Constantes de Grothendieck et fonctions de type positif sur les sphères

J. L. KRIVINE

Université Paris, VII, Place Jussieu, Paris, France

Soit L un espace de Banach réticulé ("Banach lattice") sur \mathbb{R} . Si $x_1, ..., x_k \in L$ on définit $(x_1^2 + \cdots + x_k^2)^{1/2} = \sup\{\alpha_1 x_1 + \cdots + \alpha_k x_k; \alpha_1, ..., \alpha_k \in \mathbb{R}, \alpha_1^2 + \cdots + \alpha_k^2 = 1\}$ (cette borne supérieure existe dans L; voir [3] ou [4], où on donne une technique générale pour définir des fonctions sur les espaces de Banach réticulés). Bien entendu, pour tous les espaces de Banach réticulés usuels, qui sont des espaces de fonctions (espaces L^p , espaces d'Orlicz,...) on retrouve la définition évidente de $(x_1^2 + \cdots + x_k^2)^{1/2}$.

On peut donc définir le "complexifié" $L_{\mathbb{C}}$ de l'espace de Banach réticulé L, qui est un espace de Banach sur \mathbb{C} : c'est $L \times L$, où on pose (a+ib)(x,y) = (ax - by, bx + ay) et $\|(x,y)\| = \|(x^2 + y^2)^{1/2}\|_{L}$ $(a,b \in \mathbb{R}, x, y \in L)$.

Soient $U:L\to M$ un opérateur borné entre espaces de Banach réticulés, et $U_\mathbb{C}:L_\mathbb{C}\to M_\mathbb{C}$ le "complexifié" de U, défini de façon évidente. On se pose le problème de majorer $\parallel U_\mathbb{C}\parallel$ connaissant $\parallel U\parallel$, donc de trouver le plus petit réel C>0 tel que $\parallel U_\mathbb{C}\parallel\leqslant C\parallel U\parallel$ quels que soient l'opérateur U et les espaces L, M. On le note $K_G(2)$: c'est donc le plus petit réel C>0 tel que $\|((Ux)^2+(Uy)^2)^{1/2}\|\leqslant C\parallel U\parallel\|(x^2+y^2)^{1/2}\|$ pour $x,y\in L$, quels que soient U,L,M.

Plus généralement, on désigne par $K_G(k)$ (constante de Grothendieck d'ordre k) le plus petit réel C>0 tel que l'on ait

$$\|((Ux_1)^2 + \dots + (Ux_k)^2)^{1/2}\| \leqslant C \|U\| \|(x_1^2 + \dots + x_k^2)^{1/2}\|$$
 (1)

pour $x_1,...,x_k \in L$, quels que soient les espaces de Banach réticulés L, M et l'opérateur $U:L \to M$.

On montre sans difficulté (voir [3] ou [4]) que, dans cette définition, on peut se borner au cas où L est un espace L^{∞} , et M un espace L^1 ; on peut même les supposer de dimension finie. En particulier, $K_G(2)$ est le plus petit réel C>0 tel que $\parallel U_{\mathbb{C}} \parallel \leqslant C \parallel U \parallel$ quel que soit l'opérateur $U: l_n^{\infty} \to l_n^{-1}$ (et quel que soit $n \in \mathbb{N}$).

Il est évident que $K_G(k)$ est une suite croissante, $K_G(k) \le k$. Grothendieck [1] a montré qu'elle est majorée par $Sh(\pi/2) = 2,301...$ Sa limite est notée K_G (constante de Grothendieck). Ce résultat permet donc d'écrire l'inégalité (1) uniformément en k. On peut alors en déduire des théorèmes de factorisation

d'opérateurs (voir [5, 3]) dont le plus classique est le théorème suivant de Grothendieck [1]: tout opérateur borné $U: L^{\infty} \to L^1$ se factorise par un espace de Hilbert; on a donc $U = W \circ V$, avec $V: L^{\infty} \to H$, $W: H \to L^1$, H étant un espace de Hilbert, et de plus $||V|| ||W|| \leq K_G ||U||$.

On définit aussi (mais nous ne nous en occuperons pas ici) les constantes de Grothendieck complexes: $K_G^{\mathbb{C}}(k)$ est le plus petit réel C>0 tel que l'on ait

$$\|(\mid Uf_1\mid^2 + \cdots + \mid Uf_k\mid^2)^{1/2}\|_1 \leqslant C \|U\| \|(\mid f_1\mid^2 + \cdots + \mid f_k\mid^2)^{1/2}\|_{\infty}$$

quel que soit l'opérateur $U: L_{\mathbb{C}}^{\infty}(X) \to L_{\mathbb{C}}^{1}(\Omega, \mu)$ $(L_{\mathbb{C}}^{\infty} \text{ et } L_{\mathbb{C}}^{1} \text{ étant des espaces de fonctions complexes})$ et f_{1} ,..., $f_{k} \in L_{\mathbb{C}}^{\infty}(X)$. $K_{G}^{\mathbb{C}}$ est défini comme $\sup_{k} K_{G}^{\mathbb{C}}(k)$. On voit aisément, d'après la définition, que $K_{G}^{\mathbb{C}}(k) \leqslant K_{G}(k)$ pour tout $k \geqslant 2$: il suffit en effet de considérer $L_{\mathbb{C}}^{\infty}(C)$ et $L_{\mathbb{C}}^{1}(\Omega, \beta, \mu)$ comme espaces de Banach réticulés sur \mathbb{R} , en définissant $(f+ig) \cup (f'+ig') = f \cup f'+i(g \cup g')$; puis d'appliquer l'inégalité (1) à ces deux espaces et à l'opérateur U. On a donc $K_{G}^{\mathbb{C}} \leqslant K_{G}$. En fait, on a $K_{G}^{\mathbb{C}} \leqslant K_{G}$ car $K_{G} \geqslant \pi/2$ [1] et $K_{G}^{\mathbb{C}} \leqslant e^{1-\gamma} < \pi/2$ (Pisier [6]; γ est la constante d'Euler).

Notons que l'on a $K_G(2) \geqslant 2^{1/2}$: il suffit, pour le voir, d'appliquer l'inégalité (1) avec k=2, à l'opérateur $U: l_2^{\infty} \to l_2^{1}$, défini par $Ue_1 = \frac{1}{2}(e_1+e_2)$; $Ue_2 = \frac{1}{2}(e_1-e_2)$ (e_1 , e_2 désigne la base canonique de l_2^{∞} et aussi celle de l_2^{1}). U est une isométrie, donc $\parallel U \parallel = 1$; dans (1) on prend $x_1 = e_1$, $x_2 = e_2$ d'où le résultat.

Notons enfin que Rietz [7] a amélioré la majoration de Grothendieck en montrant que $K_G \leq 2,261$.

On se propose ici de donner de nouvelles méthodes pour majorer les $K_G(k)$; les principaux résultats en sont les suivants:

$$K_{\rm G}(2) = 2^{1/2}, \qquad K_{\rm G}(4) \leqslant \pi/2, \qquad K_{\rm G} \leqslant \pi/2 \log(1 + 2^{1/2}) = 1{,}782...$$

(c'est, très vraisemblablement, la valeur exacte de K_G). Pour les autres valeurs de k, on n'a que des résultats numériques, comme, par exemple, $K_G(3) < 1,517$.

Nous allons d'abord donner une autre interprétation des constantes $K_G(k)$ en termes de normes dans des produits tensoriels.

