Babel
A flexible routing protocol

Juliusz Chroboczek
PPS
Université Paris-Diderot (Paris 7)

11 March 2014

/.

Babel

1/33

The story
In December 2006, | started on a quest to bring wifi to
the Ph.D. students’ couch:

steel

cabinet

2/33

The story (2)

In December 2006, | started on a quest to bring wifi to
the Ph.D. students’ couch:

| bought three home routers;
reflashed them under OpenWRT;

bought whisky, drank whisky with the network
engineer, which got me an Ethernet jack (in the
conference room) and an IPv6 prefix;

installed OLSR;

tried to set up an IPv6 OLSR mesh.

3/33

The story (3)

It did work, but not as well as | hoped:
- shortest hop is worst path routing;

- at the time, Unik-olsrd didn’t clear transient routing
loops fast enough;

— poor support for IPv6.
At the time, | didn’t know enough about OLSR to fix the
issues:

— use OLSR-ETX instead of RFC-compliant RFC;

— make Unik-olsrd’s flooding more aggressive;

— fix OLSR for IPv6.

Instead of fixing OLSR, | designed Babel.

4/33

Babel

Babel is a modular protocol:
— a robust and mostly transient-free routing core;
- switchable metric computation;
- switchable route selection policies.

Currently, Babel has

- 4 different techniques for metric computation
(different kinds of networks);

- a single route selection policy
(good enough for all networks?).

5/33

The Babel routing core

Babel is a loop-avoiding distance-vector protocol:
- uses distributed Bellman-Ford;

— an invariant guarantees loop-freedom:
feasibility condition guarantees good transient
behaviour.

6/33

Example of transient routing loop

Link-state protocol

A ! -B A uses the direct route to S

1l e B goes through A

-7 3
S/
A ! B _ A switches to the route
DN through B before B has
N N switched to the direct route
=S

This transient situation will persist until the topology
change is successfully flooded to B.

With Babel, A will delay switching routes until it can be
sure that B has switched to the direct route.

7/33

Distributed Bellman-Ford (1)

Converges in O(A).

/B
S A\
C
S| 0 0 0 0
Alloo |1, nh=S|1, nh=S|1, nh=S
B || 0 2,nh=A|2,nh=A
Cl oo % 2,nh=A|2,nh=A

8/33

Distributed Bellman-Ford (2)

Initially,
d(s)=0 d(X) =00

Often enough, Y broadcasts d(Y) to its neighbours.

When X receives d(Y),

—if nh(X) =Y,
d(X) := cxy +d(Y)

- Si cxy +d(Y) < d(X)
d(X) :=cxy +d(Y) nh(X):=Y
Timeout: if nh(X) =Y, and Y stops broadcasting,

d(X):=00 nh(X):=L1

9/33

Distributed BF: counting to infinity

A

1,nh=S

3,nh=8B

3,nh=8B

B

2,nh=A

2,nh=A

3,nh=C

C

2,nh=A

2,nh=A

2,nh=A

Converges in O(). (RIP: 00 =16.)

Before convergence, there is a routing loop.

« Good news travel fast, bad news travel forever. »

10/33

BF: Feasibility conditions

BF is robust, we can ignore updates if they risk
generating a loop.

When X receives (d(Y), f),
— if nh(X) =Y and feasible(Y, d(Y), f)

d(X) := cxy +d(Y)
— if cxy +d(Y) < d(X) and feasible(Y, d(Y), f)

d(X) = cxy+d(Y)
nh(X) ==Y

where feasible is a function that guarantees the lack of
loops.

11/33

Feasibility conditions

BGP, Path Vector:
f is the complete path,
feasible(f) = self ¢ f.

DSDV, AODV:
feasible(d) = c + d < d(self)
Invariants: d(X) \, and if A < B then d(A) < d(B).

EIGRP/DUAL, Babel:

We maintain fd(X) = min¢<now d(X, t).

feasible(d) = d < fd(self)

Invariants: fd(X) \, and if A « B then fd(A) < fd(B).

12/33

Feasibility: exemple

A

1,fd=1

oo, fd=1

oo, fd=1

B

2,fd=2

oo, fd =2

oo, fd=2

C

2, fd=2

—
o
N

Converges in O(A).

oo, fd =2

oo, fd =2

13/33

Feasibility: starvation

The feasibility conditions (1) et (2)
cause starvation.

N
L

The only available route is not feasible.

S d(A) =1, fd(A) = 1
d(B)=1,fd(B) =1

fd(A) = 1

dB)=1

14/33

Solving starvation

Idea: when no route is available, reboot the whole
network.

DUAL/EIGRP makes a
global synchronisation (of routes towards S).

DSDV, AODV and Babel use sequenced routes.

15/33

Solving starvation: sequenced routes

Route announcements are equipped
with a sequence number:

(s, d(B))
where s € N is incremented by the source:

d(s) = (s0) (s /)

c+(ssm) = (s,c+m)
Define

(s,m)<(s’,m’) when s>s’ou
s=s"etm<m’

feasible(s, m) = (s, m) < fd.

16/33

Sequenced routes: example

]

S (1,0) (2,0) (2,0)
Al oo, fd=(1,1) | oo fd=(L,1) | (2 2),fd=(2,2)
B (L1),fd=(L,1)|(21),fd=(21)]| (2, 1),fd=(2 1)

17/33

Temporary starvation

|
\B
d;s) = (1,0)

dB) = (1,1)
d(4d) = o fd(A)=(1,1)

S

A must wait until S generates a new seqno and the
network propagates it.

In Babel, temporary starvation is explicity signalled by
A (# DSDV).

