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Introduction
This document is a report of my internship at PPS (Proofs, Programs and Systems),
a joint lab of the CNRS (Centre National de la Recherche Scientifique) and the
Université Paris Diderot. The internship lasted 7 weeks, from 3rd June to 19th
July 2013. It was supervised by Juliusz Chroboczek, Maître de Conférences at the
Université Paris Diderot, and co-supervised by Matthieu Boutier, who is currently
doing a Ph.D under Juliusz’s supervision.

The goal of my internship was to adapt Babel, a routing protocol developed by
Juliusz, to a new kind of network: overlay networks. This work was motivated by
the needs of Nexedi, a company using Babel for its cloud infrastructure.

The key parameter in an overlay network is the delay between routers. In
order to use the delay with Babel, I worked on an algorithm proposed by Juliusz,
which had been initially developed in the 80s but long forgotten. This led me to
implement the algorithm in babeld, the reference implementation of Babel. This
work also required a new extension to the Babel protocol, which I co-designed and
documented.

The last part of the internship was focused on evaluating my implementation.
Thanks to Nexedi, I was able to experiment on a real (albeit small) overlay network,
with some routers located as far as Tokyo. I also setup simulated networks, which
makes it easier to stress-test the algorithm in complex or unusual situations. This
evaluation suggests that my implementation is production-ready.

I would like to acknowledge Juliusz and Matthieu for their excellent supervision,
and Gabriel Kerneis for his occasional help. Various people on the babel-users
mailing list provided valuable comments on this work, which was highly appreciable.
Lastly, thanks to the other Ph.D students at PPS, for the day-to-day life at the lab
(and for the excellent tea left as a self-service).
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1 Background
In this section, we provide some background on overlay networks, which were the
motivation behind our work, and routing in general. The last subsection covers
delay and RTT in a network, which is the basis for the algorithm described in
Section 2.4.

1.1 Overlay networks

With the advent of affordable, reliable and fast Internet access, building virtual
networks on top of the Internet is becoming increasingly easy.

One of the incentive for our work was Nexedi’s needs. Nexedi1 is a company
specialised in cloud management. It has given birth to SlapOS2, a decentralised
cloud operating system that can run on servers located anywhere (datacenters
around the world, house, etc). To interconnect all nodes of a SlapOS cloud, IPv6 is
used; however, most ISPs provide unreliable IPv6 connectivity, which hampers the
availability of the cloud3.

To solve this reliability issue, Nexedi has made use of overlay networks. The
nodes connect to each other through tunnels, which are point-to-point virtual links
over the IPv4 Internet. IPv6 is then tunnelled through these virtual links, so that
it doesn’t use the unreliable IPv6 connectivity provided by commercial ISPs. To
keep a scalable system, the network is not fully meshed4, and the Babel routing
protocol (see Section 1.4) is used inside the resulting overlay network. The software
written to create and manage such an overlay network is called re6st. [1]

1.2 Routing in a network

In order to reach other nodes, a node must be able to find routes through the
network.

The classical routing paradigm is hop-by-hop routing. In this model, each
router maintains a routing table. This table contains (destination, next-hop)
pairs, where destination is a network prefix, and next-hop is the address of a
neighbouring router. Each entry indicates that, to reach nodes in destination,
the router must forward the data to next-hop.

To achieve proper routing, the routing table of each router must be populated
and maintained. This can be achieved either manually, or automatically, by using a
routing daemon.

1http://www.nexedi.com
2https://www.slapos.org/
3http://lists.alioth.debian.org/pipermail/babel-users/2013-January/001132.html
4In a fully meshed network, all nodes have direct links to each other, which forms a complete

graph.
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Figure 1: Simple network with 5 nodes.

Figure 2: Route 2 should be preferred.

Static routing The most elementary way to achieve routing is by manually
configuring each node’s routing table. With a clear vision of the network topology,
a human operator can decide which route to use for each source and destination.
For instance, on the network of Figure 1, the operator could decide “From A, use B
as a next-hop to reach D or B. To reach C or E, use C as a next-hop”, and similar
rules for each source node.

However, this method is tedious and lacks flexibility, even for small networks.
Each time a link goes down, the operator has to manually update the routing tables
to route around the faulty link. Each time a node is added to the network, all other
nodes’ routing tables must be updated to know how to reach the new node.

