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Outline

We give some general properties of classical realizability

and we look at some particular models :

e True arithmetical formulas, and even true H% formulas are realized ;

thus, realizability models cannot give indecidability results in arithmetic.

« A model is given by forcing iff its Boolean algebra J2 is trivial.

e We build models in which ]2 is non trivial and finite.

e Following T. Ehrhard and T. Streicher, the usual models of lambda-calculus
have, in fact, a structure of realizability algebra.

Therefore, they give rise to realizability models of ZF.

We study a simple case, in which 12 is non trivial and integers are preserved.




A game on first order formulas

We consider first order formulas written with :

—,V, T, 1, #, predicate constants, function symbols for recursive functions.
A 1st order formula has the form Vx[®,,...,®,, — A] where ®q,...,®,

are 1st order formulas and A is atomic (i.e. Rty...f;. or typ# 11 or T or L).

In the following, we only consider closed 1st order formulas.

The atomic closed formula 1y # 1 is interpreted as T (resp. L)

if it is true (resp. false) in N.

We define a game with two players : 3 (the client) and V (the server).

At each step, the position is a sequent % + «f with closed 1st order formulas ;
the formulas of «f are atomic and L € o/ ; % and < increase at each step.
The game starts with a sequent % - o).




A move in this game is as follows :

Player 3 chooses W € %, WV =V y[D1()),...,®,()) — B())]

and j € N/ such that B(j) € « (if this is impossible, then 3 has lost).
Player V chooses a formula ® € 7 = {®1(}),..., P,())},

O =VI[W(%),..., V(X — AX)]; V chooses also i € N,

The atomic formula A(7) must not be T (otherwise, V has lost).
Then ¥, (7),...,V,,(i) are added to % and A(i) is added to <.

1 wins iff V cannot play at some step

(every formula of 7 ends with T, in particular if 7 = @).

In fact, player V tries to build a model over N in which
the formula 75 = A%y — \/ o is false, and 3 tries to avoid this :




Theorem. i) Any model .« over N s.t. ./ = ¥y gives a winning strategy for V.
ii) There exists a “trivial” strategy for the player 3 such that
each play 3 loses using it, gives a model .« over N, .4 |~ V.

i) We define a strategy for V such that, at each step :

every formula of % (resp. <) is true (resp. false) in ..

This is true at the beginning of the game.

Then 3 chooses W € %, ¥ = V(D (}),..., D, () — B(7)] and je N/
such that B(j) € of. Therefore, ./ |= =B(j) and ./ |= V.

Thus, V can choose e 7 = {@1(f),...,®n(f)} st. A = 0.

Let ® =VX[V1(X),..., VY (X) — AX)].

Then V can choose i e NK st. .4 |=¥1(i),..., ¥, () and 7 Ax7).
Finally W, (7),...,¥,,(i) are added to % and A(i) to <.

Thus % and the negation of formulas of < remain true in ..




ii) Here is the “trivial” strategy for 3 :

fix an enumeration of all ordered pairs <%¥, > (¥ is a closed formula, j € N%).
At each step, 3 chooses the first allowed pair <‘¥,f>, not chosen before.
Suppose 3 loses some play with this strategy. Let .# be the model which satisfies
exactly the closed atomic formulas never put in </ during this play.

A pair <V, /> is called acceptable if ¥ is put in % and B(}) in </ at some step
(not necessarily the same) where B(¥) is the final atom of V.

Every acceptable pair is effectively played by 3 at some step :

namely when every acceptable pair strictly less than it has been played.

We prove, by induction, that . satisfies every formula ¥ which is put in %
and the negation of every formula ® chosen by ¥V during the play.




Proof for W. The result is clear if ¥ is atomic because, if ¥ is both in % and «/
then <W¥,»> is acceptable and thus will be chosen by 3 ; then 3 wins.
Otherwise, let ¥ = Vy[®1()),...,Dx()) — B(¥)]. We must show that

M= D1(]), ..., () — B(j) for every jeNK,

This is clear if B(f) is never put in </, because /4 |= B(f).

Otherwise, <, /> is acceptable and is chosen by 3 at some step.

Then ¥ = {®1(}),..., ()} and ®1(j), for instance, is chosen by V.

