Realizing the axiom
of dependent choice

Jean-Louis Krivine

PPS Group, University Paris 7, CNRS
krivine@pps.jussieu.fr



The extended Curry-Howard correspondence

We want to get programs from usual mathematical proofs
and also understand these programes.
A possible framework for real mathematics is :

Second order classical logic with the axiom of dependent choice.
We know how to get ordinary A-terms from proofs
in second order intuitionistic logic with the only logical symbols Vv, —.
Therefore, we have to interpret two axioms : the law of Peirce
and the dependent choice axiom.
The method is: extend the A-calculus with new instructions

but restrict to weak head reduction.

This works also for classical ZF set theory with dependent choice
(not considered in this talk).



An advertising page

Advantages of this method

e We get a pleasant mathematical theory (essential).

e We get a non-trivial extension of forcing and a whole new class of models of
ZF set theory (not done in this talk).

e We interpret usual concepts of programming such as pointers, imperative
call by value, system clock, system boot, ... Forinstance, in this talk, we use
the system clock in order to interpret the countable choice axiom.

e This framework is completely open : we may add new typed instructions in
order to interpret other independent formulas

(a measurable cardinal, for example).

Drawbacks
e None.

Let us now explain the framework.



The \.-calculus

Ac (resp. AD) is the set of arbitrary (resp. closed) \.-terms.
M is the set of stacks. They are built following these rules :

1. Any variable z, and the constant cc are A\ -terms.
2.1f t,w are A.-terms and z is a variable, then (¢t)u and Az t are \.-terms.
3. If mis a stack, the constant k is a A.-term (called a continuation).

A stack is a sequence m = tq. ... .tn.p Of closed A\ -terms ¢;
ended with a stack constant p (the bottom of the stack) ;

t.w denotes the stack obtained by pushing t on the top of .
The constant cc is an example of instruction.

We may add other instructions and give, for each of them,
the corresponding rule of reduction.



Execution of processes

A process is a couple: ¢« witht € AD, = € .

A process can be performed, a A.-term alone cannot.

t is called the head of the process t * .

At each moment, the head is the active part of the process.

The rules of reduction for processes are (with 7, 7/ € Mand ¢t,u € AD) :

tuxm - txu.m (push) CCxt.mw > txkg.m (store the stack)
Axt*u.m = tlu/x] x 7w (pop) kxxtm’ = txm  (restore the stack)

For each new instruction y, we give a rule of reduction for .
For instance, if y is a stop instruction, the rule is :
X * ™ =t * p for no process t x p.
In the following, we use a ‘quote’ instruction x with the rule:
X *t.m = txngmw nt is a Church integer
which is the number of the term ¢ in a fixed recursive enumeration of A2,



Typing in classical 2nd order logic

The only logical symbols are —, ¥ and function symbols on individuals.
LisdefinedasVX X; ANBasVX{(A,B— X) —» X};

3z Flz] as VX {Vax(F[z] - X) - X}; 2 = yas VX (Xz — Xy); etc.
Let " denotexzq : A1, ..., zn : Ap (a context). Typing rules are :
2.NM+Ft: A—- B, lTrFu: A= TFtu: B.

3.N,z: A+t: B = TFXt: A— B.

4.INt:(A—-B) — A = I Fcct: A

5THt: A = TkFt:VoA(resp.VX A)if z (resp. X)isnotfreeinT.
6.Mt: Ve A=T +t: A[r/x] forevery term r.

7.T-t VX A=TFt: A[®D(zq,...,2n)/ X271 ...2ys] for each formula .
The comprehension scheme for second order logic is included in 7,
the law of Peirce in 4.



Realizability

The notion of model is the usual one, for a second order language

with only function symbols on individuals.

Simply the set of truth values is now P (1) instead of {0, 1}.

Thus, a model M is a set M of individuals (M = N in this talk), together
with an interpretation fu, : M* — M of each k-ary function symbol f.
2nd order variables of arity & are valued in P(I‘I)Mk = P(Nx MF).

To define realizability, let L be a fixed saturated set of processes, i.e.:

txm € L, '« =txm=txn’ €L
Lett € A and P C I be a truth value.
We say that ¢ | P (¢trealizesP) iff (Vr e P)txm e .
We can now define the truth value and the realizability for any formula.



Realizability (cont.)