Routing algorithm A routing algorithm can do the job of the human operator.
By having all the nodes run the routing algorithm, they can automatically discover
the network layout. The nodes are then able to automatically build their routing
table, based on information provided by other nodes thanks to the routing algorithm.

Thus, using a routing algorithm saves the burden of manual configuration.
Additionally, the routing tables react dynamically to changes in the network, for
instance when links are added or removed.

Many classical routing protocols have been developed over the past decades [10,
13, 5] . In the recent years, new routing protocols have been designed for ad-hoc
wireless mesh networks [3] , because this environment is much more dynamic and
brings some additional difficulties. Babel, the routing protocol on which this work
is based, belongs to this newer class of protocols.

1.3 The importance of metrics

Routing algorithms are often quite generic, since a given routing algorithm can
be used on a wide range of networks. As an analogy, consider a GPS device. It
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computes shortest paths, but it must be told on which ground. The user may chose
between the fastest path, the least expensive one, or a path that avoids highways.

For routing protocols, a crucial parameter is the way of doing link quality
estimation. Each kind of network has specific characteristics, and the notion of
“good” and “bad” links must be defined accordingly. For instance, the capacity of
the links can be a criteria: for a typical ISP, a 10G link is better than a 100M link.
Another criteria could be to avoid inter-continental links.

With the proper policy for defining the quality of the links, the same routing
protocol can be used on very different networks.

Cost and metric Whatever policy is considered, it has to be understood by
the routing protocol. The policy is typically turned into a cost associated with a
given link. The higher the cost, the less attractive the link appears to the routing
protocol.

Given a route between any two nodes, the metric of the route is the sum of the
costs of all the links along the route.5 The cost of a link can be assigned manually,
or can be dynamically derived from other parameters: link usage, packet loss, and
so on.

Note that costs and metrics need not be integers. Other algebras can be used; a
description of a general algebra suitable for routing problems can be found in [16].

Hopcount metric The simplest metric is the “hopcount” metric, where each
link has a unit cost. Therefore, a node will try to minimise the number of hops
(routers crossed on the path) to reach a destination.

While this metric is satisfactory for a purely wired network, it falls short in
more complicated network, where links are not all equivalent. A limitation of the
hopcount metric in an overlay network is shown on Figure 2. The hopcount metric
is as likely to use the A→ B → D route (route 1) as the A→ C → D route (route
2), while we definitely want to avoid the transatlantic tunnels.

On wireless mesh networks, it has been shown that the hopcount metric is the
worst possible. Indeed, it tends to choose the longest links in term of physical
distance, which are also the worst in term of stability and capacity.

1.4 The Babel routing protocol

Babel is a loop-avoiding distance-vector routing protocol for IPv6 and IPv4 with
fast convergence properties. It is based on the ideas in DSDV, AODV and Cisco’s
EIGRP, but is designed to work well not only in wired networks but also in wireless
mesh networks.6

5This paragraph is borrowed from [3].
6Excerpt from http://www.pps.univ-paris-diderot.fr/~jch/software/babel/, retrieved

19th August 2013
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While optimised for wireless networks, Babel also works on other types of links.
It is thus possible to use Babel in a overlay network.

The Babel protocol is easily extensible [4], which makes it a good choice for
experimenting with a new kind of metric.

1.5 Delay and RTT

Given two hosts A and B on a network, the one-way delay from A to B is the time
a network packet takes to travel from A to B.

One-way delay can be challenging to measure. For this reason, the Round-Time-
Trip delay (RTT) is often used. RTT is the time a network packet takes to travel
from A to B and then back to A. It is sometimes referred to as the “ping”, from
the well-known Unix utility ping.

Section 1.5.1 explores some properties of delay, which apply both to one-way
delay and RTT.

1.5.1 Delay properties

Figure 3 shows RTT samples obtained with the implementation described in Sec-
tion 3, through a tunnel from Tokyo to Marseille.
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Figure 3: RTT through a tunnel. A sharp decrease occurs at time 1500, while there is a
more or less constant jitter.

In this example, the RTT is the sum of two components. The first one evolves
at a large timescale, with a sharp RTT decrease around time 1500. The second
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one evolves very rapidly, but the variation has a small amplitude. This second
component is rather a noise term.

