
Sequentialising a concurrent program
using continuation-passing style

Juliusz Chroboczek
Université de Paris-Diderot (Paris 7)

jch@pps.jussieu.fr

28 January 2012

1/44



Outline

Everything you ever wanted to know but were afraid to
ask about:

– event-driven programming;
– continuation-passing style (CPS) transform.

(Side-effect: crash course in Scheme.)

Everything I always wanted to tell you about:
– sequentialising threaded programs into

event-driven style ;
– Continuation Passing C (CPC).

2/44



Outline

Everything you ever wanted to know but were afraid to
ask about:

– event-driven programming;
– continuation-passing style (CPS) transform.

(Side-effect: crash course in Scheme.)

Everything I always wanted to tell you about:
– sequentialising threaded programs into

event-driven style ;
– Continuation Passing C (CPC).

2/44



Implementations of concurrency

There are at least two techniques for writing concurrent
programs:

– threads;
– event-driven programming.

What is the relationship between the two?

Conclusion
Threaded programs can be translated into event-driven
programs by performing a partial CPS transform.

This can be done
– by hand (this tutorial), or
– automatically (CPC, joint work with Gabriel Kerneis).

3/44



Implementations of concurrency

There are at least two techniques for writing concurrent
programs:

– threads;
– event-driven programming.

What is the relationship between the two?

Conclusion
Threaded programs can be translated into event-driven
programs by performing a partial CPS transform.

This can be done
– by hand (this tutorial), or
– automatically (CPC, joint work with Gabriel Kerneis).

3/44



Augmented Scheme

We work in Scheme augmented with three functions:

– (ding): plays a sound.
– (current-time): returns the current (monotonic)

time, in seconds;
– (sleep-until time): does nothing until the given

(monotonic) time.

We suppose that sleep can be implemented as:

(define (sleep delta)
(sleep-until (+ (current-time) delta)))

4/44



Augmented Scheme (2)

Possible implementation in Racket:

(define (ding)
(play-sound "ding.wav" #t))

(define (current-time)
(/ (current-inexact-milliseconds) 1000.0))

(define (sleep-until t)
(let loop ()
(if (< (current-time) t)

(loop)
#f)))

This is not quite correct: real time is not monotonic
time.

5/44



A trivial problem

A trivial problem: play a sound every 1/2 s (2 Hz).
First try:

(define (periodic)
(ding)
(sleep 0.5)
(periodic))

Incorrect: assumes that (ding) takes no time to
execute, will accumulate skew.

6/44



A trivial problem (2)

A trivial problem: play a sound every 1/2 s (2 Hz).
Correct version:

(define (periodic)
(let loop ((start (current-time)))
(ding)
(sleep-until (+ start 0.5))
(loop (+ start 0.5))))

Note: this is syntactic sugar for

(define (periodic)
(letrec ((loop (lambda (start)

...)))
(loop (current-time))))

7/44



A not-quite-trivial problem

A not-quite-trivial problem: play sounds at 2 Hz and
3 Hz simultaneously.
Obvious idea: use threads.

(define (periodic hz)
(let loop ((start (current-time)))
(ding)
(sleep-until (+ start (/ hz)))
(loop (+ start (/ hz)))))

(define (two-hands)
(thread (lambda () (periodic 2)))
(thread (lambda () (periodic 3))))

8/44



Avoiding threads

There are reasons to want to avoid threads:
– you’re using a programming language with no

support for threads (Javascript or C-64 BASIC);
– you’re on an embedded system and cannot afford

multiple stacks;
– your program requires tens of thousands of

concurrent tasks (web server), and you cannot
afford that many stacks;

– you’re giving a tutorial about avoiding threads.

We want a solution that avoids threads while being
language-agnostic:

– no first-class continuations.

9/44



Avoiding threads

There are reasons to want to avoid threads:
– you’re using a programming language with no

support for threads (Javascript or C-64 BASIC);
– you’re on an embedded system and cannot afford

multiple stacks;
– your program requires tens of thousands of

concurrent tasks (web server), and you cannot
afford that many stacks;

– you’re giving a tutorial about avoiding threads.

We want a solution that avoids threads while being
language-agnostic:

– no first-class continuations.

9/44



A thread-less solution

A not-quite-trivial problem: play sounds at 2 Hz and
3 Hz simultaneously, without using threads.

Compute the times at which a sound must be played:

left 0 0.5 1 . . .
right 0 0.3333 0.6667 1 1.3333 . . .

merged 0 0.3333 0.5 0.6667 1 1.3333 . . .

Note that the merged stream is 1-periodic.