Soient X, Y deux espaces compacts; $\mathscr{C}(X) \otimes \mathscr{C}(Y)$ s'identifie (comme \mathbb{R} -algèbre) au sous-espace de $\mathscr{C}(X \times Y)$ formé des combinaisons linéaires des f(x) g(y) ($f \in \mathscr{C}(X)$, $g \in \mathscr{C}(Y)$; cette fonction est notée $f \otimes g$). Si $F \in \mathscr{C}(X) \otimes \mathscr{C}(Y)$, on définit sa norme (notée $\|F\|_{\mathscr{C}(X) \otimes \mathscr{C}(Y)}$ ou $\|F\|_{\infty}$):

$$||F||_{\otimes} = \inf \sum_{i=1}^{n} ||f_i|| ||g_i||$$

pour toutes les représentations de F(x, y) sous la forme $\sum_{i=1}^{n} f_i(x) g_i(y)$. Le complété de $\mathscr{C}(X) \otimes \mathscr{C}(Y)$ pour cette norme est noté $\mathscr{C}(X) \otimes \mathscr{C}(Y)$ (et appelé produit tensoriel projectif de $\mathscr{C}(X)$, $\mathscr{C}(Y)$). Son dual s'identifie (en tant qu'espace

¹ L'auteur a montré que $K_G > \pi/2$ (non encore publié).

de Banach) à l'espace des opérateurs bornés de $\mathscr{C}(X)$ dans $\mathscr{C}(Y)^*$, un tel opérateur U définissant la forme linéaire T_U telle que $\langle T_U, f \otimes g \rangle = \langle Uf, g \rangle$, pour $f \in \mathscr{C}(X)$, $g \in \mathscr{C}(Y)$.

Soient $f: X \to \mathbb{R}$ et $A \subseteq X$. Notons f_A la restriction de f à A. On montre alors la

PROPOSITION 1. Soit $F \in \mathscr{C}(X) \ \widehat{\otimes} \ \mathscr{C}(Y)$, X, Y étant deux espaces compacts. Alors $\|F\|_{\mathscr{C}(X) \ \widehat{\otimes} \mathscr{C}(Y)} = \sup\{\|F_{A \times B}\|_{\mathscr{C}(A) \ \widehat{\otimes} \mathscr{C}(B)} \ ; \ A$, B ensembles finis contenus respectivement dans X, Y}.

Soit S_k la sphère unité de \mathbb{R}^k (définie par $x_1^2+\cdots+x_k^2=1$); pr_i est la fonction définie sur S_k par $\operatorname{pr}_i(x_1,...,x_k)=x_i$. On a $(\operatorname{pr}_1)^2+\cdots+(\operatorname{pr}_k)^2=1$ sur S_k .

PROPOSITION 2. $K_G(k)$ est la norme dans $\mathscr{C}(S_k) \widehat{\otimes} \mathscr{C}(S_k)$ de la fonction $\langle x, y \rangle$ définie sur $S_k \times S_k$.

Soit $C = \|\operatorname{pr}_1 \otimes \operatorname{pr}_1 + \cdots + \operatorname{pr}_k \otimes \operatorname{pr}_k\|_{\otimes}$ la norme de $\langle x,y \rangle$ dans $\mathscr{C}(S_k)$ $\widehat{\otimes}$ $\mathscr{C}(S_k)$ (évidemment $C \leqslant k$); soient A, B finis CS_k tels que $\|\operatorname{pr}_1 \otimes \operatorname{pr}_1 + \cdots + \operatorname{pr}_k \otimes \operatorname{pr}_k\|_{\mathscr{C}(A) \otimes \mathscr{C}(B)} \geqslant C - \epsilon$ (proposition 1); soit $U : \mathscr{C}(A) \to \mathscr{C}(B)^*$ un opérateur linéaire, $\|U\| = 1$ tel que $\langle U\operatorname{pr}_1, \operatorname{pr}_1 \rangle + \cdots + \langle U\operatorname{pr}_k, \operatorname{pr}_k \rangle = \|\operatorname{pr}_1 \otimes \operatorname{pr}_1 + \cdots + \operatorname{pr}_k \otimes \operatorname{pr}_k\|_{\mathscr{C}(A) \otimes \mathscr{C}(B)} \geqslant C - \epsilon$ (il en existe, car d'après la remarque ci-dessus sur le dual d'un produit tensoriel, cela revient à chercher $T \in [\mathscr{C}(A) \otimes \mathscr{C}(B)]^*$ telle que $\|T\| = 1$ et $T(\operatorname{pr}_1 \otimes \operatorname{pr}_1 + \cdots + \operatorname{pr}_k \otimes \operatorname{pr}_k) = \|\operatorname{pr}_1 \otimes \operatorname{pr}_1 + \cdots + \operatorname{pr}_k \otimes \operatorname{pr}_k\|_{\mathscr{C}(A) \otimes \mathscr{C}(B)}$. Comme $\mathscr{C}(B)^* = L^1(B, \mu)$ (μ étant formée d'une masse unité en chaque point de B) on a

$$C-\epsilon \leqslant \sum_{i=1}^{k} \langle U \operatorname{pr}_{i}, \operatorname{pr}_{i} \rangle$$

$$= \int_{B} \sum_{i=1}^{k} (U \operatorname{pr}_{i})(\xi) \operatorname{pr}_{i}(\xi) \mu(d\xi)$$

$$\leqslant \int_{B} \left(\sum |U \operatorname{pr}_{i}(\xi)|^{2} \right)^{1/2} \mu(d\xi) \quad \left(\operatorname{puisque} \sum_{i=1}^{k} \operatorname{pr}_{i}^{2} \equiv 1 \right)$$

$$= \left\| \left(\sum_{i=1}^{k} |U \operatorname{pr}_{i}|^{2} \right)^{1/2} \right\|_{1}$$

$$\leqslant K_{G}(k) \|U\| \left\| \left(\sum_{i=1}^{k} (\operatorname{pr}_{i})^{2} \right)^{1/2} \right\|_{\infty} \quad (\operatorname{par d\'efinition de } K_{G}(k))$$

$$\leqslant K_{G}(k) \operatorname{car} \|U\| = 1 \operatorname{et} \sum_{i=1}^{k} \operatorname{pr}_{i}^{2} \equiv 1.$$

Comme ϵ est arbitraire on a donc $C \leqslant K_G(k)$.

Inversement, soit $U: L^{\infty}(X) \to L^{1}(B, \mu)$, $\|U\| = 1$, et $f_{1},...,f_{k} \in L^{\infty}(X)$. On cherche à montrer que $\|((Uf_{1})^{2} + \cdots + (Uf_{k})^{2})^{1/2}\|_{1} \leqslant C \|(f_{1}^{2} + \cdots + f_{k}^{2})^{1/2}\|_{\infty}$. On peut supposer que X, B sont finis (voir définition de $K_{G}(k)$) et que $\|(f_{1}^{2} + \cdots + f_{k}^{2})^{1/2}\|_{\infty} \leqslant 1$. Soit X' (resp. B') la réunion des supports de $f_{1},...,f_{k}$ (resp. $Uf_{1},...,Uf_{k}$). On définit $J_{1}:L^{\infty}(X') \to L^{\infty}(X)$ en posant $J_{1}(\varphi) = \varphi(f_{1}^{2} + \cdots + f_{k}^{2})^{1/2}$; $J_{2}:L^{1}(B,\mu) \to L^{1}(B',\mu)$ en posant $J_{2}(\varphi) = \varphi \cdot 1_{B'}$. On définit $V:L^{\infty}(X') \to L^{1}(B',\mu)$ par $V=J_{2}\circ U\circ J_{1}$; on pose $\varphi_{i}=f_{i}/(f_{1}^{2} + \cdots + f_{k}^{2})^{1/2}$. Il est clair que $\|J_{1}\|$, $\|J_{2}\| \leqslant 1$, donc $\|V\| \leqslant \|U\| = 1$ et $V\varphi_{i}=Uf_{i}$; de plus $\varphi_{1}^{2} + \cdots + \varphi_{k}^{2} = 1$; on a donc

$$egin{align} \|((Uf_1)^2+\cdots+(Uf_k)^2)^{1/2}\|_1 &= \|((Varphi_1)^2+\cdots+(Varphi_k)^2)^{1/2}\|_1 \ &= \int_{\mathcal{B}'} [(Varphi_1)^2+\cdots+(Varphi_k)^2]^{1/2} \, d\mu \ &= \int_{\mathcal{B}'} \left(\sum_{i=1}^k Varphi_i \cdot \psi_i\right) d\mu, \end{split}$$

avec $\psi_1, ..., \psi_k \in L^{\infty}(B', \mu), \ \psi_1^2 + \cdots + \psi_k^2 = 1$ (on prend

$$\psi_i = V\varphi_i/((V\varphi_1)^2 + \cdots + (V\varphi_k)^2)^{1/2}$$
).