By induction hypothesis, we have . |= = ®;(}), which gives the result.

Proof for ®. Let ® = VX[¥{(%),..., ¥, (X) — AF)] ; V chooses i

and puts A(D) in o/ and ¥1(7),..., ¥, (i) in %. By induction hypothesis,

M =Y1(D),..., ¥ m(D) ; and, by definition, 4 |~ A(7). Thus 4 |= .

It follows that . [~ ¥y since 4 =%y and 4 |= - A for A€ o). QED




Well founded recursive relations

Let f:N? — {0,1} be arbitrary. The predicate f(x,y) =1 is well founded

iff the formula VXVz{Vx[Vy(f(x,y) =1— Xy) — Xx] — Xz} is true in N.

We show that, in this case, this formula is even realized.

Theorem. If the predicate f(x,y) =1 is well founded, then

Y |FVXVz{Vx[Vy(f(x,y) =1—Xy) — Xx] — Xz}.

Let ¢ |FVx[Vy(f(x,y) =1— Xy) - Xx] and n € N ; we show by induction on n,
following the well founded predicate “ f(x,y)=1" that Yr |- Xn.

Since Yt x> t % Yt.m, it suffices to show that Y |-V y(f(n,y)=1— Xy)

i.e. Yt |- f(n,p)=1— Xp. This is trivial if f(n,p) #1

and this follows from the induction hypothesis if f(n, p) = 1.

Thus, if 7€ | Xn||, we have t xYt.m € 1L and therefore Y x t.me L. QED

This shows that a recursive well founded predicate on integers
is also well founded in every realisability model.




True H% formulas

A H% formula is of the form F =V X®[X] where @ is a 1st order formula
written with the function symbols 0,1, +, x and the predicate symbols #, X.
Theorem. If F is a true H% formula, then FINt is realized.

This shows, in particular, that the integers of any realizability model

are elementary equivalent to the integers of the ground model.

It is not possible to show the independence of some arithmetical (and even H%)
formula by means of realizability models.

Open problems : What about Z% (or higher) formulas ?

Are the constructible universes of the ground model and the realizability model
elementarily equivalent ? This is (trivially) true in the case of forcing.




Proof. Fix a recursive enumeration of closed formulas and also of sequents % + <.
Let F =V X~®[X] be a true IT; formula.

The meaning of F is that the 1st order formula ® — | has no model.

Thus, the “trivial” strategy for 3 is winning

in the game which starts with the sequent © + 1.

Now, let f(x, y) =1 be the recursive predicate which says that

x,y are (numbers of) successive positions chosen by V such that, between them,

3 has applied (once) the trivial strategy.

This strategy is winning for 3 iff each play is finite, i.e. iff

the predicate f(x,y) =1 is well founded.

Now, by the above theorem, we obtain :

Y [FVX{VxIVy(f(x,y) =1— Xy) — Xx] — Vx Xx}.

But we have just proved that: “f(x,y) =1 is well founded” — F.

Let O be a proof-like term associated with this proof. Then 0Y |- F. QED




The case of arithmetical formulas

An arithmetical formula is of the form
Vxi13ayr...Vxp3yn(f (X1, y1,---, Xn, Yn) #0)

where f:N?" — {0,1} is recursive.

Theorem. Let f:N?" — {0,1} be an arbitrary function, such that
Vx13y1...Vxp3yn(f(x1, Y1,--+, Xn, Yn) #0) is true in N. Then
Y3yt Y a3y F (1, Y1, eee X, yi) #0) s realized

by a proof-like term that depends only on n.

This theorem shows once again that any true arithmetical formula is realized.




For n =1, the proof is very simple :

Theorem. Let 0 €QP be such that O x n.é¢.m>&* n.0n" €. with n* = (s)n.

Then 60 |-V (Vy™ (£ (x, ) #0— 1) — 1]

for every f:N? — 2 such that N = Vx3y(f(x,y) = 1).

We simply need to prove 60 |-V " (f(;) #0— 1) — L

for every f:N— 2 such that N|=3y(f(y) =1).

Lemma. Let & |-Vy"™(f(y) #0— 1) ;if Oné |£ L, then f(n) =0 and On*E ||~ L.

