Some properties of realizability models

Jean-Louis Krivine

PPS Group, University Paris-Diderot, CNRS krivine@pps.univ-paris-diderot.fr

Chambéry, June 2012

Outline

We give some general properties of classical realizability and we look at some particular models :

- True *arithmetical formulas*, and even true Π_1^1 *formulas* are realized ; thus, realizability models cannot give indecidability results in arithmetic.
- A model is given by forcing iff its Boolean algebra <u>]</u>2 is trivial.
- We build models in which 12 is non trivial and finite.
- Following T. Ehrhard and T. Streicher, the usual models of lambda-calculus have, in fact, a structure of realizability algebra.

Therefore, they give rise to realizability models of ZF.

We study a simple case, in which $\exists 2$ is non trivial and integers are preserved.

A game on first order formulas

We consider first order formulas written with :

→, \forall , \top , \bot , \neq , predicate constants, function symbols for recursive functions. A 1st order formula has the form $\forall \vec{x} [\Phi_1, ..., \Phi_n \rightarrow A]$ where $\Phi_1, ..., \Phi_n$ are 1st order formulas and A is atomic (i.e. $Rt_1 ... t_k$ or $t_0 \neq t_1$ or \top or \bot). In the following, we only consider *closed* 1st order formulas. The atomic closed formula $t_0 \neq t_1$ is interpreted as \top (resp. \bot) if it is true (resp. false) in \mathbb{N} . We define a game with two players : \exists (the *client*) and \forall (the *server*). At each step, the *position* is a sequent $\mathscr{U} \vdash \mathscr{A}$ with closed 1st order formulas ; the formulas of \mathscr{A} are atomic and $\bot \in \mathscr{A}$; \mathscr{U} and \mathscr{A} increase at each step. The game starts with a sequent $\mathscr{U}_0 \vdash \mathscr{A}_0$.

A move in this game is as follows : Player \exists chooses $\Psi \in \mathscr{U}, \Psi = \forall \vec{\gamma} [\Phi_1(\vec{\gamma}), \dots, \Phi_n(\vec{\gamma}) \rightarrow B(\vec{\gamma})]$ and $\vec{j} \in \mathbb{N}^l$ such that $B(\vec{j}) \in \mathscr{A}$ (if this is impossible, then \exists has lost). Player \forall chooses a formula $\Phi \in \mathcal{V} = \{\Phi_1(\vec{j}), \dots, \Phi_n(\vec{j})\},\$ $\Phi \equiv \forall \vec{x} [\Psi_1(\vec{x}), \dots, \Psi_m(\vec{x}) \to A(\vec{x})] ; \forall \text{ chooses also } \vec{i} \in \mathbb{N}^k.$ The atomic formula $A(\vec{i})$ must not be \top (otherwise, \forall has lost). Then $\Psi_1(\vec{i}), \dots, \Psi_m(\vec{i})$ are added to \mathscr{U} and $A(\vec{i})$ is added to \mathscr{A} . \exists wins iff \forall cannot play at some step (every formula of \mathcal{V} ends with \top , in particular if $\mathcal{V} = \emptyset$). In fact, player \forall tries to build a model over \mathbb{N} in which the formula $\mathcal{V}_0 = \bigwedge \mathscr{U}_0 \to \bigvee \mathscr{A}_0$ is false, and \exists tries to avoid this :

Theorem. i) Any model \mathcal{M} over \mathbb{N} s.t. $\mathcal{M} \not\models \mathcal{V}_0$ gives a winning strategy for \forall . ii) There exists a "trivial" strategy for the player \exists such that each play \exists loses using it, gives a model \mathcal{M} over \mathbb{N} , $\mathcal{M} \not\models \mathcal{V}_0$.

i) We define a strategy for \forall such that, at each step :

every formula of \mathscr{U} (resp. \mathscr{A}) is true (resp. false) in \mathscr{M} .

This is true at the beginning of the game.

Then \exists chooses $\Psi \in \mathscr{U}, \Psi = \forall \vec{y} [\Phi_1(\vec{y}), \dots, \Phi_n(\vec{y}) \to B(\vec{y})]$ and $\vec{j} \in \mathbb{N}^l$ such that $B(\vec{j}) \in \mathscr{A}$. Therefore, $\mathscr{M} \models \neg B(\vec{j})$ and $\mathscr{M} \models \Psi$. Thus, \forall can choose $\Phi \in \mathscr{V} = \{\Phi_1(\vec{j}), \dots, \Phi_n(\vec{j})\}$ s.t. $\mathscr{M} \models \neg \Phi$. Let $\Phi = \forall \vec{x} [\Psi_1(\vec{x}), \dots, \Psi_m(\vec{x}) \to A(\vec{x})]$. Then \forall can choose $\vec{i} \in \mathbb{N}^k$ s.t. $\mathscr{M} \models \Psi_1(\vec{i}), \dots, \Psi_m(\vec{i})$ and $\neg A(\vec{i})$. Finally $\Psi_1(\vec{i}), \dots, \Psi_m(\vec{i})$ are added to \mathscr{U} and $A(\vec{i})$ to \mathscr{A} . Thus \mathscr{U} and the negation of formulas of \mathscr{A} remain true in \mathscr{M} . ii) Here is the "trivial" strategy for \exists :

fix an enumeration of all ordered pairs $\langle \Psi, \hat{j} \rangle$ (Ψ is a closed formula, $\hat{j} \in \mathbb{N}^{l}$). At each step, \exists chooses the first allowed pair $\langle \Psi, \hat{j} \rangle$, not chosen before. Suppose \exists loses some play with this strategy. Let \mathscr{M} be the model which satisfies exactly the closed atomic formulas never put in \mathscr{A} during this play. A pair $\langle \Psi, \hat{j} \rangle$ is called *acceptable* if Ψ is put in \mathscr{U} and $B(\hat{j})$ in \mathscr{A} at some step (not necessarily the same) where $B(\hat{y})$ is the final atom of Ψ . Every acceptable pair is effectively played by \exists at some step : namely when every acceptable pair strictly less than it has been played. We prove, by induction, that \mathscr{M} satisfies every formula Ψ which is put in \mathscr{U} and the negation of every formula Φ chosen by \forall during the play.