18/33

Solving temporary starvation

When a Babel node suffers from temporary starvation
(routes available but not feasible) it sends an explicit
request for a new seqno.

S\l

Unlike AODV, this request is not broadcast, which
avoids an increasing horizon search, a simple hop count
is enough.

19/33

Multiple gateways

In general, we want it to be possible to have multiple
nodes that announce the same prefix without
synchronising sequence numbers.

Babel distinguishes source and destination.

A Babel announce contains a triple
(s, d,id)

where id uniquely identifies the node originating the
route. Routes are indexed by source and destination.

20/33

Multiple gateways: loops

In the presence of multiple gateways,
Babel no longer guarantees loop-freedom.

S1 A B S
d(A) = (17,1) d(B) = (43,1)
fd(A, 51) = (17, 1) fd(B, S2) = (43, 1)

We guarantee that a loop disappears in O(n), where n is
the size of the loop.

21/33

Non-disjoint routes

A routing loop can also occur because of two routes
towards overlapping prefixes.

0.0.0.0/0 A B C
The link between B and C disappears:

0.0.0.0/0 A B C
If B reroutes through A, there is a temporary routing
loop. This can only happen after a retraction.

Babel obeys a hold time after a retraction, only applies
to shorter prefixes (# RIP).
This prevents automatic summarisation.

22/33

Metrics
On a GPS, you select the function to optimise:

Image copyright www.dieselboss com-

" BAcx

The function to minimise is called the metric:
— distance: shortest path;
- time: fastest path;
- monetary cost: cheapest path;
- etc.

23/33

Neighbour sensing

A Babel node broadcasts sort-of-periodically
Hello(seqgno, interval, --)

a Hello message with a seqno, a bound on the time
before the next Hello, and random additional data.
For each neighbour B, a node broadcasts

IHU(B, rate, ---)

an | Heard You message with the number of recently
received Hellos from B, and random additional data.

24/33

Metrics
Babel is metric-agnostic. According to RFC 6126,

- a metric MUST be strictly monotonic:
m<cem,
— a metric SHOULD be isotonic:
fm<m’ thencem<cem’

Strict monotonicity is enough to guarantee that Babel
will converge to a loop-free Nash equilibrium.
Isotonicity ensures that this equilibrium is actually the
tree of shortest paths.
By default, Babel uses:
- hop-count with 2-out-of-3 sensing on wired links;
— ETX (packet loss) on wireless links.

But we can do better.

25/33

Metrics: radio-interference

Babel-Z3 for wireless meshes

The Z3 metric refines ETX by taking radio interference
into account:

M(l-ry = C(I)+M(r) if and r interfere

1
M(l-r) = 5C(l)+M(r) otherwise

This metric is not isotonic:

1
! p——c
1.2

A

It appears to work fine in practice, but it hasn’t been
evaluated formally: results difficult to reproduce.

26/33

Metrics: delay

Babel-RTT for Robust Overlay Networks
Nexedi have been using Babel to route in a distributed

cloud. Babel requires no configuration.

Hop-count routing has
Cparis D (Tokyo) a tendency to route
through Tokyo.

Idea: use delay as a component of a routing metric.
This causes a feedback loop, which can cause
oscillations. We limit oscillations using a combination of
three techniques:

— smoothing of the link cost;
— saturation of the link cost;

— time-sensitive route selection.
27/33

Route selection

Route selection: choose the best route among those
available.
Goals:

— choose the route with smallest metric;

- prefer stable routes.
These are contradictory goals.
Initially, Babel was overly sensitive to short-term metric
variations. Over the years, Babel’s route selection

policy accumulated increasing amounts of kludges to
make it more sticky.

In early 2013, all of this has been scrapped, and Babel
has a new route selection algorithm.

28/33

History-sensitive route selection
Hysteresis

For each route, we maintain:
— the announced metric M;
- the smoothed metric Ms.

M is continuous, and converges exponentially towards
M:

Ms:=B(6)-Ms+ (1—B(8)) M,
with B(6) chosen so that the time constant is 4s.
We switch routes:
- when the current route is retracted (M = o0);

— when both metrics are better (M’ <M and M; < Ms).

In effect, we do converge to the tree of shortest paths,
but take our time switching routes unless we lose our
current route. This is a form of hysteresis.

29/33

Limited oscillations

Smoothed RTT computed by babeld (ms)

800

700

600

500

400

300

200

100

Routing oscillation, bounded metric, congestion on local links

I I T T T T
: : RTT to B as meas red by A ——

1000

1500 2000 2500 3000 3500 4000 4500
Time in seconds

30/33

Source-sensitive routing

Source-sensitive routing is a modest extension to
next-hop routing with wide-ranging consequences.

A packet is routed according to both its source and its
destination. The routing table is indexed by
destination-source pairs.

ISP A ISP B

AN

Provides a cheap form of
multihoming with hostile
ISPs. Motivated by the IETF
Homenet working group.
Works great with MPTCP.

31/33

Source-sensitive routing (2)

Source-sensitive routing raises a number of difficult
challenges:

- the routing table is not totally ordered: need to
define a routing policy;

- not necessarily implemented by the lower layers:
complex disambiguation algorithm.

First complete implementation: Matthieu Boutier 2013.
IETF work ongoing.

32/33

Conclusions

Babel is a robust and flexible routing protocol:
- reasonable on wired networks;

- good on wireless meshes;
- great framework for experimenting with new ideas:
- radio interference-sensitive metrics;
— delay-based routing;
- source-specific routing.
Having a production-quality implementation that you
control and can freely modify is costly, but provides
great opportunities for collaboration.

33/33