We have O x n.é.m¢ I, thus Exn.O0n*éomé I ;

therefore On™ ¢ |I~ f(n) # 0 hence the result. QED
Suppose 0 x0.¢.m ¢ UL ; the lemma gives f(n) =0 for all n €N, a contradiction. QED




We consider now the case n =2, which is typical for the general case.
Theorem. Let 0 = AxAtAoAmAn(xm)Ay(Homyn)((t)(Z)omy)m'n’ where H,X
are closed A-terms defined below ; <m/, n’> is the successor of <m, n> in N°.
Then, for every f:N3 — {0,1}, there exists ¢:N — N such that :

Ax((Y)(0)x)000 |- VxM3Ayvz"(flx, 5, 2] = 1) — VxVz(f[x, px, z] # 0).

Definition of H,%. The variables m, n represent integers ; 17 an arbitrary term ;
the variable o represents a finite sequence of ordered pairs <m1,7n>.

If no pair <m, .>isin o, set Zomn=o0—<m,n>, Homn=rn.

Else, set Zomn = o ; Homn = ( for the first <m,{> appearing in o.

Proof by contradiction. Suppose ¢ |- Vx"=vyN-vzt(flx, 21 = 1) ;
(Y)(©)5)000 |~ L and f[xg, dxo, zo] = 0.

We show, by recurrence on <m, n> < <xg, zo>, that ((Y)(@))omnmn |~ L,
with 0,50, M mn, bmn defined by recurrence ; it's true for ooy = 0. If it's true for <m, n>
we have ((Y)@)E)o,ymnxmé¢ AL, ie. 0Ex(Y)(O)Eeompemen.mé¢ I, or else :




ExmoAY(HO mnmyn) (VN)(0)E)(Z)omnmy)m'n'.w ¢ 1. Thus, there exists b,y s.t. :
AY(HO mnmyn) (V) (0)E) ()T mnmy)m'n’ | =V 2™ (fIm, byn, 2] = 1) and thus
there exists 1,5, |- ‘v’zi”t(f(m, bimn,2) =1) such that

() HomnmNmn * n.(((Y)(0)S) (Z)Umnmnmn)m,n,-ﬂ ¢ L.

Definition of ¢m : i) if no pair <m, .> appears in 0, then set ¢[m] = by ;

ii) else, let <m,n,,4> be the first (indeed only) pair <m, .> appearing in 0,5, ;
then, set (1] = byg. Now, HO ppmnmy -2 (f(m,¢pm, z) = 1) because :

in case (i) Ho ynmnmn =Nmn and ¢m = by, 5 in case (ii), by induction on < m, n>
since Ho mpmn)mn ="Nmq With <m, g> strictly before <m, n>.

Thus Hompnmnmnn |- f(m,om,n) #1 — L.
NOW, we set O-mlnl = (Z)O-mnmnmn.
Thus, by (*), we have (N OV T,y ym'n V- f(m,pm, n) # 1.

therefore flm,¢pm,nl=1and ((Y)(O))o,,,ym'n’ |+ L.
Since f[xg, pxg, zg]l =0, we have a contradiction if <m, n> = <xg, zg>.
Else, we have done the recurrence step. QED




Consider now a function f:N* — {0,1} s.t. N|=VYudxVydz(f(u, x,7y,2) =0).
This gives Vu(Vx3IyVz(f(u,x,y,2z) #0) — L1).
Thus, for every ueN and ¢ :N — N we get :
IVxVz(f(u,x,¢x,2) #0)|| = || LI =1L
It follows from the previous theorem that
Ax((Y)(0)x)000 |-V u~Vx"3yvz"(f(u,x,v,2) = 1)
which is the case n =2 for arithmetical formulas.




J2 trivial

Let 6 be a proof-like term s.t. o |- ijz(x Z0,x#1— 1) (i.e. J2 is trivial).

We have 6¢€|T,L— L|n|L,T— L|. Let 6'=AxAyccAk()((k)x)(k)y ; then
Exmel or nxmel = 6 *&Eenpeme L

Thus, 6’ FX,Y — X and ' |- X,Y — Y for every truth values X, Y.

Theorem. (3® €QP)(VO eQP)(VX IO |FX = D | X).