Proof for Ψ . The result is clear if Ψ is atomic because, if Ψ is both in \mathcal{U} and \mathscr{A} then $\langle \Psi, \phi \rangle$ is acceptable and thus will be chosen by \exists ; then \exists wins. Otherwise, let $\Psi = \forall \vec{y} [\Phi_1(\vec{y}), \dots, \Phi_n(\vec{y}) \rightarrow B(\vec{y})]$. We must show that $\mathcal{M} \models \Phi_1(\vec{j}), \dots, \Phi_n(\vec{j}) \to B(\vec{j})$ for every $\vec{j} \in \mathbb{N}^k$. This is clear if $B(\vec{j})$ is never put in \mathscr{A} , because $\mathscr{M} \models B(\vec{j})$. Otherwise, $\langle \Psi, \vec{j} \rangle$ is acceptable and is chosen by \exists at some step. Then $\mathcal{V} = \{\Phi_1(\vec{j}), \dots, \Phi_n(\vec{j})\}$ and $\Phi_1(\vec{j})$, for instance, is chosen by \forall . By induction hypothesis, we have $\mathcal{M} \models \neg \Phi_1(\vec{j})$, which gives the result. **Proof for** Φ **.** Let $\Phi = \forall \vec{x} [\Psi_1(\vec{x}), \dots, \Psi_m(\vec{x}) \rightarrow A(\vec{x})]$; \forall chooses \vec{i} and puts $A(\vec{i})$ in \mathscr{A} and $\Psi_1(\vec{i}), \ldots, \Psi_m(\vec{i})$ in \mathscr{U} . By induction hypothesis, $\mathcal{M} \models \Psi_1(\vec{i}), \dots, \Psi_m(\vec{i})$; and, by definition, $\mathcal{M} \not\models A(\vec{i})$. Thus $\mathcal{M} \models \neg \Phi$. It follows that $\mathcal{M} \not\models \mathcal{V}_0$ since $\mathcal{M} \models \mathcal{U}_0$ and $\mathcal{M} \models \neg A$ for $A \in \mathcal{A}_0$. OED

Well founded recursive relations

Let $f : \mathbb{N}^2 \to \{0, 1\}$ be arbitrary. The predicate f(x, y) = 1 is well founded iff the formula $\forall X \forall z \{ \forall x [\forall y (f(x, y) = 1 \rightarrow Xy) \rightarrow Xz \}$ is true in \mathbb{N} . We show that, in this case, this formula is even *realized*. **Theorem.** If the predicate f(x, y) = 1 is well founded, then $Y \Vdash \forall X \forall z \{ \forall x [\forall y (f(x, y) = 1 \mapsto Xy) \to Xx] \to Xz \}.$ Let $t \Vdash \forall x [\forall y (f(x, y) = 1 \mapsto Xy) \to Xx]$ and $n \in \mathbb{N}$; we show by induction on n, following the well founded predicate "f(x, y) = 1 ", that $Yt \Vdash Xn$. Since $Yt \star \pi > t \star Yt \cdot \pi$, it suffices to show that $Yt \Vdash \forall y(f(n, y) = 1 \mapsto Xy)$ i.e. $Yt \Vdash f(n, p) = 1 \mapsto Xp$. This is trivial if $f(n, p) \neq 1$ and this follows from the induction hypothesis if f(n, p) = 1. Thus, if $\pi \in ||Xn||$, we have $t \star Yt \cdot \pi \in \mathbb{L}$ and therefore $Y \star t \cdot \pi \in \mathbb{L}$. OED This shows that a *recursive* well founded predicate on integers is also well founded *in every realisability model*.

True Π_1^1 formulas

A Π_1^1 formula is of the form $F \equiv \forall \vec{X} \Phi[\vec{X}]$ where Φ is a 1st order formula written with the function symbols $0, 1, +, \times$ and the predicate symbols \neq, \vec{X} . **Theorem.** If *F* is a true Π_1^1 formula, then F^{int} is realized.

This shows, in particular, that the integers of any realizability model are *elementary equivalent* to the integers of the ground model.

It is not possible to show the independence of some *arithmetical* (and even Π_1^1) formula by means of realizability models.

Open problems : What about Σ_1^1 (or higher) formulas ?

Are the *constructible universes* of the ground model and the realizability model elementarily equivalent ? This is (trivially) true in the case of forcing.

Proof. Fix a recursive enumeration of closed formulas and also of sequents $\mathscr{U} \vdash \mathscr{A}$. Let $F \equiv \forall \vec{X} \neg \Phi[\vec{X}]$ be a *true* Π_1^1 formula.

The meaning of *F* is that the 1st order formula $\Phi \rightarrow \bot$ has no model.