Or $L^1(B', \mu) = \mathscr{C}(B')^*$ et donc $V: \mathscr{C}(X') \to \mathscr{C}(B')^*$; d'où

$$\int_{\mathcal{B}'} \left(\sum_{i=1}^{k} V \varphi_{i} \cdot \psi_{i} \right) d\mu = \sum_{i=1}^{k} \left\langle V \varphi_{i} , \psi_{i} \right\rangle \leqslant \| V \| \left\| \sum_{i=1}^{k} \varphi_{i} \otimes \psi_{i} \right\|_{\mathscr{C}(X') \otimes \mathscr{C}(\mathcal{B}')}.$$

Or $\parallel V \parallel \leqslant 1$; par ailleurs, comme ${\varphi_1}^2+\cdots+{\varphi_k}^2=1$, ${\psi_1}^2+\cdots+{\psi_k}^2=1$, on a

$$\left\| \sum_{i=1}^k \varphi_i \otimes \psi_i \right\|_{\mathscr{C}(X') \otimes \mathscr{C}(\mathcal{B}')} \leqslant \left\| \sum_{i=1}^k \operatorname{pr}_i \otimes \operatorname{pr}_i \right\|_{\mathscr{C}(\mathcal{S}_{\mathsf{b}}) \otimes \mathscr{C}(\mathcal{S}_{\mathsf{b}})} = C.$$

(en effet toute identité de la forme $x_1y_1 + \cdots + x_ky_k = \sum_{j=1}^n f_j(x_1, ..., x_k)$ $g_j(y_1, ..., y_k)$ valable sur $S_k \times S_k$, avec $f_j, g_j \in \mathcal{C}(S_k)$, permet d'écrire $\sum_{i=1}^k \varphi_i(x) \psi_i(y) = \sum_{j=1}^n f_j(\varphi_1(x), ..., \varphi_k(x)) g_j(\psi_1(y), ..., \psi_k(y))$. On a donc finalement $\|(Uf_1)^2 + \cdots + (Uf_k)^2)^{1/2}\|_1 \leq C$.

On montre de la même façon que $K_G^{\mathbb{C}}(k)$ est la norme de la fonction $\langle x,y \rangle$ définie sur $X_k \times X_k$, dans $\mathscr{C}_{\mathbb{C}}(X_k) \otimes \mathscr{C}_{\mathbb{C}}(X_k)$, X_k étant la sphère unité de \mathbb{C}^k $(X_k = \{(x_1,...,x_k) \in \mathbb{C}^k; \mid x_1\mid^2 + \cdots + \mid x_k\mid^2 = 1\})$ et $\mathscr{C}_{\mathbb{C}}(X_k)$ l'espace des fonctions continues complexes sur X_k .

On va s'intéresser tout d'abord à $K_G(2)$. On a

PROPOSITION 3. $K_G(2)$ est la norme de la fonction $\cos(x-y)$ dans $\mathscr{C}[-\pi,\pi]$ $\widehat{\otimes}$ $\mathscr{C}[-\pi,\pi]$.

On peut trouver f_i , g_i continues sur S_2 telles que

$$\sum_{i=1}^n \|f_i\|_{\infty} \|g_i\|_{\infty} \leqslant K_{G}(2) + \epsilon$$

et

$$x_1y_1 + x_2y_2 = \sum_{i=1}^n f_i(x_1, x_2) g_i(y_1, y_2)$$
 $(x_1^2 + x_2^2 = y_1^2 + y_2^2 = 1).$

Donc on a

$$\cos(x-y) = \sum_{i=1}^{n} f_i(\cos x, \sin x) g_i(\cos y, \sin y),$$

d'où $\|\cos(x-y)\|_{\otimes} \leqslant K_{G}(2) + \epsilon$. Donc $\|\cos(x-y)\|_{\otimes} \leqslant K_{G}(2)$.

Inversement, on a une représentation de $\cos(x-y)$ sous la forme $\sum_{i=1}^{n} \varphi_i(x) \cdot \psi_i(y)$ avec $\sum_{i=1}^{n} \|\varphi_i\|_{\infty} \|\psi_i\|_{\infty} \leq \|\cos(x-y)\|_{\otimes} + \epsilon$. Si $s \in S_2$, soit soit $\alpha(s) \in]-\pi$, $\pi]$ tel que $s = (\cos \alpha(s), \sin \alpha(s))$. On a alors $\langle s, t \rangle = \cos(\alpha(t) - \alpha(s)) = \sum_{i=1}^{n} \varphi_i(\alpha(s)) \psi_i(\alpha(t))$ ce qui montre que $\|\langle s, t \rangle\|_{\otimes} \leq \|\cos(x-y)\|_{\otimes} + \epsilon$ (noter qu'il faut utiliser ici la proposition 1, car $\varphi_i \circ \alpha$, $\psi_i \circ \alpha$ ne sont pas continues). Donc $K_G(2) \leq \|\cos(x-y)\|_{\otimes} + \epsilon$.

Тне́окѐме 1. $K_G(2) = 2^{1/2}$.

On a à démontrer que $\|\cos(x-y)\|_{\otimes} \leq 2^{1/2}$. Soient f, g des fonctions bornées sur \mathbb{R} , périodiques de période 2π et posons F = f * g. On a donc $F(x-y) = \int_{-\pi}^{\pi} f(x-t) \, g(t-y) (dt/2\pi)$, ce qui montre que $\|F(x-y)\|_{\otimes} \leq \|f\|_{\infty} \|g\|_{\infty}$; on a en fait $\|F(nx-ny)\|_{\otimes} \leq \|f\|_{\infty} \|g\|_{\infty}$ pour tout $n \geq 1$.

Dans la suite, on prendra

$$g(x) = \operatorname{sgn}(\cos x) = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \cos(2k+1)x$$

et f(x) sera continue, paire, et telle que $f(\pi + x) = -f(x)$. On a donc

$$f(x) = \sum_{0}^{\infty} \alpha_{2k+1} \cos(2k+1)x$$

et

$$F(x) = (f * g)(x) = a_1 \cos x + a_3 \cos 3x + \cdots$$

avec

$$a_{2k+1} = \frac{2}{\pi} \cdot \frac{(-1)^k}{2k+1} \alpha_{2k+1}$$
.

