
A machine for programs
extracted with the axiom of choice

Jean-Louis Krivine

PPS Group, University Paris 7, CNRS

krivine@pps.jussieu.fr

Birmingham, May 17, 2005

1

Introduction

My motive for considering a λ-calculus head reduction machine :

Extend the Curry-Howard (proof-program) correspondence

to the whole of mathematics.

1st problem

Each mathematical proof must give a program

which must be executable in such a machine.

2nd problem

To understand the behaviour of these programs

i.e. the specification associated with a given theorem.

The first problem is now completely solved, but the second is far from being so.

2

A machine in symbolic form

The machine is the program side of the proof-program correspondence.

In this talk, I use only a machine in symbolic form,

not an explicit implementation.

We execute a process t ? π ; t is (provisionally) a closed λ-term,

π is a stack, that is a sequence t1.t2 . . . tn.π0 where

π0 is a stack constant, i.e. a marker for the bottom of the stack.

Execution rules for processes :

tu ? π Â t ? u.π (push)

λx t ? u.π Â t[u/x] ? π (pop)

This symbolic machine will be used to follow the execution of programs

written in an extension of λ-calculus with new instructions.

3

A machine in symbolic form (cont.)

We get a better approximation of a ‘‘real’’ machine by eliminating substitution.

The execution rules are a little more complicated :

tu ? π Â t ? u.π
λx1 . . .λxktu ? t1 . . . tk.π Â λx1 . . .λxkt ? t1 . . . tk.v.π

with v = (λx1 . . .λxku)t1 . . . tk
λx1 . . .λxkxi ? t1 . . . tk.π Â ti ? π.

It is necessary to add new instructions, because such simple machines

can only handle ordinary λ-terms, i.e. programs obtained from proofs

in pure intuitionistic logic.

Observe that some of these instructions will be incompatible with β-reduction.

4

Realizability

We know that proofs in pure intuitionistic logic give λ-terms.

But pure intuitionistic, or even classical, logic is not sufficient

to write down mathematical proofs.

We need axioms, such as extensionality, infinity, choice, . . .

Axioms are not theorems, they have no proof !

How can we find suitable programs for them ?

The solution is given by the theory of classical realizability

by means of which we define, for each mathematical formula © :

• the set of stacks which are against ©, denoted by k©k
• the set of closed terms t which realize ©, which is written t k−©.

We first choose a set of processes, denoted by ⊥⊥, which is saturated, i.e.

t ? π ∈ ⊥⊥, t0 ? π0 Â t ? π ⇒ t0 ? π0 ∈ ⊥⊥.

5

Realizability (cont.)

The set k©k and the property t k−© are defined by induction on the formula ©.

They are connected as follows :

t k−© ⇔ (∀π ∈ k©k) t ? π ∈ ⊥⊥
Two steps of induction, because we use only two logical symbols : →, ∀.

1. k©→ªk= {t.π ; t k−©,π ∈ kªk}. In words :

if the term t realizes the formula © and the stack π is against the formula ª

then the stack t.π (push t on the top of π) is against the formula ©→ª.

2. k∀x©(x)k= S
a∈A k©(a)k where A is the domain of the variable x

(it may be the integers, or the whole universe of sets, . . .).

In words : a stack is against ∀x©(x) if it is against ©(a) for some a.

It follows that t k−∀x©(x) ⇔ t k−©(a) for all a.

6

The language of mathematics

The proof-program correspondence is well known for intuitionistic logic. Now we have

Mathematics ≡ Classical logic + some axioms that is

Mathematics ≡ Intuitionistic logic + Peirce’s law + some axioms

For each axiom A, we choose a closed λ-term which realizes A, if there is one.

If not, we extend our machine with some new instruction which realizes A,

if we can devise such an instruction.

Now, there are essentially two possible axiom systems for mathematics :

1. Analysis, i.e. second order classical logic with dependent choice.

2. ZFC, i.e. Zermelo-Fraenkel set theory with the full axiom of choice.

Let us look more closely at these axioms and the instructions for them.

In this talk, I only give the results, without proof.

7

Axioms for mathematics

The law of Peirce is (¬A→ A)→ A.