Thus, the "trivial" strategy for ∃ is winning

in the game which starts with the sequent $\Phi \vdash \bot$.

Now, let f(x, y) = 1 be the recursive predicate which says that

x, y are (numbers of) successive positions chosen by \forall such that, between them,

 \exists has applied (once) the trivial strategy.

This strategy is winning for \exists iff each play is finite, i.e. iff

the predicate f(x, y) = 1 is well founded.

Now, by the above theorem, we obtain :

 $\mathsf{Y} \Vdash \forall X \{ \forall x [\forall y (f(x, y) = 1 \mapsto Xy) \to Xx] \to \forall x Xx \}.$

But we have just proved that : "f(x, y) = 1 is well founded" $\rightarrow F$.

Let θ be a proof-like term associated with this proof. Then $\theta Y \Vdash F$.

QED

The case of arithmetical formulas

An arithmetical formula is of the form $\forall x_1 \exists y_1 \dots \forall x_n \exists y_n (f(x_1, y_1, \dots, x_n, y_n) \neq 0)$ where $f : \mathbb{N}^{2n} \to \{0, 1\}$ is recursive. **Theorem.** Let $f : \mathbb{N}^{2n} \to \{0, 1\}$ be an arbitrary function, such that $\forall x_1 \exists y_1 \dots \forall x_n \exists y_n (f(x_1, y_1, \dots, x_n, y_n) \neq 0)$ is true in \mathbb{N} . Then $\forall x_1 \exists y_1^{\text{int}} \dots \forall x_n \exists y_n^{\text{int}} (f(x_1, y_1, \dots, x_n, y_n) \neq 0)$ is realized by a proof-like term that depends only on n.

This theorem shows once again that any true arithmetical formula is realized.

For n = 1, the proof is very simple : **Theorem.** Let $\theta \in QP$ be such that $\theta \star \underline{n} \cdot \xi \cdot \pi > \xi \star \underline{n} \cdot \theta \underline{n}^+ \xi \cdot \pi$ with $\underline{n}^+ = (s)\underline{n}$. Then $\theta \underline{0} \Vdash \forall x \left(\forall y^{\text{int}}(f(x, y) \neq 0 \rightarrow \bot) \rightarrow \bot \right)$ for every $f : \mathbb{N}^2 \rightarrow 2$ such that $\mathbb{N} \models \forall x \exists y (f(x, y) = 1)$. We simply need to prove $\theta \underline{0} \Vdash \forall y^{\text{int}}(f(y) \neq 0 \rightarrow \bot) \rightarrow \bot$ for every $f : \mathbb{N} \rightarrow 2$ such that $\mathbb{N} \models \exists y (f(y) = 1)$. **Lemma.** Let $\xi \Vdash \forall y^{\text{int}}(f(y) \neq 0 \rightarrow \bot)$; if $\theta \underline{n} \xi \not\models \bot$, then f(n) = 0 and $\theta \underline{n}^+ \xi \not\models \bot$. We have $\theta \star \underline{n} \cdot \xi \cdot \pi \notin \bot$, thus $\xi \star \underline{n} \cdot \theta \underline{n}^+ \xi \cdot \pi \notin \bot$; therefore $\theta \underline{n}^+ \xi \not\models f(n) \neq 0$ hence the result. QED Suppose $\theta \star 0 \cdot \xi \cdot \pi \notin \bot$; the lemma gives f(n) = 0 for all $n \in \mathbb{N}$, a contradiction. QED We consider now the case n = 2, which is typical for the general case. **Theorem.** Let $\theta = \lambda x \lambda t \lambda \sigma \lambda m \lambda n(xm) \lambda y (H\sigma m y n) ((t)(\Sigma) \sigma m y) m' n'$ where H, Σ are closed λ -terms defined below ; $\langle m', n' \rangle$ is the successor of $\langle m, n \rangle$ in \mathbb{N}^2 . Then, for every $f : \mathbb{N}^3 \to \{0, 1\}$, there exists $\phi : \mathbb{N} \to \mathbb{N}$ such that : $\lambda x((\mathsf{Y})(\theta)x)000 \Vdash \forall x^{\mathsf{int}} \exists y \forall z^{\mathsf{int}} (f[x, y, z] = 1) \to \forall x \forall z (f[x, \phi x, z] \neq 0).$ **Definition of** H, Σ . The variables m, n represent integers ; η an arbitrary term ; the variable σ represents a finite sequence of ordered pairs $\langle m, \eta \rangle$. If no pair $\langle m, \bullet \rangle$ is in σ , set $\Sigma \sigma m\eta = \sigma \smile \langle m, \eta \rangle$, $H\sigma m\eta = \eta$. Else, set $\Sigma \sigma m\eta = \sigma$; $H\sigma m\eta = \zeta$ for the first $\langle m, \zeta \rangle$ appearing in σ . **Proof by contradiction**. Suppose $\xi \Vdash \forall x^{\text{int}} \neg \forall y^{\exists \mathbb{N}} \neg \forall z^{\text{int}} (f[x, y, z] = 1)$; $((Y)(\theta)\xi)000 \not\Vdash \perp \text{ and } f[x_0, \phi x_0, z_0] = 0.$ We show, by recurrence on $\langle m, n \rangle \leq \langle x_0, z_0 \rangle$, that $((Y)(\theta)\xi)\sigma_{mn}mn \not\Vdash \bot$, with σ_{mn} , η_{mn} , b_{mn} defined by recurrence ; it's true for $\sigma_{00} = 0$. If it's true for $\langle m, n \rangle$ we have $((Y)(\theta)\xi)\sigma_{mn}mn \star \pi \notin \mathbb{I}$, i.e. $\theta\xi \star (Y)(\theta)\xi \cdot \sigma_{mn} \cdot m \cdot n \cdot \pi \notin \mathbb{I}$, or else :