Supposons que l'on ait choisi f de façon que $\alpha_1 > |\alpha_3|/3 + |\alpha_5|/5 + \cdots$. On a alors $a_1 > |a_3| + |a_5| + \cdots$. Alors la série de Dirichlet $D(s) = a_1 + a_3/3^s + \cdots + (a_{2k+1})/(2k+1)^s + \cdots$ converge absolument pour $s \ge 0$ et on a $1/D(s) = b_1 + b_3/3^s + \cdots + (b_{2k+1})/(2k+1)^s + \cdots$; c'est une série de Dirichlet absolument convergente pour $s \ge 0$, dont les coefficients sont donnés par $a_1b_1 = 1$; $a_1b_3 + a_3b_1 = 0$;...; $\sum_{d|n} a_db_{n/d} = 0$ pour n impair >1. On a donc la relation de récurrence

$$b_n = -\frac{1}{a_1} \sum_{\substack{d \mid n \ d \neq 1}} a_d b_{n/d}$$
 pour $n > 1$.

Par ailleurs, la fonction F étant bornée sur \mathbb{R} , on a

$$\sum_{0}^{\infty} b_{2k+1} F((2k+1)x) = \sum_{k,l \geqslant 0} a_{2l+1} b_{2k+1} \cos(2k+1)(2l+1)x$$

$$= \sum_{r=0}^{\infty} \cos(2r+1)x \sum_{d \mid 2r+1} a_{d} b_{(2r+1)/d} = \cos x$$

(les regroupements de termes sont justifiés par le fait que la série double $a_{2l+1}b_{2k+1}$ est absolument convergente). On a donc $\cos(x-y)=\sum_{0}^{\infty}b_{2k+1}F((2k+1)(x-y))$ et en prenant les normes dans $\mathscr{C}[-\pi,\pi]$ \otimes $\mathscr{C}[-\pi,\pi]$, on a donc

(i)
$$K_{G}(2) \leq ||f||_{\infty} (|b_{1}| + |b_{3}| + \cdots + |b_{2k+1}| + \cdots).$$

Posons $\chi(2k+1)=2^{1/2}\cos(2k+1)(\pi/4)$ (= ± 1); on a donc $\chi(mn)=\chi(m)$ $\chi(n)$ si m,n sont entiers impairs.

Supposons que f ait été choisie de façon que α_{2k+1} soit du signe de $-(-1)^k \chi(2k+1)$ pour $k \ge 1$ (α_1 étant >0 d'après la condition précédemment imposée à f). Alors $a_1 > 0$ et a_{2k+1} est du signe de $-\chi(2k+1)$ si $k \ge 1$. On montre par récurrence que b_{2k+1} est du signe de $\chi(2k+1)$ pour $k \ge 0$: si k = 0, $b_1 = 1/a_1 > 0$; si $k \ge 1$, on a

$$b_{2k+1} = \frac{-1}{a_1} \sum_{d|2k+1} a_d b_{(2k+1)/d};$$

or $-a_d b_{(2k+1)/d}$ est du signe de $\chi(d) \chi((2k+1)/d)$ (d'après l'hypothèse d'induction appliquée à (2k+1)/d < 2k+1) c-à-d $\chi(2k+1)$; c'est donc le signe de b_{2k+1} .

D'après (i) on a donc

$$K_{G}(2) \leqslant \|f\|_{\infty} \sum_{0}^{\infty} b_{2k+1} \chi(2k+1).$$

Comme les séries de Dirichlet

$$\sum_{0}^{\infty} \frac{a_{2k+1}}{(2k+1)^s} \quad \text{et} \quad \sum_{0}^{\infty} \frac{b_{2k+1}}{(2k+1)^s}$$

sont inverses l'une de l'autre, et que $\chi(mn) = \chi(m) \chi(n)$ pour m, n impairs, on a évidemment $\sum_{0}^{\infty} b_{2k+1} \chi(2k+1) = 1/\sum_{0}^{\infty} a_{2k+1} \chi(2k+1) = 1/2^{1/2} F(\pi/4)$. On a donc $K_{G}(2) \leq ||f||_{\infty}/2^{1/2} F(\pi/4)$. On a

$$F\left(\frac{\pi}{4}\right) = (f * g)\left(\frac{\pi}{4}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) g\left(\frac{\pi}{4} - t\right) dt.$$

Or $g(t) = \operatorname{sgn}(\cos t)$, donc $g(\pi/4 - t) = 1$ si $t \in [-\pi/4, 3\pi/4]$, $g(\pi/4 - t) = -1$ si $t \in [-\pi, -\pi/4] \cup [3\pi/4, \pi]$. Donc

$$F\left(\frac{\pi}{4}\right) = \frac{1}{2\pi} \left[\int_{-\pi/4}^{3\pi/4} f(t) \, dt - \int_{-\pi}^{-\pi/4} f(t) \, dt - \int_{3\pi/4}^{\pi} f(t) \, dt \right],$$

mais comme $f(t) = f(-t) = -f(\pi + t)$ on trouve

$$F\left(\frac{\pi}{4}\right) = \frac{2}{\pi} \int_0^{\pi/4} f(t) dt.$$

Supposons enfin que $f(t) = ||f||_{\infty}$ pour $t \in [0, \pi/4]$. On a alors $F(\pi/4) = \frac{1}{2} ||f||_{\infty}$, d'où $K_G(2) \leq ||f||_{\infty}/2^{1/2}F(\pi/4) = 2^{1/2}$, ce qui est le résultat cherché.

Il reste à trouver une fonction f continue paire sur \mathbb{R} , telle que $f(t) = -f(t+\pi)$ et satisfaisant les conditions imposées, à savoir

- (1) $f(t) = ||f||_{\infty}$ pour $t \in [0, \pi/4]$,
- (2) $\alpha_1 > 0$, sgn $\alpha_{2k+1} = -(-1)^k \chi(2k+1)$ pour $k \ge 1$,
- (3) $\alpha_1 > |\alpha_3|/3 + |\alpha_5|/5 + \cdots + |\alpha_{2k+1}|/(2k+1) + \cdots$, les α_{2k+1} étant les coefficients de la série de Fourier:

$$f(t) = \sum_{0}^{\infty} \alpha_{2k+1} \cos(2k+1)t.$$

Il suffit évidemment de définir f sur $[0, \pi/2]$. On pose $f(t) = \frac{2}{3}(\pi/4)^3$ si $t \in [0, \pi/4]$; $f(t) = (\pi/4)^2(\pi/2 - t) - \frac{1}{3}(\pi/2 - t)^3$ si $t \in [\pi/4, \pi/2]$; f est alors continue, et même dérivable sur \mathbb{R} ; on a $||f||_{\infty} = \frac{2}{3}(\pi/4)^3$ d'où la propriété (1):

$$\alpha_{2k+1} = \frac{4}{\pi} \int_0^{\pi/2} f(t) \cos(2k+1)t \, dt$$

$$= \frac{4(2^{1/2})}{\pi (2k+1)^3} \chi(2k+1) \left(\frac{1}{2k+1} - (-1)^k \frac{\pi}{4}\right).$$

Comme on a $1 > \pi/4 > \frac{1}{3}$, on en déduit la propriété (2). Enfin la propriété (3) s'écrit

$$1 - \frac{\pi}{4} > \sum_{k=1}^{\infty} \frac{1}{(2k+1)^4} \left(\frac{\pi}{4} - \frac{(-1)^k}{2k+1} \right).$$

Or $\pi/4 - (-1)^k/(2k+1) \leqslant \pi/4 + \frac{1}{3}$; comme

$$\sum_{k=1}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96} - 1,$$

il suffit de vérifier que $1 - \pi/4 > (\pi/4 + \frac{1}{3})(\pi^4/96 - 1)$ ce qui est immédiat. C.Q.F.D.

