
Realizing the axiom
of dependent choice

Jean-Louis Krivine

PPS Group, University Paris 7, CNRS

krivine@pps.jussieu.fr

Edinburgh, March 26, 2003

1

The extended Curry-Howard correspondence
We want to get programs from usual mathematical proofs
and also understand these programs.
A possible framework for real mathematics is :

Second order classical logic with the axiom of dependent choice.
We know how to get ordinary λ-terms from proofs
in second order intuitionistic logic with the only logical symbols ∀,→.
Therefore, we have to interpret two axioms : the law of Peirce
and the dependent choice axiom.
The method is : extend the λ-calculus with new instructions

but restrict to weak head reduction.
This works also for classical ZF set theory with dependent choice
(not considered in this talk).

2

An advertising page
Advantages of this method
• We get a pleasant mathematical theory (essential).
• We get a non-trivial extension of forcing and a whole new class of models of
ZF set theory (not done in this talk).
• We interpret usual concepts of programming such as pointers, imperative
call by value, system clock, system boot, . . . For instance, in this talk, we use
the system clock in order to interpret the countable choice axiom.
• This framework is completely open : we may add new typed instructions in
order to interpret other independent formulas
(a measurable cardinal, for example).
Drawbacks
• None.
Let us now explain the framework.

3

The λc-calculus
¤c (resp. ¤0c) is the set of arbitrary (resp. closed) λc-terms.
¦ is the set of stacks. They are built following these rules :

1. Any variable x, and the constant cc are λc-terms.
2. If t, u are λc-terms and x is a variable, then (t)u and λx t are λc-terms.
3. If π is a stack, the constant kπ is a λc-term (called a continuation).

A stack is a sequence π = t1.tn.ρ of closed λc-terms ti
ended with a stack constant ρ (the bottom of the stack) ;
t.π denotes the stack obtained by pushing t on the top of π.

The constant cc is an example of instruction.
We may add other instructions and give, for each of them,
the corresponding rule of reduction.

4

Execution of processes
A process is a couple : t ? π with t ∈ ¤0c , π ∈ ¦.
A process can be performed, a λc-term alone cannot.
t is called the head of the process t ? π.
At each moment, the head is the active part of the process.
The rules of reduction for processes are (with π, π0 ∈ ¦ and t, u ∈ ¤0c) :
tu ? π Â t ? u.π (push) cc ? t.π Â t ? kπ.π (store the stack)

λx t ? u.π Â t[u/x] ? π (pop) kπ ? t.π0 Â t ? π (restore the stack)

For each new instruction χ, we give a rule of reduction for χ.
For instance, if χ is a stop instruction, the rule is :

χ ? π Â t ? ρ for no process t ? ρ.
In the following, we use a ‘quote’ instruction χ with the rule :

χ ? t.π Â t ? nt.π nt is a Church integer
which is the number of the term t in a fixed recursive enumeration of ¤0c .

5

Typing in classical 2nd order logic
The only logical symbols are→, ∀ and function symbols on individuals.
⊥ is defined as ∀XX ; A ∧B as ∀X{(A,B → X)→ X} ;
∃xF [x] as ∀X{∀x(F [x]→ X)→ X} ; x= y as ∀X(Xx→ Xy) ; etc.
Let ¡ denote x1 : A1, . . . , xn : An (a context). Typing rules are :
1. ¡ ` xi : Ai (1 ≤ i ≤ n)
2. ¡ ` t : A→ B, ¡ ` u : A ⇒ ¡ ` tu : B.
3. ¡, x : A ` t : B ⇒ ¡ ` λx t : A→ B.
4. ¡ ` t : (A→ B)→ A ⇒ ¡ ` cc t : A.
5. ¡ ` t : A ⇒ ¡ ` t : ∀xA (resp. ∀X A) if x (resp.X) is not free in ¡.
6. ¡ ` t : ∀xA⇒ ¡ ` t : A[τ/x] for every term τ .
7. ¡ ` t : ∀X A⇒ ¡ ` t : A[©(x1, . . . , xn)/Xx1 . . . xn] for each formula©.
The comprehension scheme for second order logic is included in 7,
the law of Peirce in 4.

6

Realizability
The notion of model is the usual one, for a second order language
with only function symbols on individuals.
Simply the set of truth values is now P(¦) instead of {0,1}.
Thus, a modelM is a setM of individuals (M = N in this talk), together
with an interpretation fM :Mk →M of each k-ary function symbol f .
2nd order variables of arity k are valued in P(¦)Mk

= P(¦×Mk).
To define realizability, let⊥⊥ be a fixed saturated set of processes, i.e. :

t ? π ∈ ⊥⊥, t0 ? π0 Â t ? π⇒ t0 ? π0 ∈ ⊥⊥
Let t ∈ ¤0c and P ⊂ ¦ be a truth value.
We say that t k−P (t realizes P) iff (∀π ∈ P) t ? π ∈ ⊥⊥.

We can now define the truth value and the realizability for any formula.