Let A be a closed 2nd order formula with parameters in M and P (N x M*).
Its truth value, defined below, is a subset of N denoted by || A]|.
Thus, we say that ¢ | A (¢t readlizes A) iff (Vm e ||A|])t*xm e L.

Definition of || A||, by induction on A :
A atomici.e. R(a1,...,ar), R € P(I‘I)Mk, a; € M :evident.

|A— B||={tx; t|-A, me|B|}; Vz Al = | ||Ala/]||
acM
VX Al = {IAIR/X]|; R € P(Mx MF)}

Thus t|FVvrAs (Vae M)t |- Ala/x]
and t | -FVYX A< (VR e P(NxMF) ¢t |- A[R/X].
Theset {t € A; ¢ | A} isdenoted by |A].



Proofs and terms

Realizability is a fundamental tool because it is compatible
with classical second order deduction:
Adequation lemma.
If x1:P1,...,2n: Py Ft:P andift; | P; (1 <i<n)

then t[t1/x1,...,tn/xn] |- P.
This property is useful for two reasons :
1. To solve the specification problem for a given theorem &, i.e. to understand
the common behaviour of A\ -terms extracted from proofs of .
A very interesting but difficult problem. We can use the adequation lemma
and study the behaviour of \.-terms which realize ®.
2. To extend the A.-calculus with new instructions which will realize given
axioms or independent formulas (like AC, CH, etc).
In this talk, we will deal with the axiom of countable choice.



Definitions and remarks

A proof-like term is a closed A\ -term which contains no continuation.

We say that the formula & is realized if T |- & for a proof-like term 7. Thus :

e Every term which comes from a proof is proof-like.

e If the axioms are realized, every provable formula is realized.

The truth values ) and I are denoted by T and .

There is no other iff L. = (. It is a degenerate case

in which we get the usual two-valued notion of model.

If I # 0, then 7 |- Lforsomer c AQ: taketxw € 1L and T = kxt.

The choice of L is generally done according to the theorem @ for which we
want to solve the specification problem. Let us take a trivial example :
Theorem. If # comes from a proof of VX (X — X) (with any realized axioms)
thenf xt.m = tx 7w i.e.0 behaves like Az x.

Proof. Take L. = {p;p > t xn}and || X| = {=}. QED
Example: 6 = \x ccAk k.



Integers

The language has a function symbol for each recursive function.

The set of individualsis N. Let Int(x) = VX [Vy(Xy — Xsy), X0 — Xzx].
Unfortunately, the recurrence axiom Vx Int(x) is not realized. But

(*) Vey ... Ve {Int(xy),...,Int(xg) — Int(f(xq,...,21))}

is realized for each function symbol f.

Therefore, the symbol f keeps its intended meaning in the new model.
Proof. Let ¢ be a A-term which computes f (unary) and T the storage operator
defined in the next slide. Then T'¢ |- Va{Int(x) — Int(fz)}. QED
Now, if we prove a formula @ using the recurrence axiom, we know that the
restricted formula ®1™ is provable without it, using formulas (¥). Therefore :

If & is provable with realized axioms and the recurrence axiom,

then ®{" s realized.



Imperative call-by-value

Remark. s™0 |- Int(n) if sis a A-term for the successor.

Define T = AfAn(n)\g go s.f.0 (storage operator [4]).

Theorem. If (V& € || X]||) f xs"0.w € 1L then Tf | Int(n) — X.

Proof. Let || Pj|| = {s"J0.7; 7w € || X||} for0 < j < m;

|Pj|| = 0 forj > n.Then Ag gos | Vx(Pxz — Psz) and f | PO.

If v | Int(n) and 7 € || X||, then 0.7 € ||Pn||;thusv x Aggos.f.0.r € L
which gives Tf xv.w € L. QED
Let v € AQ, v |- Int(n) ;i.e. v "behaves like” the integer n.

In the A.-term fuv this data is called by name by the program f.

In the A.-term T'fv the same data is called by value by f.

| name this imperative call-by-value, to avoid confusion with

the well-known notion of (functional) call-by-value.

It is only defined for data types (booleans, integers, trees, . . . )



The countable axiom of choice

It is the following axiom scheme (for any formula F)) :

AZVx(Flx, Z(x,y)/Xy] - VX Flx, X])
In order to realize this formula, let n — m,, be a fixed surjection of N onto M.
We define a new instruction x by the reduction rule:

X * .1 = ¢ *s"0.m

forevery ¢ € AQ and = € M ; nis any integer such that 7, = =
The simplest way (at first sight) to implement this is to choose
a recursive bijection for the function n — .
We shall examine later other possibilities.



