The CPC manual

Juliusz Chroboczek, Gabriel Kerneis
<jch@pps. jussieu.fr>, <kerneis@pps.jussieu.fr>

12 June 2009

Chapter 1

The CPC language

CPC is a programming language designed for any situation where even-driven
programming is suitable — most notably, for writing concurrent programs. The
semantics of CPC is defined as a source-to-source translation from CPC into
plain C using a technique known as translation into Continuation Passing Style
(CPS) [SWT74, Plo75].

The main abstraction provided by CPC is a continuation, roughly corre-
sponding to what other concurrent programming systems term a thread or
lightweight process!.

Structure of a CPC program Just like a plain C program, a CPC program
is a set of functions. Functions in a CPC program are partitioned into “cps”
functions and “native” functions; a global constraint is that a cps function can
only ever be called by another cps function, never by a native function. The
precise set of contexts where a cps function can be called is defined in Sec. 1.1.1.

Intuitively, cps code is “interruptible”: it is possible to interrupt the flow
of a block of cps code in order to pass control to another piece of code or to
wait for an event to happen. Native code, on the other hand, is “atomic”: if a
sequence of native code is executed, it must be completed before anything else
is allowed to run.

Technically, native function calls are executed by using the machine’s native
stack. Cps function calls, on the other hand, are executed by using a lightweight
stack-like structure known as a continuation. This arrangement makes CPC
context switches extremely fast; the tradeoff is that a cps function call is an
order of magnitude slower than a native call. Thus, computationally expensive
code should be implemented in native code whenever possible.

Execution of a CPC program starts at a native function called main. This
function usually starts by registering a number of continuations with the CPC
runtime (using cpc_spawn, Section 1.1.5), and then passes control to the CPC
runtime (by calling cpc_.main_loop, Section 1.1.3).

1From the programmer’s point of view, the main difference is that a thread has a long-term
identity (a thread or process identifier) which makes it possible to have constructs such as
join or kill. Continuations, on the other hand, are transient: after execution of some code,
the former continuation no longer exists, and a new continuation has been created.

Implementatin of CPC CPC is implemented as a source-to-source transla-
tion from the CPC language, a conservative extension of C, into event-driven C
code. The resulting C code is linked against the CPC' scheduler, a modest event
loop that handles scheduling of CPC continuations.

The CPC scheduler manipulates three data structures: a queue of runnable
continuations, a priority queue of sleeping continuations, and a set of queues of
continuations blocked on condition variables or waiting for I/0.

1.1 The CPC language

CPC is a conservative extension of the 1999 edition of the C programming
language; thus, the syntax of CPC is defined as a set of productions to be
added to the grammar defined in the ISO C99 standard [ISO99].

In addition to the reserved words in C99, CPC reserves the words cps,
cpc_yield, cpc_done, cpc_spawn, cpc_wait, cpc_sleep, cpc_io_wait, cpc_attach,
cpc-detach and cpc_detached.

1.1.1 CPS contexts

Any instruction, declaration, or function definition in CPC can be in cps context
or in native context. Cps context is defined as follows:

e the body of a cps function is in cps context (Sec. 1.1.2;
e the body of a cpc_spawn statement is in cps context (Sec. 1.1.5);

e the body of a cpc_detached or cpc_attached statement is in cps context
(Sec. 1.1.9).

Any construct that is not in cps context is said to be in native context.
1.1.2 CPS functions

function-specifier ::= cps

Functions can be declared as being CPS-converted by adding cps to the list
of functions specifiers. The effect of such a declaration is to put the body of
the function in cps context, thus making it possible to use most of the CPC
features.

block-item ::= function-definition

Functions can be defined within other functions, as in Algol-family lan-
guages; the inner function can access the variables bound by the outer one.
Only cps functions can be inner functions, and they must be within other cps
functions.

Free variables of inner functions are copies of the variables of the enclosing
function; thus, a change to the value of the free variable is not visible in the
enclosing function.