Define e (read eval) by the following program :

e0=B,el=Ce2=Ee3=l,e4=K e5=W,e6=cc,e7=96;

en+8=((e)(ppn)(e)pn;

where py, p; define a recursive bijection from N onto N2

For every 6 €QP, there is an integer n s.t. en>0.

Now define p by : p*x n.m>6"*en.(p)(s)n.z. Finally @ is ¢0.

Let 6 €QP s.t. 6 |- X ; thus, we have ¢n |- X for some n,

then pn—-1 | X,...; eventually ¢0 |- X.

QED




J2 trivial

Let 28 = 22(I1) be the Boolean algebra of truth values.

The order is defined by A< B < (30 €QP)(0 |- A— B).

Thus, the order on £ is defined by A<B < ® |- A— B.
Theorem. 2 is a complete Boolean algebra :

If B;(i € I) is a family of truth values, then inf;c;B; =U;es B;.

let A<B; foriel. Then ® |- A— B;, thus ® |- A— U;cB;.
Conversely I |-U;e;B; — Bj,.

Thus, the realizability model is, in fact, a forcing model.

The converse is also true : in the case of forcing, the realizability algebra is
a commutative idempotent monoid with a unity 1 ; then QP ={1}.
We have 1 | X,Y — X and X,Y — Y ; thus J2 is trivial.

QED




12 with 4 elements

Theorem. Let d be a term such that :

If two out of three processes { xm,nxm,{ *xm arein 1, thendx¢.n.(.me L.

Then d |-"J2 has at most 4 elements”

We have de|T,L,L—1|n|L,T,L—1|n|L, L, T—_L1].

Thus d ||—‘v’x32‘v’y32(x7f0,y;é LxZy— Xy #X) QED
We now build a model in which 12 has exactly 4 elements.

The only term constants are the elementary combinators, cc and a new constant d.
There are two stack constants 7°, 7!, Let w = (WI)(W)I = (Ax xx)Ax xx.

For i € {0,1}, let A’ (resp. I1%) be the set of terms (resp. stacks)

which contain the only stack constant 7’




J2 with 4 elements

For i, j € {0, 1}, define JLj. as the least set P < A’ % I1’ of processes such that :

1. wxj.reP forevery mell’;

2. ExmeN %I, Ex=& %' e P = Exme P (Pis saturated in Al % IT%) ;
3. if 2 out of 3 processes { xm,nxm,( *marein P,thendx¢.n.(.me P.
We define 1L by: AT\ =Ujep (A + TP\ L))

In other words, a process is in L iff

either it is in Lj U 1L} or it contains both stack constants 7*, 7'
Lemma. If Ex T € JJ_;'. and E x> & x ' then & x 7' € JLj. (closure by reduction).
Suppose &g 7o > Ef * T ; éo*noel; ; ég*né)ezlj. ;

We may suppose that &y * g > 56 *n6 is exactly one step of execution.

Then JL;. \ {&g % o} has properties 1,2,3 defining JL} ; contradiction.

QED




12 with 4 elements

Lemma. JJ_émJJ_i = @.

We prove ’Fhat /\i * T4\ iLi > iL(i) by shpwing properties 1, 2, 3. |
l.wx0.7" ¢ 1| because 1] \{wx0.7'} has properties 1, 2, 3 defining 7.
2. Follows from previous lemma.

3. Suppose é*n,n*neEJLi ; then d*é.n.{.nili

because JL{ \{dx ¢.n.C.m} has properties 1, 2, 3 defining JJ_i. QED
Theorem. This realizability model is coherent.
Let 0 QP st. O x e L) and O x ' e IL1. Then O x %€ LI 1LY, QED

Remark. If e II\ (IIg UIly), then ¢ x € AL for every term ¢.
Thus, we can remove these stacks and consider only TIY UTI'.




J2 with 4 elements

We define two individuals in this realizability model :
Yo= ({0} x T U ({1} x ITY ; y1 = ({1} x TO) U ({0} x TTH).
Obviously, yg,y1 <312 = {0, 1} xIT. Now we have :

IVx(x gyo)ll=T0um! = L] ; w0 |F0#yo et wl |-1¢yo.
It follows that y( is not e-empty and that every e-element of y is #0, 1.
Thus the Boolean algebra J2 is not trivial and has exactly 4 e-elements.
We have ¢ |- Vx32(xeyo, xey) — L) for every term ¢ :

Indeed, |ieyol = {ky; e} fori=0,1and & xky, .k, .me L if p; e TT%.
It follows that y,y:1 are the singletons of the e-elements # 0,1 of J2.
Remark. We can easily modify this construction in order to obtain

for J2 any finite Boolean algebra.