 $\xi \star m \cdot \lambda y (H\sigma_{mn} m y n) (((Y)(\theta)\xi)(\Sigma)\sigma_{mn} m y) m' n' \cdot \pi \notin \mathbb{L}$. Thus, there exists b_{mn} s.t.: $\lambda \gamma (H\sigma_{mn}m\gamma n)(((\mathbf{Y})(\theta)\xi)(\Sigma)\sigma_{mn}m\gamma)m'n' \not\models \neg \forall z^{\text{int}}(f[m, b_{mn}, z] = 1)$ and thus there exists $\eta_{mn} \Vdash \forall z^{int}(f(m, b_{mn}, z) = 1)$ such that $H\sigma_{mn}m\eta_{mn} \star n \cdot (((Y)(\theta)\xi)(\Sigma)\sigma_{mn}m\eta_{mn})m'n' \cdot \pi \notin \mathbb{L}.$ (*)**Definition of** ϕm : i) if no pair $\langle m, \bullet \rangle$ appears in σ_{mn} then set $\phi[m] = b_{mn}$; ii) else, let $\langle m, \eta_{mq} \rangle$ be the first (indeed only) pair $\langle m, \bullet \rangle$ appearing in σ_{mn} ; then, set $\phi[m] = b_{mq}$. Now, $H\sigma_{mn}m\eta_{mn} \models \forall z^{\text{int}}(f(m,\phi m,z)=1)$ because : in case (i) $H\sigma_{mn}m\eta_{mn} = \eta_{mn}$ and $\phi_m = b_{mn}$; in case (ii), by induction on $\langle m, n \rangle$ since $H\sigma_{mn}m\eta_{mn} = \eta_{mq}$ with $\langle m,q \rangle$ strictly before $\langle m,n \rangle$. Thus $H\sigma_{mn}m\eta_{mn}n \Vdash f(m,\phi m,n) \neq 1 \rightarrow \bot.$ Now, we set $\sigma_{m'n'} = (\Sigma)\sigma_{mn}m\eta_{mn}$. Thus, by (*), we have $((Y)(\theta)\xi)\sigma_{m'n'}m'n' \not\models f(m,\phi m,n) \neq 1.$ therefore $f[m, \phi m, n] = 1$ and $((Y)(\theta)\xi)\sigma_{m'n'}m'n' \not\models \bot$. Since $f[x_0, \phi x_0, z_0] = 0$, we have a contradiction if $\langle m, n \rangle = \langle x_0, z_0 \rangle$. Else, we have done the recurrence step. OED Consider now a function $f : \mathbb{N}^4 \to \{0, 1\}$ s.t. $\mathbb{N} \models \forall u \exists x \forall y \exists z (f(u, x, y, z) = 0).$ This gives $\forall u (\forall x \exists y \forall z (f(u, x, y, z) \neq 0) \to \bot).$

Thus, for every $u \in \mathbb{N}$ and $\phi : \mathbb{N} \to \mathbb{N}$ we get :

 $\|\forall x \forall z (f(u, x, \phi x, z) \neq 0)\| = \|\bot\| = \Pi.$

It follows from the previous theorem that

 $\lambda x((\mathsf{Y})(\theta)x)000 \models \forall u \neg \forall x^{\mathsf{int}} \exists y \forall z^{\mathsf{int}}(f(u, x, y, z) = 1)$

which is the case n = 2 for arithmetical formulas.

]2 trivial

Let δ be a proof-like term s.t. $\delta \models \forall x^{\exists 2} (x \neq 0, x \neq 1 \rightarrow \bot)$ (i.e. $\exists 2$ is trivial). We have $\delta \in [\top, \bot \to \bot] \cap [\bot, \top \to \bot]$. Let $\delta' = \lambda x \lambda y cc \lambda k(\delta)((k)x)(k)y$; then $\xi \star \pi \in \bot$ or $\eta \star \pi \in \bot \Rightarrow \delta' \star \xi \cdot \eta \cdot \pi \in \bot$ Thus, $\delta' \Vdash X, Y \to X$ and $\delta' \Vdash X, Y \to Y$ for every truth values X, Y. **Theorem.** $(\exists \Phi \in \mathsf{QP})(\forall \theta \in \mathsf{QP})(\forall X \subset \Pi)(\theta \Vdash X \Rightarrow \Phi \Vdash X).$ Define e (read *eval*) by the following program : $e 0 = B, e 1 = C, e 2 = E, e 3 = I, e 4 = K, e 5 = W, e 6 = cc, e 7 = \delta$; $e n + 8 = ((e)(p_0)n)(e)(p_1)n;$ where p_0, p_1 define a recursive bijection from \mathbb{N} onto \mathbb{N}^2 . For every $\theta \in QP$, there is an integer *n* s.t. $en > \theta$. Now define ϕ by : $\phi \star n \cdot \pi \succ \delta' \star en \cdot (\phi)(s) n \cdot \pi$. Finally Φ is $\phi 0$. Let $\theta \in \mathsf{QP}$ s.t. $\theta \Vdash X$; thus, we have $\phi n \Vdash X$ for some n, then $\phi n - 1 \Vdash X$,...; eventually $\phi 0 \Vdash X$. OED