In the general case, end-to-end delay is the sum of two components [15]:

1. a fixed component, dependent on the actual physical path between the two
hosts. It includes transmission delay, physical propagation delay, and process-
ing delay. This component is often called the base delay [15]. It is actually
expected to vary, but at a very slow timescale (from tens of minutes to hours)
because of routing changes on the underlying network. This effect is visible
on Figure 3, around time 1500.

2. a variable component, due to router congestion. We call this component the
queuing delay. This second component is a source of jitter, and can only
increase the delay from its base value.

2 Using RTT as a metric
This work focuses on overlay networks. We use the RTT to build a new metric
for the Babel routing protocol. We claim that this new metric is well adapted to
overlay networks, where delay is a key factor.

2.1 Motivation

In an overlay network, estimating the quality of a given link can be challenging.
Wireless or wired interfaces, for instance, have properties exported by the operating
system — radio channel, Signal-to-Noise Ratio (SNR) or link speed — that may be
used for link quality estimation. Tunnels have no such directly visible properties.

In practice, the actual path to reach the tunnel endpoint — through the Internet
— may range from a very good path with a few hops to a round-the-earth path that
includes a satellite link. One solution could be a manual configuration of the cost
of each tunnel, but this process would be tedious and error-prone.

A more satisfying solution is to derive a cost from the delay on the tunnel.
Indeed, a higher delay indicates a longer underlying path, which is likely to be of
lesser quality.

Before this work, Babel was able to run on overlay networks, but it would
consider all links to be equivalent, which is not satisfying in most cases. With the
new metric, Babel is now more adapted to this specific environment.

2.2 Example situation

Consider the network depicted on Figure 4, on the left. A is sending data to D
directly, since both nodes are neighbours.

When the link between A and D breaks down, the routing protocol has a choice:
either it will route packets through B, or through C. The diagram on the right
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Figure 4: An example network with tunnels. When a link breaks, the new route avoids the
long tunnels connecting C.

exhibits the desired behaviour: choose B and avoid the long tunnels going to and
from C.

2.3 Design goals for the RTT-based metric

The following requirements were imposed for the measure of RTT, mostly because
Babel already meets them.

2.3.1 Lightweight

A dynamic routing algorithm generates network traffic to disseminate routing
information between nodes. In this regard, the Babel protocol is economic: studies
show that it has low overhead compared to other routing protocols designed for the
same type of networks [2, 14]. It is therefore important to keep control traffic as
low as possible.

2.3.2 Asynchronous

babeld has a sophisticated scheduling scheme for outgoing messages. It means that
outgoing messages are not sent immediately: they can be delayed for up to a few
seconds. This is done to avoid synchronisation issues between nodes [6]. It also
allows the aggregation of multiple messages into a single UDP packet, which helps
lowering overhead.

In our case, it means that we cannot control at what time we send or receive
messages between nodes. This calls for an asynchronous algorithm, and rules out a
simple request-response protocol, such as the one used by the ping utility.

8



2.3.3 Lack of clock synchronisation

Measuring a RTT implies taking time measurements, which requires each node to
have a clock.

Clock synchronisation of all nodes is often hard to ensure, even when using
the Network Time Protocol (NTP). Furthermore, NTP needs a working network
connection, which might not exist before running Babel — since Babel is precisely
a means to obtain network connectivity.

Therefore, the algorithm must work without clock synchronisation: each node
may have its own time reference.

2.3.4 Using RTT instead of one-way delay

A tunnel over the Internet is naturally an asymmetric link. Most network operators
use a strategy called “hot-potato routing”, which implies that the forward route is
often different from the backward route.

Thus, one-way delay is expected to provide a more accurate estimation of
the cost than round-time-trip delay. Indeed, experiments with delay-sensitive
congestion control have shown that one-way delay behaves sensibly better than
round-time-trip [9, 15].

Unfortunately, the lack of clock synchronisation makes one-way delay hard to
measure. TCP-LP [9] and LEDBAT [15] both measure one-way delay, but are
only interested in the queuing delay (i.e. the variable component). This can be
computed by getting rid of the constant component, with includes the clock offset.
In our case, we are interested in the constant component, and we cannot get rid of
the clock offset in the same way.

For the sake of simplicity, we chose to base our work on round-time-trip delay.
Since we need only a rough estimation of the quality of a tunnel, we feel that the
refinement provided by one-way delay is not worth the added complexity.