Une norme équivalente sur $\mathscr{C}(S) \widehat{\otimes} \mathscr{C}(T)$

Soient S, T deux espaces compacts et $\mathscr{E}(S,T)$ l'ensemble des fonctions $F\colon S\times T\to\mathbb{R}$ qui ont une représentation de la forme $F(s,t)=\langle X_s\,,\,Y_t\rangle$ où $s\to X_s\,,\,t\to Y_t$ sont des applications continues de S, T respectivement dans un espace de Hilbert H, telles que $\|X_s\|=\|Y_t\|=\rho$ quels que soient $s\in S,\,t\in T$. On définit alors $\|F\|_*$ comme la borne inférieure des ρ^2 pour toutes ces représentations de F. On a évidemment $\|F\|_{\infty}\leqslant \|F\|_*$.

 $\mathscr{E}(S,\,T)$ munie de $\|\ \|_*$ est une \mathbb{R} -algèbre normée

et

Si $F(s,t) = \langle X_s, Y_t \rangle$, on a $\lambda F(s,t) = \langle \operatorname{sgn} \lambda \mid \lambda \mid^{1/2} X_s, \mid \lambda \mid^{1/2} Y_t \rangle$, ce qui montre que $\lambda F \in \mathscr{E}(S,T)$ et que $\|\lambda F\|_* \leqslant \|\lambda\| \|F\|_*$; pour l'inégalité inverse, changer λ en $1/\lambda$ et F en λF .

Soient $F, F' \in \mathscr{E}(S, T)$; on a donc $F(s, t) = \langle X_s, Y_t \rangle$, $F'(s, t) = \langle X_s', Y_t' \rangle$ avec $||X_s|| = ||Y_t|| = \rho$, $||X_s'|| = ||Y_t'|| = \rho'$. On peut évidemment supposer que X_s , $Y_t \in H$ et X_s' , $Y_t' \in H'$ pour $s \in S$, $t \in T$, H et H' étant deux sousespaces orthogonaux d'un espace de Hilbert \mathscr{H} . Dans ce cas, on a

$$F(s,t) + F'(s,t) = \langle X_s + X_s', Y_t + Y_t' \rangle$$

$$\|X_s + X_s'\|^2 = \|Y_t + Y_t'\|^2 = \rho^2 + \rho'^2.$$

Cela montre que $F+F'\in\mathscr{E}(S,T)$ et que $\|F+F'\|_*\leqslant \|F\|_*+\|F'\|_*$. On pouvait supposer de plus que \mathscr{H} est un espace de Hilbert de variables aléatoires gaussiennes. Dans ce cas, toute variable de H est indépendante de toute variable de H'. On a donc

$$\langle X_s X_s', Y_t Y_t' \rangle = E(X_s Y_t \cdot X_s' Y_t') = E(X_s Y_t) E(X_s' Y_t') = F(s, t) F'(s, t).$$

Or $\|X_sX_s'\|^2 = \|Y_tY_t'\|^2 = \rho^2\rho'^2$. Il en résulte que $FF' \in \mathscr{E}(S,T)$ et que $\|FF'\|_* \leqslant \|F\|_* \|F'\|_*$.

PROPOSITION 4. Soit $F: S \times T \to \mathbb{R}$, $F(s, t) = \langle X_s, Y_t \rangle$, $s \to X_s$, $t \to Y_t$ étant continues sur S, T à valeurs dans un espace de Hilbert H. Alors $||F||_* \leqslant \sup_s ||X_s|| \sup_t ||Y_t||$.

On peut supposer que $\sup_s \|X_s\| \sup_t \|Y_t\| = 1$ et on a donc $\|X_s\| \|Y_t\| \leqslant 1$ quels que soient s,t. Posons $M = \sup_s \|X_s\|$, $X_s' = X_s/M$, $Y_t' = MY_t$. Alors $\|X_s'\|$, $\|Y_t'\| \leqslant 1$ quels que soient s, t: en effet soit $s_0 \in S$ tel que $\|X_{s_0}\| = M$; on a $\|X_{s_0}\| \|Y_t\| \leqslant 1$ donc $\|Y_t\| \leqslant 1/M$ pour tout t.

Soient e_1 , e_2 deux vecteurs de norme 1, orthogonaux entre eux et à H. Posons $X_s'' = X_t' + \varphi(s) e_1$, $Y_t'' = Y_t' + \psi(t) e_2$ avec $\varphi(s) = (1 - ||X_s'||^2)^{1/2}$, $\psi(t) = (1 - ||Y_t'||^2)^{1/2}$. On a alors $F(s, t) = \langle X_s''', Y_t'' \rangle$ et $||X_s'''|| = ||Y_t''|| = 1$. Donc $||F||_* \leq 1$.

PROPOSITION 5. Soit $F \in \mathscr{E}(S, T)$, $||F||_* < 1$. Alors il existe deux applications continues: $s \to X_s$, $t \to Y_t$ de S, T respectivement dans un espace de Hilbert H telles que $F(s,t) = \langle X_s, Y_t \rangle$ et $||X_s|| = ||Y_t|| = 1$.

On a en effet $F(s,t) = \langle X_s, Y_t \rangle$ avec $||X_s|| = ||Y_t|| = \rho \leq 1$ et il suffit d'appliquer la démonstration précédente.

 $\mathscr{E}(S, T)$ est complet pour la norme $\| \cdot \|_*$

Soit $(F_n)_{n\in\mathbb{N}}$ une suite dans $\mathscr{E}(S,T)$, telle que $\|F_n\|_*<2^{-n}$. On cherche $F\in\mathscr{E}(S,T)$ tel que $\|F_0+\cdots+F_n-F\|_*\to 0$ quand $n\to\infty$. Pour chaque n, on a $F_n(s,t)=1/2^n\langle X_s^n, Y_t^n\rangle$, les fonctions $s\to X_s^n$, $t\to Y_t^n$ étant continues sur S, T, à valeurs dans un espace de Hilbert $H_n\|X_s^n\|,\|Y_t^n\|\leqslant 1$. On peut évidemment supposer que les H_n sont des sous-espaces deux-à-deux orthogonaux d'un espace de Hilbert H. Posons $X_s=\sum_{n=0}^\infty 2^{-n/2}X_s^n$; $Y_t=\sum_{n=0}^\infty 2^{-n/2}Y_t^n$. Il est clair que X_s , Y_t sont des fonctions continues de s, t (somme de séries normalement convergentes de fonctions continues). Posons $F(s,t)=\langle X_s,Y_t\rangle$; on a donc $F\in\mathscr{E}(S,T), F-(F_0+\cdots+F_n)=\langle \sum_{n=1}^\infty 2^{-k/2}X_s^k,\sum_{n+1}^\infty 2^{-k/2}Y_t^k\rangle$; d'où

$$||F - (F_0 + \dots + F_n)||_* \leqslant \sup_s \left\| \sum_{n+1}^{\infty} 2^{-k/2} X_s^k \right\| \sup_t \left\| \sum_{n+1}^{\infty} 2^{-k/2} Y_t^k \right\| \leqslant \frac{1}{2^n}.$$
C.Q.F.D.

Théorème 2. $\mathscr{E}(S,T) = \mathscr{C}(S) \widehat{\otimes} \mathscr{C}(T)$ et la norme $\| \cdot \|_*$ est équivalente à celle du produit tensoriel. Plus précisément, si $F \in \mathscr{C}(S) \widehat{\otimes} \mathscr{C}(T)$ on a $\| F \|_* \leqslant \| F \|_{\otimes} \leqslant \| F \|_* \pi/2 \log(1 + 2^{1/2})$.

