1. Now suppose that ¢(a,) has been defined for
r<n. Let b, ¢ be the elements of X,={0, q,, ..., a,, 1} such that a,,, is
immediately between b and ¢, i.e. such that b<a,., <c and there is no
element of X, between b and ¢. Then we let ¢(a,,,)=1[¢(b)+¢(c)]

We show that each dyadic number in [0, 1] is in the image of ¢. For
suppose not; let {2g+1)/2" be the first dyadic number in [0, 1], with
respect to the ordering given by (2¢+1)/2"<(2¢"+1)/2" if n<n’ or n=n'
and g<q’, which is not in the image of ¢. Then ¢/2"~* and (q+1)/2""!
are in the image and are equal to ¢(a;) and ¢ (a,) for some i, j. Let a, be
the first a which lies between a; and g, then ¢(a;)=(2g+1)/2". Therefore
¢ is an isomorphism and the proof is completed.

d) Let {b;:iel} and {b;:iel} be two transcendental bases of K and K’
over Q. K is therefore algebraic over 2(b,),.; and is therefore the algebraic
closure of Q(b,);c;. Similarly K’ is the algebraic closure of Q(b;),.;. But
Q(b,)ic; and Q(b),.; are both isomorphic to the field of rational fractions
Q{X,);.; and hence their algebraic closures are isomorphic.
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Let @, be the algebraic closure of the prime field of characteristic p,
thus Q, is countable. If the cardinal I of  is greater than or equal to N,
the cardinal of the field of rational fractions Q(X,),.; is equal to I and
hence also to that of its algebraic closure. Hence if K is an algebraically
closed field of characteristic p and of cardinal 2%° the transcendental base
of K over Q, is of cardinal 2%, Two algebraically closed fields of charac-
teristic p and of cardinal 2%° have therefore transcendental bases over Q,
of the same cardinal and are therefore isomorphic. Since the axioms for
an algebraically closed field of characteristic p have no finite models we
need only use the result of b) with N¥=2% to see that these axioms are
complete.

4 (HZLﬁER’[’S NULLSTELLENSATZ). Let X be a field and L an algebraically
closed extension of K. If p,, ..., py are polynomials in the n variables
Xi, ..., X, with coefficients in K which have no common root in L, then
there are polynomials ¢,, ..., g, in the »n variables x,, ..., x,, with coeffi-
cients in X such that

k
‘21 qip;i=1.

Answer. Let &7 be the set of axioms for an algebraically closed field and
let Dy be the diagram of K. Then &u Dy is complete and has L as a
model. Therefore p,, ..., p, have no common root in any algebraically
closed extension of K. Since any extension of X can be embedded in an
algebraically closed extension of K it follows that p,, ..., p, have no com-
mon root in any extension of K.

Let I be the ideal of K[ xy, ..., x, | generated by p, ..., p,. If this ideal is
not K{x, ..., x,) itself it can be extended to a maximal ideal J. The
quotient K[x,, ..., x,]/J is an extension of K in which p,, ..., p, have a
common root, namely the image of {xy, ..., x,} under the canonical map
of K[xy,...,x,] into the quotient. But this is impossible, hence /=
K[xy, ..., x,] and so 1e/. This completes the proof.

8. a) We recall that any ordered field can be embedded in a real closed
field (see VAN DER WAERDEN).

Show that if a polynomial p(x, ..., x,) with coefficients in an ordered
field K'is > O for all values of x, ..., x, in some real closed extension of K
then the polynomial is >0 for all values of x,, ..., x, in any ordered
extension of K.
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b) A field L is said to be realif, forany x,, ..., x,in L, x3 4 -+ x> + 1 0.
We recall that any real field can be embedded in a real closed field and so
can be ordered. o

Let geL. Show that if a is not the sum of squares, L(\/ —a) is real.
Deduce that there is an ordering of L in which a<0.

c¢) Consider a real field K in which for each aeX either @ or —a is the
sum of squares. Show that if the polynomial p(x, ..., x,) with coefficients
in Kis >0 for all values of x,, ..., x, in some real closed extension of K,
then there are rational fractions r,, ..., r, with coefficients in K such that
p=rf+ ----E-r,%.

d) Let p(xy, ..., x,) be a polynomial with coeflicients in the field of
rationals Q, which is positive or zero for all values of x4, ..., x, in Q. Then
there are rational fractions ry, ..., r, with coefficients in Q such that
p=r§+ cetrr.

Answer,

a) Let Dy be the diagram of K and .7 the set of axioms for a real closed
field, Then &/ U Dy iscomplete. Since the formula Ax; ... Ax, (p(xy, ..., X,)
=>0) is satisfied in one model of &/ U Dy it is satisfied in all real closed
fields containing K and hence in all ordered fields containing X since
these can be embedded in real closed fields.

b) Each element of L(,/ —a) is of the form a+ ./ —a with a, fe L. If
1 +Zl (OC,-I-ﬁ, ~/ _a)2=0 then
L+Y ol —adpi=0

1—}~Zaf 1—%—205?
Y

and so ais a sum of squares, which is a contradiction.

c) It is clear that K can be ordered in only one way, that is, so that a=>0
if a is the sum of squares and a <0 otherwises. Hence in all ordered fields
containing K, p(xy, ..., x,)=0. The field K(X, ..., X,) of rational frac-
tions in » variables over K is a real field. Hence p(X, ..., X,), that is the
value of the polynomial p(x,, ..., x,) for x, =X}, ..., x,= X,,, where the X,
are the base elements of the field K(X, ..., X,), is greater than or equal to
zero for all orderings of the field K(X;, ..., X,) and hence it is the sum of
squares of elements of this field.

and hence
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d) If p(xy, ..., x,)=0 for xy, ..., x,€Q, then since p is a continuous
function, p(xy, ..., x,)=0 for x,, ..., x,eR. So it is sufficient to note that
on the one hand R is real closed and that on the other each positive
element of Q is the sum of squares of elements of Q to obtain this result
(ARTIN’S THEOREM).

6. a) Let . be the language described in Section I1I and let ¥’ be the
language obtained from % by adding a binary function symbol x.

Show that there is no formula of %, with three free variables, whose
value in the standard realization (on Z) of .# is the set

{(m,n,p)eZ’:m = np}.

b) Let o/ be the set of formulas of &’ which are satisfied by the standard
realization of % (where x is interpreted as multiplication), and let <7,
be the set of formulas obtained by substituting for x in & another
binary function symbol X, which is notin %, Show that the set &/ U &,
has a model in which the values of x and x, are different.

Answer.

a) Let F(x, y, z) be a formula with the required property. Since the
standard realization satisfies the axioms of Section III there is a quan-
tifier free formula G(x) with a single free variable such that G(x) and
VyF(x, y,y) have the same value in the standard realization, this
common value being the set of squares.

But we will show that for any quantifier free formula H(x) of L with a
single free variable, there are two positive integers A and p such that for
integers n>> N,ne Hif and only if n + pe H, where H is the value of H(x) in
the standard realization. This is obvious if H is atomic since then H is of
one of the forms ax+b=0, ax+b>0 or nlax+b with a, beZ. Also if H
and H’ have this property so too do =1 H and Hv H'. So it is true of all
quantifier free formulas #.

We therefore have a contradiction since there are no positive integers
N, p such that for all n= N, n is a square if and only if 7+ p is one.

b) Suppose that in all models of o/ U 7, the values of x and x, are
the same. Then the formula AaAb(axb=axb) is a consequence of
&/ U o ,. Hence, by the Definability Theorem, there is a formula F (a,b,c)
of .# such that F(a, b, c}»a=bxc is a consequence of <. Since ¢ is
satisfied in the standard realization of .# the value of F in this realization
is {(m, n, p)eZ>:m=np} which contradicts the previous result.
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7. (a) Let .Z be the language of Boolean rings, and %, the language of
fields of sets, i.e., %, contains two monadic relation symbols J and
P(‘I’ for: individual, *P’ for: part) and a binary relation symbol ¢; we
shall write xey for exy.

For any set X, X#0, let E< B(X) where 0eE, XeE; for xeX, {x}€cE,
and E is closed under symmetric difference (=} and intersection {n).
Thus, if M=(E, 0, X, -, n> and M, =(XVE, X, E,e) (e being the
membership relation restricted to X x E) then M is a realisation of &, 9N,
of &,.

(i) Show that I is an atomic Boolean ring, i.e. each xekE satisfies
B(x) in M.

(ii) For each formula 4 of % find a formula 4, of %, with the same
free variables xq, ..., x, such that, for all X and E as in (), (%, ...,!)E,,)
satisfies 4 in M if and only if (%, ..., X,) satisfies 4; in M, and con-
versely.

(iii) Write
L(x) for Px A Vxj..VX,[x;ex A-axexan A (x#x))],

1<i<jgn

Py(x) for Aui(uex), P(x) for Au(uex),
Li(x) for Vx;..Vx,[xq8xA-—Aaxgxn KN x%#x].

15i<j<n

Deduce from (ii) that for each formula A{(x) of &, with a single free

variable x there is a propositional combination A*(x) of I(x), I,(x)
(n=1), I(x), Py(x) and P,(x) such that, for all x and E, A=4* in ;.1

(b) Let {X;, R;>(R; = X?) be an ordering of the type of the rationals
>0 (under the usual ordering), and (X,, R,>(R, < X3) an ordering of the
type of the negative integers, with X; nX,=0. Let (X, R)=<{X,uX,,
R, UR,u X, xX,>, ie., the order type of the rationals > 0 followed by
the negative integers.

Let E be the collection of finite unions of disjoint half open intervals in
{X, R) under the order topology, i.e. of sets {x:{a, x)eR, (x, b)eR, x#b,
aeX, beX}.

(i) Show that I, =<F, 0, X, =, n)> is a Boolean ring such that XeFE
is atomic if and only if it consists of intervals all of whose end points are
in X, ; and contains no atoms if all its intervals < X.

(ii) Show that X itself is not separable in 9t,, but for any proper
partition x Uy of X(i.e.,X€E, jeE, X nj=0, x#0, 7#0, ¥ U j=X) cither
X or j is separable.
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(iii) Deduce that the set of axioms a), b), ¢} does not permit elimination
of quantifiers for the language #”’; similarly for a), b), ¢) and d) and the
language " where £” is obtained from %’ by adding the monadic
predicate symbol S, and d) is: Ax(SxeVy[yexAaBya—4,(x+y)].

Answer,

a) (i) It is clear that M is a Boolean ring. Every element {x}, for xe X,
is an atom, and every yeE contains such an {x} because y is a subset of
X. So Pt is atomic.

(ii) We “define” in a natural way the operations of ¥ in the language
Z" and the relations of M, in £, Formally suppose 4e.Z, 4 in prenex
form, the quantifier free part written as a disjunction of conjunctions of
the form a<b and negations of such formulas (a=b<racbAbca). Let
u be a variable not appearing in 4 ; for each term a of ¥ we find 4, of Z,
such that (@, %, ..., X,) satisfies 4, in M, if and only if {7} =g, where d is
the value of @ in I; since each X, c X(1<i<n), %, satisfies P in W, ; if
aisthesymbolOorl, 4,=L,resp. = T;if a=b.c,a=b+c¢, A,=A,A A,
resp. WAy AAIA(Apv A); (@ash)y=Pxy A APx, A Nu(Au— Au),
(m{acb)), =Px, A - APx, A Vu(Aun 1 4u); (A A B), and (4 v B); are
Ay A By, tesp. Ay v By (AxiA) = Axi(Px;—4), (Vxd), = Vx,(Px; A
A,). The first half of (ii) follows by induction on the length of A4.

For the converse, given a formula 4 of ¥, containing the free variables
X1s ..os X, We have to find a formula A4 of % such that (%, ..., %,)
satisfies 4 in M, if and only if (%[, ..., %) satisfies A" in I where X;=x;
if %,cE, and %;={%) if #eX (identification of individuals with their
unit sets). We put (Ix)'=Fx, (Px) =T, (xey) =Fxaxcy, (M4)=
WA, (AABY=A"AB",(AvB)y=A4"vB,(AxA)and (Vxd) are Vx4,
resp. \V xA4'. The proof is evident.

(iil) Given A(x) (with a single free variable x) of £}, consider 4’ (x) of
& constructed in (ii). By Section VI, since I is an atomic Boolean ring,
A'(x) is equivalent to a propositional combination of 4,x, x=0, x=1,
A, (1+x); by (ii), A(x)isequivalent in M, to T, L, Au—1{uex), Au(uex)
or: x is an individual, or x, resp. the complement of x contains at least,
resp. at most # individuals.

(b) (i) It is clear that i, is a Boolean ring. The only atoms are the
intervals with a single element since if [a, b)eE and [¢, d)<=[a, b) also
[, d)eE; so [a, b)is an atom if and only if ae X, and b is the successor of
a. Since finite unions of atoms are atomic, if ¥ E and ¥ is a finite union of
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intervals with endpoints in X,, then % is atomic. On the other hand, if
a, be Xy, [a, b) contains no atom because all its non empty parts are
unions of intervals [c, ) with end points in X,. (ii) X, ie. I, is not
separable, because X, has no first element and so the set theoretic union
of the atomic elements of I, namely X,, has no greatest lower bound in
M,. But if X=x Uy, x#0, 70 either X or 7, say X, contains an interval
[a, b] with aeX|, beX,; then 7 consists of a finite set of (disjoint)
intervals [a, b) with ae X, A be X| or ae X, A be X, ; the former contain no
atoms, the latter are atomic,

(i11) Suppose a), b), ¢), d) permitted the elimination of quantifiers for
#”,in particular of the formula F= \/y[y#0Ay#1 A By A —14,(1+x)]
of &’ itself. It would be equivalent to a propositional combination of
formulas 4,1, B,1, S1(—14,0, B0, S0 being consequences of a), b), ¢), d)).
Fisfalse in 9, which also satisfies 4,1(n>1), —1B1, —1S1. But there are
evidently Boolean rings which also satisfy 4,1(n>1), 181, =151 in which
Fis true, e.g. the Boolean ring constructed analogously to 91, starting
with the ordered sum of (X, R} and a disjoint copy of it in place of (X, R).



CHAPTER 5

PREDICATE CALCULUS WITH SEVERAL TYPES OF OBJECTS:
THE HIERARCHY OF FINITE TYPES

The first part of this chapter and Exercises 1, 2 and 3 contain a second method,
mentioned in the summary of Chapter 2, for developing first order predicate logic,
including the reduction of the theory of functions to that of their graphs. The
essential resuits are formulated and proved directly for languages with several
types of variables which are common in mathematics. The use of such languages
is in principle reducible to the use of languages with a single type of variable and
unary predicates M; (x) for “x is of type i”’. However in practice these languages
are useful because they allow simple formulations of certain results, for exampie,
an improved version of the Interpolation Lemma, which will be useful in the next
chapter. The method of constructing canonical models given in this chapter is in
practice much more convenient for languages with several types of variables than
that of Chapter 2. For the relation between these two methods see Exercise 2.

In the second part we study languages with several types of variables constructed
as follows: one type for individuals, one for sets of individuals, one for families
of such sets and so on for a finite number of steps. These languages are familiar
from axiomatic mathematics where, for example, in the theory of groups, the
elements of the given group constitute the individuals while the sub-groups are
sets of such individuals (sets on which we take the restriction of the group
operation). More generally, the languages considered here concern the finite levels
in the structure or “hierarchy” of (simple) types. In Exercise 5 the cumulative type
structure and its relation to the simple type structure are described.

In the class of realizations here considered (that of general models), the domain
Co of the individual variables is arbitrary and the domains of the other variables
are families of sets of the types i, 2, ..., respectively, of the hierarchy having Co as
base, and which satisfy certain closure conditions. The study of these general
realizations can be reduced to the theory of Chapter 2 (by use of the axioms of
extensionality). Two other classes of realizations are treated in the last chapter.

A language ¥ with k types of objects is a language which consists of’;
1) k infinite disjoint sets V4, ..., V. The elements of ¥ (1<i<k), are
called variables of type i of Z;

2) k disjoint sets C’, ..., C$ . The elements of CP(1<i<k), are called
constant symbols of type i of £,



PREDICATE CALCULUS WITH SEVERAL TYPES OF OBIECTS 81

3) for each integer >0 a set R, the elements of which are called r-ary
relational symbols (with variables of arbitrary type);
4) for each sequence (i, ..., i,) of integers between 1 and k, a set S§' ™
the elements of which are called relational symbols of type (iy, ..., i,), (or
n-ary relational symbols the first variable of which is of type i, ..., and
the n-th is of type i).

All these sets are assumed to be pairwise disjoint.

The atomic formulas of £ are defined to be the sequences of one of the
following forms
a) R(&,, ..., &,), where R is an p-ary relation symbol, (ReR%’) and
¢,, ..., &, are variables or constant symbols of .# of arbitrary type, that is,

k
e UCP VYY) for 1<ign;
=1

b) S(EYY, ..., E8) where S is a relation symbol of type (iy, ..., i),
(SeSy ™), and £ is a variable or a constant symbol of .# of type
i, 1<j<n.

The set of atomic formulas of .# is denoted by At,.

The set %, of formulas of % is the set of function schemas built up
with the atomic formulas of .# as the 0-ary symbols, =1 and Vx (where
xeVQu--uV'Y) as the unary symbols and v as the only binary symbol
(see Chapter 0).

The abbreviations Ax,—,< and A are defined just as in Chapter 2 as
also are the notions of the free variables of a formula of # and of a closed
Sormula of Z.

We define a realization of the language ¥ with k types of objects to
consist of
1) k non-empty sets E,, ..., E,. E(1<i<k) is called the domain of type i
of the realization;

2) for each i(1<i<k), a map c—¢é of CY into E;;

3) for each integer 70 a map R—R of R} into Z((E, v+ L E)");

4) for each sequence (i, ..., i,) of integers between 1 and k& a map S—S
of §"° ™ into P(E; x - x E; ).

The value F of a formula F of & in this realization is a subset of
EV# P .. EV#™ (thatis, itis a set of sequences (3, ..., §,) where §; is
a map of ¥ into E,, or alternatively since the sets V' are pairwise dis-
joint, it is a set of maps & of (s, V¥ into \J%-; E; such that for
1<j<k, §(VP)<E,). This set Fis defined as follows:
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If F is an atomic formula it is of the form R(E{Y, ..., £) with ReRY
or ReSYr 1 where £0V, ..., £ are variables or constant symbols of
types iy, ..., i, respectively. In this case F is the set of those e F¥ <" x

. X EVf 0’ such that

(8" (€5, ..., 0" (E5)e R

where 6"(£§") =8 (£} if £ is a variable and &' (¢")= EDif &9 is a con-
stant symbol.
By the Theorem on Function Schemas (Theorem 6.3), if weput Fv G =

FuG, 7F=cF and VxF= the projection of F along the variable x
(that is the set of those de EV¢"" x .- x £, %" such that there is some
&, € F which is equal to 8, except p0551b1y at x), then F is defined for each
formula F.

Just as in Chapter 2 we can see that the value of a closed formula Fis
either E1<" x -+ x E} 2™ or 0. In the first case we say that F is satisfied
by the given realization. If <7 is a set of closed formulas of # the formula
F is a consequence of o7 and we write &/FF (as on p. 66), if every reali-
zation which satisfies .7 (that is, which satisfies each formula of .27) also
satisfies F. A theorem of & is a formula whose closure is satisfied by each
realization of .%.

The notion of a formula in prenex normal form or a prenex formula is
defined as in Chapter 2. We can again show that each formula of % is
equivalent to a prenex formula.

A realization of % is called a canonical realization if its domain of type
iis CQ, the set of constants of % of type i, for each i, 1 <i<k, and if for
each constant symbol ¢ of %#, ¢, the value of ¢ in the realization, is ¢ itself.
Hence if one of the sets CY is empty % does not have any canonical
realization.

To each canonical realization of % there corresponds a realization of
the propositional calculus on the closed atomic formulas of . defined
as follows:

The value of R(a{V, ..., ), where R is an n-ary relation symbol or a
relation symbol of type (i, ..., 7,) and a{", ..., a™ are constant symbols
of types iy, ..., i,, respectively, is tor0 accordmg as to whether or not
(@, ...,ai")eR.

Conversely each realization of the propositional calculus on the set of
closed atomic formulas of & defines a canonical realization of &#. The
following lemma can easily be proved by induction on the length of F.
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LemMMA 1: Let F be a closed quantifier free formula of £. Then given any
canonical realization of £, F is satisfied by this realization if and only if it
is satisfied by the corresponding realization of the propositional calculus on
the set of closed atomic formulas of £

Let {A:1<i<k, n an integer > 1} be a family of disjoint sets each of
the same cardinal as the set of formulas of &, and each disjoint from ¥
so that no finite sequence of variables or of other symbols of & belongs
to AP, Let A9=1J,5, 45 and let £, be the language which is obtained
by adding to .# each element of 4 as a constant symbol of type i. Thus
the set of constant symbols of &, of type i is Cu 4D,

Letd,= U 4¥Y and 4=J4d,= U 49.
1sigk n=1 1€igk
For each ac A® the rank of a is the integer » such that ae4%”, the integer
i, between 1 and k, being the type of a. The rank of a formula Fof £, is
the greatest rank of the elements of A which occur in it, or 0 if no elements
of 4 occur in it, 1.e., if Fis a formula of Z.

We choose a variable x* of % of type i for each i(1 <i<k), and we let
F® be the set of formulas of .2, of rank # which have x as their only
free variable. Cleatly F? and 4{), have the same cardinal, namely that
of the set of formulas of .. Hence for each pair (i, n), with 1 <i<k and
n an integer >0, there is a one-one map & of F” onto 4.2 ,. Therefore for
each acA® there is a unique formula, 4(x?), with x' as its only free
variable, such that a=¢(A4(x'?)). Further, the rank of A(x"”) is one less
than the rank of a.

We let Q, be the formula

VxP4(x?) = A(a)
where a=¢(4(x\")).
We let Qb = {Qa:aeziff)}
09 =10, aea?}
Q,=1{Q, acd,}
and Q={Q, acd}.
Thus o-Uo-= U o
nzi 1gisk

PROPOSITION 2: Each realization of £ can be extended to £, so as to be
a model of Q.
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Proor: Let I be a realization of .# with domains E,, ..., E,. We define
the value ¢ of ae 4 by recursion on the rank of a.

Suppose that we have defined b for each be| J,<, 4, in such a way that
Q,, ..., Q,_, are all satisfied, and let ae4,. The formula 4(x) such that
a=¢(A(x)) is of rank n—1 and therefore has a value A(x) in the reali-
zation of £ud;u-+ud,_; which has already been defined. If A_(x_) is
not empty there is some a € E;, where i is the type of a, such that aeAﬁ
We put d=a. If m is empty we let 4 be an arbitrary element of E;. In
either case Q,, which is Vx4 (x)—A4(a), is satisfied.

This completes the proof.

PROPOSITION 3: For each model MM of Q there is a canonical model I,
which satisfies the same closed formulas of %, as IR.

PrOOF: Let R be an r-ary relation symbol of .% or a relation symbol of
type (i, ..., I,) of &, and let Ry, be the value of R in the given realization
IR. We define Ry, the value of R in the realization I, by Ry, =
{{ay, ..., a,): the formula R{q,, ..., a,) is satisfied in 9N} (If R is a relation
symbot of type (i, ..., i,) then a4y, ..., a, are respectively of types i, ..., i,
or else R(ay, ..., a,) is not a formula of % ,.)

Now let Fbe a closed formula of . ,. We will show by induction on the
length of F that Fis satisfied by 9t if and only if it is satisfied by 9. This
is obvious if F is atomic from the way that we have defined 9t,.

Suppose that the result is true for all formulas of length less than A and
that Fis a closed formula of length #.

If Fis G, then by the induction hypothesis, ¢ is satisfied, say, by both
IR and M, hence F is satisfied by neither I nor IN,. Conversely, if G is
satisfied by neither M nor Y, then F is satisfied by them both; similarly
if FisGv H.

If Fis VxG(x), suppose first that F is satisfied by . Since M is a
model of Q, M satisfies G(g) where g=¢(G(x)), because Q contains the
formula v/ xG(x)—G(g). Hence, by the induction hypothesis, I, satisfies
G(g) and so satisfies F. Suppose now that 9t does not satisfy F. Then I
satisfies all the formulas —1G(a) where a is a constant symbol of .Z, of
the same type as x. Therefore, by the induction hypothesis, M, also satis-
fies all these formulas. But the domain of IR, of type i is the set of con-
stant symbols of .Z, of type i and so M, satisfies Ax—1G(x), that is I,
satisfies 71 F.

This completes the proof.
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With each closed prenex formula F of %, we associate a set {(F) of
closed quantifier free formulas of £, and a subset 4(F) of 4, defined by
recursion on the length of F as follows:
i) if Fis quantifier free, (F)={F} and A(F)=0;
ii) if Fis VxG(x) then (F)={G(g)) and A(F)={g} v A(G(g)) where
g=¢(G(x));
iii) if Fis AxG(x) then <F>={J,{G(a)) and A(F)=J,4(G(a)) where
a ranges over all constants of £, of the same type as x.

Let Q(F)={Q,:acA(F)}.

LeMMA 4: Each canonical model of {F) satisfies F and each model of
{F} UQ(F) satisfies {F {or, for short, F, Q(F)F{F>).

Proor: The proofis by induction on the length of F. The lemma is obvious
if F is quantifier free since then {(F)={F}.

Suppose that the lemma is true for all formulas of length less than A
and that F'is of length 4.

If Fis VxG(x)and M is a canonical model of {F), M is a model of
{G(g)> where g=¢(G(x)). By the induction hypothesis I satisfies G(g)
and also F. Also, since Q,,i.e. VxG(x)—>G(g), e Q(F), {F}u Q(F)FG(g);
since Q(G(g)) = 2(F),and, by theinduction hypothesis, { G(g)} v Q(G{g))+
<G(g)y, we have {F}UQ(F)F{G(g)), i.e. {F}UQ(F) (F>.

If Fis AxG(x) and 3 is a canonical model of <F}, M is a model of
(U {KG(a)y: ais a constant symbol of £, of the same type as x}. By the
induction hypothesis )t satisfies each of the formulas G(a) and so, since
IR is a canonical model, I satisfies AxG(x), i.e. F. By the induction
hypothesis G(a), @(G(a)}+<{G(a)>, and so, since Q(F)>Q(G(a)), also
G(a), Q(F)F{G(a)). Since, further, for each a, FFG(a), we have
F,Q(F)FLG(a)y, ie., F, Q(F)FJ,{G(a)), and so F, Q(F)FLF), as
required.

THEOREM S5, THE FINITENESS THEOREM: If each finite subset of a set o7 of
closed formulas of ¥ has a model, then o has a model.
Proor: We can assume that 7 contains only closed prenex formulas.
Let Z=|J{{Fy:Fesf}. Let % be an arbitrary finite subset of # so
that # < (F,) u---u (F,>. Since, by hypothesis, {F,, ..., F,} has a model,
it follows from Proposition 2 that Qu {F,, ..., F,} has a model and hence
from Proposition 3, that QU {F,, ..., F,} has a canonical model. Since
Q(F)=Q, by Lemma 4, Q, F,F{F;>; so this canonical model satisfies
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{F»w--UF,> and hence also %. Thus every finite subset % of % has a
canonical model and hence also a model in the sense of the propositional
calculus on the closed atomic formulas of .£,, by Lemma 1. Hence, by
the Finiteness Theorem for propositional calculus, # has a model in the
sense of the propositional calculus, and therefore, by Lemma 1, # has a
canonical model. By Lemma 4, since this canonical model satisfies {F)»
for each Fe.%/, it also satisfies 7.
This completes the proof.

COROLLARY 6: Let I be a totally ordered set and let { o/, iel} be a family
of sets of closed formulas of £, such that if i, jel and i<j then o/, </ ;,
If each o/; has a model then so has s =\_J; ;.

Proor: It is sufficient to show that each finite subset «Z,={F,, ..., F,} of
&/ has a model. Suppose, say, that F;es/; (1<j< n) and let #; be the
greatest element of {i;, ..., 7,}. Then &/, .7, , and so because 7, has
a model so too does &7,

LemMa 7: If F and G are two closed prenex formulas of £, such that
A(F)N4{(G)#9, F and G contain the same relation symbols and variables
and constants of the same types.

PROOF: Let bed(F)n4(G). Since bed, b=¢(B(x)) for some formula
B(x) with a single free variable. We show, by induction on the length of
F that B(x) and F contain the same relation symbols and variables and
constants of the same types.

F cannot be quantifier free or else 4 () would be empty. If Fis VxH/(x)
then since beA(F), bed(H(g))vw {g} where g=e(H(x)). If beA(H({g))
then by our induction hypothesis, H(g) and B(x) contain the same re-
lation symbols and variables and constants of the same types and hence
so too do Fand B(x). If b=g then B(x)= H(x) because & is one-one and
so again F and B(x) contain the same relation symbols and variables and
constants of the same types.

If Fis AxH(x)then since be4(F), be A(H(a)) for some constant sym-
bol a of the same type as x. By the induction hypothesis, H(a) and B(x)
contain the same relation symbols and variables and constants of the
same types and hence so too do F and B(x).

Similarly it can be proved that G and B(x) contain the same relation
symbols and variables and constants of the same types and therefore so
too do Fand G.
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THEOREM 8. THE INTERPOLATION LEMMA: Let F and G be two closed for-
mulas of £ such that F A G does not have a model. Then there is a formula
H of £, whose relation symbols and tyvpes are common to F and G such
that F—H and G——1H are both theorems,

Proor: Since F A G does not have a model, it follows from Lemma 4 that
{F>w{G) does not have a canonical model and so is inconsistent in the
sense of the propositional calculus on the closed atomic formulas of .Z,,
by Lemma 1.

Therefore, by the Interpolation Lemma for the propositional calculus
there is a closed quantifier free formula C of %, whose atomic formulas
are common to {F) and (G such that {(F>FC and {G>+—1C. The re-
lation symbols and types which occur in (F) are just those that appear in
F as can be seen at once from the definition of {F’». Similarly for G. Hence
the relation symbols and types of C are common to Fand G. By Lemma 4,
Q(F), F-C and Q(G), G+ C. If A(F)nA(G)#0, then, by Lemma 7,
Fand G contain the same relation symbols and the same types. In this
case the Theorem is trivial since it is sufficient to put H=F. We can there-
fore assume that A(F)nA(G)=0.

By the Finiteness Theorem

Qpreens 2, FFC, )
Qprees @y, GFI C, )
where a, ..., a, are distinct elements of A(F} and by, ..., b, are distinct
elements of A(G). Because A(F)nA(G)=0,a,#b;(1<i<n, 1<j<p).
Let a,, say, be an element of greatest rank in the set {ay, ..., @,, by, ..., b, }.
Then Q,,, ..., Qu,_» Q5 -5 25, do Dot contain a,. Let C,(z) be the for-

mula obtained from C by replacing a, by a variable z of the same type not
occurring in C. So C=C,(a,) and hence CF VzC,(z). Therefore

Q. R,  FFVzCi(2).

ButQ,, ..., 2,,_, F, VzC(z) do not contain g,. Also , can be written
as \/xA(x)—A(a,) where 4(x) does not contain x,. Therefore

Qs LVY[VXA(x)> A(Y)], FF VzCy(2)
that is, because Vy[ Vx4 (x)—>A(y)]is a theorem,
Q.8 FFVzC(2). (3)

On the other hand
Qyp-esy,, GF1C {a,).
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Since a, does not occur in Q, , ..., 2, , G we can therefore deduce that
Qs G N2 1Cy (2). (4)

We can repeat this procedure starting from (3) and (4), instead of from
(1) and (2) and so on. Thus we can eliminate one by one the formulas
Q> 25, (1<i<n, 1<j<p). After n+p steps we obtain a formula H which
has the same relation symbols and types as Csuch that F- Hand GF— H.

This compietes the proof.

The following two lemmas will be used in the next chapter.

Let acA. Let 8, be the intersection of all those subsets X of 2 which have
the following properties

1) Q.eX,

2) if bed and b occurs in a formula of X then Q,e X.

0, is therefore the smallest subset of X” which has these two properties.

LEMMA 9: Let a,, ..., a, be the elements of A, other than a, which occur in
Q,. Then 0,=0, v---00, L{Q,}
Proor: Clearly 8, u---u 8, U {Q,} has the properties 1) and 2) above and
so contains .

Conversely 0, contains 0, (1<i<n) and so 0, has the two properties
which define 0, . Therefore 0,, =8, and so 8, w---wd, V{Q,} <=0,

This completes the proof.

We deduce at once that for each acA, 0, is a finite set of formulas of
Q. This is obvious if aeQ; because then §,={,}, and if it is true for all
a of rank less than » then the previous lemma shows that it is also true
for all @ of rank n.

LemMmA 10: Let H(ay, ..., a,) be a closed formula of £ , containing no ele-
ments of A other than ay, ...,a, If Q+H(a,,...,a,) then 0,,...,0,}
FH(a, ..., a,).

ProoF: Suppose QF H(a,, ..., a,), then by the Finiteness Theorem there
is some finite subset £’ of Q such that Q'+ H(a,, ..., a,). Let X be the set
of all those finite subsets of © which contain 8,,, ..., 0, and which have
H{ay, ..., a,) as a consequence. X is not empty and hence contains some
set Qy=0,, v, U{Q,, ..., Q }, containing the smallest number of
formulas. We will show that p=0,
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Suppose that p#0 and let b,, ..., b, be arranged in increasing order of
rank. Let B,(x) be the formula such that ,=¢(B,(x)). Then §,, ..., 6, ,
Qs oos 2y _ s VXB,(x)=B,(b,)F H{a;, ..., a,). b, does not occur in 6,
(1<i<n) because if it did, by the definition of 8,, we would have Q, €0,
and hence Q,—{€, }€ZX, which contradicts the choice of Q,. Also b, does
not occur in any of €, , ..., &, _, because if it did the rank of 5, would be
less than the rank of one of the b;(1<j<p). Finally b, does not occur in
H(ay, ..., a,) which does not contain any symbols of 4 otherthana,,..., a,.
Therefore

Oaps vos Oas Loy o 0s @y _ s VY(VXB,(x)— B, (y))FH(a,,...,a,);
but Vy(VxB,{x)—B,(»))is a theorem and so
Bass +vosOas @yrs oo @y FHay, ., a,)

which again contradicts the choice of €.
This completes the proof.

PREDICATE CALCULUS WITH EQUALITY, WITH k TYPES OF OBIECTS

A language . with k types of objects is said to be with equality if there
is a distinguished binary relation symbol E of % (E€RZ").

Let . be a language with equality and let &, n be two variables or con-
stant symbols (of arbitrary types). The atomic formula E(&, ) will be
written &=n.

A realization of .% with domains U,, ..., U,, is said to be normal if the
value of E in this realization is the diagonal of (U, u---u U,)?, that is the
set of all pairs (i, u) for ue Uy u--- U U,

A closed formula F is said to be a normal consequence of a set <7 of
closed formulas of & if each normal realization which satisfies .27 also
satisfies F. If Fis a normal consequence of &7 we write &/ k F, or where
there can be no confusion &7+ F. A formula F of & is called a normal
theorem if its closure is satisfied by all normal realizations of .#.

Let &, be the set of the following formulas of %

1) AxP(x=x¥), for each integer i(1<i<k) where x¥ is a variable of
type i;

2) A AXED AP py

LG =y A A ) = ) o (RO, o ) > RO, o 3]

for each relation symbol Re RZ (including E, when n=2), and for each
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SCQUENCE iy, ..., iy Jy» .., J, O 2n integers between 1 and k, where x{, ...,
xlin) 0 yUn) are variables which are of types iy, ..., Ly fis +ves jus TE-

spectively;

3) AxU o AxT AP Ay
[ = 360 Ao 28 = 32) = (S (65, oy 68 = SO, 9],
for each relation symbol S of type (i, ..., i,) where x!", y{" are variables
of type i.

The formulas of &, are called the axioms of equality for £. Let It be
a model of &4 with domains Uy, ..., U,. &, contains the formulas

/\x(f;} Ax{;z) f\y?‘) A},%zz)
[(x(llx) - y(ljz) A x?z) — y(zf'z) A x(;x) - x(zlz})__, y(f’;) — yl’z}z)] ,

and so because I satisfies these formulas £y, the value of E in IN, is the
graph of an equivalence relation on U; u--u U,.

Hence we can derive a normal realization I’ from IN as follows: the
domains of M’ are the images of Uy, ..., U, under the canonical map of
Uyou--ulU into Uy u---OUJEg. If ¢ is a constant symbol of % with
value &g in YR, then its value éy. in 3 is the equivalence class of &y, under
the relation Eg.

if R is a relation symbol (an n-ary relation symbol or one of type
(iy, ..., i) whose value in M is Ry, its value Ry in 9N is defined to
be the image of Ry under the canonical map of U u---u U into
Uy ueru U/ Eyy.

Just as in Chapter 3 we can prove that for each formula A4 of % which
has, respectively, the values g and Ay, in W and W', A4,y is closed under
the equivalence relation Ey, and Ay, is the image of Ay under the ca-
nonical map of U, u---u U, into U, u--u U,/ Eq,.

In particular, if 4 is a closed formula of Z, 4 is satisfied in M if and
only if it is satisfied in ',

PROPOSITION 11: 4 closed formula F of & is a normal consequence of a set
& of closed formulas of & if and only if it is a consequence of U & 4.
PROOF: Suppose Fis a consequence of &/ U& . Every normal model of o/
satisfies &', and hence satisfies F. Therefore F is a normal consequence
of 7.

Suppose Fis not a consequence of &/ u &,. Then there is some model
M of &/ U &pu{TF}. The normal model M’ derived from P satisfies
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&/ but does not satisfy F. Hence F is not a normal consequence of o7,

The Finiteness Theorem for the predicate calculus with & types of ob-
jects, with equality, can be deduced from the Finiteness Theorem for
predicate calculus without equality (Theorem 5) in the same way as in
Chapter 3. For the record we state this result now.

THEOREM 12: Let o/ be a set of closed formulas of the language £ with
equality such that every finite subset of <7 has a normal model, then &/ has
a normal model.

We also have an Interpolation Lemma for the predicate calculus with
equality as follows:

THEOREM 13: Let F and G be two closed formulas of the language & with
equality such that F A G does not have a normal model. Then there is a closed
Jormula H of & whose relation symbols, other than equality, and types are
common to F and G, and such that F— H and G— —1 H are normal theorems.
Proor: Let % be the language of FA G, %, the language built up from
the symbols and types which are in F but not in G, Z, the language built
up from the symbols and types common to F and & and %, the language
built up from the symbols and types which are in G but not in F.
It will be sufficient to show that the set

o = {F, G,(D@gluyzagfzuﬁ’a}

(by a natural misuse of language we write &4 for the conjunction of the
formulas of € 4) does not have a model. For suppose that we have proved
this. Then by the Interpolation Lemma (Theorem &) applied to the for-
mulas €4 ¢, AF, &4, ¢, G, there is a closed formula H of &, such
that €4 o, FFH and €4, «,, GF1 H and so F»H and G- 1 H are
normal theorems.

Suppose then that IR is a model of «7. Let V| be the union of the do-
mains of I of types which are in .%;, and let V,, V5 be defined similarly
for &, and #;. We define a model 3N, of o7 which has the same domains
as R as follows.

If R is an n-ary relation symbol of .#(Re RY’) which has the value Ry
in 9t then we let Ry; , the value of R in IR, be defined by

Ry, ={(uy, ..., u)e(Vy oV U V)" (uy, ..., 4)eRop and uy, ..., u,
are all elements of ¥V, w ¥, or all elements of V, L V).

If S is a relation symbol of & of type (iy, ..., i,} which has the value
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S in M we put S, = Sez. (Note that the types iy, ..., i, which occur in §
either all belong to £, U ¥, if § occurs in F or all belong to £, u.%; if
S occurs in G. Hence if (uy, ..., u,)€Sq,, 1y, ..., 4, cither all belong to
ViUV, or all belong to V, uV,.) Clearly i and I, satisfy the same
formulas of £ u.%, and of ¥, U .Z, and therefore N, is a model of 7.