]2 trivial

Let $\mathscr{B} = \mathscr{P}(\Pi)$ be the Boolean algebra of truth values. The order is defined by $A \leq B \Leftrightarrow (\exists \theta \in \mathsf{QP})(\theta \Vdash A \to B)$. Thus, the order on \mathscr{B} is defined by $A \leq B \Leftrightarrow \Phi \Vdash A \rightarrow B$. **Theorem.** *B* is a complete Boolean algebra : If $B_i (i \in I)$ is a family of truth values, then $\inf_{i \in I} B_i = \bigcup_{i \in I} B_i$. Let $A \leq B_i$ for $i \in I$. Then $\Phi \Vdash A \rightarrow B_i$, thus $\Phi \Vdash A \rightarrow \bigcup_{i \in I} B_i$. Conversely $I \Vdash \bigcup_{i \in I} B_i \rightarrow B_{i_0}$. **OED** Thus, the realizability model is, in fact, a *forcing model*. The converse is also true : in the case of forcing, the realizability algebra is a commutative idempotent monoid with a unity 1; then $QP = \{1\}$. We have $1 \Vdash X, Y \to X$ and $X, Y \to Y$; thus $\exists 2$ is trivial.

Theorem. Let d be a term such that :

If two out of three processes $\xi \star \pi, \eta \star \pi, \zeta \star \pi$ are in \mathbb{L} , then $d \star \xi \cdot \eta \cdot \zeta \cdot \pi \in \mathbb{L}$.

Then d \parallel "J2 has at most 4 elements".

We have $\mathbf{d} \in [\top, \bot, \bot \to \bot] \cap [\bot, \top, \bot \to \bot] \cap [\bot, \bot, \top \to \bot]$.

Thus
$$d \Vdash \forall x^{\exists 2} \forall y^{\exists 2} (x \neq 0, y \neq 1, x \neq y \rightarrow xy \neq x)$$
 QED

We now build a model in which 32 has exactly 4 elements.

The only term constants are the elementary combinators, **cc** and a new constant **d**. There are two stack constants π^0, π^1 . Let $\omega = (WI)(W)I = (\lambda x xx)\lambda x xx$. For $i \in \{0,1\}$, let Λ^i (resp. Π^i) be the set of terms (resp. stacks) which contain the only stack constant π^i .

For $i, j \in \{0, 1\}$, define $\perp i_i$ as the least set $P \subset \Lambda^i \star \Pi^i$ of processes such that : 1. $\omega \star j \cdot \pi \in P$ for every $\pi \in \Pi^i$; 2. $\xi \star \pi \in \Lambda^i \star \Pi^i, \xi \star \pi \succ \xi' \star \pi' \in P \Rightarrow \xi \star \pi \in P$ (P is saturated in $\Lambda^i \star \Pi^i$); 3. if 2 out of 3 processes $\xi \star \pi$, $\eta \star \pi$, $\zeta \star \pi$ are in *P*, then $d \star \xi \cdot \eta \cdot \zeta \cdot \pi \in P$. We define \bot by : $\Lambda \star \Pi \setminus \bot = \bigcup_{i \in \{0,1\}} (\Lambda^i \star \Pi^i \setminus \bot_i^i)$ In other words, a process is in *l* iff either it is in $\bot_0^0 \cup \bot_1^1$ or it contains both stack constants π^0, π^1 . **Lemma**. If $\xi \star \pi \in \mathbb{L}_{i}^{i}$ and $\xi \star \pi \succ \xi' \star \pi'$ then $\xi' \star \pi' \in \mathbb{L}_{i}^{i}$ (closure by reduction). Suppose $\xi_0 \star \pi_0 > \xi'_0 \star \pi'_0$; $\xi_0 \star \pi_0 \in \mathbb{L}^i_i$; $\xi'_0 \star \pi'_0 \notin \mathbb{L}^i_i$; We may suppose that $\xi_0 \star \pi_0 > \xi'_0 \star \pi'_0$ is exactly one step of execution. Then $\perp i_i \setminus \{\xi_0 \star \pi_0\}$ has properties 1,2,3 defining $\perp i_i$; contradiction. OED

Lemma. $\[mu]_{0}^{i} \cap \[mu]_{1}^{i} = \emptyset.\]$ We prove that $\[A^{i} \times \Pi^{i} \setminus \[mu]_{1}^{i} \supset \[mu]_{0}^{i}\]$ by showing properties 1, 2, 3. 1. $\[\omega \times \[mu]_{0} \cdot \pi^{i} \notin \[mu]_{1}^{i}\]$ because $\[mu]_{1}^{i} \setminus \{\omega \times \[mu]_{0} \cdot \pi^{i}\}\]$ has properties 1, 2, 3 defining $\[mu]_{1}^{i}.\]$ 2. Follows from previous lemma. 3. Suppose $\[xi] \times \pi, \[mu] \times \pi \notin \[mu]_{1}^{i}\]$; then $\[d \times \[xi]_{0} \cdot \pi \notin \[mu]_{1}^{i}\]$ because $\[mu]_{1}^{i} \setminus \{d \times \[xi]_{0} \cdot \pi \notin \[mu]_{1}^{i}\]$; then $\[d \times \[xi]_{0} \cdot \pi \notin \[mu]_{1}^{i}\]$ because $\[mu]_{1}^{i} \setminus \{d \times \[xi]_{0} \cdot \pi, \[mu]_{1}^{i}\]$ has properties 1, 2, 3 defining $\[mu]_{1}^{i}.\]$ QED **Theorem.** This realizability model is coherent. Let $\[Hightarrow \[Li]_{0} \in \[mu]_{0}^{0}\]$ and $\[Hightarrow \[Li]_{1}^{i}\]$. Then $\[Hightarrow \[Li]_{0}^{0} \cap \[mu]_{1}^{0}.\]$ QED **Remark.** If $\[\pi \in \[\Pi \setminus (\Pi_{0} \cup \Pi_{1}),\]$ then $\[xi] \times \[\pi \in \[mu]_{1}^{i}\]$ for every term $\[xi]_{.}^{i}\]$.