Si $f \in \mathscr{C}(S)$, $g \in \mathscr{C}(T)$ alors $f(s) g(t) \in \mathscr{E}(S, T)$ et $||f(s) g(t)||_* \leq ||f||_{\infty} ||g||_{\infty}$ (on applique la proposition 4 avec $H = \mathbb{R}$). Par combinaison linéaire, il en résulte que $\mathscr{C}(S) \otimes \mathscr{C}(T) \subset \mathscr{E}(S, T)$ et que $||F||_* \leq ||F||_{\otimes}$ pour toute $F \in \mathscr{C}(S) \otimes \mathscr{C}(T)$. Pour l'autre inégalité, on utilisera le

LEMME 1. Soient $F \in \mathscr{E}(S,T)$ et a>0 tels que $||F||_{\infty} \leqslant \pi/2a$ et $||\sin aF||_{*} < 1$. Alors $||F||_{\infty} \leqslant \pi/2a$.

Noter que $\sin(aF) \in \mathscr{E}(S, T)$ puisque $\mathscr{E}(S, T)$ est une algèbre de Banach. Soit (X, Y) un couple de variables gaussiennes normales ($||X||_2 = ||Y||_2 = 1$). Un calcul aisé montre que

$$E(\operatorname{sgn} X \cdot \operatorname{sgn} Y) = (2/\pi) \operatorname{arc} \sin E(XY)$$
.

Comme $\|\sin(aF)\|_* < 1$, on a d'après la proposition 5:

$$\sin aF(s,t) = \langle X_s, Y_t \rangle$$

 X_s , Y_t étant fonctions continues de s, t à valeurs dans un espace de Hilbert H, $\|X_s\| = \|Y_t\| = 1$. On peut évidemment supposer que H est un espace de variables aléatoires gaussiennes sur l'espace de probabilité (Ω, \mathcal{B}, P) . D'après la remarque précédente, on a alors

$$E(\operatorname{sgn} X_s \cdot \operatorname{sgn} Y_t) = \frac{2}{\pi} \operatorname{arc} \sin \langle X_s, Y_t \rangle = \frac{2a}{\pi} F(s, t).$$

Donc

$$F(s,t) = \frac{\pi}{2a} \int_{\Omega} \operatorname{sgn} X_s(\omega) \operatorname{sgn} Y_t(\omega) P(d\omega).$$

Cette formule montre immédiatement que si S', T' sont des parties finies de S, T alors $||F(s,t)||_{\mathscr{C}(S')\otimes\mathscr{C}(T')} \leqslant \pi/2a$. D'où le résultat par la proposition 1. C.Q.F.D.

Soit alors $F \in \mathcal{E}(S, T)$. On a

$$\|\sin(aF)\|_{*} = \left\|\sum_{0}^{\infty} (-1)^{n} \frac{(aF)^{2n+1}}{(2n+1)!}\right\|_{*} \leq \operatorname{Sh}(a\|F\|_{*})$$

puisque $\mathscr{E}(S, T)$ est une algèbre de Banach. Posons $a = [\log(1+2^{1/2})-\epsilon]/\|F\|_*$, $0 < \epsilon < \log(1+2^{1/2})$. Alors $\operatorname{Sh}(a\|F\|_*) < 1$ donc $\|\sin(aF)\|_* < 1$, et d'après le lemme 1, on a

$$||F||_{\otimes} \leqslant \pi/2a = ||F||_* \pi/2(\log(1+2^{1/2})-\epsilon).$$

D'où le résultat en faisant tendre ϵ vers 0.

Corollaire. $K_{\rm G} \leqslant \pi/2 \log(1+2^{1/2})$.

On a vu que $K_G(k)$ est la norme de $\langle s,t \rangle$ dans $\mathscr{C}(S_k) \otimes \mathscr{C}(S_k)$. On a donc $K_G(k) \leq \|\langle s,t \rangle\|_* \pi/2 \log(1+2^{1/2})$. Mais, évidemment, par définition de $\|\cdot\|_*$, on a $\|\langle s,t \rangle\|_* \leq 1$ (en fait $\|\langle s,t \rangle\|_* = 1$ car $\|\cdot\|_* \geqslant \|\cdot\|_\infty$). On a donc $K_G(k) \leq \pi/2 \log(1+2^{1/2})$ pour tout $k \in \mathbb{N}$. C.Q.F.D.

On se propose maintenant de majorer $K_G(k) = \|\langle s,t \rangle\|_{\mathscr{C}(S_k) \otimes \mathscr{C}(S_k)}$ en utilisant le lemme 1. On est donc amené à calculer $\|\sin a \langle s,t \rangle\|_*$ dans $\mathscr{E}(S_k,S_k)$; en appelant a_0 la borne supérieure des $a \leqslant \pi/2$ tels que $\|\sin a \langle s,t \rangle\|_* < 1$, on aura $K_G(k) \leqslant \pi/2a_0$. On va, plus généralement, calculer $\|F(\langle s,t \rangle)\|_*$ pour $F: [-1,1] \to \mathbb{R}$.

Fonctions de type positif sur les sphères

S étant un ensemble quelconque, une fonction $F: S \times S \to \mathbb{R}$ est dite de type positif si F(s,t) = F(t,s) pour $s,t \in S$ et $\sum_{1 \le i,j \le n} a_i a_j F(s_i,s_j) \ge 0$ quels que soient $s_1, ..., s_n \in S$ et $a_1, ..., a_n \in \mathbb{R}$. Cela équivaut à dire qu'il existe une famille $(X_s)_{s \in S}$ dans un espace de Hilbert H telle que $F(s,t) = \langle X_s, X_t \rangle$.

PROPOSITION 6. Soient S un espace compact et F continue sur $S \times S$ et de type $\geqslant 0$. Alors $F \in \mathscr{C}(S) \mathbin{\widehat{\otimes}} \mathscr{C}(S)$ et $\|F\|_* = \|F\|_{\infty}$.

On a $F(s,t)=\langle X_s\,,\,X_t\rangle$ et donc $\|X_s-X_{s_0}\|^2=F(s,s)+F(s_0\,,s_0)-2F(s,s_0)\to 0$ quand $s\to s_0$ puisque F est continue. Donc X_s est fonction continue sur S et $F\in \mathscr{E}(S,S)$. On a

$$\|F\|_*\leqslant \sup_s \|X_s\|\sup_t \|X_t\|=\sup_s \|X_s\|_2^2=\sup_s F(s,s)\leqslant \|F\|_\infty$$
 ,

d'où l'égalité.

PROPOSITION 7. Soit $F \in \mathcal{C}(S) \otimes \mathcal{C}(S)$, symétrique et constante sur la diagonale de $S \times S$. Alors pour tout $\epsilon > 0$ il existe deux fonctions G, G' continues de type positif sur $S \times S$ telles que F = G - G' et $||F||_* \ge ||G||_* + ||G'||_* - \epsilon$.

Supposons $\|F\|_*=1-\epsilon$; d'après la proposition 5 on a $F(s,t)=\langle X_s\,,\,Y_t\rangle$ $\|X_s\|=\|Y_t\|=1,\,X_s\,,\,Y_t$ fonctions continues à valeurs dans l'espace de Hilbert H. On a donc $\langle X_s\,,\,Y_t\rangle=\langle X_t\,,\,Y_s\rangle$ et $\langle X_s\,,\,Y_s\rangle$ est constant sur S. Posons $G(s,t)=\frac{1}{4}\langle X_s+Y_s\,,\,X_t+Y_t\rangle;\,G'(s,t)=\frac{1}{4}\langle X_s-Y_s\,,\,X_t-Y_t\rangle.$ G et G' sont donc continues de type $\geqslant 0$ sur $S\times S$ et on a bien F(s,t)=G(s,t)-G'(s,t). D'autre part: $\|G\|_*=\sup_s\frac{1}{4}\|X_s+Y_s\|^2=\frac{1}{4}\|X_s+Y_s\|^2$ quel que soit $s\in S$, car $\|X_s\|^2=\|Y_s\|^2=1$ et $\langle X_s\,,\,Y_s\rangle$ ne dépend pas de s. De même $\|G'\|_*=\frac{1}{4}\|X_s-Y_s\|^2$. Il en résulte que

$$\|G\|_* + \|G'\|_* = \frac{1}{2}(\|X_s\|^2 + \|Y_s\|^2) = 1 \leqslant \|F\|_* + \epsilon.$$
 C.Q.F.D.