We define an equivalence relation £ on V,uV,uV; as follows:

(x, y)e £ if and only if either

i) (x, y)eEy,, or

il xeV;, yeV; and for some zeV,, (x, z)e Ey, and (z, y)e Ey,, or
iii) xe Vs, yeV, and for some zeV,, (x, z}e £y, and (z, y)e Eg,.

It is clear that £ is reflexive and symmetric. On ¥, U V, it is identical
with Ey and hence is an equivalence relation on V, U ¥, since I, satis-
fies &g, , o, Similarly, on ¥, U V; it is identical with Ey, and hence is an
equivalence relation on V, U V; since I, satisfies €4, o,.

Now suppose (x, y)e E and (y, z)e E with, say x, ze V; and ye V,. Then,
by definition there exist , ve V, such that (x, v), (u, v), (¥, v), (¢, z)€ Eq,.
Since Eg, is an equivalence relation on ¥, U V3, (1, v)e Eg,, and therefore
(x, z)e Eqy, Whence (x, z)e E because x, ze V. Therefore £ is indeed an
equivalence relation on V.

For each n-ary relation symbol R, (ReR})), we define R by

R={(u,, ..., u,)eV": there is (vy, ..., v,)e V" with
(g, 01)s oo (4 v, )€ E and (vy, ..., v,)e R, }.

For each relation symbol § of type (i, ..., {,) we put

~

55‘35:“1 :Sm.

The values of £ and of the R and § define a realization 93? of # which
has the same domains as 953 and 9521.

We show first that IR satisfies &5,. Suppose that (i, ..., u,)eR, where
ReR, and that (u;,v,), ..., (i, v,)€ E. Then, by the definition of R,
there is (%, ..., u,)e Ry, with (uy, 1)), ..., (u,, w)e E. But then (u}, v,),
..y (4, v,)€ E and so, by the definition of R, (vy, ..., v,)eR. This shows
that the axioms for equality which involve the relation symbol R are satis-
fied in L.

Now suppose that S is a relation symbol of type (iy, ..., I,} of L. If,
say, S occurs in F then all the types iy, ..., i, are in %, u.%#,. Therefore
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the axiom of equality for § is satisfied in IR, since N, satisfies &,

1uvEs

and hence by I because § = S, -

Therefore YN satisfies & 4.
Next we show that if ReRY’ and if u,, ..., u, are all in V, UV, or all
in ¥, u V5 then

(uys...,u,)eR ifandonlyif (uy,...,u,)eRqy, . (1)

Suppose (uy, ..., U,)€Rg,, then certainly (u,, ..., u,)eR. Conversely
suppose that (u,, ..., u,)e R and uy, ..., u, are all in ¥; U V,. Then by the
definition of R there are v,, ..., v, such that (u;, vy), ..., (u,, v,)eE and
(v4, ...r v,)€ Ry . It follows that vy, ..., v, are either all in ¥; U V; or all in
V,uls.

If vy, ..., v,areallin ¥; u Vs, since (i, v,)e E (1 <i<n), (u;, v)e By, and
therefore, because M, satisfies €4, o, (s ...y 1,)E Ry,

Now suppose that v,, ..., v, are all in V,u V;. If v,e V5 (1<ign), as
(u;, v;)€ E there is some w; (possibly w;=u,) in ¥, such that (u, w;)e Eg,
and (w;, v)eEg,. If v,;eV, we put w;=uv; and the same relations hold be-
tween u;, v; and w,. Because M, satlsﬁes Eg, . w, and (vy, ..., v, )ERy, it
follows that (w,, ..., w,,)ef?%. Hence because M, satisfies €y, , , we can
deduce that (ul, s U,)€ Rgp . This proves the result (1).

Therefore i and 9N, satisfy the same formulas of £, U#, and of

2,0.%,. Thus M satisfies F and G. Since M satisfies &4, & »U{F, G}
has a model and so, by Proposition 9, FA G has a normal model which
contradicts our hypothesis.

This completes the proof of the Interpolation Lemma.

LANGUAGES WITH k TYPES OF OBJECTS, WITH EQUALITY, WHICH HAVE
FUNCTION SYMBOLS '

In this section we restrict ourselves to giving definitions and stating
results. The proofs of these results can be found in Exercise 1.

A language & with k types of variables, with equality and with function
symbols is a language which consists of
1) k infinite disjoint sets ¥, ..., V. The elements of V3 (1<i<k)
are the variables of .# of type 7;
2) for each integer 7> 0, a set R whose elements are called n-ary relation
symbols (with variables of arbitrary type). We also assume that R is
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not empty and that it contains a distinguished element £ which is called
the identity or equality symbol;

3) for each sequence (i, ..., i,) of integers between 1 and &, a set S§-
whose elements are called relation symbols of type (iy, ..., i,);

4) for each sequence (i, 7y, ..., i,) (n>0) of integers between 1 and %, a set
F§) whose elements are called function symbols of type (i, 7y, ..., i,);
iy .- I, are called the argument types, i the value type.

We assume that these sets are pairwise disjoint. We define (see Exercise
1) the set F of terms of &. F is divided into & disjoint sets 7, ..., F ;.
T (1<i<k)is the set of terms of (value) type i of 2.

The atomic formulas of .% are those which are of on¢ of the following
forms:

i) R(ty, ..., t,) where Re R} and ¢4, ..., t, are terms of arbitrary type.
In particular E(#,, t,) is an atomic formula which will be written as ¢, =1,;

i) SV, ..., 19} where S is a relation symbol of type (iy, ..., i,) and
0, .., 1) are terms of types i, ..., i, respectively.

The set of formulas of &£ is the set of function schemas built up with
the atomic formulas as 0-ary symbols, -1 and V/ x (for each xe ¥ P u---u
V%) as unary symbols and v as the only binary symbol.

We define a normal realization of ¥ to consist of
1) k non-empty sets Uy, ..., U,. The set U,(1 <i<k) is called the domain
of the realization of type i;

2) for each integer n >0, a map R—R of Ry into Z((U, u---u U)"). We
insist that £ is the identity relation on U,, ..., U,, that is the set of pairs
(u, u) with ueU, U---U Uy

3) for each sequence (i, ..., 1,) of integers between I and k a map S-S
of SE- ™ into P(U; x -+ x U, };

4) for each sequence (7, iy, ..., #,) of integers between [ and k a map f-f

of Fg' ™) into the set of maps of Uj, x --- x U, into U,
{t} (k)
Let & be an element of U¥¢ x---x UL ¥, in other words & is a map of

V@ U u¥V$ into U, u-U U, such that (V)< U, for each i(1 <i<k).
Then 6 can be extended in a natural way to a map, which we also denote
by ¢, of 7 into U, U---U U, such that § (7)< U, for each i(1 €i<k).

The value F of a formula F in the realization of % we have just de-
(1) (k)
scribed is a sub-set of UL ¢ x .- x {}:3’ , which is defined by recursion on

the length of F as follows:
a) if F is an atomic formula it can be written R(¢,, ..., #,) where Re Ry}
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or ReS¢ " Then F, the value of Fis defined by

F——- 6 V(g}) ] Vg)' \ 7] .
={0eU; < x--x U, € :(6(ty),...,6(t,))eR};

b) Fv G=FuG, 7 F=cF.
\/ xF= the projection of F along the variable x, that is \/ xF is the set

{1} {k}
of those 6eU" ¥ x --- x U, ¥ such that there is some 8, € F which is equal

to & for all variables of # except possibly x.

We can define the notions of a formula F being satisfied by a realization
MM and of a closed formula F being a consequence of a set & of closed
formulas in the same way as at the beginning of this chapter.

The Finiteness Theorem expressed as in Theorem 12, remains true for
languages with function symbols.

The Interpolation Lemma can be stated as

THEOREM 14: Let F and G be two closed formulas of a language & with k
types of objects, with equality, which contains function symbols. If FA G
does not have a normal model there is a closed formula H of ¥ whose re-
lation symbols (other than = ), function symbols and types are common to
F and G and such that F— H and G——1 H are normal theorems. (The types
of a formula are, by definition, the types of the variables occurring in 4
and the value types of its function symbols.)
The proof of this result can be found in Exercise 1.

THE THEORY OF FINITE TYPES

Let T be the smallest set which has the following properties:
1)0eX;
2y if 74, ..., 1,€X then the ordered a-tuple (z,, ..., 7,) is also an element
of .

The elements of T are called types. If 7 is a type other than O there are
types t,, ..., T, such that t=(ty, ..., 7,), since the set of all types which
have this property satisfies conditions 1) and 2) above. Clearly the integer
n and the types 14, ..., 7, are uniquely determined by the type .

Given a type 7 there is an integer N >0 which has the following prop-
erty: each sequence 74, ..., 7, of types other than 0 which is such that
1,=71 and, for 1 <i<k, 1; is one of the elements of the n-tuple making up
T;41, 18 Of length k< N. This can be seen at once because the set of all
types for which such an integer N exists satisfies the conditions 1) and 2)
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above. The rank of 1 is the least integer N with this property. It follows
that the rank of 7 is the length of the longest sequence 14, ..., 7, of types
other than 0 such that 7, =7 and, for 1 <i<k, 1, is one of the elements of
the n-tuple making up 7,,,.

Let r(t) be the rank of the type 7 which is not 0. We put #(0)=0. We
have at once that if t=(t, ..., 7,) then r(z)=1+sup {r (1), ..., ¥(z,)}.

Given a type T we let [t], also called the transitive closure of 1, be the
smallest set with the following properties
1) telt];
2Yif ' =(1y, ..., 1,)€[7] then 74, ..., 7, are all elements of [7].

We can deduce from this definition that if 1=(zy, ..., 1) then {17]=
[z.]v---u[r,}u {1}. For [t] has the two properties defining [ ;] (1 <7 <n)
and so [1;]<[7] whence

[e]v-vln]u{ el

Conversely [7,]u---u[1,}u{z} has the two properties which define [7]
and hence this set contains [t]. It therefore follows that [7] is a finite
subset of X, since by the remarks above the set of those 7 for which {7}
is a finite subset of I, has the properties 1) and 2) above and, being a
subset of I, must therefore be identical with T

LemMa 15: Each element of [ 1] other than t has rank less than that of t.
ProoF: This can be proved at once by induction on the rank of .

We define an order relation < on X by putting 7 <o if and only if
telo]. Clearly t1<t. If 1<6 and o<t then 7 and o are of equal rank,
but 7e[a] and so t=¢, If ¢<t and < it can easily be shown by in-
duction on the rank of v that ¢ <v. Hence < is indeed an order relation
on .

We consider a language . with equality (in the sense of Chapter 3, so
that " has just objects of one type) and the family of sets {V*:teT and
t#0}, where the sets V* are infinite, pairwise disjoint and disjoint from
& and the set {¢,:7¢T and t#0}, where the ¢, are all different and are
not elements of LUl J. ., V. Let ¥° be the set of variables of #.

For each type T we denote by Z* the language with several types of
objects (in the sense which we have just explained) defined as follows:

The types of the objects of #* are the types ¢ such that o <1. The set
of variables of type o is V°,
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The function symbols of & are the function symbols of £ regarded
as having arguments and values of type 0.

The relation symbols of #* are

1) the relation symbols of %, except for the equality symbol, consid-
ered as having all their variables of type 0, and the equality symbol of
Z* is that of #; and

2) the symbols g, for6#0, 0 < 1. If 6=(5y, ..., 6,) then ¢, is an n+ l-ary
relation symbol of type (o4, ..., 6, 0).

The variables of type o will be denoted by x7, y” etc.

Type 0 will also be called the type of the individuals; for instance,
variables of type 0 will also be called individual variables. The type (0, 0,
..., 0) (a sequence of n zeros) will also be called type of n-ary relations
(unary for n=1, binary for n=2). Type (0) will be called the type of sets
of individuals, type ((0)) the type of sets of sets of individuals and so on.

If 6=(54, ..., 0,) is a type <7, the formula

0 (X7 ey X3%, X7)
which is an atomic formula of #* will also be written as

(xT, s X €, X7
or as
(x7% ... xp7)ex’.

We call the language #~ the language of order v on £. The formulas of
* are called formulas of order t of Z. Since if 7 <’ each formula of order
1is also a formula of order 1’ in this case £ .%*". The formulas of order
0 of & are the ordinary formulas of Z.

For each type t we let .7, be the set of the following formulas of order 7

A AP (x* £ X, B< T, 0 B
AXEAY AT LAY, st ex® o (xT LX) e )] - xF = %)
for each type a<t, with a=(y, ..., &,). This formula is called the Axiom
of Extensionality of order «.

A realization of order t of & or a t-realization is defined to be a normal
realization of .#* which satisfies .7,. Hence a realization of order 0 of .#
is a normal realization of % in the ordinary sense. The domains E,(o < 1)
of a realization of order 7 of % are therefore disjoint. If o=(o, ..., 0,)
and acE,, an element (a,, ..., a,) of E, x --- X E, such that (a,, ..., a,, @)
ei,, where &, is the value of ¢, in the givenrealization, iscalled a “member™
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of a in this realization, It follows from the Axioms of Extensionality that
two elements a, b of E, which have the same “members™ are identical.

Let 9%, be a realization of order © of %, that is, a model of 7, with
domains E, (o <1). Clearly if 7' < 1 the restriction of IR, to the language
Z* and to the domains E, (¢ < ') is a model of 7, and so is a realization
I, of order ©’ of &£,

I, is said to be the realization of order t’ induced by I, and M, is
said to be built on IN,.. In particular for 7' =0, we can see that each reali-
zation of order 1 induces an ordinary realization of .% on which it is built.

THEOREM 16: Let I be a realization of order O of . There is a realization
IR, of order t of £ which is unigue up to isomorphism and which is such that

1y I, is built on M;

2) each realization M, of order © of £ built on IR can be embedded in IN,
so as to preserve each element of I and the &, relations {for ¢ <1).

M, is called the principal realization of order t (or: principal t-realization)
over IN.

Proor: Let E, be the domain of M. We define the set E,, the domain of
type o of I, by recursion on the rank of ¢ as follows:

If o=(04, ..., 0,), E, is a set which is disjoint from all the previously
defined E, and of cardinal 2™ where m is the cardinal of E, x---x E, .
Therefore there is a one-one map ¢, of E, onto Z(E, x---xE, ). We let
£,, the value of ¢, in IR, be defined by

&, ={(ay,....apa):a,€E,,...,a,6E, and (ay,..,q,)€0,(a)}.

Thus the “members” of ae E, in 9N, are the elements of ¢, (a). Because
¢, is a one-one map the Axiom of Extensionality of order o is satisfied.
We have therefore defined a realization i, of # of order 7, built on It
if we let the function symbols of # and the relation symbols other than
the ¢, have the same values as in M.

Let N, be a realization of order t of .%, built on I with domains
F,(o <71). Therefore E,=F,. We define by recursion on the rank of ¢ a
one-one map i, of F, into E, as follows: i, is the identity map. If o =(o,
..., 6,) then for each aeF, let d={(a;, ..., a,)eF, x---xF, :(ay, ..., a,)
is a “member” of @ in N,}. By the Axiom of Extensionality of order ¢ the
map a—+d is a one-one map of F, into Z(F,, x --- x F, }. From the one-one
maps i, :F,, - E,,, ..., i, :F, > E, , which have already been defined we
can derive a one-one map j of #(F, x-x F, ) into #(E, x--xE,).
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We then put i (a)=¢, *«j(d). i, is certainly one-one since it is the compo-
sition of maps which are one-one. It follows from the definition that
(as, ..., a,) is a “member” of @ in N, if and only if (i, (a,), ..., i, (a,)) is a
“member”’ of i,(a) in M,. Hence the set of maps i (o < 1) together make
up an embedding of M, into I, which preserves IM. Suppose now a
realization M, satisfies the conditions established above for .. Then, in
particular, M, can be embedded in N, by a mapping i preserving each
element of M and the relations &, for o <7. Suppose that o, necessarily
#0,1s a type of least rank for which 7 does not preserve &,. Since I, is
embedded in N, there is an element a of F, which is not the image of any
element of E,. Suppose o=(o, ..., 6,) and consider the ‘“‘members” of a
in 9N,: they are n-tuples (ay,...,q,) where a,€F,,...,a,eF, . Since
o,<o(l1<j<n), i~ ({a;})#0; by construction of M, thereisa beE,:b=
¢ (i ay, i a,)(ay, ..., a,) is a “member” of a in N, }. So @ and i(b)
have the same ‘““members’ in 9, yet are distinct. This contradicts the
axiom of extensionality which N, is supposed to satisfy. Hence 0, and
N, are isomorphic, i.e., M, is unique, as required.

Remark. A non-principal realization on )t can in general be embedded
in different ways in IMM,; e.g. if E={a, b}, Fo, = {{a}}, Foy={{{a}}},
the following map F oy~ E(oy) s also an embedding: a—a, b—b;
{a}—={a}, {{a}}—{{a}, {b}} since {{a}, {b}} has no “‘members” in F
other than {a}.

The embedding / of M, into N, defined in Theorem 16 is the only map
Jjof U {F,:0<1} into | J {E,:0 <1} which satisfies the conditions:

(i) j preserves each element of IR, and the & -relations (o <7);

(ii) the image j({ J{F,:6<1}) is transitive in { J{E,:0<7}, where a
subset S of | J{E,:0<1} is called rransitive whenever

acE Ao=(0y, ...,0,) A (A4, ..., )P a=>(a,eS A - Aa,ES).

The proof of uniqueness of I, itseif given in Theorem 16 also applies
here.

The embedding 7 of N, into i, will be called canonical.

Suppose now that the language % contains the single relation symbol
=. A realization of % therefore consists of a non-empty set E, say. We
denote by MM*(E) the principal realization of order t built on E. W (E)
is called the hierarchy of simple types <t on the set E. It follows from the
previous theorem that each realization R*(E) of order 7 built on E can be
canonically embedded in 9°(E).
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Let E, Fbe two non-empty sets such that EC F. Clearly each realization
of order t built on E, and, in particular, the principal realization IN"(E),
becomes a realization of order t built on F if its domain of type O is ex-
tended to F, the domains of type ¢ < t(6#0) being left unchanged. Hence
there is a canonical embedding of IN°(E) into IM*(F) which is an ex-
tension of the identity map of E into F. Let |*(E) and R*(F) be two
realizations of order 7 built on E and F respectively. Then there are three
canonical embeddings «, §, y such that

R°(E) S ME(E) 5 M(F)
R°(F) 5 M (F).

R*(F) is said to be a r-extension of R*(E) if and only if yR*(F) is an
extension (in the sense of realizations of the language £*) of faR*(E).

Now let E and F be two sets with a non-empty intersection, and let
R(E} and R°(F) be two realizations of order 7 built on E and F respec-
tively. Since I (En F) is the principal realization of order 7 built on
E N F there are canonical embeddings «,, f,, o,, f§, such that

R(E) SIM(E) S M(EnF)
R(F) S5 M (F) LM (E A F).

The t-intersection of R*(E) and R*(F) is the realization W (En F) built
on En~ F which is defined as follows: R(EnF) is a sub-realization of
WM(EnF) and if EeM(ENF) then EeR(EnF) if and only if
Biéea; R (E) and B, Eca, R(F).

These two definitions can easily be extended to the general case of a
language % with a single type of variable. For suppose that It is a reali-
zation of % with domain E. Then being given a realization of order
built on M is equivalent to being given I and a realization R*(E) of
order 7 built on E. Thus given two realizations 9 and M of £ with
domains £ and F respectively let (30, R*(E)) and (N, W(F)) be two
realizations of order 7 of .& built on I and N respectively. We say that
(M, R°(F)) is a t-extension of (I, R*(E)) if and only if N is an extension
of M and R*(F) is a t-extension of R(E).

If 9t and N agree on the set EnF, which we suppose is not empty
(that is to say if the values of the relation and function symbols of % in
IR and M agree on En F) then M N is a realization of &£ with domain
EnF. The t-intersection of (3N, R*(E)) and (N, R(F)) is the realization
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of order © of & built on MM which is given by the pair (IMNAN,
R(ENF)) where R(EnF) is the t-intersection of R*(E) and R*(F).

Exercises

1. Languages with k types of objects which have function symbols.
i) Give a definition for the sets 7, ..., 7 of terms of ., a language with

k types of object which has function symbols. Prove that given any normal
1)
realization of .% with domains U,, ..., U,, each element  of U" ¥ x --- x
(k)
Uy ¥ can be extended in a unique manner to a map é of 7 into U, (for

each i, 1 €i<k) in such a way that

a) 6(x)=5(x") for each variable x”, and

B) S(f (ty, .o ) =F (8(21), ..., 6(1,)), for each function symbol f of

type (i, iy, ..., i,) and each sequence Iy, ..., ¢, of terms of types iy, ..., 7,
respectively.
ii) Let &, be the language with k types of objects, with equality, which
does not have any function symbols, whose relation symbols are those of
& together with a relation symbol S; of type (i, iy, ..., 1,) for each func-
tion: symbol f of type (i, i, ..., i,) of & . We assume that the symbols S,
are all different and do not occur in 2.

There corresponds to each formula F of % a formula F* of & which is
obtained from F by substituting the atomic formula x® =7 (x{*, ..., x{™)
for each occurrence of the atomic formula S, (x¢, x{?, ..., x{) in F.

Show that for each formula @ of & there is an equivalent formula of
# which has the same relation symbols (except perhaps equality), and
the same function symbols and free variables, and the same types as @
and which is of the form F*.

iii) Let &7, be the set of the following formulas of &,

A x(lu) . /\xfl!n) vx(!) [Sf (x(l)’ x(lll)’ s x;’n))]
and
AxEY ARG AxD A D
e A,
[Sf (x(i), x(lil)’ '“’xffn)) A Sf(ym, x(lin), ...,Xf,i”)) - x® y(i)]
for each function symbol f {of type (i, iy, ..., i,)) of Z.

Establish a one-one correspondence between the normal models of o7
and the realizations of % such that if 9 is a realization of % and M,
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is the corresponding model of 7, for each closed formula F of %, F'is
satisfied by IR, if and only if F* is satisfied by IR.

Deduce from this the Finiteness Theorem and the Interpolation Lemma
for the language %.

Answer.
i) Let Z be the set of function schemas built with the elements of
VP U u VP as 0-ary symbols, and the elements of F&i ™) as n-ary

symbols, for each sequence (i, i, ..., i,) of integers between 1 and £.

An element ¢ of Z is said to be of type i if £e VP or if £ begins with a
function symbol feF:"*»™) that is with a function symbol whose val-
ues are of type i. Let Z, be the set of schemas of type i. Then the Z; are
pairwise disjoint and Z=2Z, u---U Z,.

We define a map J of Z into {0,1} by recursion on the length of the
elements as follows:

J(x)=1, for each variable x of Z.

If éeZ and £ is not a variable of %, & can be written uniquely in the
form f{&,, ..., &,) where feF'3'v and &, ..., £,6Z. We put J(&)=1
if J(¢)=---=J(&)=1 and &,, ..., &, are of types iy, ..., i,, respectively.
Otherwise J(£)=0.

Then we define the set .7 of terms of & to be the set of elements (e Z
such that J(£)=1. The set 7 ; of terms (whose value is) of type { of % is
ZinT.

LEMMA: ¢ is a term of type i if and only if t is a variable of type i or
t=f(t;, ..., t,) with feF3 o) where t,, ..., t, are terms of types iy, ...,
i, respectively: f, t,, ..., t, are uniquely determined in this latter case.
Proor; If t€.7; then teZ and so ¢ is either a variable or can be written
uniquely as t=f(ty, ..., t,) with feF@' ™ and t,, ..., 1,eZ. Since
J(t)=1,J(t))=--=J(t,)=1 and so ¢, ..., 1, are of types i, ..., i,, Ie-
spectively.

Conversely, if ¢, ..., £, are terms of types i, ..., {, Tespectively, then
S(ts, ..., t,) is a term of type i because J(f (¢, ..., 1,))=1.

Now let 9t be a realization of .# with domains U,, ..., U,. For each
JeFG i et fbe the value of fin M. fisamap of U;, x --- x Uy, into U,
Suppose we are given a map & such that, foreach i(1 <i<k), (V)< U.
We define the extension & of & to the set of terms by recursion on the
length of the terms as follows: If t=£(¢,, ..., ¢,) is a term of type i, with
feFgi i 1 eTy, ..., t,eT, , then 8(t)=F(5(ty), ..., (,)).
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It can be seen at once that this extension of ¢ is a map of J; into U, for
each i(1<i<k) which has the required properties.

it) Suppose that & is an atomic formula of .Z of the form x¥ =@,
where x* is a variable of type 7, and 1@ is a term of type i. We will prove,
by induction on the length of ¢V thatit is equivalent to a formula of the
form F*,

This is obvious if t? is of length 1 because then it is either a variable
or a constant symbol of type i. If ) is of length A>1 then ®=
£, ), with feF ™ and where 199, ..., t{» are terms of
types iy, ..., i, respectively. Then x?=¢® is equivalent to

Vi Lyl [ = 100 A A xT = 1A x® = (0, L x )]

provided none of the variables x{", ..., x{) occurs in any of the terms
ty, ..., t,. (An analogous restriction is tacitly understood throughout the
present exercise.)
By hypothesis, x{"=¢{", ..., x{""=1{" are respectively equivalent to
F%, ..., F¥. Thus x?=¢® is equivalent to
VD L VxIITFE A A EF A XP = £ (T, x)]
that is, to F*, where F is the following formula of %, namely
VM VxSOLF A A By A Sp(x 0 x0 x)].
Further, the function symbols and types which occur in the formula
xP=¢@ are those which occur in x{=1{9, ..., x" =" and x¥=
FGE, L, X8, By the induction hypothesis they are those which occur
in F}, ..., FF, xW=f(x{", ..., ") and thus those which occur in F*,
Now let @ be an arbitrary atomic formula of &. @ is R(¢{", ..., ti™),
say, where R is an n-ary relation symbol (Re R or ReS$" ™) and
t$0, ..., t% are terms of types iy, ..., i, respectively.
Then @ is equivalent to
VP v 0 = 0 A A 8 = 18 A RS, L xEY].
Since x{ =1, ..., xt =¢{" are equivalent, respectively, to F7, ..., F¥,
@ is equivalent to F* where Fis the formula

VL VX [F A A Ey A RGP, L xE]

The relation symbols (except perhaps equality), the function symbols,
the free variables and the types which occur in F* are clearly those of ®.
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It can now be easily proved, by induction on the length of @, that each

formula @ of & isequivalent to a formula F*, which has the same relation
and function symbols and the same types as @. Indeed if # =@, v @, then,
by the induction hypothesis, @, is equivalent to F} and &, to F3. Thus
@ is equivalent to F; v F} which is equivalent to (F, v F,)*. A similar
proof worksif @ =-1¢, or &= Vxd,.
iii) If Mty is a normal model of =7, with domains U, ..., U, and fis a
function symbol of & of type (i, i, ..., ) then the value of S, in M, is
the graph of a map of U, x --- x U; into U,. Hence from 9}, we can derive
a realization 9N of Z which has the same domains as IM,. Clearly each
realization of % can be obtained in this way and a formula F of &, is
satisfied by M, if and only if F* is satisfied by Wi.

Now let Z be a set of closed formulas of & every finite subset of which
has a model. By ii) we can assume that each formula of & is of the form
F* where Fis a formula of #,. Let

HBo={F:F*eH}.
If {F,, ..., F,} is a finite subset of &, {F}, ..., F;} has, by hypothesis,
some model and so 7, U {F,, ..., F,} has a model. Hence we can deduce
from the Finiteness Theorem for the language %, that o/ U %, has a
model M,. The realization IM of & which corresponds to M, satisfies
. This proves that the Finiteness Theorem holds for the language .Z.

Finally let F and G be two formulas of .# such that F A G does not have
a model. There are two formulas 4, B of %, such that A4* is equivalent
to Fand B* is equivalent to G, and which have the same relation symbols
(except possibly equality), the same function symbols and the same types
as F, G respectively.

Let 7, be the set of those formulas of .«7;, which correspond to the
function symbols which occur in A* and let <7, be the set of those for-
mulas of &7, corresponding to the function symbols which occur in B*.
The types which occur in &7, are those which occur in 4*, and those of
& , are the same as those which are in B*.

Since A* A B* does not have a model, {4, B} U &7, U .2/, does not have
one either. Therefore by the Interpolation Lemma for the language %,
with equality, applied to the two formulas &7, A A, o/, A B there is a for-
mula H whose relation and function symbols and types are common to
A and B which is such that

o, ArH and 7, Br—1H.
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We can therefore deduce that A*F H* and B*F— H* and thus that FF H*
and GF— H*.
This proves the Interpolation Lemma for the language Z.

2, The relation between the methods of Chapters 2 and 5.

Let .% be a language with a single type of variable without function
symbols. We define £, and @ as described in this chapter. Let F be a
formula of .% and let F be the universal formula constructed from F in
the way explained in Chapter 2. Thus the language of F is that of F aug-
mented by a finite number of function symbols ¢, ..., ¢,,.

Define functions fi, ..., f,, on 4 which have the same number of argu-
ments as ¢, ..., P, respectively, such that, for any canonical model 9t
of ©, if M is extended to a realization M’ of £ (F) by giving ¢, the value
fi{(1<i<m) then F and F have the same values in ¢".

Answer. We assume that F is a (not necessarily closed) prenex formula of
& and we define the set {f,...,f,.} by recursion on the number of
quantifiers in F. If Fis quantifier free F= F and there is nothing to prove.

If F= AxG(x, X, ..., x,) then F= AxG. Thus the function symbols
@y -..s G, of Fare those of G and we give them the values f;, ..., f,, which
have already been defined for G. Since, by hypothesis, G and G have the
same value in M’ so too do Fand F.

If F=VxG(x, xq, ..., X,), let ¢4, ..., &, be the function symbols which
occur in (. Then B G(%y % X1y s X,)
where ¢ is a new n-ary function symbol. We give ¢,, ..., ¢,, the values
fis -oes f,, which have already been defined for G and we define f by

flag..,a,)=28e(G(x, ay,...,a,)
for a,, ..., a,e4.

Then (ay,...,a)€ E<(f(as,...oa,), ay,...a,)eG

- <:>(f(a1"">an)aa19-'-9an)€G
since G=G. Thus

(ay, ..., a,)e F<=IM satisfies G(a, a,, ..., a,)
where a=¢&(G(x, 4y, ..., a,)). Therefore, because I is a model of Q
(ay, ..., a,)e F<= M satisfies v xG{x, aj, ..., a,)
and so F=F
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3. Refinements of the Uniformity Theorem (for predicate calculus with
several types of variables).

a) Show that if \/x;... VVx,4, where A is quantifier free, is a theorem
then there is a sequence (+{, ..., ) (1 <i<p) of n-tuples of terms of the
language of A such that A, v ... v .4, is a theorem, where 4; is obtained
by replacing x; in 4 by 7.

b) Deduce that if %’ is a set of universal prenex formulas and £ is an
existential formula which is a consequence of %' then there is a quantifier
free formula, 4, such that '+ A4 and A+ E.

¢) Deduce from b) that if % is a set of universal formulas, U is a uni-
versal formula and #} U—F then there is a quantifier free formula B
such that %+ U«B and % F B« E.

Answer.

a) We consider the canonical realizations of the language £ of 4. The
domain of type p in such a realization is the set of all those terms of type
p of % whose variables occur free in A. (If 4 does not contain any free
variables or individual constants, we consider instead all the terms of
type p of & u {a} where a is some given variable.) Since Vx;...\/x,4 is
a theorem, the set of formulas {—1.4,,—14,, ...} does not have a canonical
model. Hence it follows from the Finiteness Theorem for propositional
calculus that there is some integer ¢ such that ~14; A --- A 714, does not
have a model and therefore 4; v - v 4, is a theorem.

b) By the Finiteness Theorem there is a finite subset %; of %’ such that
%, F E. The conjunction of the formulas of %, is equivalent to a universal
formula, say Ay,... Ay,C. Suppose that E= Vz;... Vz.D {(C and D are
both quantifier free). Then Vy,... V¥, Vz;... Vz,(mCv D} is a theorem.
Therefore by (a) there is some formula of Z of the form

“1Cyverv1Cyv Dy v v D,

whichisatheorem.Let Abe Dy v -+ v D,.Since Ay;... A¥,CFC A~ AC,
and %'k Ayy... Ay C it followsthat '+ D, v --- v D,. On the other hand
since D;FE for each i(1<i<q), D;v--vD,E.

c) It is enough to consider closed formulas U, the case of free variables
being reduced to this one by use of constants not occurring in # U {U}. Let
' =9 w{U}. Then %'+ E and so by (b) there is a quantifier free formula
B such that %'+ B and Bt E. Therefore %+ U— B, and so + U—B and
U+ BerE.
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4. Refinements of the Interpolation Lemma (for a language .# with
several types of variables).

Let U= Ax;... Ax,Aand E= VVy,... Vy,B, where 4 and B are quanti-
fier free formulas of %, such that none of the variables y; occursin 4
and none of the variables x; occurs in B,

a) Deduce from the Interpolation Lemma for the propositional calculus
on the atomic formulas of % that if £— U is a theorem, there is a quanti-
fier free formula C such that E—C and C— U are theorems.

b) Let Fand G be two closed formulas of % such that F—G is a theo-
rem, Deduce from the Interpolation Lemma (Theorem 8) that there is a
formula H such that Z{H)c Z(F)n % (G) and both F»H and H-G
are theorems,

¢) Find two formulas F and G of a language with equality such that
F—G is a theorem, G does not contain = but there is no formula H not
containing = such that Z(H)< £ (F)n £ (G) and both F»G and G- H
are theorems.

Answer.

a) Since F E~ U, the formula B— A is a theorem in the sense of propo-
sitional calculus, Therefore there is a formula C built up from the atomic
formulas common to 4 and B such that both B—C and C— 4 are theo-
rems. C only contains variables which are common to 4 and B and so,
in particular, C does not contain any of the variables x; nor any of the
variables y;. It follows therefore that both Vy,... Vy,B—C and C—
AXq... Ax,A are theorems, which is the desired result, (On the other hand
if A and B are arbitrary formulas of the predicate calculus such that
FB— A, there is not necessarily a formula C containing only variables
common to 4 and B such that F B—C and +C— A4; take, for example
A=VyR(y) and B=R(x).)

b) Theorem 8 shows that there is a formula A which only contains
relation symbols and types common to F and G such that F F—H and
F H— G it leaves open the possibility that H contains a constant ¢ which
does not occur in F, say. Let » be a variable which does not occur in H
and H’ be the result of replacing ¢ by u# in H; then F F— AuH' and
F AuH’—G. Similarly if A contains a constant ¢ which does not occur in
G then F F— \VuH" and F\V uH'—G. So in this way we can get rid of all
the constants in H which do not occur in both F and G.

¢) Let F be the formula Ax Ay(x=y). If P is a unary relation symbol
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the formula F—»( AxP(x)v Ax—1P(x))is a theorem. A formula H satis-
fying the conditions of ¢) would have to be either T or L, which is
absurd.

5, We define the pure type of order n, denoted by #, for each integer n 20,
by recursion as follows: 0 is the type of individuals and #+ 1 =(n). If n>0
and oe[n] then o is also a pure type of order m<n, and ¢, is a binary
relation symbol. If & is a first order language with a single type of variable
which does not contain the symbol ¢, and n> 1 we let £} be the language
which is obtained from % by adding the binary relation symbol ¢ and
types of variables (1, 2, ...,n). (The language " is the language #* de-
scribed in this chapter for 1=n.)

For each integer n>0, we denote by S, (the axiom for the hierarchy
of simple pure fypes <n)}, the conjunction of the following formulas of
#" where i, j<n and the variables x, y, z are of types i, j, j respectively;
for each pair (i, j):

Ax Ay—i(x=y) where i <j (simple types),

Ax Ay—i(xey) where j#i+1, Ay Az[ Ax(xeperxez)—y=z] where
Jj=i+1 (axiom of extensionality).

We denote by S? the conjunction of S, and the formulas Ay Vx(xep)
for i<n and j=i+1 {each empty set is of type 0).

We denote by C, (the axiom for the hierarchy of cumulative types <n),
the conjunction of the following formulas, where the variables x, y, z are
of types i, j, k respectively; for each pair (7, j):

AxX Ay Vz{xgy—z=x) where j<i and j=k+1,

Ay AxIxey—-Vz(z=x)]-> Vx(x=y)] where j=i+1 and i=k+1,

Ax Ay—i(xey) where j=0,

Ax Ay[ Az(zexezey)—x=y] where k+1=max{i, j}.

a) Show how to transform

(i) an n-realization of .Z* into a model of S, and conversely,
(i) a model of S? into a model of C, but not conversely.

b) (Ordered pairs of simple types.) For each pair (7, ) of integers find
a formula M;; containing three free variables of types i, j, k respectively,
where k=2+max{i, j}, such that 1, is a one-one map of E; x E; into E,,
in any realization of #(k <n) which satisfies C, and the conjunction of
the formulas Ax Ay Vz Au[uszeo(u=xvu=y)] (existence of pairs),
where x, y, u are of type r, z is of type r+1(<#) and r<k.

From this derive a one-one map of E; x .- x E; into E; where k=
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N, <iy, ..., 1,y and N, is defined by
N, iy, I,y =2+max{i,, i,} and
Np+§ <i15 R ip’ fp+1> =N2<i1: Np<i2:« rery ip—? 1>>°
¢) (The reduction of finite types to pure types.) Let N be the function
defined on the set of finite types with pure types as values given by

N(0)=0,
N(e})=1+ N{o,) if o=(a,),
N{s)=1+ N,{N(oy),....N(0,)>,

if 6=(oy, ..., 0,) and N, is the function defined in b) above. For each
finite type o=(0y, ..., 6,} find a formula M, of #'* ") containing two
free variables such that in each principal realization of #*(sef7],
N(o)e[1]), M, is a one-one map of the domain E, into Ey,.

Answer,

a)(1) We take for xey the disjunction of the following formulas of #*
VX VX (X =% A Y = Xip0 A X841 X4 1)

where O0<i+1<n and x is a variable of type .

If E,, ..., E, are the domains of a realization of #” then (E,, ..., E,, &)
is a model of S,. Conversely, given a model (E,, ..., E,, £) of S, we can
derive an n-realization of £ by putting xe;,, y=xey provided that x is
a variable of type 7 and y a variable of type i+ 1.

(ii) Let (Eq, ..., E,, £) be a model of S¢. Let E;=E,, and form<n—1
let E, ,=E,0E, ;. Then for i<j, EfSEj Also it follows from the
axiom for simple types that for each e E,(m <n) there is a unique integer
i, which we will denote by u(%) such that ¥ E;. It follows from S} that
if X5 then u(7)=p(x)+1 and also that if x#7 and either u(%)#0 or
u(7)#0 then there is some Z with u(Z)<max {u(x), u(7)} such that z&x
if and only if —1 z&p. These facts show that M=(ES, ..., E;, &) is a model
of C,.

It should be noted that if (£g, ..., E,, £) is a model of C, it is not neces-
sarily the case that (Eg, E{—Eq, ..., E,—E,_, ) is a model of S,. For
example, let n=2, Ey={a}, E{={a,{a}} and E;={q, {a}, {a, {a}}}; let
E=e. Then E{—Ej={{a}} and E;,—E/={{q, {a}}} and {a, {a}} has
an “‘element” which is in E{ — Ej and one which is in E;. This contradicts
the axiom Ax Ay—{xey) of §,, where x is a variable of type 0 and y is
of type 2.
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b) The desired map is obtained by modifying the usual representation
of ordered pairs in set theory in such a way that the pairs are of simple
pure types. Put {x}°=x and {x}""'={{x}"}. If %;€E, and X;cE; we put
( By ={{Fm 7 {{&1 0, (&™)}, where m=max{i,j}. Clearly
both {%}™ ! and {{%,}"~, {%,}"~'} are of type m+1 and so (X, X;) is
of type m+ 2. (Clearly, in general, there is no one-one map of E; x E, into
E;., for example if E; is of cardinal 3 then card (E;x E;)=9, but card
(E;+1)<8: this shows why the type of the ordered pair must exceed by
at least 2 the types of its elements.)