We define two individuals in this realizability model : $\gamma_0 = (\{0\} \times \Pi^0) \cup (\{1\} \times \Pi^1); \gamma_1 = (\{1\} \times \Pi^0) \cup (\{0\} \times \Pi^1).$ Obviously, $\gamma_0, \gamma_1 \subset \exists 2 = \{0, 1\} \times \Pi$. Now we have : $\|\forall x(x \notin \gamma_0)\| = \Pi^0 \cup \Pi^1 = \|\bot\|; \omega_0 \Vdash 0 \notin \gamma_0 \text{ et } \omega_1 \Vdash 1 \notin \gamma_0.$ It follows that γ_0 is not ε -empty and that every ε -element of γ_0 is $\neq 0, 1$. Thus the Boolean algebra $\exists 2$ is not trivial and has exactly 4 ε -elements. We have $\xi \Vdash \forall x^{\exists 2}(x \epsilon \gamma_0, x \epsilon \gamma_1 \rightarrow \bot)$ for *every* term ξ : Indeed, $|i \varepsilon \gamma_0| = \{k_\pi; \pi \in \Pi^i\}$ for i = 0, 1 and $\xi \star k_{\rho_0} \cdot k_{\rho_1} \cdot \pi \in \bot$ if $\rho_i \in \Pi^i$. It follows that γ_0, γ_1 are the singletons of the ε -elements $\neq 0, 1$ of]2. **Remark**. We can easily modify this construction in order to obtain for $\exists 2$ any finite Boolean algebra.

Denotational semantics

T. Ehrhard has found a method which converts usual models of λ -calculus into realizability algebras, by defining stacks, cc and k_{π} in such models. The construction of stacks was also given by T. Streicher.

We need to avoid *parallel or*, because we don't want to get *forcing models*.

Thus, our example will be the simplest *coherent model of* λ *-calculus*.

Let us recall (one of) its construction.

Let o be a fixed set which is not an ordered pair.

The set V of *formulas* is the smallest set such that :

 $o \in V$; if $\alpha \in V$, $a \in \mathscr{P}_f(V)$ and $\langle a, \alpha \rangle \neq \langle \phi, o \rangle$ then $\langle a, \alpha \rangle \in V$

 $(\mathscr{P}_{f}(V)$ is the set of finite subsets of V).

If $a \in \mathscr{P}_{f}(V)$ and $\alpha \in V$, we set $a \to \alpha = \langle a, \alpha \rangle$ except that $(\phi \to o) = o$.

Every element of V except o is an ordered pair.

If $\alpha \in V$, its rank $r(\alpha)$ is the total number of \rightarrow in α .

Each $\alpha \in V$ has a unique normal form $\alpha = (a_1, ..., a_k \to 0)$ with $k \in \mathbb{N}, a_1, ..., a_k \in \mathscr{P}_f(V)$ and $a_k \neq \emptyset$. Then $\alpha = (a_1, ..., a_k, \emptyset, ..., \emptyset \to 0)$. The *truth value* $|\alpha| \in \{0, 1\}$ of a formula α is defined by induction : $|o|=0; |a_1, ..., a_k \to o| = 1$ iff $(\exists \beta \in a_1 \cup ... \cup a_k)(|\beta| = 0)$. If $\alpha = (a_1, ..., a_k \to 0), \beta = (b_1, ..., b_k \to 0)$ we define $\alpha \sqcap \beta = (a_1 \cup b_1, ..., a_k \cup b_k \to 0)$.

This operation is associative, commutative and idempotent ; **o** is neutral ; it defines an order relation : $\alpha \leq \beta \Leftrightarrow b_1 \subset a_1, \dots, b_k \subset a_k$. Define a subset *D* of *V* (the *web*) by induction on the rank : $(a_1, \dots, a_k \to \mathbf{0}) \in D$ iff, for $1 \leq i \leq k$, $a_i \subset D$ and $(\forall \beta, \gamma \in a_i) (\beta \neq \gamma \Rightarrow \beta \sqcap \gamma \notin D)$ $(a_i \text{ is an antichain of } D)$. *D* is a final segment of *V* : let $\alpha = (a_1, \dots, a_k \to \mathbf{0}), \beta = (b_1, \dots, b_k \to \mathbf{0}), \alpha \in D, \alpha \leq \beta$. Then $b_i \subset a_i$ and a_i is an antichain of *D*, thus so is b_i . $\alpha, \beta \in D$ are called *compatible* if $\alpha \sqcap \beta \in D$; in symbols $\alpha \approx \beta$. If $\alpha_1, \dots, \alpha_n$ are pairwise compatible, then $\alpha_1 \sqcap \dots \sqcap \alpha_n \in D$.