2.4 Algorithm for asynchronous RTT measurement

This section describes the algorithm used to measure the RTT between two neigh-
bouring nodes, i.e. nodes that can directly talk to each other over a given link.

The algorithm is inspired by Mills’ HELLO protocol [11]. It allows a node to
measure the RTT to each one of its neighbours.

2.4.1 Description

Figure 5 shows a sequence diagram of the communication involved. On this diagram,
time flows from top to bottom. The vertical arrows show the history of each node,
and dotted arrows show a message travelling from one node to the other.

A sends a message to B, recording the time t1 of emission — according to A’s
local clock. Upon receiving the message, B also records the time t′1 of reception,
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Figure 5: Sequence diagram of an asynchronous measurement of RTT, initiated by A. The
RTT is (t2 − t1)− (t′2 − t′1).

also according to its own local clock. B can then reply in the same way anytime it
likes, here at time t′2.

With the convention used on Figure 5, the RTT is then calculated by A as

RTTA = d1 + d2 = (t2 − t1)− (t′2 − t′1) (1)

2.4.2 Properties

The key idea is that the two nodes’ clocks do not need to be synchronised, which
is a requirement described in Section 2.3.3. The non-synchronisation of the two
clocks means that we cannot compare ti and t′j , since they are absolute timings
taken from different clocks.

Consider the two terms of the equation, (t2 − t1) and (t′2 − t′1). t1 and t2 are
taken from the same clock, so that they can be compared. t2 − t1, then, is a time
interval (i.e. duration), which is a relative value. The same goes for t′1 and t′2. We
then substract two durations, which is a valid operation.

The only assumption is that both clocks tick roughly at the same speed during
the measurement. In our implementation, the measurement takes a few seconds,
which is sufficiently low to fulfil this assumption, even with cheap hardware.

2.5 Noise filtering

As discussed in Section 1.5.1, the delay has two components. In our case, we are
interested in the base delay and want to filter out the other, noisy, component.

Unfortunately, we have no direct access to the base delay.
Since the queuing delay only increases the RTT from its base value, an idea

would be to take the minimum of RTT samples. Since we expect the base RTT to
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vary, we need a sliding window of time. The length of this window should be set to
the expect time of the variations of the base RTT.

However, this method has three drawbacks:

1. it requires keeping samples from the whole window in memory, which might
not be suitable for embedded platforms;

2. tuning the window length is not easy, as we want a quick response when the
base RTT changes, while being immune to noise;

3. because of stability issues, we would like the base RTT to evolve smoothly,
and not to “jump” instantly from one value to another. Using a running
minimum may exhibit this undesired behaviour.

Instead, we use an exponentially weighted moving average:

s0 = x0 (2)

sn = α · xn + (1− α) · sn−1 (3)

where xi are RTT samples, si are smoothed values, and α ∈ ]0; 1[ is the configurable
smoothing factor.

This method has the following advantages:

• no need to keep samples into memory;

• the noise is “smoothed out”;

• we still converge quickly enough when the base RTT changes.

Of course, α needs to be tuned to get a satisfying compromise between the last
two points. The effect of this smoothing method is shown on Figure 6.

2.6 Computing a cost from the RTT

Once we have an estimation of the base RTT, we need to use it to compute a cost,
as the RTT itself is not directly usable. Our implementation uses the function
shown on Figure 7, which is added to the normal cost used by babeld.

For low RTT, no cost is added, since our implementation is not accurate below
10 ms. For medium RTT, the cost is affine in the RTT. For high RTT, the additional
cost has a upper limit. We firmly believe that in the general case, the function must
be bounded in order to achieve some form of stability. The idea is that at high
RTT, all links should be treated as equally bad, even if some are worse than others:
this avoids switching needlessly if all links have high RTT. The results shown on
figures 12 and 13 seem to confirm this hypothesis; see also Section 4. However, we
do not have any theoretical result yet.

Note that this function is a purely local matter: in the same network, different
nodes can use different functions without any issue.
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Figure 7: Cost as a function of RTT. Note that this cost is added to the existing cost (e.g.
96 for a wired interface).
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2.7 Previous work

Historical usage In 1983, Mills described the use of RTT for routing in the
DCNet [11]. He does not, however, provide any evaluation of his implementation.

Later, around 1989, RTT was used in the ARPANet to optimise routing [8]. The
network had a very limited capacity, and it was experiencing increasing contention.
By taking RTT into account, the network architects managed to partially alleviate
this contention.