Denotational semantics

T. Ehrhard has found a method which converts usual models of A-calculus
into realizability algebras, by defining stacks, cc and kj; in such models.
The construction of stacks was also given by T. Streicher.

We need to avoid parallel or, because we don’t want to get forcing models.
Thus, our example will be the simplest coherent model of A-calculus.

Let us recall (one of) its construction.

Let o be a fixed set which is not an ordered pair.

The set V of formulas is the smallest set such that :

oeVifaeV, ac @f(V) and <a,a> # <®,0> then <a,a>e€V

(Z7(V) is the set of finite subsets of V).

If ae2¢(V)and a €V, we set a — a = <a, a> except that (¢ —o) =o.
Every element of IV except o is an ordered pair.

If « € V, its rank r(a) is the total number of — in a.




Each a € V has a unique normal form « = (ay,...,a; — 0)
with keN, ay,...,ar € Pr(V) and ai # @. Then a = (ay,..., 4y, @,...,9 — 0).
The truth value |a| € {0,1} of a formula a is defined by induction :
lo|=0; lay,...,ar— ol=1 iff ABeaju...uai)(pl=0).
If a =(ay,...,a, — 0),B=(b1,..., b — 0) we define
anf = (a1 Uby,...,a;U b} — 0).
This operation is associative, commutative and idempotent ; o is neutral ;
it defines an order relation: a<p < bycay,..., b c a.
Define a subset D of V (the web) by induction on the rank :
(ay,...,ap— o0)e Diff for1 <i <k,
a;< D and (VB,y€a;)(#v= pny¢ D) (a; is an antichain of D).
D is a final segment of V : let a = (ay,...,a; — 0),8=(b1,...,b;. — 0),
a€ D,a < f. Then b; c a; and a; is an antichain of D, thus so is b;.
a, B € D are called compatible if anf e D ; in symbols a = B.
If ay,...,a, are pairwise compatible, then a;r...na;, € D.




The realizability algebra

Ap is the set «/ (D) of antichains of D, i.e. t € D is a term iff
Va,Bet)(anfeD— a=p).

I[1p is the set .# (D) of filters of D, i.e. m = D is a stack iff
Va,pem)anpen; VaVplaen,a<p— fEm); O .

Remark. I1p can be identified with AzN) : a sequence of terms t,(n eN)
corresponds with the filter {(ay,...,a; — 0) ; keN, ag c ty,..., aj < ;).
Ap*IIpis {0,1} and L is {1}.

If re Ap,mellpthen txme L iff rnm#@ (i.e. tnmisasingleton).
ter={a—a;act aemn};

tu={a€eD; acu)(a— a) € t};

K'is the set of all formulas : {a}, — a for a € D.

S is the set of all formulas :

{ap,{aq,...,a ) — phiiag — aq,...,ar— ai,apUag1 U...Ua —

with {a1,...,al e (D) and agu ay U...Uay € &7 (D).




k; is the set of formulas : ({a} — o) fora e ;

cc is the set of all formulas :

{a— a} —anajn...nap with a=1{{a1} — o,...,{a;} — o} and anan...naj € D.

QP is defined as the setof te Ap st. |t|=1 ie. Vae)(al=1).

We have K, S, cceQP; r,ueQP = rueQP.

The model is coherent because |[t|=1=> o0¢ ¢ i.e. tx{o}¢ L.
Lemmal.¢|T,..., T — L iff t ={0}.

Indeed, t x @.....0.{0} € I = = {0} QED
Lemma 2. If te|T,L— L1|n|L, T— 1| then t={0o}.

We have tn@.{o}.{0} Z® and tn{o}.®.{0} # @ ; thus

(@,a— o)e tand (b, — 0) € t with a, b c {o}.

These two formulas are compatible and therefore equal ; thus a=b = @. QED
It follows that | |-|T,L— L|n|L,T—1|— L1 ie.

| |- ijz(x #40,x#1— 1) — L. Therefore :

The Boolean algebra 12 is non trivial.