The intuitionistic countable choice axiom

We now show that x almost realizes countable choice axiom:

Theorem. There exists U : N3 — P () such that

x | Ve{vVn(Int[n] — Flz,U(x,n,y)/Xy]) — VX F|z, X]}.

Proof. By definition of |VX F[z, X]||, we have :

7 € |VX Flz, X]|| & (3R € P(MN) = € ||F[z, R/ X]||.

By countable choice, we get a function U : N3 — P () such that

w € |VX Flz, X]|| & 7 € |Flz,U(z,n,y)/Xy]||, forany n s.t. m, = 7.

Letz € N, ¢ | Vn(Int[n] — Flx,U(x,n,y)/Xy]) andr € |VX F[z, X]||. We
must show that x x ¢.7w € L and, by the rule for ¥, it suffices to show

¢ x s"0.m € I forany n s.t. m, = «. But this follows from

s"0 | Int(n), m € ||F[z,U(xz,n,y)/Xy]|| (by definition of U) and

¢ |- Int[n] = Flz,U(xz,n,y)/Xy]. QED



The intuitionistic countable choice axiom (cont.)

We have shown that the following axiom scheme is realized (by Az z) :

AUVx{Vn(Int[n] — Flz,U(xz,n,y)/Xy]) = VX Flz, X]|}

It may be called the intuitionistic countable choice axiom.

Indeed, the predicate U has been explicitly given.

The usual countable choice axiom follows easily, but not intuitionistically.

Simply define, for each z, the unary predicate Z(xz, o) as U(x, n, o) for the first

integern s.t. —=F[z,U(xz,n,y)/Xy], oras Nif there is no such integer:

Z(x,z) =Vn{Int(n),Vp(Int(p),p <n — Flz,U(x,p,y)/Xyl]),
—Flz,U(x,n,y)/Xy] = U(x,n, z)}.



Interpretation

The following variant x’ of x also realizes the intuitionistic countable choice.
Let n — t,, be a fixed surjection of N onto A9. The rule of reduction is :

X *t.m = txs"0.m
where n is any integer such that ¢,, = ¢.
The surjections n — m, or n — t, are arbitrary. If, for example, n — t, is a
recursive bijection, we may consider s™0 as an index of t.
The instruction x/ is then similar to the ‘guote’ of LISP.
Another possibility is that the integer n is given by an oracle, in other wordes,
in an interactive way. The only condition is that n — ¢, must be functional,
i.e. the integers given for different terms must be different.
A very simple implementation of such an oracle is a clock :
just increment a counter at each reduction step
and give its value when asked, i.e. when x arrives in head position.



A simple example

Theorem. Let 0[] be obtained by a proof of 3z[Int(x) A f(x) = 0]
in PA> 4 Dep. Ch., with f recursive. Let x be a stop instruction. Then

0% Vik.m = ks"0*mwith f(n) = 0.
VkrisTAxAy(y)(x)z, T is the storage operator.
Proof. We have 0 |- Vx[Int(z), f(x) = 0 — X] — X.Now take
| X|| ={r}and L = {p;p > ks"0 xm with f(n) = 0}.
We simply have to show that Vk |- Vz[Int(x), f(x) = 0 — X]
i.e. by the call-by-value theorem, that ¢t x ks™0.7m € I
ift -VX(Xf(n) — X0) (whichis f(n) = 0).
If f(n) =0,thent | VX(X — X)and ks"0Ox 7w € I.Thust x ks"0.w € L.
If f(n) #0,thent | T — L, hencetx ks"0.w € L. QED
Remark. x is clearly a pointer to an integer. In the program, we wrote Vx,
because we want it to point to a computed integer.
It is the intuitive meaning of imperative call-by-value.



References

1. S. Berardi, M. Bezem, T. Coquand On the computational content of the
axiom of choice. J. Symb. Log. 63, pp. 600-622 (1998).
2. U. Berger, P. Oliva Modified bar recursion and classical dependent choice.

Preprint.
3. J.-L. Krivine Dependent choices, ‘quote’ and the clock.

To appear in Th. Comp. Sc.
4.).-L. Krivine A general storage theorem for integers in call-by-name \-calculus.

Th. Comp. Sc. 129, pp. 79-94 (1994).

Pdf files at http://www.pps.jussieu.fr/"krivine