(Where did I cheat?)

10/44



A thread-less solution

A not-quite-trivial problem: play sounds at 2 Hz and
3 Hz simultaneously, without using threads.

Compute the times at which a sound must be played:

left 0 0.5 1 . . .
right 0 0.3333 0.6667 1 1.3333 . . .

merged 0 0.3333 0.5 0.6667 1 1.3333 . . .

Note that the merged stream is 1-periodic.

(Where did I cheat?)

10/44



A thread-less solution

A not-quite-trivial problem: play sounds at 2 Hz and
3 Hz simultaneously, without using threads.

Compute the times at which a sound must be played:

left 0 0.5 1 . . .
right 0 0.3333 0.6667 1 1.3333 . . .

merged 0 0.3333 0.5 0.6667 1 1.3333 . . .

Note that the merged stream is 1-periodic.

(Where did I cheat?)

10/44



A thread-less solution (3)

(define (ding-loop times)
;; takes a sorted list of times
(cond
((null? times) #f)
(#t
(let ((when (car times)))
(sleep-until when)
(ding))

(ding-loop (cdr times)))))

(define (merge l1 l2)
;; merge two sorted lists
...

)

11/44



A thread-less solution (4)
We can now say:

(define (periodic-list freq)
(let loop ((first 0))
(if (<= first 1)

(cons first (loop (+ first (/ freq))))
’())))

(define (two-hands)
(let* ((left (periodic-list 2))

(right (periodic-list 3))
(merged (merge left right)))

(let loop ()
(let ((start (current-time)))
(ding-loop

(map (lambda (t) (+ start t)) merged))
(loop))))

12/44



A thread-less solution (5)

(define (two-hands)
(...
(let loop ()

(let ((start (current-time)))
(ding-loop

(map (lambda (t) (+ start t)) merged))
(loop))))

There is slight delay between the end of ding-loop and
the next call to current-time is not zero. This delay
accumulates.

Exercice: implement two-hands in a way that doesn’t
accumulate delay.

13/44



A non-trivial problem

The previous solution relies on the stream of events
being periodic. That doesn’t generalise.

A non-trivial problem: play sounds at πHz and eHz
simultaneously, without using threads.

The resulting stream is no longer periodic.

Idea: use infinite lists (streams).

0 0.3333 0.5 0.6667 1 1.3333 1.5 1.6667 . . .

14/44



A non-trivial problem

The previous solution relies on the stream of events
being periodic. That doesn’t generalise.

A non-trivial problem: play sounds at πHz and eHz
simultaneously, without using threads.

The resulting stream is no longer periodic.

Idea: use infinite lists (streams).

0 0.3333 0.5 0.6667 1 1.3333 1.5 1.6667 . . .

14/44



A non-trivial problem (2)

With lazy lists (streams), we could write a fully general
solution.

(define (periodic-stream freq)
;; returns an infinite list
(let loop ((first 0))
(cons-lazy first (loop (+ first (/ freq))))))

(define (two-hands f1 f2)
(ding-loop
(map-lazy (lambda (t) (+ start t))

(merge (periodic-stream f1)
(periodic-stream f2))))

15/44



A non-trivial problem (3)

Fairly natural in Haskell:

ding :: IO ()
get_time :: IO Float
sleep_until :: Float -> IO ()
merge :: Ord a => [a] -> [a] -> [a]

two_hands :: Float -> Float -> IO ()
two_hands f1 f2 = do

start <- get_time
mapM_ (\t -> sleep_until (start + t) >> ding)

(merge [0, 1/f1..] [0, 1/f2..])

16/44



Streams with closures

In general, the actions associated with each timer are
not all identical.

Associate a closure (event handler) with each timer
(event specification).

0 0 0.3333 0.5 0.6667 1 1 . . .
ding ding ding ding ding ding ding . . .

17/44



Streams with closures (2)

Recall the main loop with simple streams :

(define (ding-loop times)
;; takes a sorted list of times
(cond
((null? times) #f)
(#t
(let ((when (car times)))
(sleep-until when)
(ding))

(ding-loop (cdr times)))))

18/44



Streams with closures (3)

With closures, we now have a generic main loop:

(define main-loop (handlers)
(cond
((null? handlers) #f)
(#t
(let* ((handler (car handlers))

(when (car event))
(what (cdr event)))

(sleep-until when)
((what)))

(main-loop (cdr handlers)))))

19/44



Event-driven programming

Idea: make the list global and mutable.

Consequence: the event handlers can mutate the list of
handlers.