7

Realizability (cont.)

LetA be a closed 2nd order formula with parameters inM and P(¦×Mk).
Its truth value, defined below, is a subset of¦ denoted by kAk.
Thus, we say that t k−A (t realizesA) iff (∀π ∈ kAk) t ? π ∈ ⊥⊥.

Definition of kAk, by induction onA :
A atomic i.e.R(a1, . . . , ak),R ∈ P(¦)Mk

, ai ∈M : evident.

kA→ Bk = {t.π ; t k−A, π ∈ kBk} ; k∀xAk= [
a∈M

kA[a/x]k

k∀X Ak= [{kA[R/X]k;R ∈ P(¦×Mk)}
Thus t k−∀xA⇔ (∀a ∈M) t k−A[a/x]
and t k−∀X A⇔ (∀R ∈ P(¦×Mk)) t k−A[R/X].
The set {t ∈ ¤0c ; t k−A} is denoted by |A|.

8

Proofs and terms
Realizability is a fundamental tool because it is compatible
with classical second order deduction :
Adequation lemma.
If x1 :©1, . . . , xn :©n ` t :© and if ti k−©i (1 ≤ i ≤ n)

then t[t1/x1, . . . , tn/xn] k−©.
This property is useful for two reasons :
1. To solve the specification problem for a given theorem©, i.e. to understand
the common behaviour of λc-terms extracted from proofs of©.
A very interesting but difficult problem. We can use the adequation lemma
and study the behaviour of λc-terms which realize©.
2. To extend the λc-calculus with new instructions which will realize given
axioms or independent formulas (like AC, CH, etc).
In this talk, we will deal with the axiom of countable choice.

9

Definitions and remarks
A proof-like term is a closed λc-term which contains no continuation.
We say that the formula © is realized if τ k−© for a proof-like term τ . Thus :
• Every term which comes from a proof is proof-like.
• If the axioms are realized, every provable formula is realized.
The truth values ∅ and¦ are denoted by> and⊥.
There is no other iff⊥⊥= ∅. It is a degenerate case
in which we get the usual two-valued notion of model.
If⊥⊥ 6= ∅, then τ k−⊥ for some τ ∈ ¤0c : take t ? π ∈ ⊥⊥ and τ = kπt.
The choice of ⊥⊥ is generally done according to the theorem © for which we
want to solve the specification problem. Let us take a trivial example :
Theorem. If θ comes from a proof of ∀X(X → X) (with any realized axioms)
then θ ? t.π Â t ? π i.e. θ behaves like λxx.
Proof. Take⊥⊥= {p ; pÂ t ? π} and kXk= {π}. QED
Example : θ = λx ccλk kx.

10

Integers
The language has a function symbol for each recursive function.
The set of individuals is N. Let Int(x) ≡ ∀X[∀y(Xy → Xsy),X0→ Xx].
Unfortunately, the recurrence axiom ∀x Int(x) is not realized. But
(*) ∀x1 . . .∀xk{Int(x1), . . . , Int(xk)→ Int(f(x1, . . . , xk))}
is realized for each function symbol f .
Therefore, the symbol f keeps its intended meaning in the new model.
Proof. Let φ be a λ-term which computes f (unary) and T the storage operator
defined in the next slide. Then Tφ k−∀x{Int(x)→ Int(fx)}. QED
Now, if we prove a formula © using the recurrence axiom, we know that the
restricted formula©Int is provable without it, using formulas (*). Therefore :
If© is provable with realized axioms and the recurrence axiom,
then©Int is realized.

11

Imperative call-by-value
Remark. sn0 k− Int(n) if s is a λ-term for the successor.
Define T = λfλn(n)λg g◦s.f.0 (storage operator [4]).
Theorem. If (∀π ∈ kXk) f ? sn0.π ∈ ⊥⊥ then Tf k− Int(n)→ X .
Proof. Let kPjk= {sn−j0.π; π ∈ kXk} for 0 ≤ j ≤ n ;
kPjk= ∅ for j > n. Then λg g◦s k−∀x(Px→ Psx) and f k−P0.
If ν k− Int(n) and π ∈ kXk, then 0.π ∈ kPnk ; thus ν ? λg g◦s.f.0.π ∈ ⊥⊥
which gives Tf ? ν.π ∈ ⊥⊥. QED
Let ν ∈ ¤0c , ν k− Int(n) ; i.e. ν ”behaves like” the integer n.
In the λc-term fν this data is called by name by the program f .
In the λc-term Tfν the same data is called by value by f .
I name this imperative call-by-value, to avoid confusion with
the well-known notion of (functional) call-by-value.
It is only defined for data types (booleans, integers, trees, . . .)

12

The countable axiom of choice
It is the following axiom scheme (for any formula F) :

∃Z∀x(F [x, Z(x, y)/Xy]→ ∀X F [x,X])

In order to realize this formula, let n 7→ πn be a fixed surjection of N onto ¦.
We define a new instruction χ by the reduction rule :

χ ? φ.π Â φ ? sn0.π

for every φ ∈ ¤0c and π ∈ ¦ ; n is any integer such that πn = π

The simplest way (at first sight) to implement this is to choose
a recursive bijection for the function n 7→ πn.
We shall examine later other possibilities.