The asynchronous algorithm we use to measure RTT (described in Section 2.4)
is inspired from Mills’ work [11]; it later became the basis for NTP [12].

Using delay-based metric for routing has been seemingly abandoned since then:
to the best of our knowledge, no modern network has been using this method
for years. Our interpretation is that the advent of very fast core networks has
deprecated this technique. Indeed, contention is now rarely experienced inside of the
core network itself, which deprecates the use of clever ways to fight it off. Instead,
we believe that contention has been deported to the edge of the network (i.e. the
Customer Premises Equipment (CPE) of the end-user, often connected with an
asymmetric and low-capacity technology such as xDSL), which typically doesn’t
use a routing protocol at all.

Modern routing protocols IGRP and EIGRP, two modern routing protocols
from Cisco, also use a parameter called “delay” for computing a metric7. However,
it is a value configured by hand, and is not the result of a measurement. It is
therefore unrelated to our work.

3 Implementation
This section covers the implementation of a RTT-based metric in Babel. The
protocol extension is described in greater detail in [7].

3.1 Protocol extension

TLVs and sub-TLVs In the Babel protocol, a given message is encoded as a
(type, length, value) 3-uple, called a TLV [3]. The type describes which kind of
message is sent out, while the actual content of the message (of length length) is
sent out as value.

An interesting property is the ability to fit additional data inside a TLV, which
is commonly referred to as piggybacking. All TLVs are self-terminating, in the sense
that their actual length (the “base length”) can be determined without reference to
the explicit length. If the explicit length of a TLV is larger than its base length,
the extra space present in the TLV is silently ignored by an implementation of

7See http://www.cisco.com/en/US/tech/tk365/technologies_white_
paper09186a0080094cb7.shtml#metrics, retrieved 11th July 2013.
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the base protocol, and is used by extended implementations to store a sequence of
sub-TLVs [4].

Our extension The algorithm described in section 2.4 requires node A to know
node B’s timing measurements, namely t′1 and t′2.

To keep a low overhead, the adopted solution is to piggyback the timing mea-
surements into existing Babel TLVs, using sub-TLVs [4]. The Babel protocol defines
two types of messages that are interesting for our work, since they are exchanged
every few seconds between neighbours:

Hello message, which is sent at a regular interval to all neighbours;

IHU (I Heard You) message, which is used to confirm that a Hello message was
received.

Using the sub-TLV format described in Appendix A, this allows taking a RTT
sample every few seconds, assuming no packet loss.

3.2 Code

My implementation effort was based on babeld, the reference implementation of
the Babel protocol. babeld currently consists of 8411 lines of C code (as of 19th
August 2013).

The implementation consists of 18 commits, with 11 files changed, 389 lines
added, and 19 lines removed8. This brings the total amount of C code to 8680 lines
in babeld.

The modifications may be broken down into three rough sets:

Message parsing Since the extension defines a new sub-TLV type, I extended
babeld’s packet parser. Note that sub-TLVs are a relatively new feature of Babel,
and there is no generic sub-TLV parsing code in babeld.

Timestamping outgoing packets To get accurate RTT measurements, we need
to timestamp messages at the time they are sent on the wire. The most accurate
would be a hardware timestamp, but cannot be implemented easily. Instead, we
timestamp in software, as late as possible — just before passing the messages to
the kernel for sending.

Unfortunately, babeld has a sophisticated scheduling scheme for outgoing mes-
sages, as described in Section 2.3.2, which means that messages may be buffered for
a few seconds. Since changing babeld’s scheduling is not desirable, I had to create
messages with an empty timestamp, and plug some code to fill the timestamps just
before sending the messages.

8This includes documentation and comments.
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Computing a cost From the RTT samples, we compute a smoothed RTT for
each neighbour. The smoothing factor is configurable.

To obtain a cost, the function shown on Figure 7, Section 2.6, is encoded as
three parameters: rtt-min and rtt-max, in milliseconds, and max-rtt-penalty.

These parameters can be set individually for each interface, which allows using
the extension on some interfaces only. This is useful when running Babel with a
mix of wireless interfaces and tunnels.