This map can be defined in the language #* and in a uniform way for
each realization of ¥, that is to say, by means of the same formula M;;.
If x;, x;, x, are the variables of M,;, the fact that M;; defines a one-one
map, that is that

AX; AX; Axy /\x}’c(Mj(xis xj’ xk) A A’Iij(xi: X xifc)“’ Xy = x;c)

i

and

Ax; Ax; Axy AxG Axp(M;(x, x5 %) A
A M;;(x], x5, x) = (%, = %] A x;=X}))

is a consequence of the axiom of extensionality (for the formula M;;). We
need the axiom for the existence of pairs only to show that M;; does define
a map, i.e. that Ax; Ax; VxM;(x;, x;, ).

The extension to ordered p-tuples can be carried out in the classical
way.

¢) We define the maps M, by recursion on the length of . If 6=0, i,
is the identity map, if 6=(0oy, ..., 0,) and X€E, then we put M (%)=
(M, (%), ..., M, (%,)>: (X}, ..., X,)§,%}. Tt can easily be seen that the
types of the values of M, are those given by the function N. As in b) the
fact that A_ is one-one can be deduced from the axiom of extensionality.
We do not analyse the conditions needed which ensure that M, is a map.

6. We adopt the notation established in the previous exercise. For each
integer >0 we define, by recursion ®(E) (the set of hereditarily finite
sets on E of cumulative type n), as follows:

GoUE) = E

®%"*(E) is the union of &}(E) with the set of all finite subsets of G(E).
Clearly the realization IMY(E) of .#7 which has domains G(E), ...,
"(E) and in which & is the restriction of the membership relation to



THE HIERARCHY OF FINITE TYPES 111

'{E), is a model of C, provided that no element of ®}(E) is a member
of any element of E. Similarly if ®°(E)=E and G™*!(E)=6G"(E)u
Z(G™(E)) (where & denotes the power set operation), then the realization
IN*(E) of £7 which has domains °(E), ..., ®"(E) and in which Z is the
restriction of the membership relation to ®*(E) is also a model of C,.

a) Show that if no element of ®*(£) is a member of any element of E
then IN'(E) is, up to isomorphism, the smallest n-model of C, which has
L' as domain of type 0 and which satisfies the axioms

Ax AyVz Auluezze(uex vu=y)] (2)

where x, y, z, u are of types 7, j, k, | respectively with k =max {7, j+ 1} and
I <k <n. (Closure with respect to the operation x U {y}.)
b) Show that the formulas

AX Ay Vz Aulusz e {uex A u # y)]

where x, y, z, u are of types i, j, k, I respectively with k+1=/=max {i, j}
<n are not consequences of the axioms (2) of a) even though they are
satisfied in JMHE).

c) Let MZ=IMI(E) and M*=M?(E). Let P be the set of all those
finite subsets of £ which contain an even number of elements. Find three
formulas P, P,, P;, each containing a single free variable of type 1 such
that P, defines B in both M7 and IMN?, P, defines P in M7 but not in M*
and P, defines P in IN? but not in M2

Answer.

a) This can easily be proved by induction on #, using the fact that if
xe®f 1 (E) then X={J, ..., 7} with 7,e®7(1<i<s). Note that the
hypothesis means this: the elements of E have no ‘members’ in G"(E),
i.e., they are ‘individuals’ as far as ®"(E) is concerned.

b) Let E be an infinite set. We obtain a realization of %} if we take
{E} UG ;(E) as the domain of type | and GF({E} UG ;(E)) as the domain
of type m+ 1. This realization satisfies the axioms (%) of a), but E— {x}
is not in the domain of type 1 for any Xe L.

¢) To make things clearer we will augment the language %7 by adding
the constant symbol @ of type 0, the unary function symbol {} whose
variable is of type 0 and value is of type 1 (we write {y} for {}») and the
binary function symbols 1, — whose variables and values are of type 1
(we write x Uz for Uxz and x—z for —xz).
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These new function symbols are defined in M7 and IMM? by the following

axioms: Ax[x =0 Ay=(yex)],
Ax Ay[x={y}jo Au(uexou = y)]

where u 1s of type O,

Ax Az Avifp=xuze Ay(yeve[yex v yezl)]
Ax Az Av[v=x —ze Ay(yever [yex A =1 yez])]

where v is of type 1.

By the axiom of extensionality a model I of C, can be extended in
at most one way to a model M ™ of the axioms in the augmented language
above (and 9N can be so extended if the corresponding existential axioms
V z A y—1(yex) etc. hold in 9R). It follows from this that we can eliminate
the new symbols by using the following method (which works for all
“explicitly defined” symbols; cf. Exercise 1(ii)).

With each formula A4 of the augmented language we associate a formula
A~ of #Z such that the value of 4 in 9" is the same as the value of 4~
in JR. To do this it is sufficient to replace first each atomic formula fez,
in 4 by a formula Vi Vo(u=1 A v =1, A uen)
where u and v are variables of the same types as ¢ and ¢, which do not
occur in 4, and then replace the equations u=r¢ and v=1, by their defi-
nitions (as given by the axioms above).

We let P, be the formula of % with free variable y of type I which is
obtained by eliminating the new symbols from the formula

y=0v Ax[(vex A Au Na ANb[(a s b A asu A beu A uex)—
((u — {a}) — {b}) ex]) - Qex] .
Let 4 be a closed formula of %7 which is true in M2 but not in M.

Then we let P,=("14—P,) and P, =(4—P,). (Since E is infinite one such
A is, for example, the formula of #? corresponding to the formula

Vx[@ex A Nu Aa Ab(a#b A —1asu A 71 beu A uex)—
((uu{a}) v {b})ex].)

Finally we note that Dedekind’s method for defining P gives us the
following formula for P;:

Ax[(Dex A Au Aa Ab[(a # b A aeu A1 beu A uex) -
((u v {a}) v {b})ex]) — yex].
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7. We use the notation which was established in the preceding exercise.
In particular, x is a variable of type 2, y, v and w are of type 1 and a and
b are of type 0.

We write ynu for y—{(y—u).

a) Find formulas N(y, u), 4(y, u, w), S(y, u) of &7 which define in IR’
and in M? the relations

i)  and @ are finite sets of type 1 of the same cardinal (y= u),
i) y+u=w,
and iii) #2=(¥)?, respectively.

b) Deduce from a) a correspondence which associates with each for-
mula F of first order arithmetic (Chapter 3, Exercise 2) a formula F, of %>
such that F is true in the standard model if and only if F, is true in 9%,
and also if and only if F, is true in 9P,

Answer,

a) We write y, for y—u and u, for u—~y, so y, nu;=9. Let y" and o'
be variables of type 1; then we let N(y, u) be the formula

Ax[(Qex A Ay Au" NaVb[(y =y au Sup Ay uu'ex Aaey, A
Araey )= (beuy A beu’ Ay u{atuu v {blex)])— y v u ex].
It can be verified that N(y, u) is satisfied if and only if ¥ and # are finite

and y=1u.
ii) We take for A(y, u, w)

Vi Vu(yrnu, =0 A N(}’,yi) A N(“ﬂh) A N(w, i U”l))-

Note that if  and 4 are finite \V y, Vu, (v nuy=0AN(y, y,) A N(u, uy))
is always satisfied.

iii) We use the fact that (m + 1) =m?+2m+ 1 and we take for S(», u)
the formula

Vys Vuy[yinuy=0AN(y, y) A N{u, uy) A Ax(Pex A
AY AU Aa{(y Sy Aau Sup Ay uu'ex Aasy, AT1agy) >
VY VLAY, Y, ) A AW o lal, v u) Aut S u ]} >y vugex)].

b) Given the formula F we first replace the atomic formulas y-u=w by
(y+u)* —(y—u)>=w+w+w+w and then by

VY[ +u=yvy +y=u)aly+u)i=w+w+w+w]
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and finally we replace y=u by N(y, u), y+u=w by A(y, u, w) and y*=u
by S(», u). The formula F' that is obtained in this way is true in M7 with
E infinite if and only if F is true in the standard model of arithmetic. If
we restrict each variable of type 1, say y, by the condition N(y, y) we
obtain the desired formula F,. (A formal definition of “E is infinite’ is
Ay Va(—aey) where y is of type 1 and a is of type 0.)

This exercise “‘reduces’ arithmetic to the theory of the pure types 0,1,2.

We note that by using the elimination of quantifiers for atomic Boolean
rings (Chapter 4, Exercise 7(a)(ii)) we can show that the theory of types 0
and 1, formulated in the language .#! does not admit a similar reduction.



CHAPTER 6

DEFINABILITY

This chapter concerns certain refations which hold between the formulas of a
language and their realizations, i.e. the sets defined by these formulas in the real-
izations of the language.

As we have already seen (e.g. Chapter 2, Exercise 5 on universal formulas in
prenex normal form), the syntactic structure of a formula A can imply certain
obvious relations between its realizations Agp in different models It; at least if the
models considered are ““comparable’ in an obvious sense. Conversely one can ask
the following question. If for all models 9 of a set & of formulas, the realizations
Agn have these relations between each other, is 4 then (equivalent in all models
of & to) a formula of the syntactic structure in question? The two chief cases
concern, first, formulas which are stable for extensions and, second, those which
are invariant for so-called r-realizations of theories of finite types which were
introduced in the previous chapter.

In order to compare models which are not trivially “comparable” we investigate
those objects which “occur” in all models of a set & of formulas, for examples,
the rational numbers in all the commutative fields of characteristic zero, The
concept which is necessary for a precise formulation is that of a structure being
rigidly comtained in all models of &/, The main result which we establish is
that each element of such a structure can be defined by particularly simple
formulas.

The last two theorems characterize those subsets of such a “common part”
which are definable in all models of &, two concepts of definability being treated.
These characterizations take on an especially simple form when applied to models
of the theory of types (Exercise 7). These two concepts of definability allow the
generalization of a number of classical results on recursively enumerable sets of
axioms to arbitrary sets of axioms. See KREeiseL, Model-theoretic invariants:
applications to recursive and hyperarithmetic operations, in: The Theory of
Medels (North-Holland Publ. Co., Amsterdam, 1965) pp. 190-205, and Mos-
TOwsKi, Representability of sets in formal systems, Proceedings of Symposia in
Pure Mathematics, Vol, 5 (American Mathematical Society, 1962) pp. 29-48,

We consider languages % with equality and p types of variables, Ay, is
the value of the formula A4 in the realization I of Z. If IN’ is also a
realization of . and IR’ is an extension of MM, then, by a natural abuse
of language, we will use M Ay to denote the restriction of Ag to I,
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that is, we write M Ay for Ag N(E¢" x - x EV2") where E; is the
domain of IR of type 7.

Let %’ be a language with equality which is of the same similarity class
as .&, that is %’ has also p types of variables and there is a 1-1 mapping
of Vg, Ry, So, Fy onto Vy., Ry, S, Fy respectively which keeps the types
of the variables and the types and numbers of arguments unaltered. We
assume that %’ is disjoint from .£. Then Ext (&, &) is the set of the
following formulas of %2 U %"

i) Ax; Vxi(x;=x7) (1<j<p) x;isoftypej,

ii) /\xl... /\x” /\x;... /\x;[(xl =x1 A...Axn:x;)
= (R(xy, s %) = R'(x7, ..., x0))]

for all relational symbols R of & and all sequences Xy, ..., X, admissible
for R,

i) Axp... Axy Axp. Axpl(xy =x1 A A X, = X])
= f (%15 Xn) = {x7 %))

for each function symbol f of & and all sequences xy, ..., x,, admissible
for f.

LeMMA 1: The realization W' of &’ is an extension of the realization I of
2 if and only if the sum MO I is a realization of £ L' which satisfies
Ext(¥, Z).

The formula 4 of & is called (%, .« )-invariant if for each model I of
% and each pair M’, IM” of models of &7 such that P’, IN” are extensions
of Mt we have M N A= M Ay (Note that, in general, Ay # M Ag
since M is not assumed to be a model of +#; see Exercise 1(7).) (An appli-
cation of the notion of (%, s/)-invariance is given in Exercise 1.)

Throughout this chapter, for any formula 4 of &, 4’ will denote the
image of 4 under the mapping above of ¥ onto #’.

Let xy, ..., X, be the free variables of A; then we have

THEOREM 2. INVARIANCE THEOREM: If 4 is (%, &/ )-invariant there is a for-
mula B such that

A OUVEXU (L, LV AXy o AX, AXY o AXL
[(x;, =x{ A~ A X, =x;) (4" B)].
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Proor: We add the constants a,, ..., a,, where g; is of the same type as
x;, and introduce a language .#” which is of the same similarity class as
& and which is disjoint from % and %" Since A4 is (%, .«¢)-invariant the set

&' UUVEX(E, LYUEXt(ZL, £

u{d, 4" a,=d{AAa,=a,Aa =d] A Aa,=d,

does not have any model. Separating the languages % and .¥” we there-
fore have that the set

[ VU VEX(L, LYo{Ad ' Aay=a] A Aa,=a}]u
[ OUVE(EL, LV {m A Aag=al A Na,=ant]

has no model. Therefore, by the Interpolation Lemma, there is a formula
Y of £u{ay,...,a,} such that

A OUVERM(L, FYyu{a, =a A Ana,=a}FA > Y
and
A" GUVEX(ZL, Lyula, =ai A-na,=a kA" Y

Thus if we replace a; by x; in Y for 1 <7/<# we obtain a formula B such
that, identifying the languages %’ and %",

' OUVEX(E, LV AXy . AX, AXL e AX
[(x1 =Xk A=A X, = Xp) = (4' <> B)].
This completes the proof.

We recall that a formula 4 of the language & is said to be existential
(universal) if it is in prenex normal form and all the quantifiers that occur
in it are existential {(universal) quantifiers.

The formula A is said to be &7-stable for extensions if for each pair
P, M’ of models of o such that IN' is an extension of Wt we have that
Ay © Ay 0 I, In particular, if 4 is a closed formula which is true in 9
then it is also true in WY'.

A is said to be Z/-stable for restrictions if —1 A is =7-stable for extensions.

Clearly, given any set of formulas 7, all existential formulas are /-
stable forextensions and alluniversal formulas are =7-stable for restrictions.

THEOREM 3: Let <7 be a set of closed formulas of £ and let A and B be two
Sformulas of & such that, for each pair I, M’ of models of <7 with M’ an
extension of M, we have Agy. NS Byy. Then there is a universal formula
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U of & such that
AtrA->U and “+HU->B.

PRrROOF: (See also Exercise 2.) Let ¥ be the language obtained by adding
to % a set V' of new constant symbols of the same cardinal as .#. Let
Ay, B, be the two formulas of #” that are obtained by replacing each of
the free variables of 4 and B by an element of V. Let ¥, be the (possibly
empty) set of the constants that we have used to form A4, and B,. Let % be
the set of universal formulas of U V| which are consequences of /U {4, }.

It will be sufficient to show that o U % U {—1 B, } does not have a model.
For suppose that we have proved this. Then, by the Finiteness Theorem,
there is a finite subset % of % such that &7 U %} B, and so &/ F Up— By,
where U is the conjunction of the formulas in %. But U is equivalent
to a universal formula and on the other hand by the definition of the set
%, o+ A—-Ug. Note also, by Chapter 2, Exercise 5, if a set of formulas
of # has a model, it also has a model of the same cardinal as &, and we
need only consider such models.

Suppose that &/ % U {1 B, } has a model 9 and let &’ be the diagram
of M written with the symbols of V.. Then each model I’ of &7 U @' is,
up to isomorphism, an extension of 9, Since B, is not satisfied in M, by
the hypothesis of the Theorem, A4, is not satisfied in 9, and so LW @'}
—14,. Hence for some finite subset & of 2, whose conjunction is D, say,
&0 Db 1A, and therefore &7 F Dp— —1 4,, orequivalently, &/ + 4, — 1 Dr.

Let D{ be the formula obtained by replacing the constants of V.—V;
which occur in Dg by variables, say y,, ..., ¥,, of . Then the universal
formula Ay, ... Ay,71Dg of £ UV, is aconsequence of &/ U{4,} and so
is in %,. This shows that &/ U% U 2’ does not have a model because
AYi-.. AYy VDEg->1Dg is a theorem. Therefore U # w2’ L{B,}
does not have a model. But since It was chosen arbitrarily this proves
that o/ L% 0 {1 B,} is inconsistent.

COROLLARY: If the formula C is s/-stable there is an existential formula E
such that sZ F CoE.
Proor: If C is «/-stable —1C satisfies the hypothesis of Theorem 3 when
A=B="C,
The next Theorem and Exercises 3,4 treat the modifications of the
notions of invariance and stability appropriate to t-models (Chapter 5).
We use the notation of Chapter 5. If 6, ¢’€[t], by a natural misuse of
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language, we will write oeo’ if ¢'=(0y, ..., 6,) and for some (1 <i<n)
o =0, and we will write y7ex” for the formula (for j#1)

e VL0 T i) et ]
Let the language 7 be of the same similarity type as Z".

LeMMA 4. 9N, is a t-extension of N if and only if MBI, is a t-realization
of the language &0 which satisfies the set of formulas 1—Ext(&, &),
i.e., the set consisting of Ext(Z, &) together with the formulas

AXTAXT AT VI X7 = %7 A yTexi oy =1y
for all o, o’e[1].

We use the following notation. If o, o’ e[ 7] we write y°¢[x°'] (read, *“y
belongs to the transitive closure of x”*) for the disjunction of the formulas

yex” and Vix;,...Vx;, (V%ex;e...ex; ex”)

for each finite sequence (iy, ..., 7, ) which satisfies the condition that
o€t €...€1; €0, X;, being a variable of type 1;,.

A formula 4 with free variables x,, ..., x,, 1s said to be & —t-invariant
if, for each pair I, M’ of t-models of & whose restrictions to E;n E,
are equal, and for each n-tuple (%, ..., %,) belonging to the t-intersection
of 9 and WPV either (%4, ..., X,)e 4 in both models or in neither.

A prenex formula Q,y, ... Q.v.B,, where B, is quantifier free is said to
be restricted (to [xT'], ..., [x;"]) if B, is of the form

el ] A n Vi & [fip]) = (yielspl A a Y& [S;q} A C)

where iy, ..., i, are the indices of the universal quantifiers and jj, ..., j,
those of the existential quantifiers and the ¢, and s; are either individual
constants or variables.

THEOREM 5: A is & —t-invariant if and only if there is a restricted formula
B such that o7+ (A< B).

Proor: We consider the three languages: %, which is the restriction of
ZF* to the types in [z,]u---uft,], to which the n constant symbols
ayl, ..., a;* have been added; &, is obtained by replacing ¢ in & by a new
symbol ¢; and each type of variable x, y, ..., by x;, »y, ...; &, is obtained
in the same way except that g is replaced by ¢, and the variables by x,, 5, ... .
We write 7’ =(1q,..., T,)-
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If A is &7 —t-invariant

0,0t — Ext(Z,, L)ut - Ext(ZL,, L)V
uTC(a},...,ayF Ay (ay, ..., a,)« Ay(ay, ..., a,)

where TC(aY', ..., a;*) is the set of formulas which expresses in the lan-
guage ¥, that each element belongs to the transitive closure of the union
apu---ud;, ie. for each oelrJu---u[fz,], it contains the formula
Ay (yelai] v - v ye[ay]).

Separating the different types of variables and applying the Interpo-
lation Lemma we obtain a formula B’ of the language %, such that

Aot — Ext(Zy, £)UTCFA; = B

and
eﬂzu’f, _Ext(go, gz)UTCFB"_)AZn

The set of formulas " — Ext{.%,, #, ) TC is satisfied when ¢ is replaced
by ¢, and each variable x of %, by x,¢,[a}'] v - v x,[a;"]. Hence B’
has the desired form B,

Clearly all formulas B of this form are z-invariant.

The theorems which follow are about classes of models which are not
“comparable”. (For simplicity, we consider languages without function
symbols.)

The realization M of the language % is said to be rigidly contained in
W if there is a umique map ¢’ of the domains E,, ..., E, of 3N into
E{w---U E,such that
¢ (E)sE (1<i<p);
for each constant ¢ of &, ¢'(¢)=¢’, and for each relational symbol R of
& the image of R under ¢’ is that induced by R'(¢’, R’ are respectively,
the values of ¢ and R in ).

9N is said to be rigidly contained in the class of models of a set &7 of
formulas of &% if 9 is rigidly contained in each model of «&#. We do not
assume that IN is a model of .

A formula 4, with a single free variable x, is called a definition in I
of the element a {acE,), if a is the only element which satisfies 4, that is

(1 Gi=1) G+ 93]
A=E% x- xE[% x{x,a) xEl#% x-xE*
by a natural misuse of language we will say 4= {a}.
Let M=E u...VE,.



DEFINABILITY 121

THEOREM 6: If W is rigidly contained in the class of all models of </ then
Jor each element a of the domain of IN there is an existential formula A,
of &L such that

(1) A, defines the element a in IR and, in each model I of =7, A, defines
¢'(a);

(ii) for each n-ary relation symbol R of & and for each n-tuple (ay, ..., a,)
of individuals of M, (ay, ..., a,)e R if and only if

S Axy L AX (A, () Ao A A (%) R(xg, 00, x,)]
and (ay, ..., a,)¢ R if and only if
S Py AL (51 A A Ag (5 =71 515 5,)]-

Proor: We adjoin to the language .# the constants ¢, ¢,{aeM), which
are all distinct (and do not occur in .&). Let &°, 2" be the diagrams of
9N written in terms of these constants, Then in each model MM’ of o there
is a unique way of satisfying &’ because I is rigidly contained in the
class of all models of .7, namely by putting ¢,=¢’(a) for each ae M.
Similarly for any model IN” of 7 there is a unique way of satisfying 2",
namely by putting &, =¢"(a) for each ae M. Therefore &/ Z'v 2"
Fe,=c¢),. Hence, by the Finiteness Theorem, there are finite subsets 2],
25 of @' and & such that &/ U 2 U 23+ c,=c). Let B, be the conjunc-
tion of the formulas which are obtained when the constants of #}, other
than ¢, are replaced by variables x;(1 <i<h) and the constants of 2 are
replaced by variables y,;(1 <j<k) and c, is replaced by the variable x. If
we put A,=Vx;...Vx, Vy, ...V B, we have that \ x4,(x) is a con-
sequence of & since in any model M’ of &, Z| v &, is satisfied by
putting ¢, = &, = ¢’ (b) for each b. The uniqueness of the element satisfying
A,(x) is a consequence of the fact that &/ u @] U 25} c,=c]. Thus we
have proved ().

The completeness result (ii) comes from the fact that ¢'(R) is, by
hypothesis, the value of R in JR'.
COROLLARY: Under the conditions of Theorem 6, if to ¥ is added the set
of constants c, for ac M, each model W' of o7 can be extended in a unique
way to a model of /U sy, where o, ={ Nx(4,(x)x=c,):aeM}. In
this model é,=¢'(a). In particular £ 0 o4 F—(c,=cp) for all pairs a, b
of distinct elements of M.

Let % be a language with k& types of objects which contains an infinite
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set C of constants ¢ (each having the same type i(l <i<k)). A normal
realization of & is called a C-reglization if ¢=c for each ceC. A subset
X of C is said to be definable in a C-realization R of Z if there is a for-
mula A(x, x,, ..., x,) where x is of type 7, and elements a;, ..., a, of M
of the same types as x,, ..., x, such that

X ={aeM:aisoftypeiand(a,a,,...,a,)ed}

and A is the value of 4(x, xi, ..., x,) in M.
Clearly if X is finite, say X={cy, ..., ¢,}, then X is definable in all C-
realizations by the formula

We have the following converse resuit:

THEOREM 7: If & is a set of closed formulas of & which has a C-madel and
X is definable in all C-models of <7, then X is finite.

PROOF: We note first that a C-realization is, up to isomorphism, a reali-
zation in which the values of distinct elements of C are distinct. Therefore
we assume that &/ contains all the formulas ¢# ¢’ for pairs (¢, ¢’) of dis-
tinct elements of C.

We construct the language %, and the set of formulas 2 in the way
explained in Chapter 5. The cardinal of the set of those formulas of Q
which contain a single free variable, of type i, is equal to the cardinal of
Z ,. Hence there is an enumeration of this set in the form

{A;(x):j < card(Z ,)}.
Let o7 = ZVUQ(s/) andfor j>0
1. let o] =\ o, u{(e(4,x) £ c):ceC}

h<j
{where the map ¢ was defined on p. 83) if this set has a normal model, and

2. o] =)<, otherwise.

h<j

If case 2 applies, then by the Finiteness Theorem, there is a finite set
{€uy» ++0» €u,} Of elements of C such that

Q()u U o5 F Ax[A;(x) = (x=¢, v v x=2¢,)].
h<j

By Corollary 5.6, if ./ has a model then | ) {«#] :j<card(&,)} has a
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canonical model. In any such model, if j satisfies the first condition then
A;&C and so 4;# X or A; is empty, while if j satisfies the second con-
dition A is finite.

This completes the proof.

A subset X of C is said to be definable-on C in a C-realization I of &
if there is a formula A(x, x4, ..., x,), where x is of type #, and there are
elements a,, ..., @, of M of the same types as x, ..., X, such that

X ={ceC:{c, ay,...,a,)ed}.

Clearly X is definable-on C in all C-realizations of a set & if thereis a
formula 4(x), with a single free variable, such that for all ceC

ceX ifandonlyif 7+ A(c)
and
c¢X ifandonlyif «/F—1A(c).

We have the following partial converse result (cf. Exercise 8 for a simpli-
fication in the case of denumerable languages and Exercise 9 for a coun-
terexample to the full converse):

THEOREM 8: Let o7 be a set of closed formulas of & which has a C-model
and let c%, 3, ... be constants not in L. If X< C is definable-on C in ail C-
models of </, then there is a formula A(x, x,, ..., x,) of & and a family
{F;(xy, ..., x,) J <A} of formulas of & such that card A<card &, card 1<
card C, the set

O {Ficf, ...en)j < i}

has a model and for all ceC
ce X if and only if for some j<A

Jail- /\xl... /\xn[Fj(xl,...,xn)—i'A(C, xl, ..,,xn)]
and c¢ X if and only if for some j<A
HE AXyy s AXG [F (X450 %) =1 A, X4, 005%,)] -

(This theorem can also be deduced from a more general result about
infinite formulas given in the next chapter.)
Proor: We will show that if the conclusion of this Theorem does not hold
then X is not definable in a certain class of canonical models. Let {4 ;(x)>
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be an enumeration, possibly transfinite, of all the formulas of %, with a
single free variable (of type i). Since each formula is a finite string of
symbols and %, is infinite the set of these formulas has the same cardinal
as #,. We can assume therefore that j<card(.Z,).

Let o/§ = 7. For j>0 we consider the two cases:
1. For all k< the set of formulas

{4 (c):ceC,ce X} u{T1 4 (c)iceC, cg X}

is not a consequence of | J,<; &/, uQ
a) either there is a ceX such that 4;(c) is not a consequence of
Uh<; 5 v Q; then let c=c¢; and put

A7 = & u{T4,(c)};
h<j
b) or there is no such ¢, and hence there is a c¢ X such that —14,(c) is
not a consequence of |, <; %/, U Q; let c=c; and put

o = a%ﬁ; v {A;(c)}
2. If case 1 does not apply we put 7 = ,<; ¥, .

By the Corollary to the Finiteness Theorem | J;%/; has a canonical
model M. If case 1 applies then X# A4;n C so if this case applies for all
J» X is not definable-on C in 9} since each element of M has a name in
&£ ,. Therefore there is some A< card(.€,) such that the set

{A;(c):ceC,ceX}u{14,(c):ceC, c¢ X}

is a consequence of QU &/ U {4](c;):j <A}, where 4;="14;if la) applies
and 4= A; if 1b) applies.

Therefore for each ceC, {A4;(c):ceX}u{14,(c):c¢ X} is a conse-
quence of Qu o/ u{d(c;):jel.} for some finite set I, of ordinals less
than 4. Let ¢, ..., ci' be the elements of 4 which occur in A, and

ai, ..., 4, those which occur in {4(c;):jel }. Then, by Lemma 5.10,

{A}(Cj):jEIC} UJ{U{O‘H Acer A Bam A Bc*; A A Bc*n}
F{d,(c):ceX}u{n4,(c):céX}.

Let 4¢ be the conjunction of the 4(c;) for jel,, and let F (c}, ..., ¢} )
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be obtained by replacing the elements of 4, other than cf,..., ¢ in
By A A, ABu A A B AAS

by new variables and binding these by existential quantifiers. Then, for
eache,either o/ HF,— A,(c)) or &/ HF,—=14,(¢)). Clearlythe cardinal of
the set of formulas {F,:ceC} <card C; and it is bounded by the cardinal
of the collection of finite subsets of {4(c;):j<A}u{0,:ae4, a occurs in
Ale;)j<A}.

Exercises

1. We adopt the notation used in the Invariance Theorem. Prove the
following results:

a) If A is a formula which is (%, &/)-invariant and if all universal
(prenex) formulas which are consequences of &7 are also consequences of
% then the formulas B and —1 B (of the Invariance Theorem) are both
%-stable.

b) If the conditions of a) hold and % is a set of universal formulas then
there is a quantifier free formula C such that # } B—C (see ¢)).

¢) If % is the set of universal formulas which are consequences of o/
and if every existential formula is (%, «/)-invariant then for each formula
A there is a quantifier free formula B such that =/} A< B.

d) Deduce from c) the following *““algebraic™ criteria for the elimination
of quantifiers:

(i) for algebraically closed fields: if there is an algebraically closed
field, which contains the commutative field € and in which the existential
formula £ is true, then F is true in the algebraic closure of C;

(ii) similarly for real closed fields, with C an ordered field.

e) Find a counter-example to the result b) if the requirement that %
contains only universal formulas is omitted.

f) Find sets of axioms & and %, and a formula 4 which is (%, &7)-,
but not (%, % )-invariant.

Answer.

a) By the Embedding Theorem, each model of % can be embedded in
a model of .27, Suppose then that I and IR, are two models of %, with
IR, an extension of M. Let WM’ be an extension of N, which is a model
of o, If Bis true in M, A4 is true in M’ since IN’ is an extension of M
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which is a model of o/, Consequently B is true in W, since N’ is also
an extension of I,. Similarly for ~1B.

b) By Theorem 3, there are existential formulas C; and C, such that
%+ B~C, and % F—1B—C, since Band —1 B are %-stable. Hence, by the
Finiteness Theorem, there is a finite subset %, of % such that %, FH{C;«
=1C,). Let Cy=Vx;...Vx,D; and C, =V y;...\V y,D,, where D, and D,
are quantifier free, and let U, the conjunction of the formulas in %, be
AZ; ... ANz,U. Then the existential formula

Vzi.Vz, UV VX .. Vx,Dy v Vy, ... VD,

is a theorem. Hence, by the Uniformity Theorem (Chapter 3), there is a

sequence 537, ..., s, 680, Lt W), L dlD, (1<i<p) of terms such that

W= U@, .., u®) v WD, (0, ..., 67 v WD, (sP,...,5)

1 gi<p 1<i<p 1xi<p

is a theorem of the propositional calculus. Let C be the disjunction
W D, (s, ..., sP), then #FC v C, and so #+—1C,—C. But C—»C,

1€i%
isa t’ileorem and #+C,-»C, and therefore # +C«C,.

¢) Since &/ %, we have, by b), that &/ + B«—C. However in order to be
able to eliminate quantifiers it is sufficient that we can eliminate them from
existential formulas {see Chapter 4).

d) (i) Let & be the set of axioms for an algebraically closed field (see
Chapter 4, Section IV), and let # be the set of axioms for a commutative
field. Clearly &% and we know that every commutative field can be
embedded in an algebraically closed field, namely its algebraic closure.
Therefore the hypotheses of c) are satisfied.

(i1) Let 7 be the set of axioms for a real closed field (see Chapter 4,
Section V) and let % be the set of axioms for an ordered field. (If in place
of % we took the set %’ of axioms for a real field, which are orderable
fields, ¢} would apply but this would not give a useful criterion since there
are existential formulas which are not (%', ./)-invariant.)

e) Let £ be the language of Chapter 4, Exercise 2 and let % be the set
of axioms (g, b, ¢, e) of Chapter 4, Section 1II. Then although % 2|x—
—1(2|x+1) and 2|x is existential it is not equivalent to any quantifier
free formula of .Z.

f) Let % and o7 be as in d) (ii}, and A true in all real closed fields, but
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not in all ordered fields, e.g. 4=\ x(x?=2). (This shows that one cannot
take A itself for B in Theorem 2.}

2. We adopt the notation used in Theorem 3.
Prove Theorem 3 by using the Interpolation Lemma (Chapter 5).

Answer. Let Ext (%, £’) be the conjunction of the universal formulas

AXp oo AXy AXY oo AX,
[(x;=x] A Ax,=x)=(R(xq,...,%,) =R (x1, ..., x,))]

for all n-ary relation symbols R of % and all admissible sequences
Xy, ... X, for R, and the universal formulas

AXy oo AX, AXY . AX,
[(xi=xi A nx,=x)>(f (g on %) = 1 (%0, 03))]

for all n-ary function symbols f of ¥ and all admissible sequences
X1y .oy X, fOT £.

Suppose A4 and B together contain less than m free variables. Let &,
be the language obtained from % by adding the new individual constants
a,(r<m) and Z be the language obtained from £’ by adding the new
constants a,(r<m). Let 4, and B, be the formulas of .#, obtained
by substituting the constants a, for the free variables in 4 and B.
Let Ext, (%, #7) be the formula Ext, (%, £ )ra,=a A ra,=a,,

Let C be the formula

Ay Vyi(ri =y A A Ay, Vv, =y

where y; is a variable of type j(1 <j<p).
By the hypothesis of Theorem 3,

Aol o{CAExt (£, L) A A} FB,.

Therefore, by the Finiteness Theorem, there are formulas 4g, A which
are finite conjunctions of formulas of « and /' such that

Ap A AL A C AExt{Z, ¥)F A > By,
As a consequence

Ap A AL A Ay (i () = p1) A A App(¢,(n) = v,) A
AExt(#,, Z)F(— Ap v B))
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in the notation of Chapter 3. We note that the function symbols of
At, A} which do not occur in £, U %] only have as arguments or values
variables of the types of %" and those of 1.4y v B, only those of #. The
function symbols ¢;{1 <j<p) have as arguments variables of the types

of & and values of the types of %’. Hence each term of 5”’1 U ﬁvﬂ whose
value is a type of % is also a term of &, _

There is a quantifier free formula ¥ of .#; (see Exercise 3 of Chapter
5) such that

® /‘i{? A AA; AAY{i(P)=y) AA /\yp(ép(yp) = }’p) A
A Ext, (&, £)HV
and
(i) Vi dp v B, .
Since ¥ does not contain any symbols of F— Z it follows from (i} that

'O {AY A CAEt (L, LY.

Identifying the languages % and %’ we also have that &7+ A4,V
Similarly &7+ V- B,. The proof is completed by eliminating the symbols

of ¥, — %, in V by using universal quantifiers of .#.

3. We use the notation of the theory of types (Chapter 5).

The formula A=Q,x,... Q,x,4; (A, quantifier-free) is called a Z-for-
mula if A, is of the form (x; &f; A--- A X, e1,)— B where i; <--- <i, are the
indices of the variables occurring in the universal quantifiers of 4 and
where #;(1 <j<k) is either x, for some n<i; or one of the constants of 4,
or a free variable of A. A Z-formula is therefore an existential formula if
one ignores each variable x;(j<m) which is restricted to a variable x,
with n <, or to a constant of 4, or a free variable of A.

a) Show that each X-formula is stable for t-extensions.

b) Find a t-realization 9% and an extension N of I such that Nis a
7-realization, but not a r-extension of Ji. Hence find a 2-formula 4 which
is not stable for all extensions of 1.

¢) Let &7 be a set of formulas such that if 0t and N’ are t-models of
& and if the t-intersection of M and P’ is not empty then the latter is
also a r-model of /. Show that if 4 and -1 4 are both &/-stable for
t-extensions then 4 is o7 —r-invariant. Deduce that if C, and C, are two
Z-formulas such that &+ C;<>—1C, then C, and C, are &/ —t-invariant.
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Answer.

a) is obvious. (Note that the converse of a) is also true. But the proof
which uses Lemma 4 and the method of Exercise 2 is complicated.)

b) Let t=(0) and let .# be the language with a single unary relation
symbol P. We let 901 be the realization of & given by E, = {a}, E o,={{a}},
aeP, where E, and E,, are the domains of .

Let N be the extension of YN given by

Up={a,b}, a#b; Uy = Egy,
aeP, b¢P, ai{a},bi{al,

where & is the value of g, in .

If we take for A4 the formula V X9 A z(zex®— P(z2)), 4 is a Z-formula
which is satisfied in 9% but not in .

¢) Let 9N, be the t-intersection of Y and I, and let X, be in the do-
main of type t; of My, for i<n. Since N is a t-extension of N, either
(%, ..., ¥,) satisfies 4 in both M, and in W or in neither, and similarly
for 9, and IN'. Hence A is &/ —-invariant. Since, by Exercise 3b) all
Z-formulas are stable for t-extensions €, and C, are 7-stable. Since
A H(—1Cy)eC,, Cy and —1C, are both +7-stable for extensions, and hence
&7 —z-invariant.

4. We modify the notation of Theorem 5 and Exercise 3 as follows, We
say that 9" is a (z°)-extension of M if I and M’ are r-realizations, I’
is a t-extension of YN and E,=E,. A formula A is said to be &/ —(z°)-
invariant if for each pair IR, M’ of r-models of o7 such that E,= E and
the restrictions of I, WM’ to E, are equal we have that for each n-tuple
(Fys ooor X,) With FeE, nE/(1<i<n), (%, ..., X,)eAy if and only if
(%1, ..., %,)€ Aaz. The notions of a £ —(:°)-formula and of a (z°)-restricted
formula are obtained from those of a X-formula and of a restricted for-
mula by dropping all restriction on the variables of type 0.

a) Show that 4 is & ~(z°)-invariant if and only if there is a formula B
which is (t%)-restricted to the free variables of A such that &/ 4 B.

b) Let .« be a set of closed formulas of Z£* such that given any t-model
IR of o/ the principal extension of I (see Chapter 5) is also a t-model
of .«7. Show that if 4 and —1 A4 are both «-stable for (:%)-extensions they
are also .7 —(7°)-invariant.

¢) Find a counter-example to b) when “(z°)” is replaced by

PRt
T .
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Answer,

a) Let x{', ..., x;" be the free variables of 4 which are not of type 0.
We introduce the languages 5, £7, £ and the type ', and add the
constants ay', ..., @ (as in Lemma 4) and we let TC,(ay, ..., a;"), or just
TC,, be the conjunction of the formulas

Ay (yelai] v v yelar])  a#0.
Since A4 is (t°)-invariant we have
v, vt — Ext(Py, L yut — Ext{Z,, £,V
U{AX] VX (x® = xD), AxT VRO(x® = x5} uTCot
A(ay,...,ap) > A,(a?,....a7).
By the Interpolation Lemma we can find a formula B', of %, such that
Ut = Ext(Ly, £)u{nx] vx(x* =x)} uTCoH 4, B'.