1.1.3 Bootstrapping

void cpc_main_loop(void);

cpcmain_ loop Sincemain is a native function, some means is necessary to pass
control to cps code. The function cpc_main_loop invokes the CPC scheduler; it
returns when all continuations have been exhausted (i.e. where there is nothing
more to do).

1.1.4 CPC statements

statement ::= cpc-statement

CPC has a number of statements not present in the C language.
1.1.5 Cooperating: yielding, spawning

cpe-statement = cpc_yield;
| cpc-done;

| cpc_spawn statement

cpc_yield The cpc_yield statement causes the current continuation to be
suspended, and placed at the end of the queue of runnable continuations. Con-
trol is passed back to the CPC main loop. This statement is only allowed in cps
context.

cpc_done The cpc_done statement causes the current continuation to be dis-
carded, and control to be passed back to the main CPC loop. This statement
is only allowed in cps context.

cpc_spawn The cpc_spawn statement causes a new continuation that executes
the argument to cpc_spawn to be created and placed at the end of the queue of
runnable continuations. Execution then proceeds after the cpc_spawn statement
(control is not passed back to the main CPC loop). This statement is valid in
arbitrary context.

1.1.6 Synchronisation: condition variables

cpe-statement ::= cpc_wait(expression);

typedef struct cpc_condvar cpc_condvar;
void cpc_signal(cpc_condvar *);
void cpc_signal_all(cpc_condvar *);

cpcwait The cpc_wait statement places the current continuation on the
list of continuations waiting on the condition variable passed as argument to
cpc_wait. Control is passed back to the CPC loop. This statement is only valid
in cps context.

cpc_signal The function cpc_signal causes the first of the continuations
waiting on the condition variable passed as argument to be moved to the tail
of the queue of runnable continuations. Execution proceeds at the instruction
following the call to cpc_signal.

cpc_signal_all The function cpc_signal_all causes all of the continuations
waiting on the condition variabled passed as argument to be moved to the
tail of the queue of runnable continuations. This function guarantees that the
continuations will be run in the order in which they were suspended.

1.1.7 Sleeping

cpe-statement ::= cpc_sleep(expression[, expression|, expression]]);

cpc_sleep The statement cpc_sleep takes three arguments: a time in seconds,
a time in microseconds, and a condition variable. It causes the current contin-
uation to be suspended until either the specified amount of time has passed, or
the condition variable is signalled, whichever happens first.

The third argument can be omitted if no interruption is necessary. The
second argument can be omitted if sub-second accuracy is not needed.

This statement is only valid in cps context.

1.1.8 Waiting for I/O

cpe-statement ::= cpc_io_wait(expression, expression|, expression));

cpc_io_wait The statement cpc_io_wait takes three arguments: a file de-
scriptor, a direction, and a condition variable. The direction can be one of
CPC_I0_IN, meaning input, or CPC_I0_0UT, meaning output.

This statement causes the current continuation to be suspended until either
the given file descriptor is available for I/O in the given direction, or the given
condition variable is signalled, whichever happens first.

This statement is only valid in cps context

1.1.9 Interaction with native threads

cpe-statement ::= cpc_detach;

|

| cpc_attach;
| cpc_detached statement
|

cpc_attached statement

A continuation can be scheduled to be run by a native thread; intuitively,
the continuation “becomes” a native thread. When this happens, we say that
the continuation has been detached from the CPC scheduler. The opposite
operation is known as attaching a detached continuation to the CPC scheduler.

cpc_detach, cpc_attach The cpc_detach statement detaches the current
continuation; the following statements are executed in a dedicated native thread.
The opposite operation is performed by cpc_attach, which causes the current
continuation to be scheduled by the CPC scheduler.

The cpc_detach and cpc_attach statements can only appear in cpc context.

cpc_detached, cpc_attached The body of a cpc_detached statement is run
detached : an implicit cpc_detach is executed upon entering the body, and a
cpc-attach is executed upon exiting. The cpc_attached construct is dual : a
cpc-attach is executed upon entry, and a cpc_detach is executed upon exit.