20/44



Event-driven programming (2)

0 0
ding ding

insert(0.5) insert(0.3333)

0 0.5
ding ding

insert(0.33) insert(1)

0.33 0.5
ding ding

insert(0.67) insert(1)

0.5 0.67
ding ding

insert(1) insert(1)

21/44



Event-driven programming (3)
We need some infrastructure to maintain the list of
scheduled event handlers:

;; A sorted list of event handlers
(define handlers ’())

(define (insert-handler h hs)
;; insert handler h at the right spot in list hs
;; return the list
...

)

(define (insert-handler! when what)
;; insert a new handler at the right spot
;; in the global handlers list
(let ((h (cons when what)))
(set! handlers

(insert-handler h handlers))))
22/44



Event-driven programming (4)

The event loop is in charge of executing any scheduled
handlers:

(define (event-loop)
(cond
((null? handlers) #f)
(#t
(let* ((event (car handlers))

(when (car event))
(what (cdr event)))

(set! handlers (cdr handlers))
(sleep-until when)
((what)))

(event-loop))))

Note that order is important.

23/44



Event-driven programming (5)

Schedule event handlers from the event handlers
themselves.

(define (periodic-handler start freq)
(let ((next (+ start (/ freq))))
(ding)
(insert-handler!
next (lambda () (periodic next freq)))))

(define (periodic)
(periodic-handler (current-time) 2)
(event-loop))

24/44



Event-driven programming (6)

Remember two-hands?

(define (two-hands)
(thread (lambda () (periodic 2)))
(thread (lambda () (periodic 3))))

Exercice: implement two-hands in event-driven style.

(define (two-hands f1 f2)
(let ((start (current-time)))
(periodic-handler start f1)
(periodic-handler start f2))

(main-loop))

25/44



Event-driven programming (6)

Remember two-hands?

(define (two-hands)
(thread (lambda () (periodic 2)))
(thread (lambda () (periodic 3))))

Exercice: implement two-hands in event-driven style.

(define (two-hands f1 f2)
(let ((start (current-time)))
(periodic-handler start f1)
(periodic-handler start f2))

(main-loop))

25/44



Three programming techniques

We have seen three programming techniques:

– elementary sequential programming doesn’t
compose or doesn’t generalise;

– threads require heavy-weight infrastructure;
– event-driven programming breaks the flow of

control.

Idea: automatic transformation from threads to events.
This is a partial CPS transform!

26/44



Continuation Passing Style
Intuitively, the continuation of a program fragment is
“what remains do be done”.

For example, in

(begin
(display "A")
(display "B")
(display "C"))

The continuation of

(display "A\n")

is

(begin
(display "B")
(display "C"))

27/44



Continuation Passing Style (2)

In Continuation Passing Style (CPS), every function is
called with an explicit continuation:

(begin
(display "A")
(display "B"))

becomes

(display* "A"
(lambda ()
(display* "B"

(lambda () #f))))

28/44



Continuation Passing Style (3)

Similarly,

(begin
(display "A")
(display "B")
(display "C"))

becomes

(display* "A"
(lambda ()
(display* "B"

(lambda ()
(display* "C"
(lambda () #f))))))

29/44



Continuation Passing Style (4)

What does the function display* look like?
A possible implementation:

(define display* (thing k)
(display thing)
(k))

Constraint: CPS functions can only be called with an
empty dynamic chain (in “hereditary tail position”).

The following is not allowed:

(begin
(display* "A" (lambda () #f))
(display* "B" (lambda () #f))

30/44



Continuation Passing Style (4)

What does the function display* look like?
A possible implementation:

(define display* (thing k)
(display thing)
(k))

Constraint: CPS functions can only be called with an
empty dynamic chain (in “hereditary tail position”).

The following is not allowed:

(begin
(display* "A" (lambda () #f))
(display* "B" (lambda () #f))

30/44



Partial CPS
A CPS need not be total: it is possible to only CPS
transform parts of the program.

(begin
(display "A")
(display "B")
(display "C"))

can become

(begin
(display "A")
(display* "B"
(lambda () (display* "C" (lambda () #f)))))

or even

(begin
(display "A")
(display "B")
(display* "C" (lambda () #f)))

31/44



Partial CPS (2)

The constraint:

Constraint: CPS functions can only be called with an
empty dynamic chain (in “hereditary tail position”).

implies the following constraint:

Constraint: a CPS function may only be called by
another CPS function, not by a direct-style function.

(On the other hand, a CPS function may call a
direct-style function.)

32/44



CPS version of sleep-until

We define sleep-until*, the CPS version of
sleep-until:

(define (sleep-until* time k)
(sleep-until time)
(k))

Constraint: sleep-until* may only be called with an
empty dynamic chain (in “hereditary tail position”).