If we replace e by ¢, and all the variables x of #, of type other than
zero by x,¢, [a¥} v --- v x,8; [a;"], B’ takes the desired form. The converse
is obvious.

b) Let PVt and I’ be two r-models of &7 such that Ey=Ej and the re-
strictions of Mt and I’ to E, are equal. It follows that the principal
extensions of M and M’ are also equal. If M, is their common principal
extension and if %;(1<i<n) belongs to their -intersection, X; is also in
the domain of type 7; of M. Since M, is a (z°)-extension of I and A
and —14 are both & —(t°)-stable, (%, ..., %,)e Ay if and only if (%}, ..., X,)
€ A, a similar result holds for the pair M', M,. Therefore A is .7 —(°)-
invariant.

c) Let &7, be the set of formulas of the first order language .# such
that there are two existential formulas 4,, 4, containing the single vari-
able x and 7, + 4,1 4,, but such that there is no quantifier free for-
mula A" with o/, F 4, 4’, as in Example 1(c). We consider the language
£ and we put

o = & v {/\x{ﬁ) f\y{l))[;\z(}(z&xﬂz‘g};}—yx = }/’]}.

Clearly o satisfies the hypothesis of b). We put 4= Ax(xeX—A,) where
X is a variable of type (0). Since AF1 4V x{xeX A A4,), 4 and ™ 4 are
of-stable for r-extensions. But A4 is not &/ — r-invariant because there is no
formula B restricted to [ X'] such that &/ 4« B. Indeed if there were such
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a formula B then by taking X ={u} and replacing all paris of B of the form
yeX by y=u we would obtain a quantifier free formula equivalent to 4,.

5. a) Show that
(1) the field of rational numbers is rigidly contained in all commutative
fields of characteristic zero;
(ii) the field of complex rational numbers is contained but not rigidly
contained in all closed algebraic fields of characteristic zero.
b) Let & be the language (of set theory) whose only relational symbol
is e. Let A be the conjunction of the formulas

Vx Ay (yex)
Ax Ay Vz Auluez e (uex v u = y)]
Ax Ay[Az{zex erzey)-» x = y].

Let Z, be the language which is obtained when the individual constant
¢ and the ternary relation symbol R are added to %. Put

B = Ay=i(yec) A [R(x, y, 2) = Auluez—{uex v u = y)j.

Show that

(i) no realization of % is rigidly contained in all models of 4,

(i) each model of A can be extended in a unique way to a model of B,

(iii) the realization of .#; whose set of individuals is the set C,, of all
hereditarily finite sets and in which & is en(C, x C,), ¢ is the empty set
and R is the relation £=x u {7}, is rigidly contained in all models of 4 A B.

Answer,

a) (i) is obvious even if we drop the constants 0 and 1 of the language
of fields. Using the notation of Theorem 5 we take as the formula 4, (x, x,)
the formula x; + x=x, and for 4, (x, x,) the formula (x-x, =x; A x#x,).

(ii) the map z— Z where Z is the conjugate of z shows that the field
of complex rationals is not even rigidly contained in itself.

b) (i) A realization of %, contained in all models of A4, is {C,,en
(C, % C,,)». This is not even rigidly contained in itself since it is isomorphic
to all subrealizations C,, defined as follows. ae C, and Cj is the smallest
class which contains @ and is closed under the operation (x, y)—»xu {y}.

(ii) 4 implies the existence of the empty set and by the third axiom,
the axiom of extensionality, this empty set is unique. Hence the value of
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¢ is determined. Similarly, given a model of 4, the axiom of extensionality
determines the value of R.

(iii) This is obvious because each element of C,, can be generated
from the empty set by the operation (x, y)—xu {y}.

6. Consider a first order language % with a single type of object, and the
language #° associated with it in Chapter 5. We will assume that .# con-
tains a set C of individual constants. Let & be a set of formulas of %
which has a C-model so that for each pair (¢, ¢), where ¢ and ¢ are dis-
tinct elements of C, &/F—1c=¢". If o€[1], a set X* of the hierarchy of
types built on C is said to belong to a realization * of 7% if X7 is the
image of an element of ", of type o, under the canonical map of |* into

5, Where g is a C-model isomorphic to the restriction of 3 to the type
0, and where R is the principal realization on .

Show that if X? belongs to all C-realizations of 7 then X is heredi-
tarily finite on C.

Answer. The set X° of elements of type 0 which are in the transitive
closure of X is defined, in all models, by the disjunction of all the formulas

VXV (xexte... expea”)

where 1, ..., 7, is a finite sequence such that Ot e---e71, (using the no-
tation of Lemma 4). The constant a” denotes the set X° which, by hypoth-
esis, belongs to all models of 7. By Theorem 7, X° is therefore finite and
so X° is hereditarily finite.

7. If & is a countable set of closed formulas of the language % which
has a C-model and if X<=C is definable-on C in all C-models of 7, show
that there is a closed formula B and a formula 4(x) with a single free
variable x such that «/+B—A(c) if ce X and o7+ B——14(c) if c¢ X.

Answer. By Theorem 8 there is a finite family
Fi{xy, .., x,)1) S N}
of formulas, and a formula 4, (x, x|, ..., x,) such that

S U{VXy VX (Fy A A Fy)}
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has a model and

G AXy o AX[(Fy A AFy)o 4, (e, xq,..,x,)] If ceX
and
A AXy o AX[(Fy A A Fy) o1 A (6, Xy, 000x,) If ¢ X

We take as the formula B the formula V xy...V x,(Fy A--- A Fy) and
as A(x) the formula Vx;...Vx,(F,A---AFyAA). If ce X, o7+ B— 4(c)
and if e¢ X, &+ —14(c) and a fortiori &/ F B——14(c).

8. Let .7, be the language of ordered fields and let .7, be the set of axioms
for a real closed field (see Chapter 4, Section V). We consider a set C of
constants of %, which represent each rational number, and the language
Z obtained by adding these extra individual constants to £, .Give coun-
ter-examples to the following statements.

a) If 7 is countable and X< C is definable-on C in all C-models of 27,
there is a formula A(x) of & such that for all ceC, &+ A{c) if ce X and
A EA(c) if cé X.

b) If X is definable-on C in all C-models of & there is a closed formula
B and a formula A(x) such that &/ U {B} has a model and for all ceC,
o+ B—-A(c) if ceX and #/FB——14(c) if c¢X. (Obviously we do not
assume that 7 is countable.)

Answer. We let X be a cut of the rationals which is not definable in the
language #,. Such a cut certainly exists since there are uncountably many
cuts of the rationals while the set of cuts definable in % is countable
since % is countable. We are trying to find a set of axioms &/ = o7 such
that X is definable-on C in all models of 7.

a) We add to %, the two individual constants » and v, and we let
i ={c<u<c’ve<v<c:iceX,c'e—X}. We put &= uH,. X is
definable in each model of .7 either by the formula x <u or by x<v, Sup-
pose that A(x) is a formula of .Z such that 7} 27(c) if ce X and other-
wise &7 F—1A(c).

Since A(x) is a formula of . there is a formula B(x, v, z) of %, such
that A(x)=B(x, u, v). Consider the models I whose domain is the set
R of real numbers with the usual ordering and which satisfy 7 (so that
either # or 7 is the cut X). If =X, then Vy AzB(c, y, z) is true in I for
ceX; if =X then —1Vy AzB(c,y, z) is true in IR for c¢X. Since
Vy AzB{x, y, z) is a formula of ¥, and .&, is complete, for each ceC
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otV y NzB(e,y,z) if ceX, and & F1Vy AzB(e, y,z) otherwise.
This contradicts that X is not definable in %,

b) We add to %, the individual constants u,(@<N;) and consider an
enumeration ¢y, ..., ¢,, ..., of the elements of X. Let

oy ={u, <ciceC—X,a <N Ju{u, #ugia < f<N;ju
U {{y, <y, <<ty (e <ty )i < Wy, 1<}
for each integer j.

& o u o7, has a model I since every finite subset has a model. Further,
X is definable in all models of .27, L &7, since in an uncountable totally
ordered set at least onc element has an infinite number of predecessors.
If u, is such an element, then x <wu, defines X on C in the model M.

To prove b), we suppose that B,, B,(x) are two formulas of . There
are therefore two formulas C,(xy, ..., x,) and C,(x, X, ..., x,) of £,
such that B; =C (4, ..., #,,) and B, =C,(x, U, ..., 8, ). If for ceCn X,
Ut +B—By{c)and,force C— X, o/ U .7+ B;— —1B,(c) then because
C is countable, there is a countable subset &7} of 27, such that

SO FBy— By(c) for ceX

and
#UH FB—-"1B,(c) for céX.

Let u, (n=p+1,p+2,...) be an enumeration of the constants which
occur in &7, but not in B;— B, (c) and suppose that #,,<-- <4, in I
We put B*(p, X0, .0, Xp) = Ci (Xgu 0o Xp) A Co <X AC{ <Xy A AC,<Xp A
Ho <Xy <+ <x,<y. Since By is true in M and 4, <+ <4, the formula
Vxg--+V x,B*(c, xq, ..., x,) of &, is true in I for all ceC—X. But X
is not definable in ¥, and hence there is some ¢,€X such that

V xg eV x,B*(¢h, Xos -, X,) is true in M.
We can now deduce
(iyforeachintegeri, Ax,... Ax,[B*(c, Xo, ..., X,)—> Cy(cp, Xg, . ,X,)]
is true in IR
Since, by hypothesis, &/ U [ Ci(Uygs o5 U, ) Ca (€5 Upgy o5 Uy), i
is sufficient to note that if B*(c,, %, .., X,) is true in M, &7, L | is satis-
fied in the model M’ obtained from IR as follows:

=% 1<i<p

and for #,,, ,#,,,,... we take an increasing sequence of elements from
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the domain of ™ such that ¢,<i, <X for all n<m. Consequently
Co(Ciy Ugy -0 uup) is true in M’ and C,(c;, xo, ..., X,) is therefore true
in .

Similarly we have

(ii) for each ecC—X, the formula Axy... Ax,[B*(cp X, ...y Xp)—

—1C, (e, Xg, ..., X,)] Is true in IR,

By (i) and (i) Axg ... AX,[B*(cr Xo5 o Xp)=>1C2 (%, Xg, +vrs Xp)]
defines X on C in M. But o/, is complete and so this formula defines X
in all models of =7, which contradicts the choice of 7.



CHAPTER 7

PRINCIPAL MODELS: MODELS OF INFINITE FORMULAS

The first part of this chapter deals with an important class of realizations of the
language with a finite number of types which was described in Chapter 5. These
are the principal (or full) models, where the domain Co is arbitrary but where the
domain of each of the other types of variable is made up of all the sets, of the
corresponding type, of the type structure with base Co. The first result reduces
validity for principal realizations of languages of finite order to validity in the
principal realizations of certain (appropriately chosen) second order languages. As
stated in the summary of Chapter 3, secend order validity cannot, in general, be
reduced to first order validity. This follows from the results of Exercise 5 of
Chapter 3 and Exercises 1 and 5 of this chapter. We give a certain class of second
order formulas which are equivalent to infinite sets of first order formulas: this is
the generalization of the embedding theorem which we also mentioned in the
summary of Chapter 3.

The infinite systems of axioms just mentioned (and those of previous chapters)
can be considered as infinite conjunctions of finite formulas. The second part of
this chapter treats languages which contain other infinitely long expressions, in
particular the formulas Ax W A;x(iel} where WA4; denotes the infinite dis-
junction of the finite formulas 4; (i /). Exercise 5 gives a list of common structures
defined by such formulas. The main result is a simple characterization of the class
of finite formulas which are valid in all models of a countable system of axioms
Am(m = 1,2, ..)) of the form Ax Wy Bx(n =1,2,...). This result does not
extend directly to the uncountable case (see Exercise 4). For recent work on the
(flourishing) subject of infinite formulas see the book: The Theory of Models
(North-Holland Publ. Co., Amsterdam, 1965) particularly the papers by Karp,
KEeisLEr and ScotT.

The last two results of the preceding chapter are generalized to the languages
here treated; they take an especially simple form in the case of models of the
theory of types which satisfy the infinite formula Ax W, (x = ¢4), thatis, models
whose domain Cy is the set {cq, ¢1, ... }.

To state more delicate results on languages containing infinite formulas and their
realizations, one needs notions from the theory of recursive functions of (infinite)
ordinals; even the generalization of the Finiteness Theorem to the case of the
formula Ax W, (x = ¢») above needs notions from the theory of hyperarithmeti-
city (recursion on recursive ordinals). This theory also provides an explanation of
the special role played by negation and conjunction among all the propositional
connectives with an infinite number of variables.
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We consider the languages #° of the theory of types which was de-
scribed in Chapter 5. It follows from the last Theorem of that chapter
that we can associate with each realization I of & a realization IR, of
order 7 of ¥ called the principal realization of order © built on M. This
realization is unique up to isomorphism. In a principal realization the
relation &,, 6=(0y,...,0,) on E, x--xE, xE_, is isomorphic to the
membership relation on £, x -+ X E, x Z(E, x---xE, ). That is to say,
for each subset X of E, x---x E, there is a unique element a of E whose
“members” in the realization are the clements of X.

A formula of order T whose closure is satisfied by each principal reali-
zation of order t of % is called a theorem of order © of Z.

We can assume, without loss of generality, that % does not contain
any constant symbols. For suppose that F(a,, ..., a,) is a formula which
contains the constant symbols a4, ..., a,. Then F(a,, ..., a,) is a theorem
of order 7 if and only if F(x,, ..., x,) is one too where x4, ..., X, are vari-
ables of the same types as a4, ..., 4,, respectively, which do not occur in
F(ay, ..., a,).

Let &, be the language which is obtained from #° when we regard all
the variables as being of the same type (and we keep all the relation sym-
bols of .#%). Let £* be the language obtained from %, by adding the
new unary relation symbols T, for each ¢ <7. With each formula F of
2T we associate a formula F* of £*, defined by recursion on the length
of F as follows.

i) If F(x7', ..., x3) is atomic, then

F¥=F(x;,...x) AT, (x) Ao A T, (x,).
il) If F(x7Y, ..., x;9)="1G(x7}, ..., xi"), then
F*==1G"(xp, e x) A Ty (x) Ao A T, (x,).
i) If F(x7', ..., x2)=G(x7", ..., xI)v H(x]', ..., xJ7), then
F*=(G*VvH AT, (x)r AT, (x,).
iv) If F=VxG(x°, x7', ..., x;7), then
F* = Vx[T,(x) A G*(x, xq, ... %,)] -

The formulas of order (0) of #* are formed with a new set of variables
of type (0) whose elements we will write as X, ¥, Z, ... and a new binary
relation symbol which we will write e.
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Let U be the conjunction of the following formulas of order (0) of #*:
(1) Ax[T,(x)A T,.(x)] for each pair o, ¢’ of distinct types <r.

2 AXy e Axy Ax e {xq, .., %, X)
- T, (x) Ao AT, (3,0 A T,(x)],
for each o=(0y, ..., o,)< 1.

(3) AXAYLAXg o AXp[85(X 15 envy Xgo X)

Hsa(xla veea Xy y)] =X = .V]’
for each 6=(o, ..., 0,)< 1.

(4) AXy oo A, VY[T, (X)) A AT, (x,)—
[T,(30) A eg(Xgseen Xy ) A Aty oo Aty (8, (11, ety ) —
Xy =ty A A X, =u)]],

for each 6 =(0y, ..., 6,)<T.

() AX[Ax(xeX > T,(x) = Vy[T,() A Axyee Ax,

Le, (x5 0s Xy ¥) o Vz(zeX A g,(xy, .05 %0 2))]]],
for each o <.
Of the formulas above only those of (5) are of order (0), the others are
all of order 0.

THEOREM 1: Let F be q closed formula of £ of order . Then F is a theorem
of order t if and only if U—F¥* is a theorem of order (0) of £*.
Proor: Let 3i* be a model of (1, 2, 3) with domain E*. From It* we can
derive a realization M, of order 1 of ¥, whose domain of type ¢ is T,
the value of T, in IM*, by giving the relation symbols of #* the values
which they have in Bi*. By (1) the domains of IR, are disjoint and by (2)
and (3) I, satisfies the axioms of extensionality.

Each realization i, of order 7 of .% can be obtained in this way from
a model IM* of (1, 2, 3): if E,(o <7) are the domains of 9N, we let the
domain E* of IM* be | ), <. E, and we define the value of T, in IM* by
T,=E,. The other relation symbols of #* are symbols of .#*; they are
given the same value in IN* as they have in 9,. It can be seen at once
that JR* satisfies (1, 2, 3) since YN satisfies the axioms .7, on p. 97.

Let F be a formula of .#*. It can easily be shown, by induction on the
length of F, that the values of ¥ and F* in the two associated realizations
of #* and ¥* are equal.
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Now let IN* be a principal model of U whose set of individuals (do-
main of type 0) is E*. We will show that the realization I, of order 7 of
£ which is associated with it is also a principal realization. To do this
it will be sufficient to prove that the relation &, on T, x - xT, xT,
(where 0=(oy, ..., 0,) and &, T, , ..., T, are the values of ¢, 7, , ..., T,
in 9N*), is isomorphic to the membership relation on T, x -+ xT, x
P(T,, % - xT, ), and hence that for each subset K of T, x---x T, there
is some a in T, whose “‘members” in I, are the elements of K.

Let (a, ..., a,) be an arbitrary element of K. By (4) there is an element
¢(ay, ..., a,) of T, whose only “member” in IN, is (a, ..., a,). Because
9i* is a principal realization there is an element X of the domain of type
(0) of M* whose “‘members” in N, are the elements ¢(ay, ..., @,) for
(ay, ..., a,)eK. Therefore, by (5), there is some ye T, whose “members”
in M, are the elements (ay, ..., a,) of K.

Each principal realization I, of % can be obtained in this way since
it is sufficient to define the realization YR* of order O as above. Then, as
we have already seen, JR* satisfies (1, 2, 3). IN* also satisfies (4) since
because M is principal if 6=(oy, ..., 0,)<7 and if @€k, , ..., a,€E,,
then there is some ae E, whose only “member” in I, is (a4, ..., a,). We
take for IN* the principal realization of order (0) built on the realization
thus obtained, and it is obvious that It* satisfies (5).

Now let F be a closed formula of &*. If Fis not a theorem of order t
there is a principal realization IR, of order t of % which does not satisfy
F. In the principal model I* of U associated with ¢, F* is not satisfied.
Therefore U—F* is not a theorem of order (0) of £*.

If U— F* is not a theorem of order (0) of #* there is a principal model
Pit* of U which does not satisfy F*. The realization IR, of order 7 of &
associated with Jt* is principal and does not satisfy F. Therefore F is
not a theorem of order 7.

This completes the proof of Theorem 1.

Warning. According to the conventions of Chapter 5, the formulas of
ordinary predicate calculus (Chapter 2) are of order 0 by p. 97, and those
of the language £* above are of order 1 by Exercise 5. In the present
chapter we shall use the more usual terms: “first order’ and ‘second order’
(and, generally, nth order if the variables occurring in the formula F
considered have types of rank strictly less than » in the sense of p. 96, i.e.,
the type of the realization F of F has rank <n).



140 PRINCIPAL MODELS

THE REDUCTION OF A CLASS OF SECOND ORDER FORMULAS

Let A be a formula of #* whose free variables, say, x, ..., X, are either
of the type of individuals or of the type of relations between individuals,
i.e. of type a=(0y, ..., 0,,) Where each ¢;=0 (we denote this type by (p)).
Let .#,,(m <n) be the first order language which is obtained by adding to
£ the symbols 5;(i <m) which do not occur in &, where s, is of the same
type as x;. To make things clearer we will write ¢; for s; if x; is of type O,
and R; (a p-ary relation symbol) for s, if x; is of type (p;). Each realization
M, of Z,, induces a realization I of £, namely the restriction of IM,,
to the language &. In fact M, = WM U {5;:i<m}, where §; is an element
of the domain of I if s5;=c{, and an element of the domain E,, of I,
of type (p;) if s;,=R;}: in this case §;eE,, because each subset of E? is
in the domain of type (p;) of the principal model.

We say that A is reducible to the class &7 of formulas of .2, if for each
realization MU {5;:i<m}, {§;:1<m} satisfies 4 in I, if and only if N,
satisfies each formula of 7.

LEMMA 2: Each formula N\x;. ... AX,A, of F*, where A, is quantifier free
is reducible to a (single) universal prenex formula A? of ¥, and each for-
mula of &, is reducible to a (single) formula of £* (A{ is called the ca-
norical translation of A,).

Proor: Since 4, is quantifier free it is a propositional formula built up
from the atomic formulas of % and the formulas (%, ...,2,) &,, %
(1<i<n, x; is of type (p;)). Ay is the formula which is obtained from 4,
by first replacing x; by ¢; if x; is of type 0 and then replacing (¢, ..., t,,)
Epy X1 DY Ri(24, ..., 1,,). Clearly each atomic formula B of 4, is reducible
to B? and the propositional connectives preserve reducibility. Conversely,
each quantifier free formula of &, is reducible to the formula of #* which
is obtained by first replacing each occurrence of ¢} by x; and then replacing
Ri(ty; .-y 1) BY (24, ..., 1) €4,y Xi- The quantifiers of &, preserve reduci-
bility since the (individual) variables range over the same domain in IN
as in IM,.

Now suppose that AX;,... Ax,4, is reducible to 4y, ; thus Mu
{5,/ <1} satisfies AX;4q... AX,A,if and only if for each value 57, | of 5;,,
in 9 of the same type as x4, MU {5;:j<i}u{sk, ) satisfies 47, ;.

We now consider the two cases:

1. x;44 is of type O and so s;,.;=c/, ;. In this case AX;4,... AX,4,



PRINCIPAL MODELS 141

is equivalent to Ax;,,A4;,, where 4., is obtained from A;,, by
replacing c;, 4 by x;.,. Clearly, Ax{, A4;,, is a universal prenex for-
mula of &,.

2. x;44 is of type (p,). Let 4], = Au,... Au X, where X, is quantifier
free. Let T be the set of terms which occur in X, and let #,, ..., 7, be ele-
ments of E,. Clearly, if there is some R, , such that the realization
M =M {5;:7<i}O{R+y, 4y, ..., 1) satisfies 1X;, then the restriction
of M to the finite set {7:¢e T} also satisfies = X,. Let X, be the conjunc-
tion of all the formulas #; =1/ A~ AL=t;AS(t1, ..., 1) S(t], ..., 1;),
for each g-ary relation symbol § of &;,; and each 2g-tuple (2, ..., t,,
t{, ..., ;) of terms of T. Let Dy, ..., D, be a list of all the diagrams on T’
in the language Z;. If X; is the disjunction of the formulas D (1 <s<r)
such that the formula X, A -1 X, A D, is inconsistent then the formula we
are looking for is Au... Ay X;; for suppose that the realization S'=
Mo {5;:7< i} satisfies this formula. Then for each Ii-tuple (4, ..., #), P
satisfies one of the diagrams D, and so there is no R}, such that Ty
{5,/ <i} U{R},} satisfies Vi ... Vi1 X,

In the opposite case, there are 4, ..., % such that Mo {§;:7<i} satis-
fies X, and therefore there is a diagram D, such that X, A =1 X, A D, has
a model. In other words there is some R}, such that {§,:j<i} U{R;,,
iy, ..., 4} satisfies 1 X.

THEOREM 3: Let A=0Qx,...0,x,4, be a closed prenex formula of ¥*
where A, is quantifier free and if Q;=\/, x; is of type (p;) while if Q;= A
then x; is either of type O or of type (p;). Then A is reducible to a set sZ of
closed universal prenex formulas of . That is, IN, is a model of A if and
only if M is a modei of .

Proor: The proof is by induction on the number, », of quantifiers in A.
Let A;=Q; 41X 41 ... Q,Xx,A,. We will show that 4; is reducible to a set o7,
of universal prenex formulas of .#;.

By Lemma 2, 4, is reducible to a set ., of universal prenex formulas
of &Z, (and this set reduces to a single formula). Now suppose that 4;,,
is reducible to the set «7;,, of formulas of &, ;.

If Qis1=V, X+ 18 Of type (p;) and therefore {5;:7<i} satisfies 4; in M,
if and only if there is some 5, ; € E,, such that {5;:j<i} u {5} ,} satisfies
A;+1. And, by our induction hypothesis, this is equivalent to the existence
of some s ; such that MU {5,:j<i} {5}, ,} satisfies all the formulas of
& ;... Now by the Embedding Theorem (of Chapter 3) the realization
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Mo {5,:j<i} can be embedded in a model of =7, , if and only if it satis-
fies the set &7; of universal formulas of &#; which are consequences of
&, . It follows, therefore, that A; is reducible to this set ...

If Q;,,= A, then by the induction hypothesis, {5,:j<i} satisfies 4; in
I, if and only if for each 5/, ; in M,, of the same type as x;, ;, the reali-
zation Mo {5;:/<i} U {5 ) satisfies A7, ;. It is now sufficient to apply
Lemma 2 to obtain the desired result.

For a generalization of this Theorem, see Exercise 2.

INFINITE FORMULAS WHICH DEFINE FINITARY RELATIONS

Let {A4;:iel} be a family of formulas of % whose free variables are
among xy, ..., X,. Let I be a realization of .Z and let A; be the value of
A;in M. M is said to satisfy the infinite formula V x;... V x, M; 4;if and
only if (M;.; 4;#0. If (Y;.1 4;=0 then we say that I satisfies the infinite
formula Ax;... Ax, W;14; which is called the negation of the first
infinite formula. In what follows we do not discuss general iterations of
the propositional operations we have just mentioned (infinite conjunction
M\, infinite disjunction W and negation). The two types of formula we
have described here are sufficient to define several classes of structures
which cannot be defined by any set of finite first order formulas (see
Exercise 5).

We will consider languages with several types of variables. Suppose
that % is a language with equality and that 9t is a model of &4, and I
is the normal realization derived from it by taking a quotient realization.
We have already seen that 9t and I’ satisfy the same closed formulas of
2. In fact we will now show that they satisfy the same infinite formulas
of Z as well. Suppose that \V x,... Vx, &\; 4;(xy, ..., x,) is an infinite
formula and let 4; and 4; be the values of A,(x,, ..., x,) in MM and W’
respectively. Since 4, is closed with respect to the equivalence relation £,
it follows that A,=A,/B. Therefore (Vic; A;=( )icr A;/E and hence
(Miecr 4; and (), 4; are either both empty or both non-empty.

LemMa 4: Let 7 be a consistent set of finite closed formulas of £ and let
{71 i< A} be a family of sets of finite closed formulas of £. If each model
of < satisfies one of the sets Z,, there is a set & of finite closed formulas
of £ and an ordinal j < A such that card(#) < card (%), card (#) <card (%),
o U A is consistent and A ; is a consequence of </ U B.

Proor: We use the Corollary to the Finiteness Theorem (Chapter 5).
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Clearly we can assume that A is a cardinal. Let o7 = 7. For j>0 there
are two cases to consider.

I. There is some k<j such that &7, is a consequence of (., «7;".
In this case we put & =J);<; #;. So in this case &/ =7 for
all j > k.

2. If there is no such k£ <j we put

;= u{Af}
i<y
where A_Te&f ;and is not a consequence of ( J};.; LA

There is a j, < A such that the first case applies; for, if not | J;<, /] and
hence &7, would have a model which does not satisfy any &; because it
satisfies no 4}. We let #={"147:i<j,}. So # has cardinal </, and <
card (&) since the number of formulas of % is the same as the cardinal
of .Z (there are more than card(.€) sets of formulas of &, which are not
equivalent).

THEOREM 5: Let J be a set of infinite formulas of a language £, with equal-
ity, of the form \/ x, ..\ x, M\; AL(xy, ..., x,) where A< A=card(¥). Let
& be a set of formulas of & which has a normal model and such that each
normal model of < satisfies one of the infinite formulas of J. Then there is
an infinite formula of J, say \/ x;... \V x, M\, A, (x,, ..., x,), and a family
{Fi(xq, ..y Xp)ii€l} of formulas such that card(I)<card(J)x card (%),
card(Iygcard(F), & w{V xy... Vx, X\ Fi(xy, ..., x,)} has a normal model
and for all A< A there is some il such that

B4 /\x1 ees /\x,,(F;*-)AA).

Proor: We will use the notion of a canonical model which we discussed
in Chapter 5. Since we are concerned with a language with equality we
will assume that &, < ./. Then each model of &7, normal or otherwise,
satisfies one of the infinite formulas of J and hence satisfies one of the sets
{4i(ay, ..., a,):A<A} for ay, ..., a,ed of the same types as xy, ..., X,.
This family of sets has cardinal=card(J) x card(.#). By Lemma 4, there
is a family {B;:iel} of formulas of .#, such that card(/)<card (%) and
card(I)<card(J) x card(:#) and a set {4i(a;, ..., a,):A<A} such that
#UQu{B;:iel} has a model and has 4i(ay, ..., a,) as a consequence
for each A< A.

Thus for each A< there is a finite subset of {B;:iel}, whose con-
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junction we will denote by B;, and a finite subset of .27, whose conjunc-
tion we will denote by A;, such that

QF(A; A B)) > Al(ay,....,a,).

If by, ..., b, are the clements of A which occur in B; we have therefore
by Lemma 5.10 that

Ooy Ao NGy Ay Ao A By FA; A B, = Al(a,....,a,)
and so

AAF(B‘H A A Gan FANCERIVAN Bb1 A A Gbp A Bl)"')Ai(al, ...,Cl,,).

As in Theorem 6.8 (p. 124) we eliminate the elements of 4 other than
ay,..., @, that occur in 0, A A0, AOy A A0, AB;, by existential
quantification, and we denote the resulting formula by F,(ay, ..., a,). The
formulas F, make up a set whose cardinal is less than or equal to that of
the set of finite subsets of 1. The family of the F,(a,, ..., a,) has therefore
the desired properties.

COROLLARY: If, in the statement of this Theorem, & and J are assumed to
be countable (thus A=) then there is a finite formula B(x,, ..., x,) such
that o7 O {\ x;...VV x,B(xy, ..., x,)} has a normal model and for each
integer p,

S AXy o AX [ B(Xgs oo x,) > A, (xg, %01

COUNTABLE LANGUAGES: COUNTABLE SETS OF INFINITE FORMULAS

The sets of variables, relation symbols and constant symbols of the lan-
guages that we now consider will all be assumed to be countable.

THEOREM 6: Let o be a set of closed finite formulas of & and let J be a
countable set of infinite formulas of the sort Axy... Ax, W, A}{x,, ..., x,)
(j=1,2, ...; p=p(j)). The set of finite formulas of £ which are satisfied
by all models of =7 U J is the smallest set 547 of finite formulas of ¥ such
that:

i) for each finite closed formula G of ¥ if 7+ G then Ge.o/?, and

1) for each formula G(x,, ..., x,) and for each integer j, if for all n

A Axy . AxG LA (g, X} > G (X, x,)]

then Nxq... Ax, G(xq, ..., x,)e s,
(This result would be false if J were not countable, see Exercise 3.)
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Proor: Clearly the set of formulas which are satisfied by all models of
o7 U J contains &7,

Conversely, suppose that Fis a formula which is satisfied by all models
of o U J. If &7 U {1 F} has no normal model, Fis a normal consequence
of &7’ and so Fe=/’. If &/ U {—1F} has a normal model, then, by hypoth-
esis, any such model satisfies the negation of one of the formulas of J,
say, VX; ... VX, [X\,,—!Ai"(xl, ...s X,). By Theorem 5 there is a formula
G(x, ..., x,) such that &7 U {1 F, VV x,...Vx,G(xy, ..., x,)} has a normal
model and such that for each integer »

OV Axy o AX,[G(Xg, 0 x,) =1 AR (x4, 00, x,)]
and consequently
TGV FY P Axy o AXG[APR (345 s x,) =1 G (4500, X,)] -
In this case
A AXy e AXG[AR (xq, e x,) > (F v 16 (x4, ..o x,)].

By hypothesis Ax,... Ax,[Fv 1G(xy, ..., x,)]e’. Since Fis a closed
formula, Fv AX;... Ax,71G(xy, ..., x,) is a consequence of .2/ and so
is an element of 77, Therefore &/ U{—F, Vx,;...Vx,G(xy, ..., x,)}
does not have a model. It follows that &’ U {=1F} does not have a model
and so &/’ FF.

COROLLARY: &7 UJ has a model if and only if 277 has a model.

Proor: If «7 UJ has a model this model is also a model of &7, If &/ uJ
does not have a model the finite formula L is satisfied by all modeis of
o U J, Therefore 1 e’ and so &7 does not have a model.

Exercises

1. a) Find second order formulas whose classes of principal models are,
respectively,
(i) the well-ordered sets,
(i} the well-ordered sets of order type w,
(i1i) the complete ordered sets,
(iv) the dense complete ordered sets without first or last element with
a countable subset (of the domain) which is dense in the domain.
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b) Show that the classes (ii) and (iv) above contain, up to isomorphism,
a single element.

Answer. Let £ be the first order language with equality which has a single
binary relation symbol <. Let X, ¥, Z be variables of type (0) and let
U be a variable of type (0, 0). The rank of each of these variables is 1.
Let O be the formula of . which is the conjunction of the axioms for a
total ordering.

a) () the formula O A AX Ax(X{(x)— Vy[X(¥)A Az(z<y->1X(z))])
of #9 which we will denote by B, expresses the fact that each non-empty
set X (VxX(x)) has a first element, that is, that < is a well-ordering,.
(Compare this with the result of Exercise 7 of Chapter 3.)

() BA Ax[Azm(z<x)vVy Az{z<xe{z=yvz<y)}] is the re-
quired formula.
(iii) The formula

AXAY((X(x) Ay <x)=> X (P) A V(X (x)) A VX (X(x)) A
AAXVIX )= (x <y A X(3)

which we denote by C(X) expresses the fact that X is a cut open at the
right. The complete orders are the models of the formula

O A AXVx AY[C(X) > (X () y <x)]
which we denote by Com.
(iv) Let D(Y) be the formula
AxAy(x<y-Vz(x<zaz<ya Y(2).

D(Y) expresses the fact that ¥ is a dense subset of the domain. Let W(Z)
be the formula of #® which expresses the fact that the restriction of <
to Z is a well-ordering of order type w, and let I{U, Y, Z) be the formula
which says that U is the graph of an isomorphism between Y and Z,
namely the formula

AxVy AzL¥ () = (Z(3) A [U(x, 2)e> y = 2])]
A AN AZ[Z(3) > (Y (x) A [U(z, y) e x = z])]
A Ax AYLU(x, y) = (Y (x) A Z(y))]-

Then the desired formula is

AXVy(y <x}A Ax Vy(x <y) A O A Com A
AVYVZVU[D(Y)AW(@Z)AI(U,Y,Z)].
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b) Clearly the well-orderings of order type w are all isomorphic to the
natural ordering of the positive integers. By Exercise 3 of Chapter 4, all
countable dense orderings without first or last element are isomorphic to
the natural ordering of the rational numbers, It follows that each element
of the class (iv) is isomorphic to the natural ordering of the continuum.

2. Let ¥, be the language which is obtained by adding to the Yanguage
Z for each i < m, either an individual constant ¢;,(iel) or a p;-ary relation
symbol R;(ieR) or a (p;—1)-ary function symbol f;(i€ F). Suppose that
F={n,, ...,n} with n;<n;,, for i<k. Let &, be the language obtained
from .#;, by replacing, for each ieF, f; by a new p;-ary relation symbol R;,
For j<k let g;=p, and let F; be the formula

Aty oo Atig,y Vitg, AW[R, (g, ..., W) o w = qu].

a) For each quantifier free formula 4" of %}, find a universal prenex
formula 4, of &, such that for each realization M of &, for each se-
quence ¢; of elements of the domain E, of Y(iel), R;< EP(ieR),
Fi ER 1S Ey(ieF), R; < EF* and R’ the graph of f,(ieF), Mu {¢;:iel}
V{R:ieR}U{f/:ieF} is a model of A4’ if and only if the realization
Mu{c:iel} U{R;:ie RUF} satisfies 4.

b) Let A’ be a quantifier free formula of .#,, 4, the corresponding for-
mula of %, as in a) and let 4, be the translation of F; A -+ A Fy— A, in &£
given by Lemma 2. Show that Q,x, ... Q,x,4, is reducible to a class of
universal prenex formulas of 2.

¢} & is a language with a single unary relation symbol P. Show that
there is no set & of formulas of .% such that the realization {E, P} can
be extended to a realization {E, P, f> which satisfies

Ax[F(F ) =x A (P} P (x))]

if and only if <E, P satisfies .&7.

d) deduce from c) that there is a closed formula V x; Ax, Vx; Axsd
of £ 9 where A is quantifier free and x, is of type (0, 0), x,, X3, x4 of
type 0, which is not reducible to any set of formulas of Z.

Answer.

a) Let T be the smallest class of terms of %, which contains all the
terms which occur in A’ and such that #,,...,1, - €T if f,-(ti,..‘,tpi_i)ET
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(i=ny,....m). For each term teT the degree of a constant is O and the
degree of t=1+max{degree(t;):j<p;}, if t=£ (¢, ..., 2, _1).

If ¢ is of degree greater than zero, let y, be an individual variable which
does not occur in 4’ and let y,#£y, if t#¢t’. We arrange the y, according
to the degree of . For each t=f(¢,, ..., 7, -} (t€T) let R, be the formula
R(tT, ...t 1, ¥y where 17 =y, if 1 has degree >0and ¢} =1, otherwise.
Let B be the conjunction of all the formulas R, for teT of degree >0. The
desired formula is

AVig-e Ay (B~ A7)

where #,, ..., t, are the terms of degree >0 which are in T and A4* is the
formula which is obtained by replacing each such ¢#in 4’ by y,.

by Let A;=0;41X41... 0, [(F;An--- AF)>A], where n;>i+1 and
n;_y <i. We will show that A, is reducible to a set &7, of universal prenex
formulas of &, (in the following sense: if

M=Mu{e:h<i,hel}U{R,:h<i,heR}O{f,:h<i, heF}
then IN; is a model of &7; if and only if
Mouf{e:h<i,hel}u{R,heRUF, h<i}

satisfies A;, where for heF, R, is the graph of f}).

If i=n the result is a consequence of Lemma 2 and a).

Suppose that A4;, is reducible to the class «7;,, of universal prenex
formulas of &, . If i+1#n; we apply the Embedding Theorem (for
languages with function symbols).

Ifi4-1=n, Q;y1= A;let the formula Xe s/, be Auy... Ay X, where
X, is quantifier free. Let T be the set of terms built up from the terms
which occur in X (as in a)). With each reT we associate the term ¢* defined
by recursion on the degree of ¢ as follows: If the degree of ¢ is O then
t¥*=t.Ift=F, (t;, ..., 1), where g=p, —land h#j, thent*=f, (¢7, ..., t})
and if fi=j then t*=y,, where y, is a variable which does not occur in X
and we assume that if f#¢’ then y,#y,. Let i, ..., 7, be elements of the
domain of M. Now if the function £, ; is such that M, u { fis 1, @1, ..., 8y}
satisfies — X, the same is also true for any function f;T, taking the
same values asf;,; on {f:teT}. Let XT be the formula which is obtained
from X, by replacing ¢ by ¢* and let X, be the conjunction of all the for-
mulas

(T =sT A ntg=s9) >y =y,
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where s, te T, t=fi1 (¢, .., t)and s=f;, 1 (sy,...,5,)and g=p;, , — 1. There
is an f;,, such that M, v { /. } satisfies X, if and only if M, satisfies

AVeg e AV (X = XT)

where ¥, ..., ¥, is a list of the new variables we have introduced.
¢) {E, P>, with PSE can be extended to a model of

AXLf(f () =x A P(x) =1 P(f (x))]

if and only if P and E— P have the same cardinal. By the results on the
elimination of quantifiers (Chapter 4, Exercise 7) for each closed formula
X of #, X is either true in each realization in which P and E— P are both
infinite or X is false in all such realizations. We take E, uncountable, P,
countable, E, countable (and infinite) and P, and E; — P, both countable:
then, for any &7, either both (E,, P> and {E,, P, are models of &/ or
neither; but {E,, P,) satisfies the formula above, and {E,, P,> does not.
d) {E, P> can be extended to a model of

AXLF(F(x) =x A P(x)1 P(f(x))]

if and only if it can be extended to a model of
Ax Vy Az[(B(x, 2}z = y) A B(y, %) A (P{(x) 1 P(3))].