• Analysis is composed of three groups of axioms :

i) Equations such as x+0 = x, x+ sy = s(x+ y), . . .

and inequations such as s0 6= 0.

ii) The recurrence axiom, which says that each individual (1st order object) is an integer.

In fact (and fortunately) we need only a strictly weaker axiom :

Every non void set of individuals has an element without predecessor in this set.

iii) The axiom of dependent choice :

If ∀X∃Y F(X,Y), then there exists a sequence Xn such that F(Xn,Xn+1).

• ZFC has two groups of axioms :

The axioms of ZF, which I don’t want to list.

The full axiom of choice : Any product of non void sets is non void.

8

Peirce’s law

We adapt to our machine the solution found by Tim Griffin in 1990.

We add to the λ-calculus an instruction denoted by cc. Its reduction rule is :

cc ? t.π Â t ? kπ.π

kπ is a continuation, that is to say a pointer to a location where the stack is saved.

In our symbolic machine, it is simply a λ-constant, indexed by π.

Its execution rule is kπ ? t.π0 Â t ? π.

Therefore cc saves the current stack and kπ restores it.

Using the theory of classical realizability, we can show that

cc k− (¬A→ A)→ A.

In this way, we have extended the Curry-Howard correspondence

to every proof in pure (i.e. without axiom) classical logic.

9

Example : proof of ∃x(Px→ ∀y Py)
Write this theorem ∀x[(Px→ ∀y Py)→ X]→ X (by definition of ∃).

We must show z : ∀x[(Px→ ∀y Py)→ X] `? : X
The hypothesis k : ¬X gives k◦z : (Px→ ∀y Py)→ Px, then cck◦z : Px
We get cck◦z : ∀xPx, then λd cck◦z : Px→ ∀y Py
then k : ¬X ` zλd cck◦z : X and finally ccλk zλd cck◦z : X .

We have obtained the program θ = λz ccλk zλd ccλx(k)(z)x.

Look at its behavior, in a process θ ? t.π. We have θ ? t.π Â t ? αt,π.π
with αt,π = λd ccλx(kπ)(t)x. So, αt,π is a dynamic instruction

with the reduction rule : αt,π ? u.ρ Â t ? kρ.π.

Let α be a constant and assume that t ? α.π Â α ? u0[α].ρ0[α].

Thus t ? kρ.π Â kρ ? u0[kρ].ρ0[kρ] Â u0[kρ] ? ρ.

We have, in fact, the following reduction rule : αt,π ? u.ρ Â u0[kρ] ? ρ
(note that u0 is computed when α comes in head position for the first time).

10

The recurrence axiom

Equations like x+0 = x and inequations like 0 6= 1 are very easy to realize.

Indeed λxx k−x+0 = x and λxxt k−0 6= 1 (t is arbitrary).

But the proper recurrence axiom, that is the following formula :

∀X[X0,∀x(Xx→ Xsx)→ ∀xXx] is impossible to realize.

Fortunately, we really need a weaker formula : strengthen the hypothesis X0,

by saying that the set X contains every individual which is not a successor.

We can write this axiom in a better form :

∀x[∀y(Xy → x 6= sy)→ ¬Xx]→ ∀x¬Xx
It is realized by any fixed point combinator Y, with the following reduction rule :

Y ? t.π Â t ? Yt.π.

We can take Y = ZZ with Z = λzλx(x)(z)zx (Turing fixpoint).

11

The axiom of dependent choice

We need a new instruction in our machine. Any of the following two will work :

1. The signature. Let t 7→ nt be a function from closed terms into the integers,

which is very easily computable and ‘‘practically’’ one-to-one. It means that the one-to-

one property has to be true only for the terms which appear during the execution of

a given process. And also that we never try to compute the inverse function.

We define an instruction σ with the following reduction rule :

σ ? t.π Â t ? nt.π.

A simple way to implement such an instruction is to take for nt the signature

of the term t, given by a standard algorithm, such as MD5 or SHA1.

Indeed, these functions are almost surely one-to-one for the terms

which appear during a finite execution of a given process.

12

The axiom of dependent choice (cont.)

2. The clock. It is denoted as and its reduction rule is :

? t.π Â t ? n.π
where n is a Church integer which is the current time (for instance, the number of

reduction steps from the boot).

Both instructions, the clock and the signature, can be given (realize) the same type,

which is not DC but a formula DC’ which implies DC in classical logic.