PROPOSITION 8. Soit $F: [-1, 1] \to \mathbb{R}$ une fonction continue telle que $F(\langle s, t \rangle) \in \mathscr{C}(S_k) \otimes \mathscr{C}(S_k)$. Pour tout $\epsilon > 0$, il existe deux fonctions continues $G, G': [-1, 1] \to \mathbb{R}$, telles que $G(\langle s, t \rangle)$, $G'(\langle s, t \rangle)$ soient de type positif sur $S_k \times S_k$ telles que F = G - G' et $||F||_* \geqslant G(1) + G'(1) - \epsilon$.

D'après la proposition précédente, il existe deux fonctions $G_0(s, t)$, $G_1(s, t)$ continues de type ≥ 0 sur $S_k \times S_k$ telles que $F(\langle s, t \rangle) = G_0(s, t) - G_1(s, t)$ et

 $||F(\langle s,t\rangle)||_* \geqslant ||G_0||_* + ||G_1||_* - \epsilon = ||G_0||_{\infty} + ||G_1||_{\infty} - \epsilon$. Soit Γ le groupe des rotations de S_k , P la probabilité de Haar sur Γ . On a donc

$$F(\langle s,t\rangle) = \int_{\Gamma} F(\langle \sigma s,\sigma t\rangle) P(d\sigma) = \int_{\Gamma} G_0(\sigma s,\sigma t) P(d\sigma) - \int_{\Gamma} G_1(\sigma s,\sigma t) P(d\sigma).$$

Les fonctions $\int_{\Gamma} G_i(\sigma s, \sigma t) P(d\sigma)$ (i = 0, 1) sont continues sur $S_k \times S_k$ et de type $\geqslant 0$. Comme elles sont invariantes par rotation, elles sont de la forme $G_i'(\langle s, t \rangle)$ (i = 0, 1) G_i' étant une fonction continue de [-1, 1] dans \mathbb{R} . Par ailleurs $G_i'(1) \leqslant ||G_i||_{\infty} = ||G_i||_{*}$ d'où $||F||_{*} \geqslant G_0(1) + G_1(1) - \epsilon$. C.Q.F.D.

Il faut bien entendu noter que si $G(\langle s,t \rangle)$ est de type $\geqslant 0$ sur $S_k \times S_k$, on a

$$||G(\langle s, t \rangle)||_* = ||G||_{\infty} = G(1),$$

 $(\text{puisque} \parallel G \parallel_{\infty} \leqslant \parallel G(\langle s, t \rangle) \parallel_{*} = \sup_{s} G(\langle s, t \rangle) = G(1) \leqslant \parallel G \parallel_{\infty}).$

Rappelons quelques résultats sur la sphère unité S_k de \mathbb{R}^k (voir, par exemple, [2]). Soit μ la probabilité invariante par rotation sur S_k .

Désignons par H_n l'espace des polynômes à k variables, homogènes de degré n et harmoniques sur \mathbb{R}^k . H_n est de dimension

$$N(n) = (k + 2n - 2)(k + n - 3)!/n!(k - 2)!,$$

et on a la décomposition en sous-espaces orthogonaux: $L^2(S_k, \mu) = H_0 \oplus H_1 \oplus \cdots \oplus H_n \oplus \cdots$. Soit $\Delta_{n,j}(s)$ $(1 \leqslant j \leqslant N(n))$ une base orthonormée de H_n . Alors $\sum_{j=1}^{N(n)} \Delta_{n,j}(s) \Delta_{n,j}(t)$ est une fonction sur $S_k \times S_k$ qui ne dépend que de $\langle s, t \rangle$; elle s'écrit donc $P_n(\langle s, t \rangle)$, $P_n(x)$ étant un polynôme de degré n à une variable. D'après sa définition, il est clair que $P_n(\langle s, t \rangle)$ est une fonction de type $\geqslant 0$ sur $S_k \times S_k$. On a donc $|P_n(x)| \leqslant P_n(1)$ pour $x \in [-1, 1]$.

Sur [-1, 1], on définit la probabilité

$$\pi_k(dx) = \frac{\Gamma(k/2)}{\pi^{1/2}\Gamma((k-1)/2)} (1-x^2)^{(k-3)/2} dx.$$

Pour toute fonction continue $F: [-1, 1] \to \mathbb{R}$ on a alors:

$$\int_{-1}^{1} F(x) \, \pi_k(dx) = \int_{S_k} F(\langle s, t \rangle) \, \mu(ds)$$

(noter que le second membre ne dépend pas de t, parce que μ est invariante par rotation).

La suite $P_n(x)$ (n = 0, 1,...) forme un système orthogonal complet dans $L^2([-1, 1], \pi_k)$, et on a la fonction génératrice:

$$\sum_{n=0}^{\infty} r^n P_n(x) = (1 - r^2)(1 - 2rx + r^2)^{-k/2}.$$

Enfin $P_n(x)$ est identique, au produit près par un réel >0, au polynôme $(-1)^n(1-x^2)^{-\alpha}(d^n/dx^n)(1-x^2)^{n+\alpha}$, avec $\alpha=(k-3)/2$.

Théorème 3. Pour qu'une fonction continue $F: [-1, 1] \to \mathbb{R}$ soit telle que $F(\langle s, t \rangle)$ est de type ≥ 0 sur $S_k \times S_k$, il faut et il suffit que $F(x) = \sum_0^x a_n P_n(x)$ avec $a_n \geq 0$ et $\sum_0^\infty a_n P_n(1) < +\infty$.

La condition est évidemment suffisante. Pour voir qu'elle est nécessaire, on écrit $F(x) = \sum_{0}^{\infty} a_{n} P_{n}(x)$ (décomposition de F dans $L^{2}([-1, 1], \pi_{k})$). Alors a_{n} est du signe de

$$\int_{-1}^{1} F(x) P_n(x) \pi_k(dx) = \int_{S_k \times S_k} F(\langle s, t \rangle) P_n(\langle s, t \rangle) \mu(ds) \mu(dt)$$

$$= \sum_{j=1}^{N(n)} \int_{S_k \times S_k} F(\langle s, t \rangle) \Delta_{n,j}(s) \Delta_{n,j}(t) \mu(ds) \mu(dt) \geqslant 0$$

puisque $F(\langle s,t\rangle)$ est de type $\geqslant 0$ sur $S_k \times S_k$. On a donc $a_n \geqslant 0$ pour tout n. Comme il existe une suite d'entiers n_p telle que $\sum_0^{n_p} a_n P_n(x) \to F(x)$ presque partout sur [-1,1] (convergence d'une série dans L^2), en faisant tendre x vers 1 on voit que $\sum_0^{\infty} a_n P_n(1) < +\infty$.