The desired formula is now obtained by applying Lemma 2.

3. a) Let &7 be a set of finite formulas of Z and J a set of infinite formulas
of the sort Axq... Ax, W, 4,(xy, ..., x,). Let 277 be the set of formulas
defined in the statement of Theorem 6. Show that Fe.»/” if and only if
there is a countable subset .27, of ./ and a countable subset J; of J such
that Fes/{'. (Clearly we are not assuming that % is countable.)

b} Let . be the language with a single type of variable defined as fol-
lows. Co=N;RQ ={R,:£e#(N)}u{R} where R is (an arbitrary set
which is) neither in N nor in RY’. Let &7 be the set of the following for-
mulas of &

{Re(n):neé, Ee P (N)}
{1 R:(n):n¢é, e P (N)
{VX(R(x)>1 R (x)): {e 7 (N)}

and let J={ Ax W, (x=n)}
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Show that & U J does not have a model, but that each countable subset
of &7 J has a model. Deduce that =7’ has a model.
¢) Suppose that % is the language defined as follows:

C,=N,RY = {R}.
Let &/ =0 and let J be the uncountable set
{AXW,(x = n)} U {W,(7)"R(n): £ #(N)}

where (—1)* is 71 if neé and 711 if n¢é.
Show that &7 U J does not have a model but that each countable subset
of it does have one.

-

Answer,

a) It is sufficient to show that the closure conditions which we imposed
on the set %/’ are also satisfied by the smallest set 7 of finite formulas
of # such that

(i) <A,

(i1) for each closed formula G of & if #/°FG then Ge /¢,

(iii) for each j and for each formula G(x, ..., x,) (p=p(})), if there
is a countable subset &7 u J, of &/ J such that for each »

AXg e AXp{AL(X 150y X)) = Gy ey X))

is satisfied in all models of &/ U Jythen A xy... Ax,G(xy, ..., X, )"
This is because if for each # there is some countable set &7, U J, such that
A0 T E Axy . Ax(A)(xq, ...y X,) =G (xy, ..., X,)) then we can take for
& the countable set {_, (&7, 0 J,).

b) and c¢) are obvious when we take into account the fact that in any model
of Ax W, (x=n) the value of R can only be one of the sets {n:nef} for
some e Z(N).

4, Let % be a countable language with equality and with & types of vari-
ables, such that Ne C$, i.e. such that the natural numbers are constant
symbols of type 1 of #. A normal realization of # with domains Uj, ...,
U, 1s called an w-realization if and only if U, =N and 7i=n for each rneN,
where 7 is the value of # in the realization. Let &7 be a set of closed for-
mulas of . which contains the formula r#n’ for each pair (n, n") of
distinct natural numbers.
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a) Show that the set of formulas which are satisfied by all w-models of
&7 1s the smallest set & of formulas of & such that
(i) =,
(i) for each closed formula F of % if &/“F F then Fe /%, and
(i) for each formula G(x) of %, if for each non-negative integer
n, /°FG(n) then AxG(x)e/*.
b) Use Theorem 5 to show that if XN is definable (see Chapter 6) in
all w-models of & then there are two formulas F and G(x), where x is of
type 1, such that for each peN,

peX ifandonlyif &“U{F}FG(p)
and
p¢X ifandonlyif U {F}F1G(p).

c)Show that a}is false if the restriction to countable languagesis dropped.

Answer.

a) A normal realization of .# is an w-realization if and only if it satis-
fies the infinite formula A x W, (x=n). We can therefore apply Theorem 6.

b) We first remark that in an w-realization of % a subset X of N is de-
finable if and only if it is definable-on N (since N is the domain of type 1
of such a realization).

For each formula A(x, xy, ..., x,) and each integer p let 4 (x,, ..., x,)
=A(p, Xy, ..., X,) if pe X and —14(p, x,, ..., x,) if p¢ X.

Since X is definable in all w-models of o each such w-model satisfies
one of the infinite formulas

Vxg . VX, BNA(xg,..,x,)
P

for some formula A(x, xi, ..., x,) of £. Thus each model of & satisfies
either one of these formulas or the formula \ x X\, (x#p), where x is of
type 1, and each model of &7® satisfies one of these infinite formulas, say,
Vg Vx, M, 4,(x,, ..., x,). By the Corollary to Theorem 5 there is a
formula B(x,, ..., x,) such that &® U {Vx,... Vx,B(x,, ..., x,)} is con-
sistent and &Z°F Axy... AX,[B(x, ..., X)) A4,(Xy, ..., x,)] for each in-
teger p. We obtain the desired result by taking Vx,...V x,B(xy, ..., X,)
for F and Vx;...VX,[B(xy, ..., x,) > A(x, %y, ..., x,)] for G(x). (This
could also be proved by using the method of Theorem 6.8.)

¢) The answer is given by b) of the previous exercise because J={ Ax
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W, (x=n)} that is because the set »7 defined there does not have any
w-models but &7® is consistent.

5. a) Using infinite formulas define the following classes of structures
(i) Archimedean ordered fields,
(ii) groups generated by p elements ay, ..., a,,
(iii} hereditarily finite sets of type <r.
b) Show that each of the above classes is the class of models of a single
second order formula but that none is the class of models of a set of finite
first order formulas.

Answer.

a) (i) Let % be the language of ordered fields. We add to the set &
of axioms for such fields the formula Ax W, (x<o,), where o, is 1 and
6,4+ is the term o, + 1.

(ii) Let & be the language of groups. We add to the set &/ of axioms
for a group the formula
Ax M(x=s,)

where {s,:ne N} is an enumeration of all the terms of the form

ai't...apr . af™.ap

where each p; {1 <i<n, 1<j<p)is +1, =1 or 0.
(iii) Let % be the language with the single binary relation symbol =.
We construct the language £° as in Chapter 5. We take as our set of
axioms the set of axioms for the Theory of Types and, for each ¢ <[]
with 6=(oy, ..., 6,}, the formula
AX"W E, (x)
where E,(x) is the formula
AXT e AXgh e AXTP AR D M (XL xR ex)
1=srgn+1
- W (x"=xT A AX]?=x77)
1€i<jgn+1
and x is a variable of type o.
b) Clearly (see Exercise 1 of Chapter 3) none of these classes is the
class of models of a set of finite first order formulas. This can be seen if
in case (i) we refer to Exercise 7 of Chapter 3; in case (ii) we add a new

constant @ and the axioms s, #4, ..., 5,%4, ...; and in case (iii)) we add a
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constant a‘® of type (0), the constants ¢;, ¢, ..., of type 0 and the axioms
Cub0,a'” forn=1, 2, ..., and ¢, # ¢, for each pair of distinctintegers (i, ).

On the other hand each infinite formula of a) is equivalent to a single
finite second order formula as follows:

We consider two cases where (the second order variable) X ranges over
o) the class of all subsets of the domain of the realisation considered, f)
the family of all its finite subsets (see Chapter 5, Exercise 6 b)), We use
the notation bottom of p. 137.

(1) We write 4 for AX({zeX A Ay(y+1leX—>yeX)]}—1eX)and B for
VX[(leX A Ay[(y<zayeX)—y+leX])—zex].

In both cases W,(2=0,)—4 holds.

In case &) one also has A—»W,(z=0,) and in case ) B—»W,(z=0,).
Hence, in both cases

(4 A By M(z =0,),

since AzB holds in case ). Since W,(x<¢,) is equivalent to
vz[x<z A M(z=0,)],
we have in «) and f) "
Vz{x<zAaAArBeWx<e,).

(i) We only consider case «); the modification needed in case f) is
analogous to that treated in (i).
W(x =s,)¢ AX[(xeX A Ay[(yaeX v ya7'eX v---v yaeX
' v ya; 'eX) - yeX]) — 1eX].

(iii) We write y=z U (zy, ..., z,) (Where y and z are variables of type
o,06=(0y, ...,6,) and z,, ..., z, are variables of type oy, ..., 5, respec-
tively) for

AXT o AXPP((X g5 X)) 8oy o [(X4, 000X ,) €42
V(x; =z A A X, =2,)]).

Then, in case (&), if x is a variable of type o,
WE x> AX([xeX A Ay Az Azyoo. Azp([yeX Ay =
z U(zy, .. zp)] = (zeX A zgeX - A z,eX))] - 0eX).
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THE AXIOMATIC METHOD

The general nature of this method is usually described as follows. In-
stead of assertions about abstract properties of specific objects and con-
cepts (such as space, material point, probability, etc.), one considers
statements of the following form: given any collection of objects (whose
nature is not otherwise specified) and given any set of relations between
these objects, if the relations satisfy certain logical conditions (called
axioms) then they also satisfy certain other logical conditions (called
theorems of the given axiomatic theory). In different branches of ordinary
mathematics a small number of particular axiomatic systems have been
isolated and studied. Thereby a good deal of mathematics has been built
up in a systematic and comprehensible way. But one has not been inter-
ested in arbitrary axiomatic systems or even in general classes of axiomatic
systems. Thus the experience of “ordinary” mathematics provides no
reason for supposing that there are useful results about general classes
of axiomatic systems which would contribute to the effective use of the
axiomatic method.

We shall now give some applications of a study of general classes of
axiomatic systems, mainly — though not exclusively — of axioms.expressed
in first order predicate logic, a notion which is defined precisely in Chap-
ters 1 and 2. Broadly speaking, this language can be characterized by
saying that its formulas express properties of relations defined on a
domain E and that in the definitions of these properties the quantifiers
range only over the elements of E and not, say, over the subsets of E.
For example, the fact that a relation is an order relation can be expressed
by a first order formula but not the fact that it is a well-ordering. Or again,
the fact that a structure is a group (that is to say, that the relation a*b=c¢
satisfies the group axioms) can be expressed by a first order formula.
Similarly the property of being a commutative group is of first order.
However the fact that a group can be ordered is not expressed by a first
order formula since this is the property that “there is an ordering of E
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compatible with the group structure” or, in other words, “there is a subset
of E? such that ...”. Nevertheless the property of being an orderable
group is equivalent to a certain infinite set of first order conditions. Final-
ly, the properties of being a group having a finite number of generators
and of being a countable group are not equivalent to any set, even infinite,
of first order conditions.

Thus because of the exclusion of higher order quantifiers the class of
axiomatic systems for which these general results hold does not include
all of mathematics. One can make up for this, at least partially, by use of
infinite systems of axioms. By considering structures which satisfy an
infinite set of conditions a whole class of problems can be covered which
are formulated in higher order terms but which can be reduced to prob-
lems about infinite sets of first order conditions. Examples of this are
given in Chapters 1-3, mainly in Exercises. The most useful results, all
connected with one another, are these:

I. The Finiteness Theorem. This says that if a first order formula 4
holds in all those structures which satisfy a set &7 of first order formulas,
then there is some finite subset &7; of =/ which implies A.

2. The Method of Constants {Chapter 3, Exercise 2), This generalizes
the well-known algebraic principle for introducing transcendental ele-
ments (where a structure containing an element & satisfying p,{¢)+#0 for
all n is derived from a structure which contains, for each #, a &, satisfying
p;(E,)#0 for all i<n).

3. The Embedding Theorem. This gives a condition which is both neces-
sary and sufficient for a structure to be embeddable in a model of a given
set & of axioms. (The results about groups mentioned above are immedi-
ate consequences of 1 and 3.)

Using these theorems we can simplify several known results which deal
with the passage from finite subsystems to a whole system. They also lead
to first order (equational) conditions for embeddability. But probably
their chief interest is the way they make the general nature of a problem
clear by separating what is general and what is particular. Thus at first
sight it may seem remarkable that there is an algebraic condition, that
is, a first order condition, necessary and sufficient for the existence of an
ordering of a field compatible with the field operations (namely, x2+--- +
x2+1#0, for n=1,2,...). This general result is an immediate conse-
quence of 3 above; only to decide points of detail is it necessary to look
carefully at the conditions obtained, for example, to show that this set of
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conditions cannot be replaced by any finite set. We remark in passing
that there is an interesting theory which relates the usual algebraic prop-
erties of certain classes of structures to the syntactic form of the axioms
defining these classes. Thus the group axioms are all equational, the
axioms for a field contain Boolean combinations of equations (condition-
al equations) such as x=0v x-x~ ' =e; the axioms for a real closed field
all take the form of a string of universal quantifiers followed by a string
of existential quantifiers followed by a Boolean combination of equations.
This theory enables us to answer such questions as ‘“Why can we express
the fact that a field can be ordered by a set of inequations but not by a
set of equations?’. The answer is that if a set of equations is satisfied by a
given structure it is satisfied by each homomorphic image of an arbitrary
substructure of this structure. Thus if a set of equations is satisfied by the
field of rational numbers it is also satisfied by the field of integers modulo
2, but the field of rationals can be ordered while that of the integers
modulo 2 cannot. A very elementary example of this theory is given in
Exercise 8 of Chapter 3 which provides a useful condition for an axio-
matic theory to possess a free model. For recent developments see ABRA-
HAM ROBINSON, Introduction to Model Theory and to the Metamathe-
matics of Algebra (North-Holland Publ. Co., Amsterdam, 1963). (Chap-
ter 6 of the present book explains the methods used in this theory.)

In Chapter 4 there is a more specific use of the notion of a first order
formula. This use enables us to exploit the full force of certain particular
constructions. For example, the algebraic theory of resultants leads to an
equational condition on the coefficients of two polynomials which is
necessary and sufficient for them to have a common root. But this same
construction provides much more, namely, an analogous set of conditions
for an arbitrary formula in the theory of algebraically closed fields! A
similar but more interesting case is that of real closed fields. A long time
ago Sturm showed that a polynomial vanishes in a closed segment {a, 5]
if and only if certain polynomial inequalities (the terms of which are
rational combinations of a, b and the coeflicients of the given polynomial)
are satisfied. Artin and Schreier showed that this result depends only on
the axioms for a real closed field. Once we have the notion of a first order
formuia it is natural to try to extend this result to al/l first order formulas
of the theory of fields. This problem was mentioned in passing by Her-
brand and completely settled by Tarski who proved that each first order
formula of this theory is equivalent to a Boolean combination of equa-
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tions and inequalities. In particular, a formula without free variables is
either true in all real closed fields or false in them all. Thus although it is
obvious that not all real closed fields are isomorphic they are nevertheless
all equivalent with respect to first order formulas which are built up from
polynomial equations and inequalities. A proof of Artin’s Theorem on
the representation of non-negative forms as sums of squares of rational
functions follows almost immediately from this result. This is done as an
exercise in Chapter 4.

If 7 is a set of axioms all of whose models are equivalent with respect
to first order formulas expressible in the language of &7, then &7 is said
to be complete. MORLEY (Categoricity in Power, Trans. Amer. Math. Soc.
114 (1965) 514-538) has recently constructed a remarkable theory of the
models of complete sets. This theory is closely parallel to Cantor’s theory
of closed subsets of the real line. The closed subsets which we most natu-
rally think of are all very special. If they are not themselves perfect their
first or second derivatives are perfect (possibly empty). However, for each
countable ordinal « there is a closed set whose a-th derivative is not per-
fect. In a similar way the ordinals which, in Morley’s theory, correspond
to the complete sets of axioms which have turned up in other branches
of mathematics are all finite, although for each countable ordinal « there
is a (countable) complete set whose corresponding ordinal is a.

It follows from the Finiteness Theorem that each set of first order
axioms which has an infinite model has models of different infinite cardi-
nals (which are therefore not isomorphic). Historically, the first — and the
best known — systems of axioms, for example, Peano’s axioms for arith-
metic and Dedekind’s for the continuum, were introduced to characterize
untquely certain infinite structures. If we look at these systems more close-
Iy we see that their intended interpretation does not take into account all
the general models, but only some of them. In other words it is not only
the meaning of the logical symbols that is laid down, but also that of cer-
tain other symbols. In particular, in certain classical systems of axioms
““set variables’ occur and the models considered are those in which these
variables range over the set of all sub-sets (of the set which we earlier
denoted by E). Languages which contain such set variables are called
higher order languages and the particular models just described are called
principal models, where a language is said to be of order » if it contains
variables over p*(E) foreachi<n, with P°(E)=E, P+ ' (E)=P[B(E)],
P denoting the power set operation. The axiom systems of Peano and
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Dedekind are of second order. Some isolated results, for example, the
reduction of validity of order » (n finite, #>>2) to second order validity,
can be found in Chapter 7, but most of the general results about first order
systems cannot be extended to the higher order case. We define an inter-
mediate class of models, the w-models, by requiring that the value of one
of the unary relation symbols be the set of natural numbers and the value
of one of the binary relation symbols be the successor relation. We con-
stantly meet classes of such structures in everyday mathematics, for ex-
ample, vector spaces over the field of rationals; in contrast, the class of
vector spaces over an arbitrary (not fixed) field is just the class of all
models (without any restriction) of a set of first order axioms. In Chapter
7 some results about general models are extended to w-models; only,
we often have to require that the sets of axioms be at most countably
infinite, Much more on the subject of w-models (and, more generally, of
models defined by infinitely long formulas) can be found in the references
cited in the summary of Chapter 6.

The ‘“negative” results about non-categoricity (with respect to first
order axioms) do have a “positive” side, namely, the existence of non-
principal models (which in Exercise 3 of Chapter 2 are also called non-
standard models). Quite recently these models have been used to create
Non-standard Analysis. This recent work differs from other attempts at
doing Analysis on a non-Archimedean field K by bringing in the set of
“integers of K’ (which satisfy the axioms of arithmetic considered). The
existence of non-principal models implies the existence of non-Archime-
dean fields which contain such (non-Archimedean) “integers” as well as
non-Archimedean “real numbers” (for example, in a Taylor series
Z a,x", the variable n ranges over all the integers of K and not just over
the standard ones). This genuine Infinitesimal Analysis is expounded in
ABRAHAM ROBINSON, Non-standard Analysis (North-Holland Publ. Co.,
Amsterdam, 1966).

The applications described so far are applications in the strict sense of
the word in that the methods given in the main text enable us to answer
questions which are explicitly formulated in ordinary mathematical lan-
guage. It remains to consider what, in the long run, is the most fruitful
réle of new ideas, namely, the possibility of formulating questions that
we have in mind but which we cannot express precisely in ordinary mathe-
matical language (besides possible applications to less common branches
of mathematics). In this connection probably the most striking example
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is the theory of uniformly definable sets, explained in Chapter 6, which
is illustrated by the following simple questions. Consider the commutative
fields of characteristic zero; they all contain a sub-field isomorphic to the
field of rationals. So we can ask:

1. Which first order formulas 4 (x) define the same set of rationals in all
these fields, i.e. are satisfied by the same rationals in each of these fields?

2. Which first order formulas 4(x), satisfied only by rationals, define
the same set of rationals in all these fields?

3. Which sets of rationals can be defined in this way?

4, Which sets of rationals can be defined in each commutative field of
characteristic zero by a first order formula which may depend on the field?

Complete answers to these questions follow as corollaries to quite
general theorems about arbitrary sets of axioms. Questions 3 and 4 are
equivalent; this provides a new and powerful uniformity condition. The
answer to question 2 is that they are (some of the) first order formulas
which define finite sets only. In other words we cannot hope todistinguish
the rationals by one and the same first order formula in all fields. In fact
there is a commutative field of characteristic zero in which the rationals
cannot be distinguished by any first order condition (or as an algebraist
would put it, they are not algebraically definable). One need only reflect
for a moment to see that these questions are only interesting if arbitrary
first order formulas 4 are considered and not just equations or Boolean
combinations of equations. Obviously this is another reason why the
above questions have never been dealt with in the literature of “ordinary™
mathematics.

This work on definable sets in general models also extends to the w-
models described above. It provides an example of an application of
model theory to two other branches of logic not dealt with in this book,
namely, the theory of recursive sets and that of hyperarithmetic sets. This
application is based on the following facts. On the one hand the basic
notions of recursion theory are those of finite set (of natural numbers)
and of recursive set; on the other hand, the sets which are uniformly de-
finable in the usual axiomatic systems for arithmetic are just the finite
sets, if definability is taken in the sense of 2 above, or if it is taken in the
sense of 1 above, just the recursive sets. Thus we can generalize recursion
theory in two directions, either by replacing the usual axioms for arith-
metic by other axioms or by replacing the class of general models by some
other class of models such as the w-models mentioned above.
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FOUNDATIONS OF MATHEMATICS

INTRODUCTION.

Foundational studies are concerned with describing and analysing so-
called “intuitive” or “informal” mathematics, i.e., mathematics as under-
stood by ordinary working mathematicians.

In the descriptive part of the subject, informal mathematics is reformu-
lated in a formal language (e.g. that of set theory). Compared with the
language of informal mathematics such formal languages have a very re-
stricted vocabulary and a perfectly exact grammar, with a consequent
increase in precision and freedom from inessential features. Contrary to
current views discussed at the end of the introduction, this reformulation
is only a tool in the study of foundations; depending essentially, as does
any description of an intuitively understood subject, on our conception
of the objects described: it is only from this point of view, i.e., that of
meaning, that the formal language expresses correctly the assertions of
informal mathematics, since, from the point of view of external form,
formal and informal language have (fortunately!) very little in common.
It should also be noted that the increased precision brought about by
formalization, though very useful for technical development, is hardly of
any use for resolving difficulties arising from defects in the original con-
cepts (indeed on the contrary, it is by reflecting on informal concepts that
we are led to a good formalization). For example, in the well known
“crises” (see Part A, Section 1, below) the contradictions arose from
principles (axioms, rules of inference) which were quite explicit, so that
the difficulties were not due to any lack of formal precision; the problem
was rather to distinguish amongst various formally precise principles
those which were valid.

Foundational studies proper are concerned with just this kind of ques-
tion which may require considerations quite different in character from
those of ordinary mathematics. In particular, in foundations we try to
find (a theoretical framework permitting the formulation of ) good reasons
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Jfor the basic principles accepted in mathematical practice, while the latter
is only concerned with derivations from these principles. The methods
used in a deeper analysis of mathematical practice often lead to an exten-
sion of our theoretical understanding. A particularly important example
is the search for new axioms, which is nothing more than a continuation
of the process which led to the discovery of the currently accepted princi-
ples.

The preceding considerations show that the methods used in founda-
tions will necessarily go beyond those of mathematical practice: the dis-
covery of the new concepts and methods needed may involve distinctly
philosophical considerations, and in particular, one’s conception of the
nature of mathematics. If (1) one holds the view that intuitive mathe-
matics is essentially concerned with certain (abstract) objects, one will be
led to a “‘realist” theory of these basic objects: in such a system of foun-
dations the meaning of intuitive statements is analysed in terms of this
theory and the rules of reasoning are deduced from the laws obeyed by
the basic objects. Realist foundations are thus analogous to theoretical
physics which explains ordinary physical phenomena in terms of funda-
mental constituents of the physical world (elementary particles in the
current theory). But if, (2), one holds the view that the essence of intuitive
mathematics consists in proof or, more specifically, the various kinds of
proof, one will be led to an “idealist’” system of foundations, which refers
to mathematical activity itself. An example of (1) will be found in Part A
below dealing with set-theoretic semantic foundations (in this case the
interpretations of the formulas are the “realizations” of Chapters 2 and
7); and examples of (2) in Part B which sketches combinatorial syntactic
Sfoundations (a rather narrow view of mathematical activity is involved
here). For defects of both foundations, see Part B, Section 4.

Two particular difficulties in foundations deserve mention (though they
arise in any attempt at a general, theoretical understanding). Firstly, in
order to decide between two rival views, it is essential to adopt a detached
standpoint. If one accepts one view, either consciously or unconsciously,
there is a real danger of not taking the other one seriously! For a realist,
an idealist appears to ignore the fundamental objects and to be lost in
minor distinctions (analogous perhaps to the difference between obser-
vations made by the naked eye and with the aid of a microscope — a dis-
tinction to which no physical importance is ascribed). Conversely, an
idealist will find it ridiculous to derive the rules of intuitive reasoning from
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the properties of abstract objects which, for him, have a very dubious
status, or, at least, are hardly essential to mathematics. Secondly, if the
viewpoints are of long standing and have consequently survived exami-
nation at any rate in respect of their consequences for elementary mathe-
matics, considerable further development of informal mathematics may
be needed in order to provide some criterion for deciding between them
(such a criterion would be analogous to an experimentum crucis in phys-
ics). It goes without saying that an already quite highly developed techni-
cal apparatus may be necessary even for formulating a theoretical view-
point, and the development of this is one of the principal tasks of mathe-
matical Iogic.

As to the possibility of applying foundational studies to informal
mathematics, the position is similar to that for any other theoretical analy-
sis. In Appendix I some applications of semantic analysis are given.
Syntactic methods have found applications in connection with computers;
this is hardly surprising since one of the basic ideas behind this kind of
analysis is that mathematical reasoning is capable of being mechanised.
In fact we can say that there is no doubt about the usefulness in principle
of foundational studies.

In practice the following situation sometimes arises. If some question,
say in number theory, is formally undecided by the basic axioms accepted
in mathematical practice, its solution may require assistance from foun-
dational studies: in the first instance, in order to establish its undecida-
bility and secondly in order to find new axioms (there are examples of
these possibilities in Part A, Section 3). But at the present time the situ-
ation both in arithmetic and analysis is confused: on the one hand we
do not know of any questions which are seriously studied by working
mathematicians and which are also independent of the currently accepted
axioms (see Part B, Section 1{c)}; on the other hand mathematicians igno-
rant of foundational methods are not likely to find any (just as it is un-
likely that anyone would notice group theoretic aspects of arithmetic
unless he already knows what a group is).

FOUNDATIONAL STUDIES AND THE PROBLEM OF ERROR

One of the standard problems of philosophy is that of determining how
one might eliminate possible error from naive experience. The founda-
tional considerations of the present study are only slightly relevant to this
purpose (and, in particular, formalization itself is quite irrelevant). We
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cannot rule out the possibility that there may be defects in the basic con-
cepts; but the two commonly cited examples of erroneous naive ideas are
hardly conclusive, namely the paradoxes of set theory (Part A, Section 2)
and the existence in arithmetic of formally undecidable propositions (Part
A, Section 3). In point of fact, the objections raised by mathematicians to
the introduction of the idea of set (at that time called “‘class’’) are notori-
ous, as well as the efforts made to show that mathematical reasoning (even
in elementary geometry !} is not capable of being mechanised. If anything,
the naive attitude was excessively conservative.

POSITIVISM : AN ANTI-PHILOSOPHICAL DOCTRINE

According to this doctrine, which currently enjoys a certain vogue,
foundational studies should be confined to their descriptive role; the
traditional problems of foundations are ignored rather than resolved on
the ground that they lack precision. We have already observed certain
fundamental disadvantages of such a restriction at the beginning of this
introduction, and they will be considered in greater detail in Part A, Section
4 (¢) in connection with semantic foundations and in Part B, Section 4 in
connection with combinatorial foundations. But it will be useful to make
certain general observations about this doctrine at this point.

The restriction imposed by this doctrine on what is held to be precise
(or meaningful) requires that statements be formulated in what are called
“positivist” or “‘operational” terms, which in mathematics reduce to
“formal”. This requirement, in turn, derives its plausibility from the dis-
covery (Part A, Section 4(a)) that elementary logical reasoning (i.e. of first
order) is, if not formal {mechanical), at any rate capable of being formal-
ized (mechanized). Prior to this discovery the positivist doctrine had no
real foothold in mathematics.

It should be observed right away that the intuitive notion of logical
consequence is involved in the very statement of this discovery since it
asserts the equivalence of logical consequence and a certain purely formal
relation; i.e., having accepted the notion of logical consequence, one
proves that there is a formally precise definition of it. But positivists go
further: having formulated {quite correctly) a criterion for formal pre-
cision, they conclude (wrongly) that this criterion defines the limits of
mathematical thought. However, experience in foundations as well as in
informal mathematics shows the contrary to be the case. Competent
mathematicians come to unanimous and quite definite conclusions about
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questions that are not expressed with formal precision such as e.g. whether
or not an axiom is valid for a certain intuitive concept (see Part A, Section
2(c), Part B, Section 2(c)), or whether a definition is satisfactory (e.g. for
the length of a curve). Sometimes it is claimed that such questions do not
form part of mathematics — a particularly curious view since, on the one
hand, it is not stated fo what discipline they do belong and, on the other
hand, mathematicians do in fact concern themselves with just such ques-
tions. Since mathematicians find themselves in agreement on such ques-
tions {this is a point of fact which positivists simply ignore) there does
not seem to be any reason why they should be dubbed as subjective. To
summarize: the empirical facts throw doubt on the necessity, and con-
sequently, in the long run, the fertility of the restrictions imposed by
positivism but they do not put in question the significance and good sense
of at any rate the majority of foundational problems (though the excep-
tions often attract the greatest attention).

Positivism does seem to have a certain pragmatic value. In connection
with research, Appendix I describes certain useful consequences of the
reduction of an abstract concept to a formal one, namely of “validity in
all mathematical structures” to “‘formal consequence™ [for the case of
elementary (first order) reasoning]. In addition we remarked earlier that
the theory of foundations may not be of any particular use in particular
branches of informal mathematics, at any rate at any given moment, As
to the position of foundational studies in mathematical education, they
turn out to attract two distinct groups of students; those who have a
definite gift for philosophy and those who are particularly bad at it (and,
perhaps consequently, fascinated by it). The former will not be seduced
by the positivist view and the latter will be consoled by a justification bad
as it may be of their lack of philosophical talent. Naturally, they will not
be led to look, say, for new basic axioms, but, in any case, they would not
bave found any; and, after all, it is quite possible to devote oneself to
technical problems, i.e., problems already formulated in the language of
mathematical practice. This is true even in mathematical logic e.g. in the
parts of the subject dealt with in this book. What is lost in this way is,
however, the most fruitful feature of mathematical logic, namely its speci-
fically logical aspect; in particular, the problems and conjectures that
follow from the different views of the nature of mathematics and its
foundations, which, used properly, are fruitful even for the technical
development of mathematics.



PART A

SET THEORETIC SEMANTIC FOUNDATIONS

The reader will recall from the preface that passages in square brackets
presuppose some technical knowledge of mathematical logic. Comments
in small print concern points of detail of either philosophical or mathe-
matical interest.

SUMMARY

Section 1 analyzes the “adequacy conditions’ satisfied by the familiar reduction
of classical mathematical structures to set theory, and the weaker conditions in-
volved when intuitive logical consequence or the intuitive structure of the ordinals
are reduced to set theory [the latter reduction is formulated in terms of realizations
in a wider sense than that of Chapters 2 and 71

Section 2 (a) distinguishes between several concepts involved in the “naive’™ idea
of set, and Section 2 (b) describes one of them, the so-called cumulative type
structure, called s.c.t. [cf. also Exercise 5 of Chapter 5]. Section 2 {(¢) derives
Zermelo’s axioms for this notion, both in first order and second order form; for
an informal distinction between languages of different order ¢f. Appendix I [and
for a precise one, cf. Chapter 7].

Section 2 (d) first gives simple examples of assertions which are true for s.c.t.,
but not consequences of Zermelo’s axioms either in first or second order form.
Finally, it gives a true arithmetic proposition which is not a consequence of the
first order theory. This is a particular case of (Godel’s incompleteness theorem,
which holds for a wide class of axiomatic systems. (Its general formulation is not
given because it requires an analysis of the notion of formal system, which in turn
needs the notions of recursion theory, a part of logic not treated in the present
book. But the details of Section 2 {(d) are not superseded by the general theorem
because they would be needed to verify that Zermelo’s axioms are covered by it.)
A distinction between GOdel’s incompleteness result and other independence
results is formulated in terms of second-order consequence.

Section 3 gives some other assertions valid for the s.c.t. and not derivable from
Zermelo's axioms. It discusses so-called axioms of infinity, which assert the ex-
istence of sets of high (transfinite) type and their implications for assertions about
sets of finite type, in particular the natural numbers, or sets of lowest infinite type,
such as the real numbers.

Section 4 contains some technical information needed in Part B, Section 4 for
the examination of philosophic views, Theorem 3 of Section 4 (a), a refinement of
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Gaodel’s completeness theorem, gives a mathematical justification for the choice of
the usual rules of first-order logical deduction, and Section 4 (b), for comparison,
contains some further facts about second-order logical conseguence. Section 4 (¢)
disposes of a well-known view which tries to combine a set theoretic semantic
foundation with a privileged position of first-order consequence and/or with the
idea that the notion of set is defined by the usual axioms.

The basic notions are: set, the membership relation (between sets), and
the “logical” operations (on sets} of union, complementation, and pro-
Jection. ““Semantic’’ is used because the foundations described in the present
section accept set theoretic terminology as meaningful, and not only asa
“fagon de parler’ in need of further critical analysis: the practical signif-
icance of this distinction is specially important in Sections 2 and 3 below.

1. How does one analyze intuitive mathematics in these basic terms?

In other words: what does one mean by the reduction of (intuitive)
mathematics to set theory?

In this reduction each mathematical structure is conceived as a set,
itself an ordered n-tuple of sets consisting of a collection (universe) and
relations on it; such sets are called realizations [cf. Chapters 2 and 7]. In
particular, in arithmetic, the basic realization has the collection N of natu-
ral numbers as its universe, with the successor relation on N x N; in analy-
sis, it 1s the realization whose universe is the collection R of real numbers
with the order relation on R xR, and a denumerable dense subset Q of R
(other structures can then be defined in analysis, such as geometry: the
collection E; of points in 3 dimensions, with a partial order on E; (be-
tweenness) and a metric).

To each mathematical structure & is associated a language (the “lan-
guage of ©7). Roughly speaking, the language refers only to the structure
and not to the nature of the objects in its untverse (and so has meaning
for structures whose universe consists of arbitrary kinds of objects; some-
times such a language is called: purely logical}. In particular, if two struc-
tures are isomorphic they satisfy corresponding assertions in the languages
of these structures, An example of such a language consists of all formulae
built up from symbols R;, ..., R, for the relations of &, universal and
existential quantifiers, negation, conjunction?!; see Appendix I for an in-

! The notation of the main text is used.

~implies {(usually denoted by: =) Arand (&), A :for all (V)
= :not v:or, V:thereis (3).
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formal description of this language, the so-called predicate calculus of
first order whose relation symbols have the same number of arguments
as the relations of &. [Of course, if Z is the first-order language of &,
Z of Chapter 7 is also a purely logical language: the difference is that
to understand an assertion in £z, one need only know the structure &
itself and understand the logical operations of union, complementation,
projection; to understand an assertion in £, one must also know the
hierarchy of types built up on the universe of & up to type 7.]

If A is a formula in the language of S whose free variables are x4, ..., x,,
we shall denote by A the set of n-tuples of the universe of & which satisfy
4 (in ©).

The reduction of a structure & to set theory is expressed by means of
an adequate axiomatization, which consists of an axiom (or set of axioms)
7+ satisfying the following conditions.

o is purely “logical” [formulated in the language of predicate calculus,
Chapter 2 or Chapter 7]. ‘

© satisfies .2/ and hence: there exists a structure that satisfies .27, for
short: E¥S, |

All structures that satisfy 7 are isomorphic (and, hence, isomorphic to
©), for short: U¥S,

All intuitive properties of & can be expressed or defined in terms of those
explicitly mentioned in &7 [precisely: defined in terms of the first or
higher order language of 7], for short: X¥©.

All assertions about & that can be proved intuitively follow logically from
o & for short: D¥E.

The reduction to set theory involves also a (sef theoretic) reduction of
the notion of intuitive logical consequence: a formula 4 in a given lan-
guage is called set theoretic consequence of a set &7 of formulae (of the
same language) if it is satisfied by every realization in the sense of p. 166
that satisfies all formulas of 7.

Discussion. (i) The notion of logical consequence used in the formulation of D9S is
the notion of consequence understood in ordinary mathematical reasoning 2. Note that

2 For instance, in Bourbaki rules of inference are given in the first chapter but never
referred to afterwards, in contrast to definitions of mathematical structures, e.g. groups.
Thus knowledge of these mathematical notions is needed for understanding the de-
ductions, knowledge of the rules is not. Not surprisingly, since the rules of the first
chapter were obtained by analysing the meaning of logical operations (Theorem 5
below), and it is knowledge of this meaning which permits one to follow the deductions.
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if A is an intuitive consequence of &7 all realizations, in a wider sense of the word, that
satisfy & also satisfy 4: see p. 169 for one such extension. But for formulas of first
order the two notions of consequence coincide (Theorem 5 of Section 4 below).

(ii) The difference between “S satisfles 4’* where A is formulated in the language
of &, and A is consequence of &72” is, of course, that in the latter case, A 1s true in
ail structures that satisfy &7 ; in other words, only those properties of © that are ex-
plicitly formulated in &z are needed to conclude 4. If U¥® happens to hold, by the
fundamental property of logical languages, & satisfies A” if and only if “A is conse-
quence of /", 4 being purely logical.

(iii) {By Chapter 7, Exercise 1] there are axioms /g for the principal intuitive
structures studied in the 19th century (arithmetic, analysis) satisfying E<® and U¥€
[where, since & is infinite, &/ g must be a higher order formula to satisfy U¥©],

(iv) Note that both E¥% and U“% are formulated in the language of set theory
(namely: the first order language ¥ g} whose only refation symbol is €, with variables
ranging over sets and € denoting the membership relation. For the classical structures
&, both E4® and U are derived from familiar properties of the basic set theoretic
notions.

(v) In contrast, the verification of X ¥ and D ¥ requires a case study such as given
in Principia Mathematica. Clearly X ¥€ depends on what is regarded as mathematically
significant about & for example, in the case of arithmetic, X ¥ requires that addition
and multiplication and other “‘arithmetical” functions be expressed in terms of the
operations mentioned in /g, namely, the successor; but not necessarily “empirical”
properties such as the number of electrons emitted by a particular atom between times
nandn+ 1 forn=0,1,....

(vi) If U¥S and X ¥ are satisfied, clearly so is DS, by the fundamental invariance
under isomorphism of assertions formulated in a purely logical language. But even if
U#& is not satisfied, a case study may show that, in actual practice, D¥€ holds in the
sense that all assertions about © that have been proved, follow logically from .
(This possibility is actually realized at the present time even by certain first order
axioms for arithmetic, cf. Part B.)

(vii) We remark in passing that the condition U¥€ is appropriate for pure mathe-
matics. But in applications, two abstractly isomorphic structures may not be equally
effective; for instance, a structure €’ isomorphic to arithmetic, i.e., another notational
system for the natural numbers, would be bad for counting if we could not effectively
decide the successor relation in ©.

Warning. The adequacy conditions above have been established for the
classical structures (iv), but not for the basic structure § (§ for: funda-
mental) consisting of all sets with the membership relation, or the intuitive
structure consisting of all ordinals with the order relation.

Indeed, if <75 is an axiomatization of ¥, E“#% asserts that there is a
realization satisfying 4y whose universe is a set. If U¥® were also satis-
fied, there would be a set in 1-1 correspondence with the collection of all
sets.
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ELEMENTARY RESULTS ON THE INTUITIVE NOTION OF ORDINAL

To formulate results we need the wider notion of realization mentioned
above, which we explain for the particular language % of set theory, to
which are added the predicate symbol @ of one variable, and the predicate
symbol P of two variables. The variables are not required to range over
a set, but may range over all sets.

The realization of a predicate symbol is again not required to be a set, but
may be a property of sets in the case of O or of pairs of sets in the case of P.