Lemma3.Ifu L, L — 1 then u contains one of the formulas :

o;{o}—o0; ®,{o}— 0;{o},{o} — o.

We have un {o}.{o}.{0o} # @, thus there exist a,b c {0} s.t. (a,b— 0) € u. QED
Lemma 4. Let r € Ap contain the 4 incompatible formulas :

{o} — o; {{o} —o},{o} — o; {®,{o} —o0},{0o} — o; {{0},{0} —0O}, {0} — O.

Then ¢t |H|T,L—-LIn|L, T—-1],T—1 and ¢t |F(,L—1),L— 1.

By lemma 2, the first conclusionis ¢ |- L — L ; it is satisfied because ({o} — o) € .
Now, let u |- 1,1 — 1 ; we must show tNnu.{o}.{0} # @

which follows immediately from lemma 3. QED
Theorem. The Boolean algebra J2 is atomless.

We have ¢ |- Vx*2 (‘v’yjz(xy £0,xy#%x— 1), x#0— J_) iff

t-IT,L— Ln|L,T—1,T—1 and ¢|F(L,L—1),1— L.

Hence the result by lemma 4. QED




Integers

In the sequel, we use truth values defined by subsets |U| of A.
They may be used in formulas only before a —.

If |U|c A, || Al cII, we define |U — Al ={t.w; te|U|,m€|Al}.

In particular |~U|| ={t.m; t€|U|,m €Il}.

Lemma 5. If (Vte A)(t€|U|=0te|U’|) then Axx00 |--U" — ~U.
We shall sometimes write 0 |- U — U’ in such a case.

Now, define the formulas :

vo=({o}t—0);vi=(a,{0}—0);... ;vp=(8,...,8,{0} = 0);...;
and the terms 7n={v,}; suc={{vol = v1),...,({vi} = Vvii1),...}..
Define the unary predicate N by :

INn|={nlifneN;|Nn|l=9if n¢N.

Then we have easily A1x(x)0 |- —=—NO; suc |- Nn— N(n+1) for every n ;
i.e. Axxosuc |FVx(-N(x+1) — Nx).

We have shown : -V x"t=aNx.




Theorem 6. Let u,(n € N) be any sequence of terms and define :
0={{vyl—a); neN,a € uy}. Then 67 = u,, for all neN.

If every uy is in QP, then 6 € QP.

We show that 8 € Ap : if ({v;u} — a) = ({v,} — B) then {v,,,v,} is an antichain
and therefore m =n ; thus a, B € u;;, ; but @ = B and therefore a = g.

0{v,} = u, is obvious. QED
Define the unary predicate ent(x) by :

lent(n)| = {n} (Church integer) for ne N ; |ent(n)| = @ if n ¢ N.

We already know (general theory) that ent(x) is equivalent to int(x).

Apply lemma 5 and theorem 6 above with u;, = {n}.

This gives 0 |- Nn — ent(n) and therefore 1xx00 | Vx(—ent(x) — " Nx).
Finally we have shown that the predicates Nx, int(x), ent(x) are equivalent.
In the following, we use Nx which is the simplest.




Corollary. If 0, |- F(n), with 8, € QP for all n €N, then there exists

0€ QP st 0 |-Vn'"F(n).

Applying theorem 6, we get 6n |- F(n) for all neN, thus 6 |- Vr'"™F(n). QED
By the above corollary, the set of formulas which are realized

by a proof-like term is closed by the w-rule.

Thus there exists a realizability model which is an w-model.

Let 28 = 22(I1) be the Boolean algebra of truth values.

The order is defined by | Al <||B| < (360 €QP)(® |- A — B).

Theorem. 2 is a countably complete Boolean algebra :

If | B(n)|l,en is @ sequence of truth values, then inf,,cn | B(n) || = IVxNtB (x|

Let |A|l < ||B(n)| for every neN. Then 6, |- A — B(n) for some sequence 6, € QP.
By the previous corollary, we get 0 |- [|A— Vx™Bx)| ie. [A|<|Vx"Bx)].
Conversely, |Vx'"B(x)| < ||B(n)| because Ax(x)n |-Vx™B(x) — B(n). QED