4 Stability
Figure 11 shows a situation where a stability issue can arise. Indeed, while A is
using one of the link at full utilisation, the RTT on the link will increase, and so
will the metric of the considered route. A will eventually switch and use the other
link. But then, the other link will also see its RTT increase, while the first link is
mostly idle. A will eventually switch back and forth between the two links, which
forms a stability issue.

Figure 8: Negative feedback loop. Case of an initial increase in link usage.

More formally, the interaction can be represented as a feedback loop, as shown
on Figure 8.

Feedback loop Note that we have a negative feedback loop, which should stabilise
things. However, in practice, we have an unstable behaviour (see Section 5.2).

This can be explained in the following way. The negative feedback loop makes
the routes converge to an equilibrium point. However, the available configuration
space (which route to chose) is discrete. Thus, the equilibrium point may not
always be reached, and the system will oscillate between points that are close to
the equilibrium point.

4.1 Preventing stability issues

According to practical measurements on real tunnels, the RTT does depend on link
usage but in a complicated way. An example is given in Appendix C.

Our implementation makes some efforts to reduce the effect of a potential
feedback loop. The techniques used are:

• smoothing of the RTT samples, as discussed in Section 2.5;
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• non-linear behaviour of the “metric = f(RTT)” function. The positive effect
of this is discussed in Section 5;

• smoothing of the metric (hysteresis). This is already a part of babeld since
the 1.4 release.

5 Evaluation
This section details the various experiments conducted in order to validate the im-
plementation. See appendix B for the underlying methodology, especially regarding
measurements.

We are grateful to Jean-Paul Smetz, Julien Muchembled and Cédric de Saint
Martin, from Nexedi, for providing the infrastructure used for the tests. It consists
of virtual machines located in various places around the world.

5.1 Real-world behaviour

Figure 9: Real-world setup to test the RTT metric.

The first experiment is a real-world setup of the situation described in Figure 4.
The actual setup is depicted in Figure 9, and has the following properties:

• each node is a virtual machine running Debian;

• the tunnels are made with OpenVPN over UDP, without cryptography;

• all babeld instances run with the following parameters: rtt-min = 10ms,
rtt-max = 200ms, max-rtt-penalty = 150.

• Lille is sending data to Marseille, using iperf in UDP mode;

• at t1, the Lille ↔ Marseille link is shut down. At t2, the Paris ↔ Marseille
link is shut down. At t3, both links are simultaneously turned on again.
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The graph at Figure 10 shows the incoming traffic for Marseille, on each of its
three interfaces. We can see that each time a link goes down, the sender switches
route after only a few seconds. Moreover, it avoids taking the long tunnel through
Tokyo, unless there is no other route available. Conversely, when the direct link
comes back, the traffic switches back to it.
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Figure 10: Real-world behaviour: incoming throughput for Marseille, while receiving iperf
traffic from Lille.

Figure 10 in Appendix C gives an alternative vision of the same experiment.

5.2 Stability

Figure 11: Simulated network to exhibit stability issues.
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As discussed in Section 4 (see in particular Figure 8), a feedback loop can lead
to an unstable behaviour.

Since the feedback loop may still occurs in some cases, I simulated a network
with extreme characteristics, which exhibits the feedback loop. The simulation was
performed with containers (lightweight virtual machines), which allows running the
babeld daemon on each container as usual. The exact methodology is described in
Appendix B.

As shown on Figure 11, a node A has two possible routes to reach node B, both
of which make use of a low-capacity link.

We expect this situation to exhibit an oscillating behaviour. The result of the
simulation, shown on Figure 12, confirms this intuitive reasoning.

In the simulation, the low-capacity links are emulated thanks to the netem
queuing discipline, used on A’s outgoing interfaces. A is using iperf in TCP mode
to send data to B.
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Figure 12: RTT oscillation for the simulated network of Figure 11, with rtt-min = 10ms,
rtt-max = 120ms, and max-rtt-penalty = 150.

Figure 12 shows the RTT from A to its neighbours during the 45-minutes
iperf session. As expected, a routing oscillation occurs. However, the period of
the oscillation is 300 seconds (measured thanks to the throughput log), which is
acceptable.

One of the reasons for such a low frequency (which means stability) is the
saturating behaviour of the function f — computing the cost of the link from
the RTT. Most of the RTT values are way above rtt-max, which helps to avoid
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switching too often. The intuitive behaviour is the following: when both links are
obviously overloaded (i.e. a RTT above rtt-max), we won’t gain much by switching
anyway.