By means of this proof, we get a λ-term γ[cc,σ] or γ[cc,] which has the type DC.

The instructions σ, appear only inside this λ-term γ.

By looking at its behavior, we find that the integers produced by these instructions are

only compared with each other. No other operation is performed on these integers.

13

A program for the axiom DC

The explicit writing of the program γ[cc,σ] of type DC is as follows :

γ = λf(σ)(Y)λxλn(cc)λk fτ0τ1
with τ0 = λv vxnk, τ1 = λuλx0λn0λk0 Compnn0αα0u,

α= (k)(x0)n, α0 = (k0)(x)n0,
Compnn0αα0u= α if n < n0, α0 if n0 < n, u if n = n0.
Consider a process γ ? f.π in which γ is in head position. We have :

γ ? f.π Â σ ? Yξf .π where ξf = λxλn(cc)λk fτ0τ1 depends only on f

Â Yξf ? nf.π Â ξf ? ηf .nf .π, with ηf = Yξf . Therefore

γ ? f.π Â f ? τfπ0 .τ
fπ
1 .π

with τ
fπ
i = τi[ηf/x, nf/n, kπ/k].

14

A program for the axiom DC (cont.)

Now τ
fπ
0 is simply the triple <ηf , nf, kπ>. In other words

τ
fπ
0 stores the current state f.π when γ comes in head position.

τ
fπ
1 performs the real job : it looks at two such states f.π and f 0.π0 and compare

the indexes nf and nf 0. If nf = nf 0 it does nothing.

If nf < nf 0 (resp. nf 0 < nf) it restarts with γ ? f 0.π (resp. γ ? f.π0) :

in each case, the second file with the first stack.

Thus, the main function of this program is to update files (if σ is a clock)

or to choose a good version of a file (if σ is a signature).

The axiom of dependent choice is a very general and useful principle in mathematics.

Its informatic translation is also a very general program to update files or choose the

suitable release of a file.

15

Zermelo-Fraenkel set theory

Axioms of ZFC can be classified in three groups :

1. Equality, extensionality, foundation.

2. Union, power set, substitution, infinity.

3. Choice.

I will not give details about λ-terms which realize the first two groups.

Observe simply that they are λ-terms, i.e. no new instruction is necessary.

Curiously, equality and extensionality are the most difficult ones. For example,

the first axiom of equality ∀x(x= x) is realized by a λ-term τ

with the reduction rule : τ ? t.π Â t ? τ.τ.π
(fixed point of λxλf fxx).

16

The full axiom of choice

The problem for the full axiom of choice has been solved very recently

(not yet published). As a bonus, we get also the continuum hypothesis.

The situation is completely different for these axioms :

we need two new instructions χ and χ0 which appear inside

two very complex λ-terms, together with cc and the clock (or the signature).

The behaviour of these programs is, for the moment, not understood.

These instructions χ, χ0 work on the bottom of the stack.

Their reduction rules is as follows :

χ ? t.τ.t1 . . . tn.π0 Â t ? t1 . . . tn.τ.π0
χ0 ? t.t1 . . . tn.τ.π0 Â t ? τ.t1 . . . tn.π0
where π0, as before, is a marker for the bottom of the stack.

17

Conclusion

The conclusion is that we can translate every mathematical proof

into a program. We can execute this program in a lazy λ-calculus machine

extended with only four new instructions : cc, σ (or), χ and χ0
which are rather easy to implement.

The challenge, now, is to understand all these programs.

18

References

1. S. Berardi, M. Bezem, T. Coquand On the computational content of the axiom of

choice. J. Symb. Log. 63, pp. 600-622 (1998).

2. U. Berger, P. Oliva Modified bar recursion and classical dependent choice. Preprint.

3. J.-L. Krivine Typed lambda-calculus in classical Zermelo-Fraenkel set theory.

Arch. Math. Log. 40, 3, pp. 189-205 (2001)

4. J.-L. Krivine Dependent choices, ‘quote’ and the clock.

Th. Comp. Sc. 308, pp. 259-276 (2003)

5. J.-L. Krivine Realizability in classical logic.

To appear in Panoramas et Synthèses. Société mathématique de France.

Pdf files at http://www.pps.jussieu.fr/~krivine

19