The realizability algebra

 Λ_D is the set $\mathscr{A}(D)$ of antichains of D, i.e. $t \subset D$ is a term iff $(\forall \alpha, \beta \in t)(\alpha \sqcap \beta \in D \rightarrow \alpha = \beta).$ Π_D is the set $\mathscr{S}(D)$ of filters of D, i.e. $\pi \subset D$ is a stack iff $(\forall \alpha, \beta \in \pi) \alpha \sqcap \beta \in \pi ; \forall \alpha \forall \beta (\alpha \in \pi, \alpha \le \beta \rightarrow \beta \in \pi) ; o \in \pi.$ **Remark.** Π_D can be identified with $\Lambda_D^{\mathbb{N}}$: a sequence of terms $t_n (n \in \mathbb{N})$ corresponds with the filter { $(a_0, \ldots, a_k \rightarrow o)$; $k \in \mathbb{N}, a_0 \subset t_0, \ldots, a_k \subset t_k$ }. $\Lambda_D \star \Pi_D$ is $\{0,1\}$ and \bot is $\{1\}$. If $t \in \Lambda_D$, $\pi \in \Pi_D$ then $t \star \pi \in \bot$ iff $t \cap \pi \neq \emptyset$ (i.e. $t \cap \pi$ is a singleton). $t \bullet \pi = \{a \to \alpha ; a \subset t, \alpha \in \pi\}$; $tu = \{\alpha \in D; (\exists a \subset u) (a \to \alpha) \in t\};$ K is the set of all formulas : $\{\alpha\}, \phi \to \alpha$ for $\alpha \in D$. S is the set of all formulas : $\{a_0, \{\alpha_1, \dots, \alpha_k\} \rightarrow \beta\}, \{a_1 \rightarrow \alpha_1, \dots, a_k \rightarrow \alpha_k\}, a_0 \cup a_1 \cup \dots \cup a_k \rightarrow \beta$ with $\{\alpha_1, \ldots, \alpha_k\} \in \mathscr{A}(D)$ and $a_0 \cup a_1 \cup \ldots \cup a_k \in \mathscr{A}(D)$.

 k_{π} is the set of formulas : ($\{\alpha\} \rightarrow 0$) for $\alpha \in \pi$; cc is the set of all formulas : $\{a \rightarrow \alpha\} \rightarrow \alpha \sqcap \alpha_1 \sqcap \ldots \sqcap \alpha_k \text{ with } a = \{\{\alpha_1\} \rightarrow 0, \ldots, \{\alpha_k\} \rightarrow 0\} \text{ and } \alpha \sqcap \alpha_1 \sqcap \ldots \sqcap \alpha_k \in D.$ QP is defined as the set of $t \in \Lambda_D$ s.t. |t| = 1 i.e. $(\forall \alpha \in t)(|\alpha| = 1)$. We have K, S, $cc \in QP$; $t, u \in QP \Rightarrow tu \in QP$. The model is *coherent* because $|t| = 1 \Rightarrow o \notin t$ i.e. $t \star \{o\} \notin \bot$. **Lemma 1.** $t \Vdash \top, \ldots, \top \rightarrow \bot$ iff $t = \{o\}$. Indeed, $t \star \emptyset \dots \emptyset \bullet \{0\} \in \square \Rightarrow t = \{0\}$ QED **Lemma 2.** If $t \in [\top, \bot \rightarrow \bot] \cap [\bot, \top \rightarrow \bot]$ then $t = \{o\}$. We have $t \cap \emptyset \cdot \{0\} \cdot \{0\} \neq \emptyset$ and $t \cap \{0\} \cdot \emptyset \cdot \{0\} \neq \emptyset$; thus $(\emptyset, a \to o) \in t$ and $(b, \emptyset \to o) \in t$ with $a, b \subset \{o\}$. These two formulas are compatible and therefore equal ; thus $a = b = \emptyset$. OED It follows that $|| \vdash |\top, \bot \rightarrow \bot | \cap |\bot, \top \rightarrow \bot | \rightarrow \bot$ i.e. $| \Vdash \forall x^{\exists 2} (x \neq 0, x \neq 1 \rightarrow \bot) \rightarrow \bot$. Therefore : The Boolean algebra $\exists 2$ is non trivial.

Lemma 3. If $u \Vdash \bot, \bot \rightarrow \bot$ then *u* contains one of the formulas :

$$O; \{O\} \to O; \emptyset, \{O\} \to O; \{O\}, \{O\} \to O.$$

We have $u \cap \{0\} \cdot \{0\} \neq \emptyset$, thus there exist $a, b \subset \{0\}$ s.t. $(a, b \rightarrow 0) \in u$. QED Lemma 4. Let $t \in \Lambda_D$ contain the 4 incompatible formulas :

 $\{0\} \to 0 \ ; \ \{\{0\} \to 0\}, \{0\} \to 0 \ ; \ \{\emptyset, \{0\} \to 0\}, \{0\} \to 0 \ ; \ \{\{0\}, \{0\} \to 0\}, \{0\} \to 0.$

Then $t \Vdash |\top, \bot \to \bot| \cap |\bot, \top \to \bot|, \top \to \bot$ and $t \Vdash (\bot, \bot \to \bot), \bot \to \bot$.

By lemma 2, the first conclusion is $t \Vdash \bot \rightarrow \bot$; it is satisfied because $({o} \rightarrow o) \in t$.

Now, let $u \Vdash \bot, \bot \rightarrow \bot$; we must show $t \cap u \cdot \{o\} \cdot \{o\} \neq \emptyset$

which follows immediately from lemma 3.