The extended notion of realization is well illustrated by the following analogous
situation: In the present paragraph we shall confine ourselves to the structure f of all
hereditarily finite sets built up from a collection of individuals {cf. Chapter 5, Example
6]. This structure does not permit an adeguate axiomatization <N of the structure N
of arithmetic, since a realization in { has necessarily a finite universe. We extend the
notion of realization as follows: we consider %z with the two relation symbols N and
S with one, resp. two arguments, and the following structure as a generalized realization:

the universe is that of {, € is membership restricted to finite sets, N (x) is the property
{of sets) of being a natural number, i.e.,
x=0v Ay[Az(zV {z}ey) > zey) — (xey — Dey)]

and S (x, y) is the relation: y is the successor of x, i.e., ¥y = x W {x}, short for:
Azlzeye— (z=x Vv zex)].

In the extended realization, the variables take (finite) sets as values, but their range
is not finite.

Returning now to the general case [and using the language #%°
(Chapter 5) extended by O and P], we require that each ordinal be a set
and that the structure (0, P) of the ordinals with the order relation satis-
fy the following conditions:

(i) P is a strict ordering of O, i.e.,
Ax Ay [Pxye—{(OxAOyax#ya1Pyx)].
(ii) Every initial segment of 0 is a well-ordered set, i.e.,

Ax{Ox— Vy Vz[ Aul{uey Pux) A
Nu{uezeo Vs Vi[u={(s,t1) Asey A tey A Pst]) n We(y, z}])
where (s, 1) denotes the ordered pair and We (y, z) means that 7 is well
founded with respect to Z, i.e., if X is a variable over collections of sets
[of type (0), as in Chapter 7, Example 1],
AX Av[(vey A Xvj— Vw(wey A Xw A
AW(Xw Aweyaw #w)->(w,w)ez])].
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(iii) Every pair of sets (¥, Z> w here Z well orders 7, is isomorphic to some
initial segment of O ordered by P.

These axioms are sufficient to determine {0, P> uniquely (just as
Peano’s axioms determine the structure of arithmetic). There are formulas
of & which define O and P explicitly so as to satisfy the conditions
(1)-(iii) above (just as the property of being a natural number and the
successor relation were defined above).

For further information on ordinals and on the notation below, see
e.g. HAUSDORFF, Set Theory (Chelsea Publ. Co., N.Y., 1957).

The following notation will be used in the Exercises below.

x=0 for Numuex;x=yu{z}for Aw[wexo(wey vw=z)]; x={y},
{x, ¥}, (», 2) for x=0u{y}, {y}u{z}, resp. {{y}, {y, z}} (ordered pair).

x=(y, z, w) for x=((», z), w) {ordered triples).

Func(x) for Az(ze xeVowlz=(v, w)]} A Auvw{[(1, v)e x A{u, w)ex]
—v=w) (x is the graph of a function).

Dom(y, x) for Au(uey—\Vol(y, v)ex]) (» is the domain of x).

For each numeral 1, 2, 3, ..., one writes 1={0}, 2={1} (since 1 U {1} =
{1}), 3=2u{2}...; cf. the definition of the natural numbers, p. 169.

Sf(x) (finite sequence, i.e., a function whose domain is a natural num-
ber >0) for Func(x}A Vy[N(y)ADom(y, x) A y#0], where N is as on
p. 169.

x=Sub(y, z, v) (x is the result of substituting v for z in the finite se-
quence y) for
Sy A STy A Auw[{u, wyexes([(u, wyey awsz]v [(u, 2)ey Aw=0v])].

x+y=z (addition) [Chapter 5, Example 7].

u=yz for the concatenation of y and z, i.e., Sf(P) ASf(2) A Au[uexe
«(ueyv Vowr[Dom(v, p) A(w, r)ez a(w+r, r)=u])].

x =y for the accumulation of a finite sequence of finite sequences, i.e.,
Sf(x) A Sf(y) A Vw[Dom(w, x) A Dom{(w,y)] A A uv[(u4,v)ey— Sf(v)] A
A Auf(0, wyex—(0, wey] A Auow{[(u, v)ex A(uu {1}, wyeyl-{uu{u},
vw)ex}.

2. How does one find laws for the basic set theoretical notions?

(Conceptual analysis of §§.) Whatever sophisticated theoretical analysis
may later be given, the discovery of such laws presents itseif naively as
follows:

One chooses a language, in particular #¢ above, and sets down asser-
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tions which are true for the realization (in the wider sense above) in which
the variables range over all sets and e is the membership relation.

The selection actually made among such true assertions is to some ex-
tent determined by the “needs” of contemporary mathematics, for ex-
ample one sets down the properties of ¥ which are actually used in estab-
lishing E¥® of U“® for the classical structures S. But one also formu-
lates more general principles of which these properties are special cases
(cf. footnote 3 below).

Now, mathematicians sometimes ask (specializing Pilate): what is truth (for sets)?
and (just as Pilate) do not wait for an answer. The interest of further analysis is un-
deniable: in fact, the whole of Part B will be devoted to one further analysis of this
guestion. But here we shall accept the notion of set theoretic truth (which anyway is
a corollary to accepting the basic set theoretic notions as meaningful) and see what one
gets from it. In terms of this notion the problem of giving a foundation or a justification
for axioms takes the following quite natural form:

Speaking generally, axioms are set theoretically justified if one has a (precise) concept
which satisfies the axioms in the wider sense of realization. In particular, o/ g is justified
if E¥C is true.

The formal derivation of E¥® from traditional axioms of set theory provides then
such a justification if we have at least one precise concept of set which satisfies these

axioms, Sections 2 (b) and {c) are devoted to this point.

(a) THE NEED FOR DISTINCTIONS. Long before the set theoretic paradoxes
led to sophisticated restrictions on definitions (Poincaré’s predicativity)
or on methods of proof (Brouwer’s constructivity) there was earlier criti-
cism of the notion of set because of certain ambiguities. Such criticism is
not fatal because it is met by making necessary distinctions; however, at
the time it was justified because the notion of set was introduced as a
crude mixture containing at least 3 different elements: Sets were consid-
ered:

(i) as mere analogues of finite collections (a notion which was supposed
to be understood) satisfying more or less the same laws;

(ii) as arbitrary subcollections of a giver collection ; this occurs through-
out mathematics (sets of integers, or sets of points; the collection of
integers and the collection of points (real numbers) being taken to be well
defined);

(iii) as an abstraction from the more general notion of property, a set
being the collection of objects which have a given property. (Since prop-
erties defined in different ways may be satisfied by precisely the same ob-
jects, the notion of set is here conceived as an invariant of properties.)
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There is little use in mathematics itself of properties for which we have
no a priori bound on the kinds of objects which satisfy them: but both in
logic and in everyday language, such properties are used widely. An in-
stance is the property of being non-empty (which, incidentally, applies to
itseif); or the property of being blue: for, even if it has such a bound, we
use this property without any clear idea of the class of all blue things (past,
present, or future). The possible interest of such properties for mathe-
matics is taken up at the end of this paragraph.

Flagrant errors (contradictions) are rare in mathematical uses of the
notion of set, because in any particular deduction one of the notions is
tacitly understood. But the distinctions are essential for analyzing the
errors known as paradoxes, where several precisely formulated principles
(axioms, rules of inference) lead to contradictions, though each of them
is plausible. More exactly, each of the principles is valid for ore notion of
set in the crude mixture, but none of the notions satisfies all these princi-
ples. Such errors are particularly disagreecable because (by what has just
been said), unlike a computational error, they cannot be uniquely located.
It is clear that the distinctions mentioned are needed for the very state-
ment of such an analysis.

Example (comprehension axiom). If P is a property of elements of a given
set a, one forms the set, in sense (ii), of all xea which satisfy P, i.e.,

AaNVx ANy [}’ex‘”’(}’eg A P}')] . (*)
Sometimes a is understood tacitly, when

Vx Ay(yex—Py) **

is valid, e.g., in analysis where a is the set of integers, y a numerical vari-
able, and x a variable over sets of integers. [More generally, as in the
theory of types (Chapter 5), if y is a type 7, x a type (1) variable, a being
now the collection of all objects of type 7.]

Russell noticed, actually so long after the notion of set was introduced
into mathematics that the naive doubts about possible ambiguities had
been almost forgotien, that (**) is contradictory if the tacit understanding
is ignored [i.e., if the type distinction is removed] and ordinary logical
rules are applied. In particular, if y¢y is put for Py and if any x satisfies
Ay(yex+e>yé¢y), then also xex«rxéx, which is a contradiction.

For the notion of set (ii}, (**) is not at all plausible, and certainly not
evident. For the notion (iii}, with yex being interpreted as: the property
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y has the property x, (**)is indeed evident provided the most general kind
of property is considered, including properties which are not everywhere
defined. Only in this case the familiar formal laws of logic [which hold
for the interpretation of the logical symbols in Chapter 1] cannot be ex-
pected to be valid, for instance: Either A (is defined and) true or A4 (is
defined and) false. So, for the notion (iii}, we should accept the property
x which applies to a property y if and only if y does not apply to itself,
but this property x is not defined for the argument x.

Clearly Russell’s paradox, or any of the others, affects the notion of set
in sense (ii} no more than it affects, for instance, the notion of heredi-
tarily finite set (built up from the empty set). Here it is obviously false
that for each P there is a finite set x such that A y(yex<Py) with y ranging
over finite sets. An immediate counter example is provided by the prop-
erties Py:y=y, or: y is a natural number of p. 169 (or, of course, y¢y?).
On the other hand, (*) is clearly valid when all variables range over the
hereditarily finite sets. Nevertheless, there exists a contemporary problem
of the paradoxes:

Is the notion (jii} precise enough to permit a theory as rich as that
of (ii) given in (b) below? In particular, what are its logical laws?
And if it is rich, is it important for mathematical practice or only for
foundations?

Discussion (relating the present section to some general points in the Introduction),
The distinctions (i)-(iii) above constitute an example of informal precision. The dis-
cussion of the comprehension axiom illustrates how informal distinctions are used to
find correct axioms, such as (*). The reader will have observed that the explicit formu-
lation of (*) did not somehow drop from heaven as a means of clarifying the basic
notion of set, but was the result of informal analysis, i.e., of the distinction between
(i) and (iii). As to (**), its explicit formulation certainly helped to show that the
original crude mixture of notions was imprecise, but again the informal discussion of
(iii) was necessary to show why (**) was plausible at all. Quite generally, explicit
formulation (formalization) may help one to see when one’s ideas are wrong, but it is,
at best, an auxiliary towards getting them right.

The step from the informal distinctions (and, generally, from reflection on the
meaning of a concept) to the formulation of formal axioms is called an informal
derivation. The reader should review, in the light of actual informal derivations such
as those above and in (b) and (¢) below, the positivist doctrine (mentioned at the end
of the Introduction), which considers informal derivations either as unreliable or as
irrelevant to mathematics.

Note, finally, that the choice between different notions which an informal analysis
has isolated need not be haphazard. Thus, at least for a “realistic” theory of found-
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ations, considerations of definability give a (partial) criterion for which of two sets of
notions is (more) fundamental: The set X is more fundamental than Y if ¥ can be
defined from X, but not conversely. Thus the notion of set (i1} is more fundamental
than that of finite set because the latter can be defined, even in £z, from the former,
but not conversely.

1t is plausible that, if the notion of set (iii) turns out to be precise on further study,
it is more fundamental than (ii).

It must of course not be assumed that the notions which are fundamental for 3
realistic theory are particularly easy for us to grasp.

(b) EXISTENCE OF A PRECISE NOTION OF SET (ii) (i.e., set of something,
satisfying (*)). Quite soon after the publication of Russell’s paradox, both
Russell and Zermelo formulated the precise notion of set, called zype
theory.

Zermelo’s version, the so-called cumulative type structure (s.c.t.) [cf.
Chapter 5, Example 5] is this:

C, is some collection of individuals, 1.e., objects which have no mem-
bers (C, possibly empty);

C,i1=C,UP(C,), i.e., the union of C, and of the collection of all its
parts; and for limit numbers «, C, = | J;<,C;.

Equivalently, for

a#0:C,=J CouP(Cy).
B<a
So, besides the basic (logical) operations on sets, we have here the addi-
tional operation § and its iteration (to transfinite « if a transfinite ordinal
o is assumed).
Let €, be the membership relation restricted to C,.

The formula (**), sometimes called: unrestricted comprehension axiom, is evidently
false in the structure (Ca, €a)> for each g, i.e., when the variables in (**) are taken to
range over Cy, e.8, if P(p)is y = y since Ca ¢ Co. The form (*) is evidently true for
each a. Forifac Cy, take x = {y: yeaand P (p) is true in (Ca,exd};s0,ifa =+ 1
then yca = yeCp and since il subsets of CpeCgsr, xeCpay, te., xe8Cq; if ais a limit
number, and ae Cy, ac Cy (for some f < o) and so again xe .

Zermelo formulated laws, given in (c¢) below, which are not only the
basis for all familiar axiomatic systems of set theory, but easily recognized
to be satisfied by {C,,¢,> for all limit ordinals «: so, unless one has theo-
retical or empirical reasons against naive judgement, in particular against
s.c.t., the precise notion of set above is a foundation for these axioms
(particularly since only small & such as w + w, need be assumed).
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(c) ZERMELO's AXIOMS. The reader should verify as he reads them that
they are satisfied in each {C,,e,>, ¢ limit number.
1. Extensionality (each u):

Axyz([zex A Au(uexouey)]—x=y).

(If C;=90, even Axy[ Au(uexe—uey)—x=y] holds.)
2. Power set (limit numbers «). If zcx means: Au(uez-uesx)

AxVy Az(zeyerzax)(since xeCy=> ye Cpyy).
[ 3. Aa AX Vx Ay[yexe{yea n X(p))]

where Z is extended by second order variables X as in Chapter 7: This
is needed to express (*) in its intended form; of course it is satisfied by
{C, &> for each a>0. Also basic results, like Theorem 1 below, are
proved most simply for this form. However, current systems usually for-
mulate first order schemata instead of 3, restricted to X which are explicitly
defined by (finite) formulas of Z;.]

3*, For each formula A(y, x,, ..., x,) not containing the variable x:

Axq... Ax, Vx Ay(vexe[yea n A(y,xq,...,x,)])-

4. Pairs: Axx, Vx Ay[yvexo(y=x;vy=x;)] (limita).

5. Union: Az Vx Ay [yexeoVu(yeunruez)] (alla>0).

Since each structure {C,,&,) is built up by a transfinite iteration from
individuals, the € relation is well founded. This is expressed by the so-
called axiom of regularity:

[ 6. AX Aa[X(a)= Vx Ay{X(x) A [X(»)—yéx]}].

Remark. The reader may verify that each structure that satisfies the
axioms 1-6 is isomorphic o some (C,, €,).

Once again, if one restricts oneself to first order axioms, one takes as
schema the following consequences of 6:]

6*. For each formula A(x)

NalA(a)— Vx Ay{Ad(x) A [A(y)— yéx]}].

The axioms 1,2,4,5, [3,6, and consequently] 3%, 6* are satisfied by
{C,,€,> with Cy=0 (the hereditarily finite sets). This is excluded by the
7. Axiom of infinity: Vv xI, (x) where 1, {x) is

Vy Az(yex afzex— Vuluex A Aw[weue{(wezvwaez)])]).
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This is satisfied by {C,,e,> for all 2> w (hence: infinity, i.e., types of
infinite ordinal) and all C,; take y=9, and u=z0P(z). Thus 1,2,4,5,7,
[3,6, and consequently] 3*, 6* are satisfied by <C,,g,> for each limit
number a> .

The systems [1,2,3,4,5]; 1,2,3%,4,5; [1,2,3,4,5,7]; 1,2,3%,4,5,7
will be denoted by [« _], &%, [ ], resp. #*,

EXERCISE 1: We use the notation of p. 170. For each formula 4(x) not
containing the variable y, let Vv !x4(x) denote the formula vV x Ay
[A(y)x=y] (read: there exists exactly one x satisfying 4). Verify that
a) Ayz Vlx(x=yu {z}) follows from axioms 1 and 4,

b) for each triple of numerals », m, p either n+m=p is a consequence of
% or n+m#p is a consequence of &*.

Ayzv{Sf (y) = V!x[x = Sub(y, z, v)]},
Ayz{[SE () A SE(2)] = VIx[SE(x) & s = 521},
Ay {SE(y)= VIx[Sf (x) A x =]}
are consequences of .o7/* .
Show also that Ax([Sf(x)A N(x)]—Dom(l, x)) is consequence of 1
and 4.
[ (a)~(c) show that the function symbols introduced p. 170 can be elimi-
nated in the sense of Exercises I and 6 of Chapter 5.]
(d) Do ZERMELO’S AXIOMS AXIOMATIZE S.C.T. IN THE SENSE OF SECTION 1?
By p. 168, [U” and hence] U is not satisfied, since, if XeC,, X <C,.
The results below will show that [neither X nor D¥ and hence]
neither X" nor D is satisfied, relative to the intuitive s.c.t, In fact D
is violated in the strong form that £ is not consequence of .* [and
E* is not consequence of &7]; i.e., one cannot prove by use of the princi-
ples .o/* that o7* has a model at all!
The results before Theorem 4 are technically very simple. They not
only give insight into the general state of affairs, but illustrate how useful
it is technically to use the interpretation of [.¢7 and] &7* by (C,, 1 1,€w+ 00

[TuEOREM 1: E¥, E¥~ arenot (even) second order consequences of <7, s _
respectively (even if 6 is added).

ProOF (by cardinality): Let M={C, 1+ Eutar> M- ={C,,&,> both with
Co=0. Then IR, IR _ are the least models of .7, o7 _ resp., and so, in
particular, every model of & has cardinal >3 N® where R(¥=N,,



SET THEORETIC SEMANTIC FOUNDATIONS 177

NEHD =28 and every model of 7 _ is infinite. Since every element of
9N _ is finite, £~ is false in MM _. Since every element of 9N has cardinal
< R™ for some n, E is false in M. Since further both ¢ and M _ satisfy
6, Theorem 1 follows.

Recall that, in contrast, for the classical structures S, E¥® and U“®
are consequences even of 7*|

The general idea of the proof will be repeated in Theorem 3 for /%
because the general reader is not assumed to know what the second order
systems &/ _ and 7 arel.]

An obvious first failure of D [ D] is that Zermelo’s axioms say no-
thing about the possibility of continuing {(C,,e,> beyond a=w+w [im-
plicit in Theorem 1]. More formally, we have non-saturation:

THEOREM 2: Let I, be the formula
Vyhz{yex Ali(y) A[zex— Vu(uex A Av[veu—(vozvvez)]},

where I (y) is as in Axiom 1. Then neither I, nor — I, is a consequence
of s7* even if 6 is added. (I, implies that there are sets of type w+w.)

[Note that though I, is a first order formula it is not (even) a second
order consequence of 27.]

For Zermelo’s Axioms are satisfied both in {C,,.€,+,> and in
CCh s ot Cntmrnss 11 18 satisfied in the former, I, in the latter. In other
words, Zermelo’s Axioms are not saturated, i.e., they leave I, formally
undecided.

[This simple result generalizes. Suppose (i) the axioms F are satisfied by the full
s.ct. and also by (Ca, 65> (2.2, a = 0 + e if F = &), and (ii) the formula A» of
Zg defines the property x = Cx in each <Cy, €53, i.e., Cx is the only object, if any,
that satisfies 4, in the realization {Cp, €3> of k. Then Vx4 is undecided by #,
Below more elementary assertions will be shown to be undecided by =7*.]

THEOREM 3: E* is not a consequence of s/* even if 6* is added. [This is
the weakening of Theorem 1 mentioned above,]

Proor: {C,,€,> with C, =0 is the minimal model of &#* . Since it is infi-
nite but contains no infinite element, E¥~ is false in {C,.,€,>, E¥~ ex-
pressing that there is a structure (¢ C,)) which is a model of =7%. Actually
every model of 2, 4, 5 is infinite provided there is e.g. a null set, i.e., pro-
vided some special case of 3* issatisfied suchasyey A yéyfor A(y)in 3*.

Theorem 3, but not its proof, is generalized in Godel's incompleteness
theorem.
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THEOREM 4: E¥" is not conseguence of o7*.

Remarks. (1) The proof of Theorem 4 generalizes to a large class of axioms
other than 27%*, but the reader should consider the particular case of the
set of axioms &/ ={4:4 is true in s.c.t.}, for set theoretic formulas A4.
Evidently the resulting axiom system is saturated; what the proof of the
Theorem shows is that &7/ cannot be defined in set theoretic language in
the precise sense of Corollary 1 below.

(11) Particularly in Lemmas 4 and 5, one indicates only briefly that the
conclusions of certain simple arguments [when formulated in %] are
consequences of .&7*, Once one knows that some true statements are not
consequences of .«7* (e.g. E itself!), one may doubt these indications.
Without checking them, one has the following result: either Theorem 4
is true or D is false because these simple intuitive arguments are not
logical consequences of .7*; or, finally, X" is false as in (i) above. For
the applications below, these weaker conclusions are enough.

(ii1) Formulas, and, more generally, all syntactic objects [cf. Chapter 0}
are themselves considered to be sets, in particular ordered sequences of
symbols and the symbols are sets: if this could not be done, X" would
be violated ! Each symbol s is supposed to be defined by a formula of 7%,
i.e., a formula with a single free variable x such that s is the only object

that satisfies the formula in s.c.t. We shall write | x, s | for this formula.
N.B. In Lemmas [ and 2 below, all that is needed of | x, 5|, and more
generally of the so-called canonical definitions | x, A| of other syntactic

objects A4, 13 that A be defined by it in s.c.t. But if one wants simple syn-
tactic properties to be consequences of &7*, the choice of canonical defi-

nitions becomes important; e.g., for |x, §| = Ay—iyex (definition of the
empty set), \V x| x, B| is a consequence of =#*. But suppose (for closed P)
P is true but P not a consequence of «/*; then PA |x, 0| also defines ¢
in s.c.t., but Vx(PA|x, 0|)is not consequence of ./*.

The reason why objects are defined by means of formulas, and not by
means of terms is, of course, that .%; does not contain function symbols,
in contrast, e.g., to the basic language % of Part B below. The difference
is not essential [in the following precise sense.

For each formula A of % g and each formula B with the free variable x, we may intro-
duce constants ™A™ and T B (™4 7)) together with the axioms: Vx (x = T4

A AN Vy(r=UB( A DAy, Vx(B A {x,A1]); then the set T A1 is
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the formula A, and T B(T A7) is the formula of # g which expresses B (.4 71),
i.e., the assertion that the formula 4 has the property B. This notation shortens the
statement of the lemmas below. The reader familiar with Exercises 1 and 6 of Chapter
5 will know how to eliminate these constants.]

(iv) An unusual feature of the proof is that relations between formulas
and their meanings are treated, while in most mathematics, throughout
any proof, one either talks only about the formal expressions (e.g., in
numerical arithmetic) or, more usually, only about their meanings. We
shall apply here the convention of p. 167 {with s.c.t. as the structure &):
a bar over an expression 4 means the realization of 4 in s.c.t., in partic-
ular, if 4 is a closed formula, 4 means that 4 is satisfied in s.c.t.

[In most of the principal text, formulas are used to denote their realizations; of
course, an exception is the definition of the notion of realization itself, e.g., at the
beginning of Chapter 2, which involves the relation considered here. This wiil be taken
up in Exercise 4 below.]

Another consequence of the unusual feature here considered is that
certain purely formal conventions implicit in the ordinary use of symbols
will have to be made explicit {(some of them affect the very statement of
the present theorem).

First, each of the expressions A4, or Ax, or 4(x) is used to denote the
same sequence of symbols of Z, [cf. Chapter 2, p. 18], A{x) being useful
when one wants to indicate that A4 contains the variable (denoted by) x
and that A(r) is obtained from 4 by substituting the expression (denoted
by) ¢ for x. [It is clear that the definition of substitution is simplest if the
free variables of the formulas considered do not have bound occurrences. ]

Second, since the assertion E refers to the language £y, 27* being
a set of formulas of %, Theorem 4 becomes specific only if a definite
choice of symbols in % is made, for instance, as follows:

The relation symbols denoted by = and € are the integer 0, respectively
i, i.e., the empty set and its unit set;

the logical symbols, denoted by =, v,V are 2, 3, 4;

and the variables, sometimes denoted by vy, v;, v,, ... are 5,6, 7, ...;

thus v, denotes the integer n+35.

There are two main reasons for this choice. First, the proof below requires in any
case a collection of symbals such that each has a canonical definition in Zg (for
details and further conditions, cf. the relation Def after Exercise 2); it would not be
sufficient to take an arbitrary collection. Second, by choosing the symbols among
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objects in Cy, we obtain a formula undecided by «#* which refers only to Co, i.e., to
the hereditarily finite sets,

The careful reader will notice that the language £x need not be a structure in the
narrow sense, i.e., a sef. Specifically [by working directly with D instead of ¥ after
Lemma 3] the proof below establishes Theorem 4 uniformly for &* as well as for
&*; the reason why Theorem 4 is stated for the latter i3, of course, because Theorem 3
provides already an {ad hoc) argument for the former,

Exercisk 2. By reference to the definitions given on pp. 169-170 show that
(i) the integer n is the only object (of s.c.t.) which satisfies the formula E,
whose only free variable is v,,, where

Ey, is =1 Vo,(v,€00)

E, ;138 VU4, (Es A AVgnio{Pans6€0an14< (Vanse = Ugn V Ugni6€ Van) D)

(i) the finite sequence <{n,, ..., n,_,» of integers is the only object (§)
which satisfies

VXg oo VX VYo oo Vi [Eng(x0) At A By (X 1) A
Eo(yo) A+ A Ep(y) A ST (s) A Dom(y, s) A

(vos xp)ES A A (V-1 xk«»;)es] .

Since every formula of ¥ is a finite sequence of integers, Exercise 2
provides a schema for associating a canonical definition for every formula
of # . This definition is in turn a finite sequence of integers, and so one
sees easily that there is a formula Def(y, x) of £, which defines in s.c.t.
the following relation:

X is a finite sequence of integers and y is the formula of ¥ that defines
x canonically (according to the schema of Exercise 2).

In other words, if # is a given formula 4, and Def ( A ,x) is true, then j

is the formula s, 4].

[Though the idea of the construction of Def is quite simple, the reader familiar with
Chapters 0 and 2 should note certain conventions tacitly assumed in the formulation
of Exercise 2.

(a) Since % £ contains no brackets, Fo is more properly written: —1 Vyz €vavg, be-
cause it is the sequence (2,4, 7, 1,7, 5>.

(b) The formulas Ej, are such that the free variable v4, has no bound occurrences.
This will simplify the definition of substitution below. In order to ensure that the
definitions En of the natural numbers do not use up the total supply of variables, we
have used only the variables 5, 7,9, ....
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{c) In the construction of a canonical definition for {n, ..., nx-1> it is of course
assumed that the xo, ..., X%-1, ¥1, ..., Y& denote distinct variables, i.¢., different integers
> 4, which do not occur in the formulas Ei, En, (0 < i < k,0 < j << k) nor in the
formulas (abbreviated by): (3}, x;)€s, Sf (s5), Dom (¥, ). In particular, in view of the
canonical choice of definitions for integers, all the x and y must be > m, where
m = 4 max (k, no, ..., nx-1). Also, they must be different from the bound variables
which occur in the formulas Sf, Dom (which variables are denoted by u, v, w, r on
p. 170). And finally, s must be different from all the variables mentioned. We shall
suppose that neither »1 nor v3 occurs in any canonical definition (cf. Lemma 1).]

Capital letters will mean formulas in the language £ of =7*. they are
not themselves symbols of #,. The variables x and y are arbitrary, but
fixed [more precisely, they are different from all variables in canonical
definitions, and consistent with the rule that free variables have no bound
occurrences; adopting the canonical definitions of Example 2, one may
take v, and v; for x and y}.

LEMMA 1: For any A with the single free variable x, there is a (closed) A,

such that A ;-\ x ([x, A| A 1 A)is trueins.c.t.; i.e., the syntactic object A,

does not have the property A. (Actually, this is a consequence of &%)

Proor: Obtain first a formula S with variables x and y whose reali-
zation S is the following relation between syntactic objects (X=4, y=A"):
{A4, A': y is the only free variable of 4 and A'=\Vy(iy, 4| A 4)}.

To get S, give first a recursive definition of 4" according to the length
of A, by use of the notations on p. 170 and Exercise 1, and then convert
recursive definitions into explicit set theoretic ones [Chapter 6, Exercise 7].

If now H=\/x(SA 14), the formula \y(|y, H| A H) can betakenfor
A,. For A, means that the (only) object which satisfies # is in fact the
formal object H itself; but, since H=\/x(S A 71 4), the object H' in the
relation § to H, satisfies —1.A4. This object is A4, itself.

(This construction is Godel’s variant of Cantor’s diagonal argument.)

[EXERCISE 3: Definition of the formula S (x, y) in Lemma 1.

Form (x): x is a formula of % g (where, as mentioned above, free variables nowhere
have bound occurrences). Starting with the recursive (implicit) definition of the class
of formulas of £k, one obtains an expression Form (x) which can be proved in &/*
to satisfy the implicit definition; cf. Exercise 6 of Chapter 5. (If one uses Dedekind’s
method, the proof requires &7%.)

Vi(p, x): v is the only free variable of the formula x, and v has only free occur-
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rences in x:

Form{x) A Od () A Aul{u,Dex - (v {ul, v)¢x] A

Au Aw({Od @) Au#v A(w,w)ex]— Vylyew A (y, Dex A(y Y {y,, wex],
where Od (v) stands for v g [N(g) Av=gq -+ g+ 5] in the notation of p. 170.

(Since v is a variable it is an odd integer > 4, i.e., Od (v); since v has only free
occurrences it is nowhere preceded by a quantifier, i.e., by 4; and since v is the only
free variable, every other variable, i.e., every other integer > 4 n the sequence x, has
its first occurrence preceded by 4.)

S (x, »): x is a formula whose sole free variable is the second variable chosen above,
e.g., v3(=17), i.e,, VI{x, 7}; by Exercise 2, x has a canonical definition, say xi, i.e,,
Def (x, x1), with a sole free variable, say w, i.e., VI (xi, w). Take a variable p which
occurs neither in x nor in x1, say the first such variable and let its definition be
F(p, x, x1), i.e.,

Od(p) A Auf(e,p)€x A(py¢xid A Au(fuep A Od(w)]— Vol wyex v (p,u)exi).
Substitute p for 7 in x, and for w in x; to get x’, respectively x'1, i.e., x” = Sub (x, 7, p),

x’y = Sub (x1, w, p), and

S~ -~

y =4p3x'1x’,
e, S(y, x)is
Vi(xe, ) A Vxiwpx'xt [Def (x, x1) A VI{x1, w) A F(p, x, x1) A S
x' = 8Sub(x,7,p) A x'1t = Sub(x1,w,p) Ay =4dp3Ix1x].
This completes the definition of S.}

COROLLARY 1: Lemma 1 is enough to show that X is false (and, in fact
X% is false for any &/ in the language of set theory). For, the set

t={A : A, is closed and A is true (in s.c.t.)}

is not the realization of any formula A (if £=4, the A, of Lemma 1 gives
a contradiction), This was observed by Tarski.

But, if truth of A cannot be defined, and (set theoretic) consequence can
[and was in Chapters 2,7], see [also] p. 167, one expects

LEMMA 2: If V (V with single free variable x) is the set of consequences of
*, there is a V| such that V| is true, but V, not consequence of o'*,
Proor: By Lemma 1, there is a ¥ such that Ve Vx(lx, V] A1 V)is
true, i.e., F, is true, if and only if it is not a consequence of =/*. But since
all consequences of &7* are true (in s.c.t.), Lemma 2 is proved. (Evidently,

one does not need here that all consequences of =/* be true, but only
those of “form’ V,.)

[N.B. The lemma applies equally to higher order consequence, in particular to the
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second order axioms in (¢} because the only assumption is that the consequence relation
be definable in the realization s.c.t. of #&. So it gives another non-saturation result for
the second order system, ]

CoroLLARY 2: ¥ is not decided by /%, i.e., neither ¥, nor =1V is conse-
quence of .&7*,

[Exercist 4: (i) Find a formula Sat(a, e, 5, y) of £ which defines the
following relation Sat:

écagxd, yisaformula of g, §={(v;, £,):v, is a free variable of 7, and
&.ed}, and the & satisfy 7 in the realization (a, e) of #; in the sense of
Chapter 2.

(ii) Deduce a definition Saty{a, ¢, y) of the relation:
écdaxd, ¥ is a closed formula of £, and (4, €) is a model of .

(iii) Find a formula Z(y) which defines the property:
¥ is a formula of &, and 7 is an axiom of Zermelo’s set theory.

(iv) Show that ¥ is defined by

Aae(Ay[Z(y) - Sato(a, e, y)] - Saty(a, e, %))

Note that, for a given closed formula A of £, not containing the
variables a and e, the relation: (a, e) satisfies A, is defined simply by re-
stricting the quantifiers of A to a, and replacing each atomic formula
xeyin 4 by (x, y)ee. Exercise 4 is needed because =/* contains infinitely
many formulas, and, more important, because X ¥ has to be defined for
variable X.]

Discussion of Lemma 2. Whether the non-saturation result of Lemma 2 is
an improvement over Theorem 2 will depend on closer inspection of the
Jorm of V;. For optimal results we shall try to find as simple a formula D
as possible whose realization =V, i.e., whose realization D is also the set
of consequences of 7%,

The principal properties of the formula D will be described here; but
the proof (in particular, of D= ¥) and even the precise formulation of D
need the work of Chapter 2.

(i) The formula D is obtained as follows. Lemma 3 provides ““rules of
inference” like those mentioned in footnote 2, and shows that the set of
formulas of £, deducible from .7* by means of these rules is ¥. Further,
the rules can be “expressed” in % itself in the sense that there exists a

formula Dem(y, x) of # such that Dem is the relation:
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y is a deduction of X from &/* according to the rules (where 7 is a finite
sequence of formulas of # g, and % a formula of #).

Thus, D(x)is \Vy Dem(y, x).

(i} D is more elementary than V in the sense that the quantifiers of D
are restricted to C, {(when Z, i.e., its symbols, are defined as in Exercises
1, 2, 3) while certain quantifiers of V are not restricted to any set (according
to the definition of set theoretic consequence on p. 167 [or in Chapter 2]).

(iti) Actually, the elementary character of D mentioned in (ii) is best
expressed in terms of the basic notions of Part B; specifically, the sketch
of these notions in Part B, Section 0 makes clear that the rules given in
Lemma 3 are combinatorial, i.e., “purely formal”. Consequently, if a for-
mula €D, this fact can be verified in a combinatorial manner [cf. the
remark after Lemma 3].

(iv) Lemmas (iv) and (v) show that E% —D, is a consequence of &/*,
where D, is obtained from D as 4, is obtained from A in Lemma 1. Since,
by Lemma 2, D, is not a consequence of /%, Theorem 4 follows.

[LEMMA 3: V (of Lemma 2) is D where D == Vy Dem (Dem containing the variables y

and x) and Dem is the Sollowing relation, again between syntactic objects:
{<B; A1, A2>, A: B is the conjunction of some finite subset of &%,
Az is the prenex form of B — A given on p. 19, Chapter 2,
Ay is a propositional identity of the form
. FOd, . =) v o v Fm, ., ta®),
where As is Vxi... VxnF, as on p. 22, Chapter 2.
Proor. By the finiteness theorem, if 4 is a consequence of &*, it is a consequence of
some finite subset B of &/*, and then B — A is valid. Apply now Chapter 2, pp. 23-24,
Note, if ¥ is the (official) definition of validity (= true in all realizations, including
of course infinite ones) the simplification achieved by Lemma 3 is this. To verify that
a formula is in ¥ one would have to ‘look’ at all realizations, to verify that it is in D,
one only has to look at finite configurations (B, A1, 42> and check the conditions
above. Intuitively it is clear that if 4 ¢ D then this fact can be verified by finitely many
trials. This fact can itself be formulated in set theoretic language; the formulation
depends of course on the choice of the formula D, and hence of Dem. What is needed
is a choice for which the formulation is a conseguence of «7*, If one did not find such
a Dem, one would apply Remark (ii) above!

LeMMA 4. Let Dy =V x(|x,A] A DY where 4 is a closed formula of ¥r, i.e. A does

not contain free variables. Then

DA—%vx(x,DA /\D)

is a consequence of s7*. {Actually the lemma is needed for a particular 4 only.)
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Before sketching the proof we remark that A — Vx (| x, 4| A D}is nettrue{ins.c.t)

for all (closed) A4; e.g. it is not true if A is true, but A4 is not ¢onsequence of &/*! By
Lemmas 2 and 3 an example of such a formula A is Dy above. So the lemma to be
proved depends essentially on the form of D4, What will be used first is this: for
proper choice of Dem (in fact, for the obvious choice of Dem) and canonical defi-
nitions of any finite sequence of symbols <&, di, 2> and A4 in the language Fg, if
b, a, az>, A>eDem then the formula Vx Vy(fx, 4] A Ly, <b, a1, d2> | A Dem)
can in fact be formally derived in &%, This is implicit in saying that elementary combi-
natorial mathematics can be formalized in the axiomatic system &*: for, as pointed
out after Lemma 3, the verification of the hypothesis <<b, @1, 2>, A> eDem proceeds
by checking a finite number of purely combinatorial conditions, and this process is

mimicked in a formal derivation from &*. Next, if VxVy (| x, 4| Ay, <b, a1, 82> | A

A Dem) (with explicitly given y ') is a consequence of & *sois Vx (| x, 4| A VyDem).

The final step is to show that the argument just sketched can itself be formalized in
&*, i.e, that the assertion with variables for formulas 5, a1, a2 and given A:

Vx Vy(|x,A| Ay == (b, a1, as) A Dem) - Vx Vy[x = F(b, a1, az) A Dem]

is a consequence of &* where F(b, a1, a2} is a canonical definiticn of the function

which associates to each triple (b, @1, d2) the formula vx vy (i x, A aly, B, d1,d2> | A

A Dem). Hence also

I e Vy(x, A} Ay ={ba,a) A Dem)— vx Vy(lx,Da| A Dem).

Since the variables b, a, a1 do not occur in the conclusion,

H*EVx Vy(x,A| vDem)—> Vx(lx,Ds| A D),

as required.

The detailed verification of this goes back to the canonical definitions used; the
nature of the problem is probably sufficiently clear from the discussion after Remark
{iii) on p. 178.

Lemma 5: Suppose D satisfies Lemma 4 and, if A< B is consequence of %, so is
Vx(lx, Al » DY Vx(|x, B| A D), Then if D1 is the formula obtained in Lemma 2
when V is replaced by D then (E*" — D1) is a consequence of S*.

What one uses is the contrapositive of Lemma 4: if a simple ‘universal’ formula like
D1 (D1 means: Di is not consequence of &*) is a consequence of &/* then D; holds
(provided of course «#* is not contradictory). Formally, by cases according to whether
D is a consequence of &7/*:

@ Vx{|x,Di; A—1 Dy— Dy by Lemma 1 without hypothesis; note that

Vx (| x, D1|) is a consequence of &/*,

(i) If E¥* i true and D is a consequence of «/*, then —1 D1 is not.
But if inLemmadwetake A =1 D thenDae» 1 Dy, Vx(x, 1 Dy A DYy Vx
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(Jx, A| A D) are consequences of &* and so 7 Vx({x, 7 Di{ A D) - 171 Dy,

So, without hypothesis,E"’* —> Dy is consequence of &%,

CoRrOLLARY: Theorem 4 follows because, by Lemma 2, D, is not conse-
quence of &%}
Discussion of Theorem 4. {27 and hence] &/* fails to characterise s.c.t. in
the sense of Section 1 because [« and hence] .o7* is satisfied by (C,, €,>
for all limit numbers a > @, and so [U* and hence] U is false.
Further, D [and even D] is not satisfied with respect to intuitive
reasoning about sets of sufficiently high type, as shown by Theorem 2.
As far as intuitive reasoning about finite sets is concerned, D*" is not
satisfied because £ is equivalent to a combinatorial assertion by Lemma
3 and «* does not decide E", by Theorem 4.