Figure 13 shows the same situation with a very large rtt-max and a max-rtt-penalty
adjusted to obtain the same slope for f9, effectively removing the saturating be-
haviour. The new oscillation period is 50 seconds (again measured thanks to the
throughput log), which is still acceptable but much less satisfactory.
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6 Conclusion
We have shown that a delay-based metric is useful in the presence of tunnels.
Additionally, it can be implemented in a fully asynchronous way, without intrusive
changes to a routing protocol such as Babel and with little overhead.

Furthermore, with the proper setup (smoothing and non-linear behaviour),
potential stability issues can be overcome.

6.1 Contributions

Protocol development Together with Juliusz Chroboczek, we developed the
asynchronous protocol used to measure RTT, adapted from the work of David L.

9rtt-max = 1990ms and max-rtt-penalty = 2700.
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Mills. It is quite generic and should be applicable to other routing protocols, such
as OSPF or EIGRP.

Code My work led me to extend babeld, the reference implementation of the
Babel routing protocol. My code has been reviewed and accepted, and will hopefully
soon be available as part of version 1.5 of babeld. See Section 3.2 for more details.

Documentation Since it required an extension to the Babel protocol, Juliusz
Chroboczek and myself are in the process of writing an IETF Internet draft [7]
describing the extension, in accordance with the Babel extension specification [4].

Evaluation Thanks to a real overlay network, I was able to verify the validity
of my implementation. I also evaluated the same implementation in a simulated
environment, in order to experiment with less favorable cases. While my imple-
mentation may exhibit an oscillating behaviour in such cases, it is still acceptable,
thanks to the techniques used to prevent oscillation.

Public exposure I organised a public workshop on Babel at Pas Sage en Seine10

in June. In July, I co-organised a three-days Babel “hackathon”11, dedicated to
presenting and testing the new features of Babel (which includes my work).

6.2 Further work

It would have been interesting to port my extension mechanism to the Quagga
version of babeld12, in order to emphasise the compatibility between different
implementations of the protocol. However, I haven’t had the time to do so.

A thorough theoretical study of stability issues would be highly appreciated,
since we mostly rely on intuitions and experimentation at present.

My implementation is based on the 1.4 branch of babeld, which includes a
“smoothed metric” algorithm supposed to reduce oscillations. Since this algorithm
has not yet be thoroughly tested in real networks, it would be interesting to see if
it played a decisive role on my experiments.

10http://www.passageenseine.org/Passage/pses-2013/pas-sage-en-seine-2013#s1214w,
retrieved 18th August 2013.

11http://leloop.org/2013/07/13/hackathon-babel/, retrieved 18th August 2013.
12See http://www.pps.univ-paris-diderot.fr/~jch/software/babel/#download, retrieved

18th August 2013.
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A Packet format
This appendix describes the packet format used by our extension. Note that this
document is not an authoritative source, as the packet format may change after
the publication of this report. The extension draft [7] should be consulted for an
up-to-date specification.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length = 2 | Hello send time (t1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 14: Sub-TLV included in Hello messages, using the convention of Figure 5.

The sub-TLV included in Hello messages is shown on Figure 14. Sent by A
(with the convention used on Figure 5), it contains the time at which the message
was sent, encoded as an integer, in centiseconds modulo 216.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length = 4 | Hello send time (t1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hello receive time (t’1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 15: Sub-TLV included in IHU messages, using the convention of Figure 5.

The sub-TLV included in IHU messages, shown on Figure 15, contains two
timing measurements. It is sent from B to A, as a follow-up to a previous extended
Hello message.

The first timing measurement, “Hello send time”, is a copy of the value found
in the latest extended Hello message from A. This avoids A to remember which
extended Hello message it has sent. The second timing measurement, “Hello receive
time”, is the time at which B received the extended Hello message, according to its
local clock.

Upon receiving both an extended Hello and extended IHU messages from B,
A is able to compute a RTT sample. This allows taking a RTT sample every few
seconds, assuming no packet loss.
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B Evaluation methodology
This appendix describes the methodology used for the evaluation, both for the
simulations and the real-world situations.

B.1 Instrumentation

Whether running a simulation or using a real network, I needed to measure some
data. This includes:

• information gathered from babeld, such as RTT samples, smoothed RTT and
metrics. They were measured either from the local interface13 or by parsing
babeld’s debug output, in order of decreasing preference;

• information gathered on the system, such as network throughput or RTT as
seen by ping.