This constraint is what makes insert-event! a valid
implementation of sleep-until*.

33/44



Partial CPS (1)

Transform our first program so that it uses
sleep-until*.

(define (periodic)
(let loop ((start (current-time)))
(ding)
(sleep-until (+ start 0.5))
(loop (+ start 0.5))))

34/44



Partial CPS (2)

(define (periodic)
(let loop ((start (current-time)))
(ding)
(sleep-until (+ start 0.5))
(loop (+ start 0.5))))

Remove syntactic sugar, rename loop to
periodic-handler:

(define (periodic)
(letrec ((periodic-handler

(lambda (start)
(ding)
(sleep-until (+ start 0.5))
(periodic-handler (+ start 0.5)))))

(periodic-handler (current-time))))

35/44



Partial CPS (3)

(define (periodic)
(letrec ((periodic-handler

(lambda (start)
(ding)
(sleep-until (+ start 0.5))
(periodic-handler (+ start 0.5)))))

(periodic-handler (current-time))))

Lift the function periodic-handler:

(define (periodic-handler start)
(ding)
(sleep-until (+ start 0.5))
(periodic-handler (+ start 0.5)))

(define (periodic)
(periodic-handler (current-time)))

36/44



Partial CPS (4)

(define (periodic-handler start)
(ding)
(sleep-until (+ start 0.5))
(periodic-handler (+ start 0.5)))

(define (periodic)
(periodic-handler (current-time)))

CPS-convert any function that calls sleep-until:

(define (periodic-handler* start k)
(ding)
(sleep-until (+ start 0.5))
(periodic-handler* (+ start 0.5) k))

(define (periodic* k)
(periodic-handler* (current-time) k))

37/44



Partial CPS (5)
(define (periodic-handler* start k)

(ding)
(sleep-until (+ start 0.5))
(periodic-handler* (+ start 0.5) k))

(define (periodic* k)
(periodic-handler* (current-time) k))

We can now convert all calls to sleep-until into calls
to sleep-until*:

(define (periodic-handler* start k)
(ding)
(sleep-until* (+ start 0.5))
(lambda () (periodic-handler* (+ start 0.5) k)))

(define (periodic* k)
(periodic-handler* (current-time) k))

38/44



Partial CPS (5)

(define (periodic-handler* start k)
(ding)
(sleep-until*
(+ start 0.5))
(lambda () (periodic-handler* (+ start 0.5) k)))

Except for the useless parameter k, this is almost
exactly our hand-written event-driven code:

(define (periodic-handler start freq)
(let ((next (+ start (/ freq))))
(ding)
(insert-handler!
next (lambda () (periodic next freq)))))

39/44



A non-trivial continuation

Exercice: convert the following code into event-driven
style by performing a partial CPS.

(define (wait-a-sec)
(let ((start (current-time)))
(sleep-until (+ start 1))))

(define (ding-ding)
(ding)
(wait-a-sec)
(ding))

40/44



A non-trivial continuation (2)

Solution:

(define (wait-a-sec* k)
(let ((start (current-time)))
(sleep-until* (+ start 1) k)))

(define (ding-ding* k)
(ding)
(wait-a-sec* (lambda () (ding) (k))))

In this case, the continuation cannot be optimised away
without some more work.

41/44



Continuation Passing C

Continuation Passing C (CPC) is an automatic translator
from threaded to event-driven code based on a partial
CPS.

The target language is C, which complicates matters:
– no closures: use lambda-lifting (correct in this

particular case, even though C is a cbv imperative
language);

– variable capture (& operator): boxing of a small
number of variables

– no closures: continuations are implemented using
an ad hoc data structure.

42/44



Continuation Passing C
#include "cpc/cpc_runtime.h"

cps void ding(void);

cps void
periodic(double hz)
{

while(1) {
ding();
cpc_sleep(1.0/hz);

}
}

int
main()
{

cpc_spawn{ periodic(2); }
cpc_spawn{ periodic(3); }
cpc_main_loop();

}
43/44



Conclusion

Event-driven programming is just performing a partial
CPS and optimising it on the fly. In your head.

CPC
CPC (joint work with Gabriel Kerneis) is an automated
translator that uses the technique outlined above to
convert C with threads into plain sequential C.

http://www.pps.jussieu.fr/~kerneis/software/cpc/

Acknowledgements
Thanks to Thibaut Balabonski and Gabriel Kerneis for
the video.

44/44

http://www.pps.jussieu.fr/~kerneis/software/cpc/