A subject of general interest is the difference between Theorem 4 and the better
known independence results, for instance in geometry. The obvious difference is of
course that «/* is intended to formulate properties of a particular intuitive notion,
namely that of ser in sense (i), p. 171, while the axioms of geometry, at least nowadays,
are usually intended as a purely hypothetical deductive system. But a more mathematic-
al formulation of this difference can also be given by use of the notion of second order
consequence in Chapter 7.

[Note that, by the Remark on p., 175 after Axiom 6, the structure (N, §), p.169, of
the integers is uniquely determined by the axioms &/ ; so either E¥* is a consequence of
& or else 1 E¥" ~ and, in fact, it is E¥". In other words, the independence of E¥*

depends essentially on replacing the Axiom 3 by the schema 3*. In contrast, for in-
stance the independence of the parallel axiom has nothing to do with the corresponding
step in geometry. Specifically, consider the axioms of Pasch or Hilbert whose basic
notions are: Points; the relation of congruence C (a, b, ¢, d): the segment ab is con-
gruent to the segment cd; and the (ternary) relation: ¢ is between b and ¢, i.e. a, 5, ¢
are collinear and a is between the two others. All the axioms are of first order, except
the so-called axiom of continuity {Dedekind cut). Sometimes one replaces this axiom
by a first order schema exactly as one replaced 3 above by the schema 3*; in other
words, instead of considering arbitrary cuts, one considers only those defined by
formulas in the language above. But the axiom of parallels is independent of the axiom
of continuity of second order and not only of the first order schema.]

X" fails completely by Corollary 1. [This reason is that .2, uses arbi-
trary finite formulas, but not infinite ones: thus the set 7 of Corollary 1 is
defined by

( X,Ai AA;)V( x,AZ /\Az)v...

cf. infinite formulas of Chapter 7, where 4, 4,, ... is an enumeration of
the formulas of #;.]
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Against these “‘negative’ results there is the interesting positive corol-
lary of Theorems 2 and 4: a purely combinatorial statement such as E<
which is undecided by &7*, is a consequence of &/*U{L,}.

Naively, the inadequacies above are not surprising just because the
adequacy of the axiomatizations in Section 1 for the classical structures
was surprising. The shock comes because one has forgotten the original
surprise [but cf. Section (c) for other views]. The situation is naturally
compared with two well known cases in the history of mathematics: the
irrationality of /2 showed that the system of rationals was inadequate
for Euclidean geometry, and not, of course, that Euclidean constructions
must be rejected; or 250 x 2% =2%0 showed that the notion of 1-1 corre-
spondence was inadequate for analysing the intuitive concept of dimen-
sion and not that this concept is mathematically insignificant. But the
real test of the theoretical value of the set theoretic concepts is to look at
the development of their theory.

3. Improving the existing theory o/*[ /]

Still accepting the s.c.t.,, we shall consider two directions of research,
namely (a) the addition, (b) the elimination of axioms.

(a) In investigating s.c.t., one may follow the usual mathematical meth-
od employed in the study of particular structures (natural numbers, real
numbers etc.), where, as one says, all legitimate methods are used. From
this point of view the formulation of the axioms of Section 2(c) is only a
beginning, and the process which led to them is to be continued. The
results of Section 2(d) show that there is something to be done even if one
confines oneself to questions formulated in the language of set theory
because not all such questions are decided by &7*[ 7. In short, addition
of axioms is required.

(i) By Theorem 2, axioms are needed to express the existence of high
types (so-called : axioms of infinity). One of them is the replacement axiom
which ensures that for every well ordering (a, a,) (a, =a?} in C, there is
a C, where f is the ordinal of {a, a,).

[In second order form:

AX Aa[(Axea) VIyX({x, y))
> Vz Au(uezes Vx[uea A X({x, uD)]]-

The general problems involved in formulating such axioms are dis-



188 SET THEORETIC SEMANTIC FOUNDATIONS

cussed in: GODEL, What is Cantor’s continuum problem; Amer. Math.
Monthly 54 (1947) 515-525.

(i1) A special defect of [first order systems such as] =7*, in particular
3*, is that C, ., is intended to comprise al// subsets of C,, but 3* ‘mentions’
only those explicitly definable in set theoretic language; in particular, 7
of Corollary 1 (Section 2) which is in C, ., is not included. This ¢ is
‘essentially” defined in terms of the basic notions here considered, but a
more radical improvement may well require the use of new primitive
notions; cf. Corollary 5, Section 4 below.

[Closer inspection suggests that the defect (i) is theoretically more important than
(i1): (ii) concerns only the basic operation of the power set construction, while (i) deals
with the naumber of irerations of the step, a much more difficult matter conceptually.
More formally, in (i) we have an inadequacy of both first and second order formu-
lations of axioms for set theory, in (i) only of first order systems. In any case (for
second order consequence as defined in Chapter 7), every assertion of the form:

the formula A4 is a second order consequence of B,

is formulated in the first order language .£r (with s.c.t. as realization of Zg): so,
finding reasons for such an assertion reduces to finding (possibly new) axioms formu-
lated in ¥ g. Similarly, in the case of infinite formulas A, at least with guantifiers of
bounded type, the realization A can be generally defined by an expression of #g. For
more information concerning the relations between (i) and (i), consult GODEL’s
Remarks on problems in mathematics, in: The Undecidable, ed. M. Davis (N.Y.,
1965) pp. 84-88]. Naturally, the actual discovery of new axioms is sometimes easier
via {ii).

Remark on axioms of infinity and traditional mathematics. Axioms of
infinity are not only of interest in their own right, but because of their
possible use in deriving conclusions about sets of low type, e.g. the use
of the axiom I, in the discussion of Theorem 4 for deriving the purely
arithmetic assertion D, [i.e. of an assertion which, expressed in %, has
all its quantifiers restricted to {C,,&,>]. (Evidently the truth of D, does
not “depend” on the existence of {C,, 1 ,+1:€n+0+17 DUt its evidence may
do so!) This situation is parallel to the use of analytic methods in num-
ber theory where functions of complex variables, i.e. objects of {C,, 5,
€,+27, are considered, and theorems about them are used to obtain arith-
metic consequences. Two differences are to be noted. First, as will be dis-
cussed in more detail in Part B, p. 205, the use of functions of a complex
variable can be eliminated in existing proofs of analytic number theory
in the precise (logical} sense that the theorems in question are also conse-
quences of 7 * of Section 2(d) (practically, the proofs from &/* are less
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easy to follow because complex functions have to be replaced by explicitly
defined rational approximations). In contrast, D, is not consequence of
&/*, and so certainly not of &% . Second, speaking informally, D, has a
primarily metamathematical, not arithmetic “interest™; more specifically,
it is not known whether some of the open questions familiar from number
theory are decided by suitable axioms of infinity.

(b) As to the elimination of axioms from £7*, its interest for set theo-
retic semantic foundations is not too different in kind from the interest
of ordinary axiomatic studies. Thus in mathematical practice, one wants
a reduced set of axioms to be satisfied by an important mathematical
structure that does not satisfy the original axioms. So, if &/* were to be
reduced to .7, one would want ¢, to be satisfied by an important con-
cept (e.g. of set) which does not satisfy «/*; but to be foundationally
significant this concept would have to be basic, i.e. not in turn defined in
terms of s.c.t.; on the contrary, by the criteria in Section 2(a) on funda-
mental notions (for a “realistic’’ foundation!), s.c.t. should be definable
from this new concept®.

No such basic notion is known at present. (The general notion of prop-
erty, 1.e. setin sense (iii) of Section 2(a), was mentioned as a possible basic
notion for foundations, but its logic has not been studied enough to be
discussed here.)

N.B. It will be seen below that the possibility of eliminating system-
atically some axioms of «* from proofs actually occurring in certain
branches of mathematical practice is important for the (non set theoretic)
foundations of mathematics described in Part B.

[4. Historical notes; additional information on intuitive validity

We consider a language % of the predicate calculus with a finite num-

% The reader should note here the cavalier treatment of the axioms of set theory in
Bourbaki’s exposition (cf. their treatment of rules of inference, observed in footnote 2).
The set theoretic axioms which, intervene in particular deductions are rarely mentioned
and little attempt is made to eliminate formally unnecessary ones, very much in contrast
to all their efforts of eliminating unnecessary hypotheses in theorems about e.g. topo-
logical structures. Bourbaki’s practice is perfectly consistent with the general principles
on elimination of axioms formulated above if something like set of s.c.t. is tacitly
understood and no ihdependent basic notion is known. {The practice would be hope-
lessly unscientific if one were seriously interested in an ‘empirical’ justification of the
kind considered in footnote 4 below: for, if all arguments in practice only use a subset
&71 of the set theoretic axioms &%, experience would at best justify 1 and not &*.)
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ber of relation and function symbols, and we denote by Vall, Val?, ... the
sets of formulae of &, #2, ... which are intuitively valid, by 71, 72, ...
those valid in the sense of Chapters 2 and 7.

(a) SOME SET THEORETIC RESULTS, i.e. results formulated in &, (as al-
ways with the realization s.c.t.) which help to establish relations between
the set theoretically defined notions ¥' and the primitive intuitive notions
Val'.

f’)"é}"no (cf. Lemma 3) will denote the relation {A4,, A> where 4 is a
prenex formula of #, A is \/x, ... Vx,F and A4, is a propositional iden-
tity of the form F(¢1, ..., 1) v ---v F(t], ..., t5); Chapter 2, p. 23: A4,
is a deduction of 4 from the empty set @. Put Dy=Vy Dem,,.

1. V1< D,. This set theoretic result is proved in Chapter 2, often called:
Completeness of the rules of deduction of Lemma 3 for V1.

From the facts in footnote 2 concerning the notion of validity implicit
in mathematical practice, follow two properties of the intuitive notion of
logical validity:

IL. Val'c V%, and III. D,< Vall.

THEOREM 5: Val' =D, =1"",
Immediate from I, IT and IIL

COROLLARY 5: Dy P! follows from IT and III without use of I, i.e.
without use of Lemma 3.

NB. Do = V1 is thus a set theoretic assertion here derived by use of the primitive
notion Vall. This use is inessential because Do = 71 can also be derived from purely
set theoretic principles, in particular from &* : in other words, the condition D% * of
Section 1 is satisfied at least with respect to this particular proof involving Valt. How-
ever, the corollary may serve as an example of the possible use of intuitive logical
notions for deriving {new) axioms for sets.

Historically, the first formal rules for logical validity of first order for-
mulas (somewhat different from Dem,) were formulated by Frege; the
analogue to II was also evident, However (the analogue to) Vall = D, was
only suspected, and not proved until 50 years later, by Godel.

Concerning a possible extension of Theorem 5 to higher order formu-
lae: we do not know at present a convincing proof of Val*’=V¥?2, and, as
discussed in the next paragraph, we have no positive results about gener-
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alizing D,= V1 (the other half of Theorem 5). — To see that this state of
affairs does not by itself cast doubt on the significance of Val?, compare,
e.g., our present evidence for Val*=¥? with that for Vall= 1 before
Gadel's proof. First, in both cases, whenever in actual practice one recog-
nizes that a formula belongs to ¥! u F?, one also recognizes that it is
intuitively valid; and conversely. Second, for many Ae ¥ we do not know
whether A¢ V2 or AeV?; but no more can we effectively decide for an
arbitrary Ae.#, even after the proof of Theorem 5, whether Ae¥V* or
A¢V?! (o1, equivalently, whether AeVal' or A¢Val').

(b) More facts about 71 and V2. Examples 1 and 7 of Chapter 7 show
that the finiteness theorem does not hold for second order consequence,
and not even for infinite first order formulas (though, by the summary to
Chapter 6, a generalization is known for countably infinite formulas).

More detailed information can be stated by using the notion of validity
in (C,,e,>: we write V! for the set of formulas in % which are true in all
realizations of & which belong to C,. Evidently, ¥;= ¥ if x<p.

(i) For a>w, V1=V ] (Chapter 2, Exercise 2). In contrast:

(i) Except for & containing only monadic relation symbols, V2 £ V2, .
(The assertion: every total ordering has a first element, €V}, being true
in all finite structures, but ¢ V5., )

(ii) For &£ =%, for instance: V2, ., # V2, ., because o hasa model
in <Cm+a)+1:em+m+1>a but not in <Ca)+waew+m>'

More generally, suppose Ie %3, e.g. an axiom of infinity, is such that
oZU{I} has a model in C, ,, but not in C,,: then V2, # V7 . Clearly,
there is a bound «y for all such «;, namely the least upper bound of:
lap: Te Pl a,=0if IeV?, and, if I¢F2, oy is the least a: [¢ V2}. So ag is the
analogue to o in (i): but little is known about the size of a;.

(iii) Concerning a possible analogue, say D?, to D, recall that one
essential respect in which D, is simpler than ¥ is that all quantifiers in
D, are restricted to range over (C,,€,>, which, by (i), contrasts with ',
So one may ask whether 72 has a definition D? in which all quantifiers
are restricted to {C,_, €, >; nothing is known about this. (It is likely that
a smooth theory of second order formulas will include infinitely long
expressions.)

As in Chapter 6, the phrase “restricted to {Ca, €a>"” means that each quantifier x
occurs in the form Vx (Tax, or Ax (Tax —, where the formula 7wx is a definition of
C. in the realization s.c.t.; the canonical definitions 7" have the further property that
T, defines Ca in each realization (Cg, 5> of Z& with § = « (¢f. Chapter 5, Exercise 4).



192 SET THEORETIC SEMANTIC FOUNDATIONS

Quite trivially one has the following:

negative result: If {C,g,> is the only model up to isomorphism of the
Jormula A.e ¥% then V*#D? for any De &g with all quantifiers restricted
to {C,E.).

This is an immediate consequence of Lemma 2. Put differently: Lemma
2 shows that second order axiom systems are not saturated with respect
to all assertions of the form AeV? (4e.#?) while under the assumption
on « above, there are second order axiom systems which are saturated
with respect to all closed formulas whose quantifiers are restricted to C,:
in other words, all such formulas are decided (in the sense of second order
consequence). Recall that, by Exercise 1(b) of Chapter 3, (C,, €, is the
only model of a formula 4, of & itself only if « is finite; so the negative
result above corresponds to the fact that ¥' cannot be defined by a
formula whose quantifiers are all restricted to some (C,, €, where o is
finite. For reference below observe that &7 itself decides all formulas of
% whose quantifiers are restricted to (canonical definitions of) C,, ., for
each integer # {and many other «). One such formula is the continuum
hypothesis (C.H.) which involves only C, ., ,; for C.H. asserts that any
subset of C,, . is either in 1-1 correspondence with C,, ., itself or with a
subset of C,: since 1-1 correspondences between subsets of C,,, are
elements of C,,, ,, C.H. itself is expressed by means of a formula whose
quantifiers are restricted to C,, ., resp. elements of C,,, ,.

In short: we know somewhat less about 7“ than about ¥1; but nothing
we have said suggests that 72 is less well defined than ¥1: in fact, the
same set theoretic notions are used to define both.

(c) A PRIVILEGED POSITION FOR FINITE FIRST ORDER FORMULAS AND OF
FIRST ORDER CONSEQUENCE? (reminiscent of the positivistic doctrine men-
tioned in the Introduction). Though the purest form of positivism in the
theory of foundations is crude formalism, to be considered in Part B,
Section 4, a somewhat related, quite common, but even less coherent
position may be described as follows:

Roughly, it asserts that Theorem 4 (non saturation) does not establish
an inadequacy of the axiomatic systems at all: the formulas of .%; which
are not formal consequences of, say, .27* should not be provable! And,
hence, the position is bound to reject attempts such as those discussed in
Section 3, of discovering new axioms.

The general reason given is this: There is nothing to discover because
the notion of set is defined by, say, o7* just as the notion of group is
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defined by the axioms of group theory. Thus, any structure & which satis-
fies the axioms of set theory chosen is to be admitted as set theoretic; it
is then a fact that the axioms are not categorical.

Clearly, if this 1s to be accepted, first order axiom systems must be
tacitly understood since some second order axioms are categorical. So the
position is bound to reject the appeal to second order consequence made
in Section 3 and at the end of Section 4(b). In particular, it interprets
second order decidability, e.g. of C.H.

[(«# - CH)eV?*] v [(# - CH)eV?] (1)

as follows: it is true that () is a theorem of set theory, in fact (1) is a for-
mula of # and consequence of «/*; but every set theoretic structure ©
has its own relation of second order consequence, and (1) merely asserts
that, in each &, either the first member of (1) or the second member of (1)
is verified. The position would compare this to the logical triviality:
Ax Ap(xOy=yOx)v 1 Ax Ay(xOy=y0Ox), which holds in each
group (with O realized by the group operation); one does not conclude
that all groups are commutative or all groups are non commutative.

A quite evident defect of the comparison is that the axioms of group
theory are not intended to formulate properties of a particular (privileged)
structure; and certainly nothing we know about the general concept of
group precludes the existence of particular groups such as: integers under
addition !

Two less immediate objections to the position go as follows:

1. The very notion of a model or realization of given axioms is defined by
means of the basic set theoretic notions. Substituting the word “struc-
ture” or “mathematical object” for “set” only transfers the problem of
Section 3 to the problem of discovering axioms that are valid for structures.
No proposal for doing this has been made.

2. Evidently, if no basic notion of set is accepted, also the notion of second
order consequence will be relative because it is defined in terms of the
basic set theoretic notions. However, if the property V2 is to be inter-
preted relative to all set theoretic structures (in the sense above) why not
V1 or D? And Section 2, Lemma 2, shows that D,, which is an assertion
about first order consequence, is also not invariant for all set theoretic
structures.

Quite generally, the position invites the following objections. First, it
is incoherent in accepting abstract structures but not privileged ones,
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particularly because, for axioms such as ¥, if there is any evidence for
supposing that some structure satisfies «/*, this is provided, at least at
present, by the particular structure {C,,, ,,€,+4,)- Next, the restriction
to first order formulas is evidently simply taken over from combinatorial
foundations, cf. Part B, where the assumption of abstract structures is
consistently avoided; but the connection is purely superficial as long as
one uses the terminology of structures. Of course, V1=D, (Section 4,
Theorem 5): but this is meaningful only if one accepts s.c.t. to which V1
refers, and without this one has no reduction of ¥1 to D, because V1
has no meaning. (The fact that Theorem 5 assumes abstract infinite struc-
tures is specially clear from Section 4(b)(i").) The position tries to get the
best from both worlds, and speaks of structures rather than formal rules
so as to keep close to mathematical practice (cf. note 2): but it falls be-
tween two stools.

The position just described is similar to positivism in two respects: (i)
(superficially) in that both positions restrict themselves to first order for-
mulas and the corresponding formal rules; this similarity is superficial
because, as already mentioned, the restriction plays quite different roles
for the two positions, (ii} more important, neither of these positions
provides a positive contribution to foundations at all; but rather, as
pointed out in the Introduction, they are merely a consolation for not
solving basic foundational questions at all.]



PAarT B

COMBINATORIAL FOUNDATIONS

The reader will quickly find that the body of mathematical reasoning
here considered (and described more precisely in Sections 0 and 2) is
quite familiar to him because it is involved in all elementary mathematics.
Only the explicit formulation of his knowledge may be new to him. This
kind of reasoning, here called: combinatorial, is also called: finitist or
syntactic, the difference in terminology reflecting different philosophical
views on what is essential about this reasoning.

The present Part B is less thorough than Part A because combinatorial
foundations require the use of proof theory, a branch of mathematical
logic not treated in this book and therefore not presupposed. However,
the reader is supposed to have at least glanced at a formal system such as
that of BourBaki, Chapter 1.

SUuMMARY

The basic notions are: word, i.e., a finite sequence of symbols of a finite alphabet,
combinatorial function (whose arguments and values are words), and combinatorial
proof of identities (between differently defined combinatorial functions such as:
(a-a)y — {(b-b)and (g + b)-(a — ). These notions are supposed to be known here
just as the basic sef theoretic notions were assumed to be known in Part A {or, for
that matter, in the main text). The numbering of sections in Parts A and B brings
out the correspondence between set theoretic and combinatorial foundations.

Section 0 analyses the basic notions by means of informal distinctions; Section 0
{a, b) sketches the notions of combinatorial language and combinatorial realization
[corresponding to the concepts of language and realization of Chapter 2 for set
theoretic foundations], and Section 0 (c) the ‘translation’ of combinatorial mathe-
matics into set theory,

Section 1 formulates ‘adequacy conditions’ for a reduction of intuitive mathe-
matical reasoning to combinatorial principles, and relates these conditions to
Hilbert’s consistency problem (Section 1 (b)). In Section 1 {¢) there are examples
of substantial parts of mathematics for which Hiibert’s problem has a positive
solution.

Section 2 (¢) describes a4 formal system ¢ that is related to combinatorial
mathematical practice somewhat as Zermelo’s axioms in Part A, Section 2 (¢) are
related to set theoretic practice. Section 2 (d) gives Godel’s incompleteness theorem
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for ¢, establishing a combinatorially valid assertion which is not formally
derivable in &¢. [Since there is no reason to suppose that each combinatorially
formulated assertion is either combinatorially provable or combinatorially refu-
table, mere ronsaturarion of ¥ ¢ does not establish inadequacy of % ¢ with respect
to combinatorial reasoning. ]

At the end of Section 2 and in Section 3 the consequences of the incompleteness
theorem for Hilbert’s problem are analysed.

Section 4 (a, b) reviews the facts established in Part A, Sections 1-4, Part B,
Sections 1-3, with respect to the two views of foundations which identify mathe-
matics with (i) the theory of sets and (ii) combinatorial reasoning. In particular,
the adequacy conditions of Part A, Section 1 and Part B, Section 1 are refated to
the possibility of separating mathematical questions from questions about the
existence or objectivity of objects other than sets in case (i), and noncombinatorial
(abstract) notions in case (ii). An (unavoidable) weakness of each view is that the
analysis of the relevant adequacy conditions cannot be formulated in terms of the
notions accepted by the view considered [cf. Theorem 5 of Part A]. Section 4 (¢)
criticises crude formalism, as promised in the Introduction.

Warning. The proofs treated here must be distinguished from formal
derivations, i.e. from sequences of formulas obtained by mechanical appli-
cation of formal rules: the distinction is analogous to that between under-
standing and copying a mathematical proof. In particular, given a {com-
binatorial) realization of a formal language, a formal derivation defines
or describes a proof. This corresponds in the set-thcoretic case to the
definition of a set by a formula, namely the set of objects satisfying the
formula [its realization in the sense of Chapter 2]. The concept of formula
of the predicate calculus is chosen in such a way that the syntactic re-
lations between the parts of a formula correspond to (set-theoretic) re-
lations between their corresponding realizations. In the combinatorial
theory, in addition formal rules are chosen in such a way that a combi-
natorial proof can be associated with every finite sequence of formulas
constructed according to these rules; again syntactic relations between
parts of such a sequence correspond to natural relations between the
corresponding proofs.

Proponents of the formalist doctrine mentioned in the Introduction
either refuse to accept the distinction between proof and formal derivation
as legitimate (because they do not accept the idea of proof) or alternative-
ly regard it as not precise enough for mathematics. In the Introduction we
criticised some assumptions of this doctrine; we shall return briefly to the
question in Section 4 after having described the principal consequences of
this distinction.
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0. Combinatorial reasoning

The objects with which this kind of reasoning is concerned, and whence
it takes its name, are finite combinations of concrete objects such as let-
ters of an alphabet, numerals, symbols of a formal language etc.. A com-
binatorial function of » variables is a mechanical rule fogether with a
combinatorial proof of functionality, i.e. a proof establishing that if the
rule is applied to any n objects {chosen among the combinations of objects
under consideration) it will determine a value after a finite number of
steps; to be more precise, the rule is applied to a description (of an object)
which, in general, is distinct from the object itself. Finally, for a proofto be
combinatorial it must only involve (a finite number of) combinatorial
functions and the sequence of the basic objects, i.e. the successive gener-
ation of all the finite configurations considered.

The reader will find a detailed analysis of mechanical rules in the theory
of recursive functions and a partial analysis of combinatorial proof below.
A general idea of these concepts can be obtained by considering a typical
example: the combinatorial function of addition in numerical arithmetic.

(1) The objects and their description. The alphabet of numerical arith-
metic consists of two symbols: the individual constant 1, and the function
symbol § (of one variable). Consequently, the terms (words) are 1, S1,
SS1, ..., also denoted by §°1, S, 8%, .., respectively.

What is typical here, is that it is possible to decide quite mechanically
whether or not two terms designate the same object. This decision only
involves a finite number of observations of the identity, or non-identity,
of the given concrete objects (cf. the act of recognizing a letter of the
alphabet). What is not typical is the fact that every object considered here
is a term, whereas, in the general case, every object has a particular term
associated with it, called its canonical description: the structure of this term
reflects how the object is (conceived to have been) constructed. It should
be noted that the descriptions allowed in combinatorial reasoning are
such that the corresponding canonical description can be recovered from
any other description by a purely mechanical process: this reduces, ¢ pos-
teriori, the importance of canonical descriptions of objects (in contrast
to the case of functions: see (a) below).

N.B. It follows from the last remark that as long as only objects are considered, the
combinatorial theory approximates set-theoretic analysis. The latter, being a realist
theory rejects, as a matter of principle, reference to descriptions of the objects treated
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(sets with type structure) — a principle which leads to the axiom of extensionality of
Part A, Section 2. On the other hand this principle is not satisfied in constructive
mathematics in the wide sense of the term (Section 3 below) in which functions and
even constructive proofs are admissible as objects.

In (combinatorial} mathematical practice the act of recognizing that two expressions
are identical is accepted as part of the data without further analysis, Such an analysis
is needed here since the importance of combinatorial reasoning for foundations depends
precisely on the particular (elementary) nature of these acts, which are on a par with
the simplest sense perceptions, the cobjects being conceived as finite spatio-temporal
configurations. Thus the only abstract objects which have a place in this theory are
proofs, but they are not in turn the subject of combinatorial reasoning. (Proofs, con-
sidered as mental acts, are clearly not finite configurations of concrete objects: in
particular, it will be seen that they involve the idea of an infinite sequence, namely the
infinite sequence of all finite combinations.)

The central role of the act of recognizing that two expressions are
identical is reflected formally by the restriction to languages whose only
relation symbol is =.

(ii) Mechanical rules and their description. The two place function sym-
bol + is added to the alphabet of (i) (we shall write 4 ¢’ instead of +1¢, ¢').
Starting from the formulas

a+1=S8a and a+ Sb=S(a+b) @)

terms are substituted for the letters @ and & and the substitution rule for
equality is applied, viz: if the equations ¢, =¢, and #'=¢" have been de-
rived, then in t'=¢" one or more occurrences of the form ¢, may be re-
placed by #,.

N.B. The formulas (*) define or describe the rule for addition provided one under-
stands the svntactic operation of substitution and, in particular, knows when two
expressions are equal. In terms of computers the formulas (*) correspond to the in-
struction tape and the kind of understanding required corresponds to the mechanism
of the computer designed to react to these instructions, '

Analysis is full of non-mechanical rules (or, rather, definitions) for
mathematical functions (this is one of the essential differences between
school and university mathematics). For example, if r,, r,, ..., s a se-
quence, p, of rationals lying between 0 and 1, then a sequence A4q, 44, ...,
of intervals converging to the lower bound of p is defined by the following
“rule’”: 49=[0, 1]; 4, is the left half of 4, if 4, contains an element of
p, and, if not, then it is the right half. In general we do not know which
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of these alternatives hold. In the theory of recursive functions it is shown
that many of the usuval definitions of functions used in analysis are not
equivalent to any function defined by a mechanical rule and so certainly
not to one defined by a combinatorial rule. {(Thus such conclusionsdonot
require any analysis of the concept of combinatorial proof, the definitions
referred to being grossly non-constructive: in contrast to the principal
problems of Section 3 below.)

(11) Combinatorial functions. In order to show that the mechanical rule
(ii) is functional, i.e., can be regarded as a combinatorial function, we
have to give a combinatorial proof that for any integers » and m the rule
permits one to derive a formula of the form S"1 + ™1 = S*1.The proof pro-
ceeds by induction, which, in combinatorial mathematics, comes to this:
we visualize the construction of the sequence §°1, 81, 521, ... and associate
with each step in this construction a suitable application of the rules (*).
To be combinatorially convincing this sequence of applications must in
turn be visualizable. In detail (for given n): If m=0, we deduce S"1 + S§™1 ==
S™*'1 by replacing a by $"1 in the first formula of (*); if m # 0, we replace
b by $™ 1 in the second formula of (*) which gives S"1+S™1=S(S"1 +
S™~ ). It remains to be shown that the (particular) rules for equality of
(i) suffice to determine the value; we go back to the sequence S°1,5'1,
...; suppose given a derivation of a formula of the form §*1+5= '1=
S we extend it to a derivation of S*1+8™1=S%"11 by taking $"1+
S§™71 for ¢,, §% for t,, S*1+5™1 for ¢’ and S(S*1+ 5™~ "1) for ¢”. To
summarize, (the rule defined by) the terma+ bis a function on the alphabet
of (i) because for any integers » and m, a formula of the type S"1+S™1
= S?1isderivable. One shows similarly that, for given # and m, p 1s unique.

More generally, for any term ¢ of the alphabet consisting of the vari-
ables a, b, ..., ¢, the constant 1 and the function symbols § and +, the
mechanical rule which corresponds to ¢ in the sense explained in (ii) defines
a function on the words $°1, §'1, ...

N.B. The kind of understanding required for applying a mechanical rule is clearly
not sufficient for following the reasoning above; the distinction is reflected by the
syntactic distinction between formulas without and with variables.

The explanations given under (i) along with the reader’s previous knowledge and
intuitive understanding, should suffice to make the combinatorial character of the rule
for addition obvious. However it is not so easy to give an explicit formulation of what
is essentially involved in recognizing this fact: in other words, to formulate in full
generality, the possibilities of the combinatorial imagination which are tmplicitly pre~
supposed in the proof that the addition rule defines a function. (These possibilities
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determine the combinatorially valid principles of proof. A formulation would provide,
inter alia, an enumeration (naturally, not combinatorial) of all combinatorial functions:
see Section 3).

(iv) Proofs of identities and their relation to formal derivations. Let #™
be the system of rules obtained by adding the variables a, b, ..., ¢ to the
alphabet of (ii) and applying the rules of (ii} to all equations of the ex-
tended alphabet. Let #,,, ., be the term obtained by replacing a, b,
.,cby S™1, S™1, ..., SP1 respectively in ¢, and finally let 7 be the combi-
natorial function defined by the term ¢ in the sense of (ii1).

A combinatorial proof of (the identity) i= 7" shows, by definition, that
for any integers n, m, ..., p, the formula ¢, ,, =% . ., can be de-
rived by means of the rules of {ii).

(o) It should be noted that a proof of f=1{" can be obtained from a for-
mal derivation (by means of the rules of #7%) of the formula t=¢" since
&t is closed with respect to substitution of terms S°1, §'1, ... for the
variables.

(#) On the other hand, although, for example l+a=2Sa is clearly an
identity, as can be seen by induction on @, the formula 1 +a=Sa is not
derivable (in #") since any derivable formula must be true in the (set-
theoretic) model defined as follows: the variables range over the ordinals
and the realizations of 1, § and + are the ordinal 1, successor and the
usual addition for ordinals. But 1 +w#w+1.

(It is quite easy to avoid the use of the abstract concept of ordinal and
thus give a combinatorial proof that 1+a=Sa is not derivable: let the
variables range over ordered pairs of integers, {(p, g, where p>0, g=0
and p+g>0; put 1=<0, 1), §({n, my)=<{n,m+1>, {n, m>F 0, g>=
={n, m+qg>and (n, md>F{p+1,¢>={+p+1,q9); then <0, 1>F 1,03
#{1,0>F<0, 1>.)

N.B. (o)} and (f) establish respectively the (combinatorial) validity and incompl&§
ness of the system Z#+ with respect to the combinatorial theory of addition. Briefly the
development is as follows: starting with mechanical rules for addition (in this case in
the form of the formal system of (ii}), we verify that they define a function by means
of the argument of (iii}; then we construct a formal system containing variables (in
this case #+) and ask whether or not the assertion 7 = 7’ is equivalent to the derivability
of the formula 7 = ¢’ in the system. (Since the very meaning of this question involves
the basic combinatorial concepts, a reader who has followed () and (#) without
difficulty may assume that he has at least a partial understanding of these concepts )

The reader will note the use of “psychological” terminology which is not in the least
surprising since this combinatorial theory is intended to be “idealist”.
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Finally it should be noted that the combinatorial (though not mechani-
cal) statement

The formula 1+ a=Sa is not derivable in #*

is similar in character to the identity 1+a=3Sa itself ; namely, for any
sequence of formulas in the language of Z *, it can be ascertained mechani-
cally whether it is constructed in accordance with the rules of Z7 (just

as, in connection with the identity 1 +a=Sa, for any integer n, the values
of 1+ 8™ and of §S8"1 can be mechanically computed) and also whether
1 +a=Sa is the last formula of the given sequence. The argument of (f)
shows that the answer to one or the other of these questions must be
negative.

This elementary character of statements of non-derivability is essential
to all that follows.

(a) COMBINATORIAL LANGUAGES AND REALIZATIONS. We adopt the lan-
guages of the predicate calculus with equality sketched in App. I [see also
Chapter 3], modified as follows: no quantifiers are used (and therefore
all the variables in the formulas considered are free); each language is
supposed to be given by means of combinatorial functions which enumer-
ate, possibly with repetitions, the various kinds of symbols (i.e. we do not
allow the sets of symbols to be arbitrary disjoint sets). Frequently we shall
restrict the languages to ones with a finite number of individual constants
and function and relation symbols and an (infinite) sequence of variables
enumerated by a specific function.

N.B. These enumerating functions, each of them of course given by a specific
definition, constitute part of the definition of the language ; consequently two languages
with. different (descriptions of) enumerating functions will be considered distinct even
if the sets of symbols so defined are identical ; in particular, we shall distinguish a finite
enumeration (presented in the form of a finite sequence, i.¢., as a combinatorial object)
from an infinite enumeration of the same set in the absence of a combinatorial proof
of their equivalence. These distinctions are needed because, contrary to the case of
objects considered in (i) on p. 197, it is not always peossible to decide by a purely combi-
natorial argument whether two functions enumerate the same set, i.e., whether the sets
of their values are identical. At this point the combinatorial theory diverges sharply
from set theory.

Let .% be a (combinatorial) language. A combinatorial realization ‘R
of & consists, by definition of’:
(i) a non-empty enumeration U (finite or infinite) of combinatorial
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objects, called the universe of ‘R, or, alternatively, the domain of the vari-
ables,

(ii) an element (among those enumerated by U) corresponding to each
individual constant,

(iii) an n-place combinatorial function (taking arguments and values
among the elements enumerated by U) for each n-place function symbol,

(iv) an n-place characteristic function (taking only two distinct values,
T and 1) for each n-place relation symbol.

N.B. (iv) shows that we could without loss of generality restrict the languages to
those having = as their only relation symbol. If % contains an infinite sequence of
function symbols, say of 2 variables, enumerated by the function ¢ defined over a
domain U, the definition of realization must be altered as follows: R contains a
combinatorial function @ of 3 variables (the first ranging over Uy, the other two over
) such that for every element ug of Us, the function Puoxy of the two variables x
and y, is by definition, the realization of the symbol ¢ua.

{b) COMBINATORIAL REALIZATION OF A FORMULA: COMBINATORIAL VA
LIDITY. Let % be a (combinatorial) language, ‘R a realization of .% and 4
a formula of #. A combinatorial proof n will be calied a realization of
the formula A in R if, for two distinct objects, say T and L, either

(1) 4 is [closed i.e.,] a formula without variables, A4 is the truth value
of A [i.e., the value of 4 given by the valuation of the propositional cal-

culus in Chapter 1], when we put s=¢= T if s and 7 denote the same ele-

ment (among those enumerated by U) and otherwise s=7= 1 ; and finally
7 is a {mechanical) verification that A= T [it should be noted that the
valuation rules of Chapter 1 are clearly mechanical]; or

(2) the free variables (i.e. all the variables) in 4 are among x,, ..., X,
and 7 is a combinatorial proof of the identity: For any elements %4, ..., X,
(among those enumerated by U) the calculation of A according to (1)
gives the value T, (Thus in general, i.e., if U is not a finite enumeration,
7 is no longer a mechanical calculation.)

1t follows immediately that for any R, one can find a proof (realization)
of A if the formula E— 4 is valid set-theoretically where E is the conjunc-
tion of the axioms of equality for all the terms occurring in 4. Conversely,
if E— A4 is not valid, a realization R of the language of 4 and elements
X{, ..., %, in the universe of N can be found such that A= L. (Clearly we
do not assume here that every element enumerated by U has a name in
Z, i.e., corresponds to a term of #£.)
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Discussion. Languages with quantifiers are not considered here simply
because the familiar logical laws are not valid combinatorially for the obvi-
ous extension of the notion of realization to quantified formulas. For
example consider a quantifier free formula 4 whose (free) variables are
Xy ooy X X and y; and the ‘natural’ definition:

The pair (=, f) (fa function symbol with n+ 1 arguments, not occur-
ring in A) realizes Ax Vy4 if n is a combinatorial proof of

A(xia oo X x’f(xla eves Xy X));

the pair (=, §) (g a function symbol with » arguments, not occurring
in A4) realizes \Vx Ay—14 if m is a combinatorial proof of

_‘A(xia LRAS] xm §(x19 vres xn): }’)i

the triple (n, £, g) realizes Ax \VyAv \/x Ay—14 if nisacombinatorial
proof of :

A(X gy coes Xy X5 [ (X gy s Xy XV T A(X gy ooy X § (X gs s X 1 V)

Clearly there is no reason to suppose that Ax Vy4dAv Vx Ay—d4 (which
is valid for all set theoretic realizations) is also valid in the combinatorial
sense just defined.

In fact, it is intuitively plausible for certain 4 that there are no mechanically defined
functions f and § such that, for all &, ..., %, and for each # and 7 in the universe
considered, A(x1, ..y Xay X, F (X1, coey Xny X))V 71 A(KL, ..oy X, £(X1, .., X0), ¥)betrue,
let alone combinatorially provable. (This statement will be imade precise in the next
paragraph.)

(c) SET THEORETIC TRANSLATIONS OF COMBINATORIAL IDENTITIES, NON-
COMBINATORIAL PROOFS OF THE TRANSLATIONS. Evidently, in the present
section one assumes both the set theoretic and the combinatorial notions
to be known: Combinatorial foundations are independent of this sec-
tion; but the notions here presented are needed to formulate adequacy
conditions in the next section.

To any combinatorial language - and combinatorial realization R one
associates in an obvious way a language #* and a realization R* in the
set theoretic sense, cf. Part A, Section 1.

The combinatorial objects of % and ‘R (symbols, alphabet, words in
the universe of R) are regarded as sets: in particular, a word is the set
which is the finite sequence of the sets which are the letters of the word
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considered; Z and ‘R being given by (enumerating) combinatorial func-
tions, one associates with each enumeration the set enumerated, and with
each combinatorial function its graph. Thus one abstracts from the par-
ticular definitions which are used to give us these sets. So,

2£* is the collection of sets corresponding to the different kinds of sym-
bols of .2, R* has as its universe the set of words belonging to the domain
of R, and as realization of a function symbol f or relation symbol R the
set corresponding to f, resp. Rg.

The essential role of the particular definitions and enumerations for
the combinatorial notions of language and realization can be seen as fol-
lows:

(2) there are (set theoretic) languages and realizations .#’, R’ which
do not correspond to any combinatorial pair (&, R) according to the
correspondence: (&, R)=(L*, R*),

(B) there are combinatorial realizations which are set theoretically
equivalent (i.e., to which the same set theoretic realization is associated)
but not combinatorially (i.e., the isomorphism above can either not be
combinatorially defined, or, if defined, not combinatorially proved). The
reader should compare this point with the need for a canonical choice of
definitions for objects in s.c.t., cf. Part A, Lemma 3.