13

The intuitionistic countable choice axiom
We now show that χ almost realizes countable choice axiom :
Theorem. There exists U : N3→ P(¦) such that
χ k−∀x{∀n(Int[n]→ F [x, U(x, n, y)/Xy])→ ∀X F [x,X]}.

Proof. By definition of k∀X F [x,X]k, we have :
π ∈ k∀X F [x,X]k⇔ (∃R ∈ P(¦)N)π ∈ kF [x,R/X]k.
By countable choice, we get a function U : N3 → P(¦) such that
π ∈ k∀X F [x,X]k⇔ π ∈ kF [x, U(x, n, y)/Xy]k, for any n s.t. πn = π.
Let x ∈ N, φ k−∀n(Int[n]→ F [x, U(x, n, y)/Xy]) and π ∈ k∀X F [x,X]k. We
must show that χ ? φ.π ∈ ⊥⊥ and, by the rule for χ, it suffices to show
φ ? sn0.π ∈ ⊥⊥ for any n s.t. πn = π. But this follows from
sn0 k− Int(n), π ∈ kF [x, U(x, n, y)/Xy]k (by definition of U) and
φ k− Int[n]→ F [x, U(x, n, y)/Xy]. QED

14

The intuitionistic countable choice axiom (cont.)

We have shown that the following axiom scheme is realized (by λxxχ) :

∃U∀x{∀n(Int[n]→ F [x, U(x, n, y)/Xy])→ ∀X F [x,X]}
It may be called the intuitionistic countable choice axiom.
Indeed, the predicate U has been explicitly given.
The usual countable choice axiom follows easily, but not intuitionistically.
Simply define, for each x, the unary predicateZ(x, •) asU(x, n, •) for the first
integer n s.t. ¬F [x, U(x, n, y)/Xy], or as N if there is no such integer :
Z(x, z) ≡ ∀n{Int(n),∀p(Int(p), p < n→ F [x, U(x, p, y)/Xy]),

¬F [x, U(x, n, y)/Xy]→ U(x, n, z)}.

15

Interpretation
The following variant χ0 of χ also realizes the intuitionistic countable choice.
Let n 7→ tn be a fixed surjection of N onto ¤0c . The rule of reduction is :

χ0 ? t.π Â t ? sn0.π
where n is any integer such that tn = t.
The surjections n 7→ πn or n 7→ tn are arbitrary. If, for example, n 7→ tn is a
recursive bijection, we may consider sn0 as an index of t.
The instruction χ0 is then similar to the ‘quote’ of LISP.
Another possibility is that the integer n is given by an oracle, in other words,
in an interactive way. The only condition is that n 7→ tn must be functional,
i.e. the integers given for different terms must be different.
A very simple implementation of such an oracle is a clock :
just increment a counter at each reduction step
and give its value when asked, i.e. when χ arrives in head position.

16

A simple example
Theorem. Let θ[χ] be obtained by a proof of ∃x[Int(x) ∧ f(x) = 0]

in PA2+ Dep. Ch., with f recursive. Let κ be a stop instruction. Then
θ ? V κ.π Â κsn0 ? π with f(n) = 0.

V κ is Tλxλy(y)(κ)x, T is the storage operator.
Proof. We have θ k−∀x[Int(x), f(x) = 0→ X]→ X . Now take
kXk = {π} and⊥⊥= {p ; pÂ κsn0 ? π with f(n) = 0}.
We simply have to show that V κ k−∀x[Int(x), f(x) = 0→ X]
i.e. by the call-by-value theorem, that t ? κsn0.π ∈ ⊥⊥
if t k−∀X(Xf(n)→ X0) (which is f(n) = 0).
If f(n) = 0, then t k−∀X(X → X) and κsn0 ? π ∈ ⊥⊥. Thus t ? κsn0.π ∈ ⊥⊥.
If f(n) 6= 0, then t k−>→ ⊥, hence t ? κsn0.π ∈ ⊥⊥. QED
Remark. κ is clearly a pointer to an integer. In the program, we wrote V κ,
because we want it to point to a computed integer.
It is the intuitive meaning of imperative call-by-value.

17

References
1. S. Berardi, M. Bezem, T. Coquand On the computational content of the
axiom of choice. J. Symb. Log. 63, pp. 600-622 (1998).
2. U. Berger, P. Oliva Modified bar recursion and classical dependent choice.
Preprint.
3. J.-L. Krivine Dependent choices, ‘quote’ and the clock.
To appear in Th. Comp. Sc.
4. J.-L. Krivine A general storage theorem for integers in call-by-name λ-calculus.
Th. Comp. Sc. 129, pp. 79-94 (1994).

Pdf files at http://www.pps.jussieu.fr/~krivine

18