All data was stored in plain text files. Each line is a sample of the data, with
the first column being the time and the subsequent columns containing the data of
the sample itself. gnuplot was later used to exploit the raw data.

Handling of time For a given experiment, I often needed to consider multiple
data source simultaneously (e.g. looking at the evolution of the RTT when the
throughput is changing). To be able to compare data from multiple sources, a
common time reference was necessary.

I chose to use Unix timestamps14 for all measurements, as measured by gettimeofday(3).
One reason for this choice is gnuplot’s built-in support for Unix timestamps.

This method assumes that the clock remains stable during a given experiment.
This is achieved by synchronising the clock with NTP beforehand.

RTT samples RTT samples are only available from babeld debug output. To
record them, I piped babeld’s output through the following shell script.

# -u : unbuffered mode (for accurate timestamps)
sed -u -e ’s/^RTT to \(.*\) on \(.*\) sample result: \(.*\) \

ms./\1 \2 \3/’ | while read neighbour iface rtt
do

[ "$neighbour" = "$NEIGHBOUR" ] && echo "$(date +%s.%N) $rtt"
done

13A local socket on which babeld provides some information about neighbours and routes.
14Number of seconds since January 1, 1970

24



Smoothed RTT and metrics For a given neighbour, we may want to keep
track of its (smoothed) RTT. For a given route, we may want to know its current
metric. To record both of these data, I wrote a small python program that connects
to babeld’s local interface and parses the data sent there.

Network throughput On Linux, the /proc/net/dev file keeps a count of the
total number of bytes sent or received on each interface. I wrote a python script that
periodically parses this file and estimates the current throughput, by computing
differences of the bytes count.

The basic algorithm is described below, in Python syntax.

now = time.time()
rxbytes, txbytes = parse("/proc/net/dev", interface)
print(‘‘Timestamp RX TX’’)
while True:

time.sleep(interval)
now_prev = now
now = time.time()
rxbytes_prev, txbytes_prev = rxbytes, txbytes
rxbytes, txbytes = parse("/proc/net/dev", interface)
rx = (rxbytes - rxbytes_prev) / (now - now_prev)
tx = (txbytes - txbytes_prev) / (now - now_prev)
print((now + now_prev) / 2, rx, tx)

B.2 Simulation

In order to simulate a network with various properties, I used a container technology,
LXC, which is based on “isolation” support from the Linux kernel.

Lightweight virtualisation LXC allows to run multiple instances of the entire
network stack (network interfaces, routing table. . . ) within the same kernel. Each
container has its own virtual interfaces and routing table, and can be connected to
any other container using virtual links. A separate babeld process is run on each
container.

This solution is more lightweight and convenient than a full-blown virtualisation
technology. For instance, all containers share the same filesystem, which allows all
the containers to share the same babeld binary.

Inside the container, the network interfaces are veth interfaces. To connect two
or more containers together, a bridge is used on the host.

Traffic control I needed to simulate links with a given delay or capacity, to
emulate various kind of tunnels. The Linux kernel has all facilities necessary for
traffic control, available through the tc command. I used the netem15 queuing

15netem stands for “Network Emulator”.
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discipline, as it is simple to use and allows to set both a delay and a maximum
throughput on a given link.

To add delay to traffic going out of an interface: tc qdisc add dev eth0 root
netem delay 1000ms. To specify a maximum outgoing throughput: tc qdisc add
dev eth0 root netem rate 100kbps.

C Other evaluation data on stability
This section provides additional figures and data relating to the evaluation described
in Section 5.
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Figure 16: Real-world behaviour: evolution of metrics for the routes from Lille to Marseille.

Figure 16 refers to the same experiment as Figure 10. It shows the metric over
time of the three routes leading to Marseille, as seen from Lille. The blue points
represent the metric of the installed route. Since the RTT between the French nodes
and Tokyo is very high (roughly 320 ms), we see that the route through Tokyo
takes twice the maximum penalty, i.e. 2× max-rtt-penalty = 300.

RTT as a function of link usage Figure 17 shows the RTT through an ADSL
link. During the measurement, TCP iperf sessions are periodically performed
through the tunnel to saturate the ADSL uplink.

In this case, the RTT increases about fourfold when the link is heavily loaded.
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