{2} is an immediate corollary to the following result of the theory of
recursive functions: there are sets which are not enumerable by means of
mechanically definable functions and a fortiori, not by means of com-
binatorial functions.

{B) follows from a more delicate analysis of combinatorial proofs which
shows the existence of two combinatorial functions which have the same
graph, but are such that this fact cannot be proved combinatorially.

The translation of an identity 4 for a given combinatorial realization
(whose variables are among x,, ..., x,) is, by definition, the assertion:
AXxy ... Ax,A is true in the associated set theoretic realization.

It is clear that if Ax; ... Ax,d isnot true in the associated set theoretic
realization, there is no combinatorial realization i.e., proof, of 4.

The general nature of non-combinatorial proofs of (translations of)
identities for combinatorial realizations can be formulated as follows: for
a given pair %, ‘R.

First (elementary case): one considers realizations in R* of quantified
formulas (to which no combinatorial meaning has been assigned); using
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the principles which are valid for the sef theoretic meaning of the extended
language, one obtains Ax, ... Ax,A4. This kind of proof 1s familiar from
the parts of arithmetic or the theory of sequences of rationals which are
commonly called “non-constructive™; cf. p. 198.

Second: one embeds R* in a realization which is not associated with
any combinatorial realization at all, and appeals in the proof to prop-
erties of the extended realization. This is familiar (cf. Part A, Section 3(a))
from analytic number theory where the structure of the natural numbers,
a subset of C,, (cf. Part A), is embedded in the complex plane (< C, . )
or even in the space of functions (<= C, , ,) on the complex plane. A very
simple example of this second process was used on p. 200 where one ap-
pealed to the ordinals in a non-derivability result about the formal system
(i) there described, the non-derivability result being an identity of the
kind under discussion.

In this last case, so to speak simply by looking at the proof, one could
eliminate the use of these essentially non-combinatorial realizations: in-
stead of the collection of all the ordinals it was obviously sufficient to
consider w?, and instead of this abstract ordinal, one considered a simple
ordering of ordinal ®? for which all that was needed of w? could be
proved. Similarly, inspection of the existing proofs in analytic number
theory shows that, at the cost of some additional explicit detail, one can
confine oneself to the rational complex plane, use only approximations
to the functions studied, and thus bypass completely the introduction of
the non-combinatorial realizations {C, ,,€,11> OF {C, 1 2,Ep+2,-

It is by no means obvious that the following use of abstract realizations
is eliminable. (Consistency proofs.) Consider the axioms =% of Zermelo’s
set theory, some formula 4 and the combinatorial identity: “the formula
A A 1 A4 is not formally derivable from 7% by means of the formal rules
of Part A, Lemma 3. We consider {C, . ,,€,+0,, note that &/* holds
there, that the formal rules preserve truth (in any structure), A A "4 is
not true in (C,;,,€,+.,>» and so it cannot be formally derivable.
Discussion. This argument, though simple, is obviously not empty because
it depends on verifying that «#* satisfies {C, . ,,€,+0,. If one had used
the unrestricted comprehension axiom (**) of Part A, Section 1(a), in-
stead of &/* the conclusion would have been false. (As pointed outin Part
A, Section 1(b), this unrestricted comprehension is evidently false for

<Cw+msem+w>')
The fact that embedding a structure & in a richer one often leads to
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simple proofs about & is quite familiar from modern mathematics. Here
one uses {C,+,,Su+w, L0 derive a result about {C,,€_>, the assertion of
formal non-derivability having been translated into an assertion about
{C,,€,> by means of the development of arithmetic in {C,,€,> (Part A).

Just because the proof above is so simple, using nothing about the
formal rules except that they preserve truth, it is quite implausible that it
can be easily modified to yield a combinatorial proof of non-derivability,
in contrast to the non-derivability result for the formal system on p. 200
or known analytic number theory. ‘

With the informal background provided in the present section, the
brief exposition below of the problems of combinatorial foundations
should be quite intelligible.

1. How does one analyse intuitive mathematics in terms of the basic
combinatorial notions?

Since much of intuitive mathematics presents itself as being about ab-
stract objects (such as {C,,&,> for > w) which are not combinatorial at
all, the analysis cannot study these objects themselves; a coherent alter-
native (cf. introduction on *‘idealist” foundations) is to study reasoning
about these objects. A precise formulation of such an alternative is Hil-
bert’s programme, which states adequacy conditions.

(2) REPRESENTATION (DESCRIPTION) OF MATHEMATICAL REASONING BY
MEANS OF FORMAL SYSTEMS. As was pointed out at the beginning of the
Introduction, the step from intuitive reasoning to its formulation in a
formal language does not proceed by means of mechanical rules because
the representation approximates not the external form (the words) of the
intuitive reasoning, but its sense or meaning. But granted this step (as
being part of the data) the problem remains to establish combinatorially
the basic relations of intuitive reasoning (such as the consequence relation)
i.e., to define combinatorially the corresponding relations for the repre-
sentation, and to prove, again combinatorially, their properties.

Just what has to be established will be formulated in adequacy condi-
tions in (b) and (d) below. Essentially, (b) corresponds to £ in Part A,
Section 1 and (d) to U¥®. Asis to be expected, Theorems 4 and [5, or its
particular case] Lemma 3, p. 184 of Part A (or, more precisely, suitable
generalizations) will be decisive. The results will be summarized and
examined in Section 4(a, b).
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Discussion. For the sake of the discussion in Section 4, the reader should
compare here the role of (i) [Theorem 5 or] Lemma 3 for combinatorial
foundations with (ii) corresponding results in set theoretic foundations.
(i) If one accepts the basic set theoretic notions in terms of which the
notion of consequence can be defined, Theorem 5 provides a mathematical
proof that a certain combinatorial definition of the consequence relation
[for formulas of first order] is correct. If one stays within the combina-
torial framework one only has the “empirical” fact: it so happens that
any formula of first order which we recognize as logically valid can also
be generated by means of certain formal rules (Lemma 3 of Part A).
(Similarly, accepting set theoretic notions one shows by use of the theory
of recursive functions, that the relation of second order consequence is
not definable by means of any mechanical rule. Within the combinatorial
framework we could only say that we do not know a definition, and for
any particular proposal we could exhibit a counterexample, but without,
of course, having a combinatorial formulation, let alone proof of this
general fact.) (i) A corresponding result for set theoretic foundations, say
for the intuitive structure N of arithmetic, would be a proof that N satis-
fies Peano’s axioms /. Within set theoretic foundations, &7y is simply
accepted; one cannot express the reasoning which shows that N satisfies
&7y and one must be content to use suitable informal terminology.

{b) REDUCTION OF INTUITIVE PRINCIPLES TO COMBINATORIAL PRINCIPLES
(Hilbert’s consistency problem). A minimal requirement can be stated in
terms of the translations described in Section 0(d) above:

Consider a combinatorial language % and a combinatorial realization
R. For any formula 4 of & let A; be the canonical translation in £ of
the (combinatorial) assertion expressing that 4 holds in ‘R, i.e., that 4 is
realized in the realization ‘R of .Z.

We wish to know, at least for closed formulas 4 in %

(i) If 4 holds (in R combinatorially) can we formally derive 4, from &7*
(or even in &7*)?

(ii) Given any formal derivation of Ay, does 4 hold in R?

These questions are so formulated that it makes at least sense to look for
purely combinatorial solutions.

Precisely, suppose the formula Dem(s, Ay ) of £ defines in R the
relation: the sequence of formulae s in ¥ is a formal derivation of A,
from «/*. There is such a formula, e.g. if R=R. and ¥ =7, p. 212

Question (i) is answered by means of a combinatorial function f whose
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arguments are formulas of % and values are sequences of formulas of
Zp together with a combinatorial proof of 4—Dem( f4, A4; ). Estab-
lishing this is nothing else but showing effectively that combinatorial
mathematics can be developed in set theory; [this was already used in
Lemma 4 of Part A].

Question (it) simply takes the form, for variable s: do we have a com-
binatorial proof of: Dem(s, 41 )—A4? Note that, for a combinatorial
formulation of these questions, one uses essentially the combinatorial

character of the relation Dem.

A positive solution of question (ii) constitutes a genuine elimination of
the assumptions of set theory. For, the intuitive basis for the assertion
Dem(s, Ay )—A is simply that of the ‘consistency proof” at the end of
Section 0(d). One considers the meaning of the formulas appearing in s,
i.e. their realizations in s.c.t., concludes the truth of each, hence of 4,
and hence that 4 holds in ‘R, at least for closed formulas 4. This argument
clearly collapses if one does not accept the existential assumptions ex-
pressed by «#/*. After all, if one does not accept them there is no difference
between /* and, say, the inconsistent axiom (**) in Part A, Section 2(a),
at least before its inconsistency was discovered; and one would be ill
advised to conclude that 4 holds in ‘R, on being given a formal derivation
of Ay from (**)! On the other hand, a combinatorial proof of Dem(s, A1)
— A (for variable 4 ranging over all closed formulas of .¥), does not refer
to the meanings of the formulas in s because these meanings (realizations)
are not combinatorial at all, but only to their formal (syntactic) prop-
erties.

Discassion. The paragraph above shows the necessity of a positive solution of question
(ii) if one is to speak of a combinatorial reduction at all: without it, not even the
purely combinatorial uses which we make of set theoretic assumptions would be
combinatorially justified. But a positive solution is also as much as we can require
without further analysis because the formulas 4y are the only formulas in ¥r to
which we have associated a meaning in terms of combinatorial notions. {An extension
is possible provided one extends the notion of combinatorial realization to richer
languages in a less naive manner than end of Section 0 (b).)

Even without further analysis (for details see Section 3 below) Theorem
4 of Part A makes a positive solution of question (ii) for the axiomatic
system «/* implausible. However, question (ii) makes sense (not only for
L7* but) for any formal system which represents reasoning about abstract ob-
Jjects (even for the ‘elementary’ kind of nonconstructive proof on p. 204
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provided only some translation of combinatorial statements into the
formal language considered, has been given, analogously to the trans-
lation A4 into 4 above). So Hilbert’s programme is not refuted by general
(positivistic) considerations provided there is some prima facie noncon-
structive formal system for which question (ii) can be positively solved.
This is done in (c) below. This affects the anti-philosophic doctrine men-
tioned at the end of the introduction, cf. also Section 4(c) below.
Remark on Hilbert's consistency problem. Consistency (of 27*) asserts
that, for any formula B of %, and variables x, y for sequences of such
formulas we have (a combinatorial proof of)

Dem (x, B) = =1 Dem(y, =1 B) ()

(where the formula Dem of the combinatorial language # defines the
proof relation for «7* in R; cf. Part A, Lemma 3); or, if L is the trans-
lation of some false combinatorial formula, e.g. of 0=1, we have

=1 Dem(x, 1), (19

where, for the translation of arithmetic in % of Part A, (0=1); is
Vye V[ Aun(uey) A Au(uey,—u=y ) Ay =y].

((1), (11) are evidently equivalent by use of the fact that any formula is
formally derivable from a false formula.)

Granted (1), question (i) is combinatorially equivalent to the consistency
problem.

First, consistency is a special case of (ii) by taking 0=1 for 4.

Conversely, by (i), we have " 4d—Dem/[ f (—14), —14; ]; therefore
—1Dem[ f(114), 7147 ] 1714 and so 1 Dem[ f(—4), 147 -4
Joining this to a special case of (1) (with A for B and f(—1A4) for the
variable y) we have Dem(x, 4; )—A.

The advantage of the consistency statement (1) over question (ii} is
merely that one variable in (ii) {over closed formulas 4 of %) is replaced
by a constant L. But the significance of the consistency problem for
combinatorial foundations depends on its consequences, namely the
necessary and sufficient conditions mentioned in the discussion, which
are obvious for (ii) but not directly for (11).

(¢) PoSITIVE RESULTS ON HILBERT’S PROBLEM. (Naturally, since these
results are formulated precisely and established in proof theory, we can
only indicate them here.)

Let # be a (combinatorial) language in the sense of Section 0(b), and
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R a combinatorial realization of .#, and suppose given a combinatorial
realization of the formula 4 of % whose variables (necessarily free) are
among X, ..., X,; 1.e. we have a combinatorial proof of 4 for the given
realization of #. ‘

WEAK RESULT (‘weak’ for combinatorial foundations because it is formu-
lated by use of both set theoretic and combinatorial notions):

If all the variables of the formula B of £ are among y, ..., ¥, and if
AYy .. ANyaBisa consequence of A\x; ... ANX.A in the set theoretic sense
then there is also a combinatarial proof of B for the given realization of £ .

To show this we use not merely the existence of some formalization of
logical consequence, but the following particular property of the formal
rules indicated in Part A, p. 184 [more precisely, in Lemma 3, based on
the Uniformity Theorem of Chapter 2]. If Ay, ... Ay, B is derived by these
rules from Ax; ... Ax,4 then Bis derived by purely propositional infer-
ences from some conjunction A; A -+ A A, where A, is obtained from A
by replacing each x by a suitable term. By (b) above such a derivation
defines a combinatorial proof of (4, A -+ A A;)— B and, together with the
given realization of A4, also a realization of B.

The particular property of these rules is not satisfied by the usual for-
malizations, e.g. in Bourbaki, where modus ponens {(from X and X—»Y
derive Y) is included among the formal rules, when a derivation of B from
AX, ... Ax,4 may contain formulas with alternating quantifiers; as seen
in (b), if the notion of combinatorial realization is extended in the ‘obvi-
ous” way, some of the formal rules (such as 4 v —14) are then not com-
binatorially valid.

COMBINATORIAL VERSION. The general scheme of formulating a combi-
natorial problem should by now be obvious. The intuitive notion of logi-
cal consequence is itself not admitted, but one puts down all formal rules
which are evidently valid from one’s understanding of this notion. In
particular, modus ponens above is certainly included. Let Demg (s, X),
with variables X over formulas in % and s over sequences of such for-
mulas, define the relation {as always, in the realization of % considered):
s is a formal derivation of X in the ‘full’ system just described. Let
Demy (s, X) be the corresponding relation for a special system & of rules
{e.g. those of Part A, Lemma 3). We ask: is there a combinatorial function
f whose arguments and values are sequences of formulas in & such that

Demg (s, X) - Demg(fs, X)
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is combinatorially provable? (The converse is obvious, because the special
rules are included in the ‘full’ system.)

The weak result (together with completeness of the full system) only
allows us to conclude this, There is a mechanical rule which defines a
function f for which the translation of Demz (s, X)— Demy( fs, X} is true;

namely, given s and X, decde if Demg (s, X} is true; if not, the implication
holds; if it is true, X is valid; enumerate the formal derivations of the
system %, until you reach a derivation of X’; there must be one because
all formal theorems of % are valid, and all valid theorems are formally
derivable in &. But this argument leaves open, first whether there is a
combinatorial f and second, whether, for such an f, the assertion can be
combinatorially proved. Not only is there a conceptual difference between
the two results, but the mathematical methods used in proving them are
quite different.

Discussion. The result establishes that elementary non-constructive argu-
ments (in the sense of p. 204) can be eliminated.

This certainly includes a non-trivial part of current mathematics (which
presents itself as non-constructive). [In the case of arithmetic the result
applies to the following modification of the system in Chapter 3, Exercise
2(d): we may add function symbols and equations (as axioms) for which
we have combinatorial realizations, forinstance f (0, y)=1, f (sx, y)=y-fx
for exponentiation y*; but to apply the results above, (i) we must restrict
the induction schema to purely universal formulas A (in the extended no-
tation) since (ii) for other 4, we do not have a suitable notion of combina-
torial realization. As to (i), if Ax is AyB(x,»),[40A Az{4dz—Asz)]—
AxAx is a (formal) consequence of Ax Ay[(B(0,y)A Az[B(z,y)—
B(sz, »)])—B(x, »)] and this is a consequence of Ax AY[(B(0,y)A
A{ Az<x)[B(z, y)- B(sz, y)])- B(x, y)]. For this we have a combina-
torial realization, since, if B(x, y) defines a combinatorial relation, so does
(Az<x) [ B(z, y)— B(sz, )], for variables ranging over the natural num-
bers. As to (i), permitting any wider class of 4 seems, at least without
sophisticated analysis, quite unacceptable because we have not even de-
fined a (combinatorial) realization for the induction schema applied to
non-universal 4. The reader should note that viewed in terms of set
theoretic foundations, a restriction of formulas A4 in the induction schema,
as in (ii), is quite artificial (cf. also footnote 3 of Part A); analysed in
combinatorial terms the opposite is true.]
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{d) REDUCTION OF INTUITIVE PRINCIPLES TO COMBINATORIAL PRINCIPLES
(continued). Given an intuitive structure & and its language £, a kind
of maximal requirement on combinatorial foundations is to find a (com-
binatorially defined) formal system which is valid for © and saturated
with respect to #z. For, combinatorial foundations concern reasoning
about ©, and such a formal system would decide all questions about &
(formulated in Zg).

[Chapter 4 contains several examples, mainly for first order languages,
despite the fact that none of the axioms considered is categorical, i.e. none
determines the structure S considered (by Exercise 1, Chapter 3). Note
that the non-categoricity result for arithmetic in Exercise 2, Chapter 3,
has no interest for combinatorial foundations, while Theorem 4 of Part A
shows that the maximal requirement above is certainly not satisfied by the
axioms &7 for set theory.]

The theory of recursive functions allows one to formulate {(and then
prove) a really conclusive generalization of Theorem 4: no consistent
extension of =/ whose set of axioms is definable by means of a mechani-
cal rule is saturated; not even with respect to arithmetic statements, in
particular, not even for translations of combinatorial assertions in the
sense of Section 0(c).

2. How do we find laws (axioms) for the basic combinatorial notions?

In what follows we use notation from Part A, Section 2(a).

(a) For general orientation on this problem the reader should compare
the crude mixture of notions that come under the naive idea of set with
the mixture of the kinds of proof that are loosely called constructive:
hereditarily finite sets (i) might be compared to mechanical calculations,
sets of the hierarchy of types (i) to combinatorial proofs, and abstract
properties (iii) to so-called intuitionistic proofs. We do not go into detail
because we cannot expect the reader to be equally familiar with the vari-
ous notions involved: for instance he will know more about sets in sense
(11) than about combinatorial proofs, On the other hand the literature on
intuitionism is much richer than that dealing with abstract properties: see
the end of Section 3.

(b) THE LANGUAGE % ¢ AND ITS REALIZATION R (‘C’ for ‘combinatorial’
or, alternatively, ‘concatenation’). .# consists of a single relation symbol
(=), two individual constants O and 1 {or T and 1), two 1-place function
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symbols s, and s,, and an infinite sequence of function symbols £;, £, ...,
with two arguments.

The universe of R consists of finite sequences of two concrete objects:
the elements 0 and T are the two sequences consisting of a single element:
§, and §, are the combinatorial functions which attach 0 and T respectively
to the end of an element of the universe; the functions £,(i=1, 2, ...) are
defined by the rules given under (c) below.

N.B. Adequacy of Z¢ and Re from the point of view of definability (¢f. Part A,
Section 1, X#S for the set-theoretic analysis): a systematic exposition will be found
i SMULLYAN’s monograph, Theory of Formal Systems (Princeton, 1961), in which
inter alia, functions of a finite number of variables and words constructed from a
finite alphabet are defined in R by use of the language F¢. (The reader will have to
verify the combinatorial character of these definitions for himself since the author does
not pay explicit attention to this question.) In particular the language % can itself be
defined in Re by means of formulas of #¢ (cf. Theorem 4, Part A) in such a way that
a sequence of symbols is the concatenation of those elements (sequences) of the
universe of Re to which the symbols correspond.

Example. If we take {the sequence) <B1) for the constant 0, <011 for 1, and (OII1)
term s1515051515150510.

It can be easily seen that with these definitions of the symbols 0,1 and =, we have
unique readability [cf. Chapter 0], i.e., given the object (element of Re) that codes a
sequence of these symbols it is always possible to recover the latter from the object,
This would not be possible if, for example, we made 0 correspond to 0O and T to 1;
for then, whatever object a corresponded to the relation symbol ==, it would necessarily
be a sequence of the objects 0 and T and would therefore also code a sequence con-
sisting of the symbols 0, 1.

(c) A FORMAL SYSTEM ¥, formulated in % and (combinatorially) valid
in Re. We adopt all the rules valid for all combinatorial realizations (see
Section 0(b)). In addition, the following:

(1) axioms for the successor functions: seX=Syy—>X=y, 51 X=5§y—>
X=y, TISoX =X, T1§; X=X, T1§X=5,y, T15;x=0, T1spx=1, 715, x=0,
15, x=1; 10=1;

(i1) schema for proof by induction: for any formula Ax of £, Ax can
be inferred from

A0 A AL A (AX — AseX) A (Ax — Asyx);
(iii) schema for definition by recursion; we let C" denote the set of

symbols {0, 1, 5o, 51, f,:r<n} (n=1,2,...), C=J, C"; consider an enu-
meration (&, uj, vh, v7) of all quadruples of terms (uy, uy, v5, v,) where
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the u are built up on {y}uC, the v on {x, y, z}uC, and, moreover, each
up, u7 is built up on {y}LC”, each 1, v} on {x, y, z}uC”". (This is evident-
ly possible.)

Writing v[z] for v, we have the axioms:

(0, y) = Ug, fn(lb y) =ut,
falso%, ) = 03[ £ (5, ¥)), fulsix, ) = i [fulx, ¥)].

The validity of (1) (in Rc) is obvious, and the validity of (ii) can be
shown by induction (whence the name of this schema). It remains to con-
sider (iii); it can be seen that the model constituted by the universe of
Re, 0, 1, 55, 5; can be extended in a unique manner to provide a model
satisfying (iii). The mechanical rules involved in the definition of the func-
tions f, (n=1, 2, ...) are just those defined in the sense of Section 0(ii) by
the axioms (iii) themselves. The fact that these rules define functions (over
the universe of R¢) can be shown by induction: see Section 0 iii).

NL.B. The proof of the validity of &¢ illustrates the relation between combinatorial
proofs regarded as mental acts and formal derivations: one has to have understood
the method of proof by induction in order to see the validity of the formal rules which
are intended to describe these proofs.

It is shown in works on proof theory that the language #¢ and the rules of ¥ ¢ are
sufficient to formulate most of {informal) combinatorial mathematics so far developed
including, for example, the partial solution of Hilbert’s consistency problem mentioned
in Section 1(c). The position of this system with respect to combinatorial mathematics
is therefore comparable to that of Zermelo’s axioms (Part A, Section 2) for informal
set theoretic mathematics,

(d) DOEBS % PROVIDE AN AXIOMATISATION OF THE COMBINATORIAL THEO-
RY OF R.? S is clearly inadequate for defining all combinatorial func-
tions over the universe of R if the combinatorial validity of & is
granted: (c) above yields an enumeration of the functions £, by means of
a combinatorial function and hence, using Cantor’s diagonal method, a
combinatorial function different from all those defined in . (N.B. This
construction involves the infinite sequence f£,; cf. p. 197, line 10.)

Similarly we find a formula of the language £ itself which is combi-
natorially valid but which cannot be derived in % : Gdel’s method (of
Theorem 4 of Part A, but freed from its specifically set-theoretic context)
shows that = Dem (x, s%)

is not derivable in ¥, where, for a given definition of the language %
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(see (b) above), Dem(x, y) is the (combinatorial) relation: X is a sequence
of formulas constructed according to the rules of & and j is the last for-
mula of %, and where s* is the canonical definition of the formula 0=1,
i.e., of the element of the universe which, on the definition of ¥ con-
sidered, is the formula O=1.

But, on the other hand, the proof of the validity of % shows that
—1Dem(x, s*) is valid in R (where ‘proof’ and ‘validity’ are, of course,
taken in the combinatorial sense).

The proof of the validity of &« also proves the validity of the following
schema of which =1 Dem(x, s*) is a special case (with 0=1 instead of A).

For any formula 4 of % let s, be its canonical description (for the
given definition of .#¢}); then

Dem(x,s,)— 4

is valid. This schema, which is formulated in %, therefore provides an
extension of the system #¢.

There is another, stronger, extension corresponding to an enumeration of all the
functions defined in ¢ or, alternatively, to the operation of associating with every
closed term of Z¢ its value, That this operation is a combinatorial function follows
from the proof that the rules for f» define combinatorial functions.

CONSEQUENCES FOR HILBERT'S PROGRAMME (to be more precise the prob-
lem is to carry out Hilbert’s programme for every formal system suggested
by mathematical practice).

The facts just described, show that the principles of reasoning formu-
lated in % are not sufficient to carry out Hilbert’s programme for the
system %, and the analogue applies to, roughly, every formal system
which is a valid extension of &: this fact is known as G&del’s second
incompleteness theorem (for a precise formulation of this theorem, the
concept of formal system has to be analysed which requires the Theory of
Recursive Functions).

Gaodel’s Theorem by itself does not at all imply that Hilbert’s programme
cannot be carried through since it leaves open the following possibility:
for every formal system & suggested by mathematical practice (including
set theory) it is possible to find a combinatorial system %, and a com-
binatorial realization R, for which &4 is valid and such that the con-
sistency statement —1Demg(x, s*) is provable in Fg.

1
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Certainly this presupposes that for every & in question there is a com-
binatorial proof which cannot be formulated in % in the sense of Section
O(a)(iv). This latter possibility, though intuitively implausible, cannot be
excluded without a deeper analysis of the notion of combinatorial proof;
for, just because of the incompleteness theorem, for all (consistent) F
there are correct proofs which cannot be formulated in & In other words,
the possibility considered cannot be excluded without making use of some
more subtle property of combinatorial proofs than, say, their set-theo-
retic validity.

In the absence of such an analysis we only have the following result:
there is no formal system & such that

(i) there is a formal derivation in % of every statement formulated in
Z which is valid in R (in the combinatorial sense),

(ii) the validity of & (in R.) can be established by combinatorial
reasoning.

3. Development of the theory

We shall now consider the hypothesis stated at the end of Section 2. From
the discussion above, a positive solution to Hilbert’s programme would
require a case study (cf. Part A, Section 1 concerning X*¥® and D¥®) of
all the formal systems suggested by mathematical practice (this is the
reason why it is of interest for Hilbert’s programme to find a single sys-
tem which covers the whole of mathematical practice).

On the other hand a negative solution could be obtained as follows:
we first construct a formal system & satisfying condition (i}, but of course
not (ii) (end of Section 2); then we try to find a particular system of mathe-
matical practice for which Hilbert’s programme cannot be carried through
using the methods of &.

In the article on mathematical logic in: Lectures on Modern Mathe-
matics, vol. 3 (ed. Saaty, 1965), a system is described which can be seen
to satisfy condition (i) and in which it is not possible to establish the
consistency of ordinary [i.e., first order] arithmetic [Chapter 3, Exercise
2]. The idea behind the construction of this system is that combinatorial
proofs can be generated by iterations of the type of extension considered
on p. 215: the principal problem is clearly that of ensuring that all iter-
ations shall be included which are such that every formal derivation has
a combinatorial realization. (By Section 2(d)(ii) such a system could not
possess a combinatorial model as a whole, i.e., there could be no combi-
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natorial proof showing that every derivation in such an % has a combi-
natorial realization.)

There is a striking parallel to Part A, Section 3: the operation P (of
forming the set of all subsets of a given set) is the operation which gener-
ates the hierarchy of types and the principal problem there is to formulate
axioms in the language of set theory which ensure the existence of as many
iterations of this operation as possible; in other words to find axioms of
infinity which express the existence of high types.

N.B. For a better understanding of the problems presented by Hilbert’s programme,
the reader should compare it with the problem of squaring the circle: {a) the formu-~
lation of a system & satisfying (i) corresponds to the (mathematical) characterization
of the geometrical idea of ruler-and-compass constructions, namely that every point
constructed by such means has Pythagorean coordinates (i.¢., expressible by means of
rational operations and square roots); (8) the proof that =1 Dem (x, s*) is not derivable
in & corresponds to the proof that ‘[(1) /(1 — x2) dx is not Pythagorean. In modern
texts, at any rate those influenced by formalism, there is often no discussion of (a),
which requires an axiomatic analysis of geometric concepts, in particular, the intro-
duction of coordinates on the basis of intuitive geometric axioms. The omission is
hardly surprising since the very possibility of such an analysis is embarrassing for the
formalist doctrine: see the Introduction. (The formulation of % is more problematic
than (o) because the intuitive idea of combinatorial proof is less clear than the intuitive
idea of a ruler-and~compass ¢onstruction.)

The comparison described above suggests the very interesting problem of setting up
a theory of proofs which are ‘graspable’ (intelligible) and not merely valid and, in
particular, of intelligible combinatorial proofs. The corresponding geometric problem
would be to find a theory of ‘feasible’ constructions which, only involve points ‘close’
to the starting points and which are stable for ‘small’ changes in the data (this clearly
requires the discovery of the metric appropriate to geometric intuition). Although such
a theory of intelligible proofs would not be part of logic in the strict sense of the word,
since logic is only concerned with questions of validity of one kind and another, it is
quite likely that it would make use of the merhods of combinatorial foundations.

It only remains to say something about the intuitionistic conception of
mathematical thought (Section 2(a)): this conception goes beyond com-
binatorial mathematics since it also admits abstract objects such as func-
tions, functions of functions etc. provided that these, in turn, refer only to
objects of mathematical thought: in particular, set-theoretic concepts in
their realist sense are not included. Thus the intuitionistic conception is
idealist; its positive side consists in accepting abstract constructions and
it is this which distinguishes it from combinatorial mathematics.

N.B. The negative, and better-known, side to intuitionism consists in general
polemics directed against set-theoretic coneepts; these arguments are no more con-
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vincing than those of realists directed against idealists (“What kind of an animal is a
proof 7*} or those of formalists against the others {*“Where are those abstract objects?”’).
All of these critiques are weak because they overlook the fact that there are more things
in heaven and on earth than are dreamt of in philosophy (i.e., in the particular philo-
sophical system accepted by the critic), This by no means detracts from the interest of
positive results obtained within a imited framework which show, for instance, that the
objects accepted suffice for an explanation of the phenomena considered.

Hilbert’s programme can obviously be reformulated with intuitionistic
concepts replacing those of Section 2. This extension corresponds perhaps
to taking the notion (iii) of set in Part A, Section 2(a) instead of Zermelo’s.
For further details, see the article L.c.

4. Critical summary

(a) COMPARISON BETWEEN SET-THEORETIC AND COMBINATORIAL FOUN-
DATIONS. Both provide an answer to the question (in old fashioned lan-
guage): what is mathematics? The former formulates a particular “real-
istic”” view, and therefore concentrates on objects, not on the reasoning
about them; its answer is that mathematics is the theory of sets (for a suit-
able precise notion of set). The latter formulates a particular “idealist”
view, regards abstract mathematical objects as figures of speech, and
wants to show that our way of using these figures of speech is coherent.
What is particular about this view is that, according to it and contrary
to appearances, our mathematical reasoning is ‘essentially’ combinatorial;
‘essentially’ in the logical sense (cf. Section 3), namely that the validiry
of our conclusions which can be formulated combinatorially at all, can
also be established by combinatorial methods. This view, if correct, not
only asserts a unity of mathematical reasoning, but one of a very remark-
able kind: since school mathematics is typical of combinatorial mathe-
matics, it presents the whole of mathematics as being of the same kind as
school mathematics!

Both set theoretic and combinatorial foundations separate mathematical
questions from (ontological) questions about the existence, i.e., objectivity,
of abstract objects or abstract notions outside the foundational scheme
considered. But they draw the dividing line at quite different points.
One must therefore not assume from the success of one such separation
that also the other separation is correct.

Specifically, consider the separation between set theoretic notions and
classical intuitive structures presented, for instance, in our geometric con-
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ceptions (continuum) or in our ideas about chance (probability.). If the
corresponding adequacy conditions of Part A, Section 1(a) are satisfied
(for one of these notions &) then we have the required separation (au-
tonomy of set theoretic mathematics). Thus £%© suffices to show that if
a purely set theoretic conclusion, i.e., one formulated in #, follows by
use of intuitive properties /¢ of &, then it also follows from set theoretic
principles, i.e. those used to establish E“®. If in addition U¥® is satis-
fied, this situation is notchanged by use of other intuitive properties (for-
mulated in the given language of &) provided only the intuitive concep-
tion is coherent. [As pointed out in the discussion of Part B, Section 1(a),
within the set theoretic framework one cannot formulate why the ade-
quacy conditions are correct, and therefore the problem of deriving these
conditions is properly considered to be foundational (though it is almost
always mathematicians who solve it; cf, end of Introduction).]

As pointed out in Part A, Section i(a), and Section 2(a), the adequacy
conditions are satisfied for the classical intuitive structures, but in a some-
what weaker sense for ordinals, and, as far as we know, not for the general
notion of property, i.¢., notion (iii) of Section 2(a).

In contrast, in combinatorial foundations, the separation between
combinatorial notions on the one hand and the basic set theoretic notions
on the other has been established only in a quite narrow, though not at
all trivial, part of mathematics (Part B, Section 1{c)). And, modulo the
characterization of combinatorial proof mentioned in Part B, Section 3,
this separation does not hold beyond ordinary [i.e., first order] arithmetic
[Exercise 2, Chapter 3]. For those parts of mathematical reasoning for
which the adequacy conditions Part B, Section 1(b) andPart B, Section 1(d)
hold, essentially the same conclusions about separation apply as mentioned
above for E¥® and U“® respectively.

It goes without saying that both set-theoretic and combinatorial foun-
dations are at best auxiliaries for studying the abstract objects themselves
which they eliminate!

(b) DOCTRINAIRE FOUNDATIONS, by definition, support their own po-
sition largely by criticizing rival foundational schemes. This criticism
permits them to ignore those defects (of their own position) whose for-
mulation requires the use of notions not accepted by them, i.e., notions
from a rival scheme [for instance, in the case of combinatorial founda-
tions, the defect that the relation of second order consequence is not
combinatorially definable; cf. discussion of Part B, Section 1{a)]. — The
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reader will have noticed in this connection that an interest in combina-
torial foundations is often associated with a critique of set theoretic no-
tions, and, incidentally, an interest in set-theoretic foundations with a
critique of such notions as that of property in Part A, Section 2(a) or of
intuitionistic construction in Part B, Section 3, the reason, obviously,
being that we do not have a set-theoretic foundation for these notions.

If a doctrinaire (combinatorial) standpoint is adopted, the importance
of Goédel’s Theorem 4 of Part A lies precisely in the fact that here the
failure of combinatorial foundations can be formulated in combinatorial
terms itself. But from a less legalistic point of view a conceprual frame-
work is defective if it does not allow (theoretical) explanations of facts for
which an alternative theory has an explanation, one purpose of theory
being the extension of the range of theoretical understanding, [From this
point of view, Theorem 5 of Part A, constitutes already a failure of com-
binatorial foundations, because in terms of set-theoretic notions we have
a good reason for the choice of formal rules, while in combinatorial foun-
dations the choice of the formal rules must be taken as part of the data
(cf. discussion of Part B, Section 1(a)).]

Another inadequacy of combinatorial foundations (cf. last paragraph
of Part B, Section 2) is that within the combinatorial framework one can-
not define, i.e., establish the extent of, combinatorial mathematics, but
within a wider (constructive) framework one can at least try! (cf. Part B,
Section 3).

At the present stage of knowledge we do not have the notions needed
to solve, or even to formulate precisely, the analogous question for the
whole of mathematics, namely: are there sufficiently abstract, yet precise
notions to characterize the extent of the whole of mathematics?

(c) CRUDE FORMALISM, mentioned at the end of the Introduction, is a
glorious doctrine, which happily proposes an answer. This doctrine does
not even accept the basic combinatorial notions and holds that mathe-
matics consists of assertions of the form: a concretely given configuration
has been constructed by means of a given mechanical rule (in terms of
Part B, Section 0(b): only closed formulas of a combinatorial language are
considered). No general statements about such configurations belong to
mathematics. Consequently, of course, not even the minimal adequacy
condition of Part B, Section 1(b) (Hilbert’s consistency problem) can be
formulated, since a variable x appears in it.

This doctrine is certainly free from failures in the narrow (legalistic)
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sense of (b) above, by the very simple device that next to nothing can be
formulated in the terms it accepts! Obviously, this cult of impotence is
based on the conviction that there are no (theoretical) explanations of such
basic phenomena of mathematical experience as the validity of (com-
binatorial) conclusions derived from properties of abstract intuitive con-
cepts®.

It must have occurred to the reader that, according to this doctrine,
what is essential to mathematics are mechanical manipulations, while he
learned at school that these are the antithesis of mathematics: “Don’t
just copy a proof, understand it” (and, moreover, even then he under-
stood the instruction).

So the doctrine certainly does not sound very sensible, besides being
inconsistent with mathematical practice. But its most significant fault is
this: it has led people to believe in, or at least to assert, the impossibility
of explanations where, in fact, there arc already explanations to look at,
in particular, the positive solutions of Hilbert's problem in Part B, Section
1{(c). Evidently, the general claim of the doctrine is refuted by any one
(non-trivial} theoretical explanation (cf. pp. 208, 209).

The principal problems of the two foundations here considered are
these. In set-theoretic foundations we search for new axioms (i.e., prop-
erties satisfied by the cumulative type structure); in combinatorial foun-
dations we search for a more detailed analysis of the basic combinatorial
notions (and thus a convincing characterisation of the limits of combina-
torial reascning)., Based on such research one can then develop new
foundational schemes. The limitations of Hilbert’s original programme
do not exclude other “idealist” foundations satisfying adequacy con-
ditions analogous to those of Part B, Section 1(c); recall Part B, Section
3, where at least one positive proposal beyond Hilbert’s original program

is mentioned. ‘

Finally it should be noted that (1) realist and (2) idealist foundations in the sence of
p. 161 are not necessarily in conflict, for even if the objects of (1) are accepted, (2) is also
needed to analyze the kind of knowledge we have of these objects. But conflicts are
likely by p. 174 lines 8 and 9.

4+ Bourbaki flirts with this doctrine and proposes an “empirical” explanation in
terms of past experience with formal systems. This is not thought through because it
says nothing about the (statistical) principles to be used in evaluating the past ex-
perience. Since these principles themselves use at least combinatorial mathematics the
examination of such principles leads back to much the same questions as those of
Part B. Cf. last sentence of Part A,



Part C

SEMANTIC VERSUS SYNTACTIC (COMBINATORIAL)
INTRODUCTION TO MATHEMATICAL LOGIC

N.B. “Semantic’ stands, as usual, for: set-theoretic semantic; in syntactic analysis
the corresponding basic combinatorial notions have to be understood (those of Part B,
Section 2 instead of those of Part A, Section 2).

1. The advantages of a semantic analysis are these:

(a) By Part B, Sections 1 and 4, syntactic or proof theoretic analysis
begins where semantic analysis leaves off: The choice of axioms and the
relation of logical consequence come from semantic analysis; they con-
stitute the data of the proof theoretic analysis.

(b) By Part A, Section 2 and Part B, Section 3 there are parts of current
mathematics which do have a semantic foundation in terms of s.c.t., but
do not have a combinatorial syntactic foundation (and are not known to
have a constructive foundation).

[(c) Several of the basic results in first order (classical) predicate logic can be stated
and proved combinatorially. But they are more easily proved “‘semantically”, i.e., by
using the fact that the rules are valid and complete for the notion of consequence of
Chapter 2; cf. Part B, Section 1 (c).

2. The weakness of semantic analysis is that several of the results of 1 (¢) hold not
only for rules which are semantically sound and complete, but for a wide class satis-
fying fairly simple combinatorial conditions, for instance the Interpolation Lemma.
Therefore the semantic proof hides the full generality of the resulis concerned. ]