1.2 Limitations and implementation notes

Not all legal C code is allowable in CPC. Some of the limitations described
below are fundamental to the implementation technique of CPC; others are just
artefacts of the current implementation, and will be lifted in a future version.

1.2.1 Fundamental limitations

The use of the longjmp library function, and its variants, is not allowed in CPC
code.

1.2.2 Current limitations

Old-style (“K&R”) function definitions are not supported.

1.2.3 Time complexity of CPC operations

The current implementation of CPC implements all the CPS operations in con-
stant time, with the following exceptions:

e at the end of every iteration of the main loop (running all the runnable
continuations once), a select system call is made; this call runs in time
proportional to the number of the highest active file descriptor;

e when a continuation is queued on two structures simultaneously (because
of cpc_sleep or cpc_io_wait with a non-null last argument), invoking it
requires dequeueing it from the second queue, which takes linear time in
the worst case;

e the cpc_sleep instruction runs in worst-case time proportional to the
number of currently sleeping continuations;

Chapter 2

The CPC library

The functions in the CPC library are themselves written in CPC, using only
the primitives documented in Chapter 1.
All the functions in the CPC core library are declared in the file cpc-1ib.h.

2.1 Barriers

typedef struct cpc_barrier cpc_barrier;

cpc_barrier *cpc_barrier_get(int count);
cps void cpc_barrier_await(cpc_barrier *barrier);

A barrier is a synchronisation construct that allows a set of continuations to
be woken up at the same time. A barrier is conceptually a queue of continuations
and a count of continuations remaining to wait for.

cpc_barrier_get The function cpc_barrier_get returns a new barrier ini-
tialised to wait for count continuations.

cpc_barrier_await The function cpc_barrier_await causes the current con-
tinuation to wait on the barrier given in argument. This function first decre-
ments the barrier’s count; if the count reaches zero, it wakes up all of the
continuations waiting on the barrier. Otherwise, it suspends the current con-
tinuation.

The function cpc_barrier_await guarantees that the continuations are run
in the order in which they were suspended.

2.2 Input/Output

2.2.1 Setting up file descriptors

int cpc_setup_descriptor(int fd, int nonagle);

The function cpc_setup_descriptor sets up the file descriptor £d into non-
blocking mode, making it suitable for use by the CPC runtime. If nonagle is

true (non-zero), the descriptor is assumed to refer to a socket and has the Nagle
algorithm disabled (the socket option TCP_NODELAY is set).
This function returns 1 in case of success, -1 in case of failure.

2.2.2 Input/Output

cps int cpc_write(int fd, void *buf, size_t count);

cps int cpc_write_timeout(int fd, void *buf, size_t count,
int secs, int micros);

cps int cpc_read(int fd, void *buf, size_t count);

cps int cpc_read_timeout(int fd, void *buf, size_t count,
int secs, int micros);

The functions cpc_write and cpc_read are CPC’s versions of the write
and read system calls. They return the number of octets read/written in case
of success; in case of failure, they return -1 with errno set.

The versions with timeout appended return after secs seconds and micros
micreseconds if no I/0O has been possible. In this case, they return -1 with errno
set to EAGAIN.

Bibliography

[ISO99)

[Plo75]

[SW74]

Information technology — programming language C. International
standard ISO/TEC 9899:1999, 1999.

G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
Theoretical Computer Science, 1:125-159, 1975. Also published as
Memorandum SAI-RM-6, School of Artificial Intelligence, Univer-
sity of Edinburgh, Edinburgh, 1973.

Christopher Strachey and Christopher P. Wadsworth. Continua-
tions: A mathematical semantics for handling full jumps. Techni-
cal Monograph PRG-11, Oxford University Computing Laboratory,
Programming Research Group, Oxford, England, 1974.