Théorème 4. Soit F une fonction continue réelle sur [-1, 1]. Pour que $F(\langle s, t \rangle) \in \mathcal{C}(S_k) \otimes \mathcal{C}(S_k)$ il faut et il suffit que $F(x) = \sum_{0}^{\infty} a_n P_n(x)$ avec $a_n \in \mathbb{R}$, $\sum_{0}^{\infty} |a_n P_n(1)| < +\infty$. On a alors $||F(\langle s, t \rangle)||_* = \sum_{0}^{\infty} |a_n P_n(1)|$.

Ce résultat est immédiat d'après le théorème précédent et la proposition 8. Noter que, dans ce théorème, on peut prendre pour P_n n'importe quelle suite de polynômes orthogonaux sur [-1, 1] pour la mesure $(1 - x^2)^{(k-3)/2} dx$, P_n étant de degré n (en effet, le théorème ne change pas si on change P_n en $\lambda_n P_n$, $\lambda_n \neq 0$).

Proposition 9. Soit $F \in L^2([-1, 1], \pi_k)$, $F = \sum_{n=0}^{\infty} a_n P_n$. Alors, $si \mid r \mid < 1$, on a

$$\sum_{n=0}^{\infty} a_n r^n P_n(1) = (1-r^2) \int_{-1}^{1} F(x) (1-2rx+r^2)^{-k/2} \pi_k(dx).$$

Il suffit de le vérifier pour $F=P_n$. Le second membre est alors

$$\int_{-1}^{1} P_n(x) \left[\sum_{m=0}^{\infty} r^m P_m(x) \right] \pi_k(dx) = r^n \int_{-1}^{1} P_n^2(x) \, \pi_k(dx)$$

$$= r^n \int_{S_k} P_n^2(s, u) \, \mu(du) = r^n P_n(1). \quad \text{C.Q.F.D.}$$

PROPOSITION 10. Soit F une fonction réelle continue impaire sur [-1, 1] telle que $F(\langle s, t \rangle) \in \mathscr{C}(S_k) \widehat{\otimes} \mathscr{C}(S_k)$. On écrit $F(x) = \sum_{n=0}^{\infty} a_{2n+1} P_{2n+1}(x)$. On a alors

$$i \sum_{0}^{\infty} (-1)^{n} a_{2n+1} P_{2n+1}(1)$$

$$= 2^{1-k/2} \frac{\Gamma(k/2)}{\pi^{1/2} \Gamma((k-1)/2)} \lim_{\epsilon \to 0} \int_{-1}^{1} F(x) (1-x^{2})^{(k-3)/2} (\epsilon - ix)^{-k/2} dx.$$

Le polynôme P_n étant de la parité de n, l'écriture de F dans la base orthogonale P_n ne comporte que les termes d'ordre impair. D'après la proposition précédente, on a

$$i\sum_{n=0}^{\infty} (-1)^n a_{2n+1} P_{2n+1}(1) = \lim_{r \to i} (1-r^2) \int_{-1}^{1} F(x) (1-2rx+r^2)^{-k/2} \pi_k(dx)$$

ce qui donne aisément le résultat énoncé.

C.Q.F.D.

Or, en prenant $F(x) = x^{2n+1}$, on peut calculer explicitement le second membre; on trouve:

$$\frac{2^{1-k/2}\Gamma(k/2)}{\pi^{1/2}\Gamma((k-1)/2)} \lim_{\epsilon \to 0} \int_{-1}^{1} (1-x^2)^{(k-3)/2} (\epsilon - ix)^{-k/2} x^{2n+1} dx$$

$$= i(-1)^n \frac{(k-4)(k-8)\cdots(k-4n)}{(k+2)(k+6)\cdots(k+4n-2)} \qquad \text{(pour } n \ge 1\text{)}$$

$$= i \qquad \qquad \text{(pour } n = 0\text{)}.$$

Il en résulte immédiatement:

PROPOSITION 11. Soit $F: [-1, 1] \to \mathbb{R}$ telle que

$$egin{align} F(x) &= \sum_{0}^{\infty} b_{2n+1} x^{2n+1} & \left(\operatorname{avec} \sum_{0}^{\infty} |b_{2n+1}| < \infty
ight) \ &= \sum_{0}^{\infty} a_{2n+1} P_{2n+1}(x). \end{split}$$

Alors

$$\sum_{n=0}^{\infty} (-1)^n a_{2n+1} P_{2n+1}(1) = \sum_{n=0}^{\infty} (-1)^n b_{2n+1} A_{2n+1},$$

où
$$A_1=1;$$

$$A_{2^{n+1}}=\frac{(k-4)(k-8)\cdots(k-4n)}{(k+2)(k+6)\cdots(k+4n-2)}\,.$$

En particulier, pour k = 4, on a

$$\sum_{n=0}^{\infty} (-1)^n a_{2n+1} P_{2n+1}(1) = b_1.$$

Prenons maintenant $F(x) = \sin ax$; lorsqu'on écrit sin $ax = \sum_{0}^{\infty} a_{2n+1} P_{2n+1}(x)$, a_{2n+1} a le signe de $\int_{-1}^{1} \sin(ax) P_{2n+1}(x) (1-x^2)^{\alpha} dx$ ($\alpha = (k-3)/2$) donc le signe de

$$-\int_{-1}^{1} \sin(ax) \cdot \frac{d^{2n+1}}{(dx)^{2n+1}} (1-x^2)^{2n+1+\alpha} dx.$$

En intégrant 2n+1 fois par parties, on trouve que cette intégrale vaut $(-1)^n a^{2n+1} \int_{-1}^1 \cos(ax) (1-x^2)^{\alpha} dx$. Si $0 \le a \le \pi/2$, $\cos ax$ est ≥ 0 sur [-1, 1] et donc $(-1)^n a_{2n+1} \ge 0$. On a donc alors $\sum_{0}^{\infty} (-1)^n a_{2n+1} P_{2n+1}(1) = \sum_{0}^{\infty} |a_{2n+1} P_{2n+1}(1)| = ||\sin(a\langle s, t \rangle)||_*$. On a ainsi montré

PROPOSITION 12. Si $0 \le a \le \pi/2$, la norme $\|\sin a < s, t >\|_*$ (dans l'espace $\mathscr{C}(S_k) \widehat{\otimes} \mathscr{C}(S_k)$) vaut $\sum_{0}^{\infty} (A_{2n+1}/(2n+1)!) a^{2n+1}$. En particulier si k=4, on a $\|\sin a < s, t >\|_* = a$; si k=3, $\|\sin a < s, t >\|_* = \sum_{0}^{\infty} (-1)^n (a^{2n+1}/(2n+1)!(4n+1))$.

On choisit alors a tel que $\|\sin a\langle s,t\rangle\|_*=1$ et on a vu que $K_G(k)\leqslant \pi/2a$. Cela donne une majoration de $K_G(k)$ pour chaque $k\geqslant 2$. En particulier $K_G(4)\leqslant \pi/2$; $K_G(3)<1,517$.

REFERENCES

- A. GROTHENDIECK, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo 8 (1956), 1-79.
- 2. H. Hochstadt, "Functions of Mathematical Physics," Wiley, New York, 1971.
- J. L. KRIVINE, Théorèmes de factorisation dans les espaces réticulés, Exp. XXII-XXIII, Séminaire Maurey-Schwartz, 1973-74.
- 4. J. LINDENSTRAUSS AND L. TZAFRIRI, "Classical Banach Spaces," Vol. 2.
- B. MAUREY, "Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espace L^p(Ω, μ)," Astérisque No. 11, Soc. Math. France, 1974.
- 6. G. Pisier, Grothendieck's theorem for non-commutative ℂ*-algebras with an appendix on Grothendieck's constants, J. Functional Analysis 29 (1978), 397-415.
- 7. R. RIETZ, A proof of the Grothendieck inequality, Israel J. Math. 19 (1974), 271-276.