OED

Theorem. The Boolean algebra $\exists 2$ is atomless. We have $t \Vdash \forall x^{\exists 2} (\forall y^{\exists 2} (xy \neq 0, xy \neq x \rightarrow \bot), x \neq 0 \rightarrow \bot)$ iff $t \Vdash |\top, \bot \rightarrow \bot| \cap |\bot, \top \rightarrow \bot|, \top \rightarrow \bot$ and $t \Vdash (\bot, \bot \rightarrow \bot), \bot \rightarrow \bot$. Hence the result by lemma 4.

QED

Integers

In the sequel, we use truth values defined by subsets |U| of Λ . They may be used in formulas only before $a \rightarrow .$ If $|U| \subset \Lambda$, $||A|| \subset \Pi$, we define $||U \to A|| = \{t \cdot \pi ; t \in |U|, \pi \in ||A||\}$. In particular $\|\neg U\| = \{t \cdot \pi ; t \in |U|, \pi \in \Pi\}.$ **Lemma 5.** If $(\forall t \in \Lambda)(t \in |U| \Rightarrow \theta t \in |U'|)$ then $\lambda x x \circ \theta \Vdash \neg U' \to \neg U$. We shall sometimes write $\theta \Vdash U \to U'$ in such a case. Now, define the formulas : $v_0 = (\{0\} \to 0); v_1 = (\emptyset, \{0\} \to 0); \dots; v_n = (\emptyset, \dots, \emptyset, \{0\} \to 0); \dots;$ and the terms $\overline{n} = \{v_n\}$; suc = $\{(\{v_0\} \rightarrow v_1), \dots, (\{v_i\} \rightarrow v_{i+1}), \dots\}$. Define the unary predicate N by : $|Nn| = \{\overline{n}\}$ if $n \in \mathbb{N}$; $|Nn| = \emptyset$ if $n \notin \mathbb{N}$. Then we have easily $\lambda x(x)\overline{0} \models \neg \neg N0$; suc $\models Nn \rightarrow N(n+1)$ for every n; i.e. $\lambda x x \circ \text{suc} \models \forall x (\neg N(x+1) \rightarrow \neg Nx).$ $\Vdash \forall x^{\text{int}} \neg \neg Nx.$ We have shown :

Theorem 6. Let $u_n (n \in \mathbb{N})$ be any sequence of terms and define :

 $\theta = \{(\{v_n\} \rightarrow \alpha); n \in \mathbb{N}, \alpha \in u_n\}.$ Then $\theta \overline{n} = u_n$ for all $n \in \mathbb{N}$.

If every u_n is in QP, then $\theta \in QP$.

We show that $\theta \in \Lambda_D$: if $(\{v_m\} \rightarrow \alpha) \approx (\{v_n\} \rightarrow \beta)$ then $\{v_m, v_n\}$ is an antichain

and therefore m = n; thus $\alpha, \beta \in u_m$; but $\alpha \asymp \beta$ and therefore $\alpha = \beta$.

 θ { v_n } = u_n is obvious.

Define the unary predicate ent(x) by :

 $|ent(n)| = \{\underline{n}\}$ (Church integer) for $n \in \mathbb{N}$; $|ent(n)| = \emptyset$ if $n \notin \mathbb{N}$.

We already know (general theory) that ent(x) is equivalent to int(x).

Apply lemma 5 and theorem 6 above with $u_n = \{\underline{n}\}$.

This gives $\theta \Vdash Nn \to \operatorname{ent}(n)$ and therefore $\lambda x x \circ \theta \Vdash \forall x(\neg \operatorname{ent}(x) \to \neg Nx)$.

Finally we have shown that the predicates Nx, int(x), ent(x) are equivalent.

In the following, we use Nx which is the simplest.

OED

Corollary. If $\theta_n \Vdash F(n)$, with $\theta_n \in QP$ for all $n \in \mathbb{N}$, then there exists $\theta \in QP$ s.t. $\theta \Vdash \forall n^{\text{int}} F(n)$.

Applying theorem 6, we get $\theta \underline{n} \Vdash F(n)$ for all $n \in \mathbb{N}$, thus $\theta \Vdash \forall n^{\text{int}}F(n)$. QED

By the above corollary, the set of formulas which are realized

by a proof-like term is closed by the ω -rule.

Thus there exists a realizability model which is an ω -model.

Let $\mathscr{B} = \mathscr{P}(\Pi)$ be the Boolean algebra of truth values.

The order is defined by $||A|| \leq ||B|| \Leftrightarrow (\exists \theta \in \mathsf{QP})(\theta \mid |-A \rightarrow B).$

Theorem. *B* is a countably complete Boolean algebra :

If $||B(n)||_{n \in \mathbb{N}}$ is a sequence of truth values, then $\inf_{n \in \mathbb{N}} ||B(n)|| = ||\forall x^{\text{int}}B(x)||$.

Let $||A|| \le ||B(n)||$ for every $n \in \mathbb{N}$. Then $\theta_n \Vdash A \to B(n)$ for some sequence $\theta_n \in QP$. By the previous corollary, we get $\theta \Vdash ||A \to \forall x^{\text{int}}B(x)||$ i.e. $||A|| \le ||\forall x^{\text{int}}B(x)||$. Conversely, $||\forall x^{\text{int}}B(x)|| \le ||B(n)||$ because $\lambda x(x)n \Vdash \forall x^{\text{int}}B(x) \to B(n)$. QED